Vulnerability Assessment and Presentation Attack Detection Using a Set of Distinct Finger Vein Recognition Algorithms

Johannes Schuiki, Georg Wimmer, and Andreas Uhl

University of Salzburg Department of Computer Sciences

IJCB'21 Paper #0152

The Presentation Attack Problem

Figure: Block diagram visualisation of presentation attack problem

This Talk

- 3 Finger vein attack data sets
 - Paris Lodron University of Salzburg Finger Vein Spoofing Data Set (PLUS-LED and PLUS-Laser) [1]
 - The Idiap Research Institute VERA Fingervein Database (IDIAP VERA) [2]
 - South China University of Technology Spoofing Finger Vein Database (SCUT-SFVD) [3]
- Extensive threat analysis using 12 finger vein recognition schemes
- Presentation attack detection by fusion of similarity scores

Metrics

False Match Rate (FMR)

$$FMR = \frac{accepted\ impostor\ attempts}{all\ impostor\ attempts}$$

False Non Match Rate (FNMR)

$$FNMR = \frac{denied\ genuine\ attempts}{all\ genuine\ attempts}$$

Equal Error Rate (EER)

$$EER = Operating point where FMR = FNMR$$

■ Impostor Attack Presentation Match Rate (IAPMR)

$$IAPMR = \frac{accepted\ attack\ attempts}{all\ attack\ attempts}$$

Threat Analysis Evaluation Protocol

Finger Subject A

Finger Subject A

Finger Subject B

Figure: Step 1

Threat Analysis Evaluation Protocol

Figure: Step 2

Feature Extraction Algorithms

- Binarized Vessel Network
 - Maximum Curvature (MC) [4]
 - Principal Curvature (PC) [5]
 - Wide Line Detector (WLD) [6]
 - Repeated Line Tracking (RLT) [7]
 - Gabor Filters (GF) [8]
 - Isotropic Undecimated Wavelet Transform (IUWT) [9]
 - Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [10]

Figure: Binarized Vessel Networks

Feature Extraction Algorithms

- Binarized Vessel Network
 - Maximum Curvature (MC) [4]
 - Principal Curvature (PC) [5]
 - Wide Line Detector (WLD) [6]
 - Repeated Line Tracking (RLT) [7]
 - Gabor Filters (GF) [8]
 - Isotropic Undecimated Wavelet Transform (IUWT) [9]
 - Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [10]
- Keypoints
 - Scale Invariant Feature Transform (SIFT) based [11]
 - Speeded Up Robust Features (SURF) based [11]
 - Deformation Tolerant Feature Point Matching (DTFPM) [12]

Figure: Keypoints

Feature Extraction Algorithms

- Binarized Vessel Network
 - Maximum Curvature (MC) [4]
 - Principal Curvature (PC) [5]
 - Wide Line Detector (WLD) [6]
 - Repeated Line Tracking (RLT) [7]
 - Gabor Filters (GF) [8]
 - Isotropic Undecimated Wavelet Transform (IUWT) [9]
 - Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [10]
- Keypoints
 - Scale Invariant Feature Transform (SIFT) based [11]
 - Speeded Up Robust Features (SURF) based [11]
 - Deformation Tolerant Feature Point Matching (DTFPM) [12]
- Texture
 - Local Binary Pattern & Histogram Intersection (LBP) [13]
 - Convolutional Neural Network trained using triplet loss (CNN) [14] ¹

¹Everything except CNN used matching implementation from OpenVein-Toolkit [15]

PLUS-LED and PLUS-Laser Generation [1]

Figure: Presentation Attack generation from [1].

Threat Analysis: PLUS-LED and PLUS-Laser

Figure: Results IAPMR PLUS LED and Laser

IDIAP VERA Generation

Figure: Presentation Attack generation flow diagram (screenshot from Tome et al. [2]) IDIAP database.

Threat Analysis: IDIAP VERA

Figure: Results IAPMR IDIAP full and cropped

SCUT-SFVD Generation and Examples

Figure: Presentation Attack generation (screenshot from Qiu et al. [3]) SCUT-SFVD database.

Threat Analysis: SCUT-SFVD

Figure: Results IAPMR SCUT full and cropped

Threat Analysis: Overview

Figure: Overview IAPMRs; one case of every DB

Similarity Score Fusion Strategies

Sum-Rule Fusion

$$f = \sum_{i=1}^{N} S_i \tag{1}$$

Min-Rule Fusion

$$f = \min(S_1, ..., S_N) \tag{2}$$

Max-Rule Fusion

$$f = max(S_1, ..., S_N)$$
 (3)

Support Vector Machine with linear and rbf kernel

$$\vec{x} = (S_1, ..., S_N)$$
 (4)

f ... fusioned score, S_i ... similarity score of recognition scheme i

Score Normalisation

no-norm

z-norm

$$S' = \frac{S - \mu}{\sigma} \tag{6}$$

■ tanh-norm

$$S' = 0.5 * \left(\tanh \left(0.01 * \frac{S - \mu}{\sigma} \right) + 1 \right) \tag{7}$$

Spoof Detection Metrics

Attack Presentation Classification Error Rate (APCER)

$$APCER = \frac{spoof\ attempts\ classified\ as\ real\ finger\ attempts}{all\ spoof\ attempts}$$

Bona Fide Presnetation Classification Error Rate (BPCER)

$$BPCER = \frac{real \ finger \ attmepts \ classified \ as \ spoof}{all \ real \ finger \ attempts}$$

Detection - Equal Error Rate (D-EER)

$$D - EER = Point where APCER = BPCER$$

Best Reuslts

	Ú	ER Eusio	, Adrin		c. ,		Ο.	<u>ر</u> ک	TWI S	NE	FPN	. KK	<u>ر</u>	Q 5
Database	0,	\(\psi_{1/2}\)	40,	4	5 8	2 4	× 4	×. Q	17,4	5, Q) · · · · · ·	y 6	, 4	is ciz
IDIAP VERA full	1.67	svm-lin	z-norm			✓			✓	✓	✓	✓	✓	✓
IDIAP VERA cropped	4.02	svm-lin	z-norm		✓			✓	✓	✓	✓	✓		✓
SCUT-SFVD full	0.75	svm-rbf	z-norm	✓		✓	✓	✓	\checkmark	✓	✓	✓	✓	✓
SCUT-SFVD roi-resized	1.09	svm-rbf	tanh-norm		✓		✓		✓		1	√	√	√
PLUS-LED thick	0.00	svm-rbf	z-norm									1		1
PLUS-LED thin	0.00	svm-lin	tanh-norm								1		~	
PLUS-Laser thick	0.00	svm-lin	z-norm									N YO		Át.
PLUS-Laser thin	0.00	svm-lin	z-norm		✓					1		V		HII.

Table: Selection of best working method constellations in terms of D-EER

Conclusion

Summary:

3 FV attack datasets were tested on threat they pose to 12 recognition algorithms; Similarity scores of matching experiments were used for score level fusion to achieve spoof detection.

Lessons learned:

- Every evaluated data sets poses a threat to at least some recognition schemes. However SURF seems to be overall very resistant to spoofing.
- We can combine similarity scores of different recognition schemes to achieve spoof detection (at least to some degree).

Thank you for your attention!

Thank You! Q & A

Bibliography I

- [1] J. Schuiki, B. Prommegger, and A. Uhl, "Confronting a variety of finger vein recognition algorithms with wax presentation attack artefacts," in *Proceedings of the 9th IEEE International Workshop on Biometrics and Forensics (IWBF'21)*, (Rome, Italy (moved to virtual)), pp. 1–6, 2021.
- [2] P. Tome, M. Vanoni, and S. Marcel, "On the vulnerability of finger vein recognition to spoofing," in 2014 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–10, 2014.
- [3] X. Qiu, S. Tian, W. Kang, W. Jia, and Q. Wu, "Finger vein presentation attack detection using convolutional neural networks," in *Biometric Recognition* (J. Zhou, Y. Wang, Z. Sun, Y. Xu, L. Shen, J. Feng, S. Shan, Y. Qiao, Z. Guo, and S. Yu, eds.), (Cham), pp. 296–305, Springer International Publishing, 2017.
- [4] N. Miura, A. Nagasaka, and T. Miyatake, "Extraction of finger-vein patterns using maximum curvature points in image profiles," *IEICE - Trans. Inf. Syst.*, vol. E90-D, p. 1185–1194, Aug. 2007.
- [5] J. H. Choi, W. Song, T. Kim, S.-R. Lee, and H. C. Kim, "Finger vein extraction using gradient normalization and principal curvature," in *Image Processing: Machine Vision Applications II*, vol. 7251, pp. 7251 – 7251 – 9, 2009.
- [6] B. Huang, Y. Dai, R. Li, D. Tang, and W. Li, "Finger-vein authentication based on wide line detector and pattern normalization," in 2010 20th International Conference on Pattern Recognition, pp. 1269–1272, 2010.

Bibliography II

- [7] N. Miura, A. Nagasaka, and T. Miyatake, "Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification," *Machine Vision and Applications*, vol. 15, pp. 194–203, 10 2004.
- [8] A. Kumar and Y. Zhou, "Human identification using finger images," *IEEE Transactions on Image Processing*, vol. 21, no. 4, pp. 2228–2244, 2012.
- [9] J. Starck, J. Fadili, and F. Murtagh, "The undecimated wavelet decomposition and its reconstruction," *IEEE Transactions on Image Processing*, vol. 16, no. 2, pp. 297–309, 2007.
- [10] L. Yang, G. Yang, Y. Yin, and X. Xi, "Finger vein recognition with anatomy structure analysis," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 28, no. 8, pp. 1892–1905, 2018.
- [11] C. Kauba, J. Reissig, and A. Uhl, "Pre-processing cascades and fusion in finger vein recognition," in *Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG'14)*, (Darmstadt, Germany), Sep. 2014.
- [12] Y. Matsuda, N. Miura, A. Nagasaka, H. Kiyomizu, and T. Miyatake, "Finger-vein authentication based on deformation-tolerant feature-point matching," *Machine Vision and Applications*, vol. 27, 02 2016.
- [13] E. C. Lee, H. C. Lee, and K. R. Park, "Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction," *Int. J. Imaging Syst. Technol.*, vol. 19, p. 179–186, Sept. 2009.

Bibliography III

- [14] G. Wimmer, B. Prommegger, and A. Uhl, "Finger vein recognition and intra-subject similarity evaluation of finger veins using the cnn triplet loss," in *Proceedings of the 25th International Conference on Pattern Recognition (ICPR)*, pp. 400–406, 2020.
- [15] C. Kauba, B. Prommegger, and A. Uhl, "Openvein an open-source modular multipurpose finger vein scanner design," in *Handbook of Vascular Biometrics* (A. Uhl, C. Busch, S. Marcel, and R. Veldhuis, eds.), ch. 3, pp. 77–111, Cham, Switzerland: Springer Nature Switzerland AG, 2019.