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The Presentation Attack Problem
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Figure: Block diagram visualisation of presentation attack problem
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This Talk

3 Finger vein attack data sets
Paris Lodron University of Salzburg Finger Vein Spoofing Data Set
(PLUS-LED and PLUS-Laser) [1]
The Idiap Research Institute VERA Fingervein Database (IDIAP
VERA) [2]
South China University of Technology Spoofing Finger Vein
Database (SCUT-SFVD) [3]

Extensive threat analysis using 12 finger vein recognition
schemes

Presentation attack detection by fusion of similarity scores
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Metrics

False Match Rate (FMR)

FMR =
accepted impostor attempts

all impostor attempts

False Non Match Rate (FNMR)

FNMR =
denied genuine attempts

all genuine attempts

Equal Error Rate (EER)

EER = Operating point where FMR = FNMR

Impostor Attack Presentation Match Rate (IAPMR)

IAPMR =
accepted attack attempts

all attack attempts
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Threat Analysis Evaluation Protocol
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Figure: Step 1
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Threat Analysis Evaluation Protocol
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Feature Extraction Algorithms

Binarized Vessel Network
Maximum Curvature (MC) [4]
Principal Curvature (PC) [5]
Wide Line Detector (WLD) [6]
Repeated Line Tracking (RLT) [7]
Gabor Filters (GF) [8]
Isotropic Undecimated Wavelet Transform (IUWT) [9]
Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [10]

Figure: Binarized Vessel Networks
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Feature Extraction Algorithms

Binarized Vessel Network
Maximum Curvature (MC) [4]
Principal Curvature (PC) [5]
Wide Line Detector (WLD) [6]
Repeated Line Tracking (RLT) [7]
Gabor Filters (GF) [8]
Isotropic Undecimated Wavelet Transform (IUWT) [9]
Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [10]

Keypoints
Scale Invariant Feature Transform (SIFT) based [11]
Speeded Up Robust Features (SURF) based [11]
Deformation Tolerant Feature Point Matching (DTFPM) [12]

Figure: Keypoints
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Feature Extraction Algorithms

Binarized Vessel Network
Maximum Curvature (MC) [4]
Principal Curvature (PC) [5]
Wide Line Detector (WLD) [6]
Repeated Line Tracking (RLT) [7]
Gabor Filters (GF) [8]
Isotropic Undecimated Wavelet Transform (IUWT) [9]
Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [10]

Keypoints
Scale Invariant Feature Transform (SIFT) based [11]
Speeded Up Robust Features (SURF) based [11]
Deformation Tolerant Feature Point Matching (DTFPM) [12]

Texture
Local Binary Pattern & Histogram Intersection (LBP) [13]
Convolutional Neural Network trained using triplet loss (CNN) [14] 1

1Everything except CNN used matching implementation from OpenVein-Toolkit [15]
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PLUS-LED and PLUS-Laser Generation [1]
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Figure: Presentation Attack generation from [1].
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Threat Analysis: PLUS-LED and PLUS-Laser
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Figure: Results IAPMR PLUS LED and Laser
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IDIAP VERA Generation

Figure: Presentation Attack generation flow diagram (screenshot from Tome
et al. [2]) IDIAP database.
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Threat Analysis: IDIAP VERA
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Figure: Results IAPMR IDIAP full and cropped
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SCUT-SFVD Generation and Examples

Figure: Presentation Attack generation (screenshot from Qiu et al. [3])
SCUT-SFVD database.
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Threat Analysis: SCUT-SFVD
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Figure: Results IAPMR SCUT full and cropped
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Threat Analysis: Overview
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Figure: Overview IAPMRs; one case of every DB
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Similarity Score Fusion Strategies

Sum-Rule Fusion

f =
N∑

i=1

Si (1)

Min-Rule Fusion
f = min(S1, ...,SN) (2)

Max-Rule Fusion
f = max(S1, ...,SN) (3)

Support Vector Machine with linear and rbf kernel

~x = (S1, ...,SN) (4)

f ... fusioned score, Si ... similarity score of recognition scheme i
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Score Normalisation

no-norm

No normalisation applied (5)

z-norm
S′ =

S − µ

σ
(6)

tanh-norm

S′ = 0.5 ∗
(

tanh
(

0.01 ∗ S − µ

σ

)
+ 1
)

(7)
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Spoof Detection Metrics

Attack Presentation Classification Error Rate (APCER)

APCER =
spoof attempts classified as real finger attempts

all spoof attempts

Bona Fide Presnetation Classification Error Rate (BPCER)

BPCER =
real finger attmepts classified as spoof

all real finger attempts

Detection - Equal Error Rate (D-EER)

D − EER = Point where APCER = BPCER

17/23



Best Reuslts

Database D-E
ER

Fus
ion

Nor
m

MC PC W
LD

RLT GF IU
W

T
ASAVE

DTFPM

SURF
SIF

T
LB

P
CNN

IDIAP VERA
1.67 svm-lin z-norm X X X X X X X

full
IDIAP VERA

4.02 svm-lin z-norm X X X X X X X
cropped

SCUT-SFVD
0.75 svm-rbf z-norm X X X X X X X X X X

full
SCUT-SFVD

1.09 svm-rbf tanh-norm X X X X X X X
roi-resized
PLUS-LED

0.00 svm-rbf z-norm X X
thick

PLUS-LED
0.00 svm-lin tanh-norm X X X

thin
PLUS-Laser

0.00 svm-lin z-norm X X
thick

PLUS-Laser
0.00 svm-lin z-norm X X X X

thin

Table: Selection of best working method constellations in terms of D-EER
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Conclusion

Summary:
3 FV attack datasets were tested on threat they pose to 12
recognition algorithms; Similarity scores of matching experiments
were used for score level fusion to achieve spoof detection.

Lessons learned:
Every evaluated data sets poses a threat to at least some
recognition schemes. However SURF seems to be overall very
resistant to spoofing.
We can combine similarity scores of different recognition schemes
to achieve spoof detection (at least to some degree).
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Thank you for your attention!

Thank You!
Q & A
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