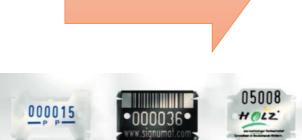
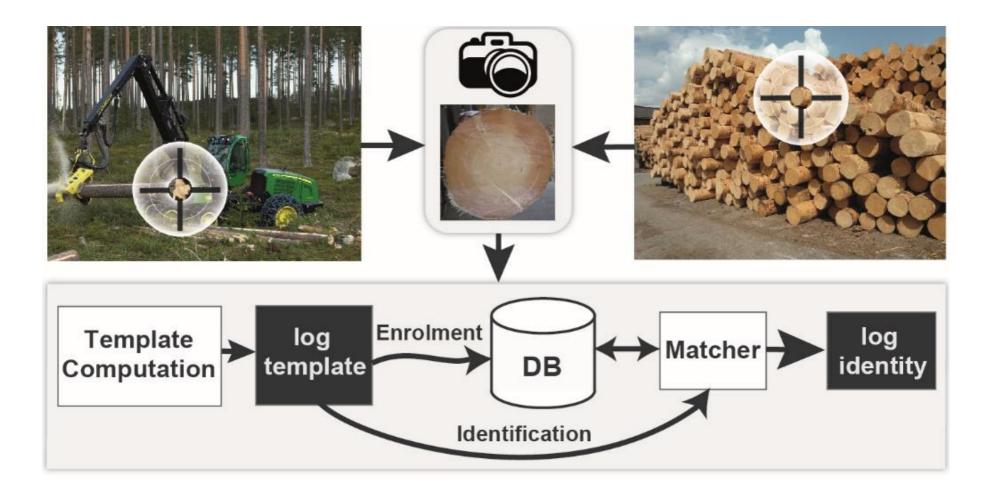


Tree log Identification based on digital cross-section images of log ends using fingerprint and iris recognition methods


R. Schraml, H. Hofbauer, A. Petutschnigg, A. Uhl

WOOD LOG TRACKING





www.proholz.at

BIOMETRIC LOG IDENTIFICATION SYSTEM

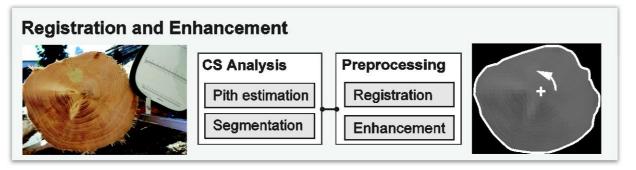
Main Objectives

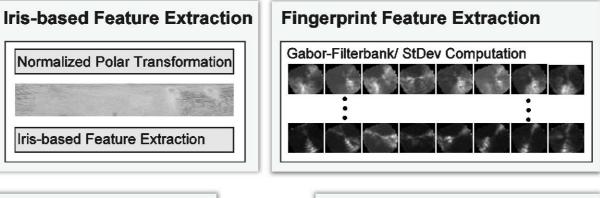
Assess

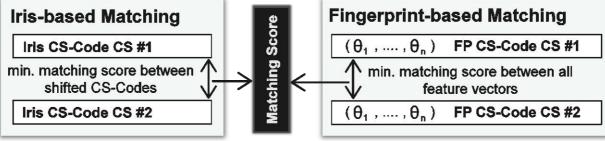
- 1. the identification performance for a set of tree logs,
- 2. the applicability of fingerprint- and iris-based methods,
- 3. the impact of enhancement.

1. TESTSET – Identification Performance

ENTACHER:


- 50 different logs
- 8 images per log (4 with and 4 without flash)
- 8 logs were cross-cut and again captured

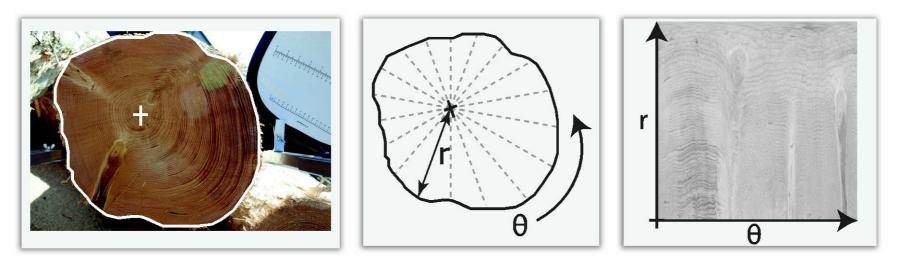

Mayr-Melnhof:


- 105 strongly bended logs
- 3 images per log

2. APPLICABILITY OF FINGERPRINT AND IRIS RECOGNITION BASED APPROACHES

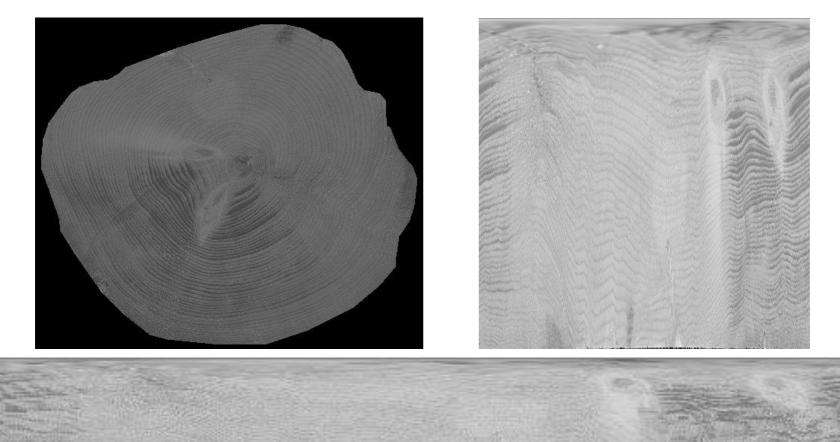
2. FINGERPRINT-BASED APPROACH

Three different matching procedures: $MS(CS_1, CS_2) = \frac{1}{M} \sum_{i=0}^{N} D(CS_1(i), CS_2(i))$


$$\begin{split} \mathsf{MS}_{\mathsf{AP}} & D_{AP} = \begin{cases} |CS_1(i) - CS_2(i)| & \text{if } i \in MCS_1 \cap MCS_2 \\ 0 & \text{otherwise} \end{cases} \\ \\ \mathsf{MS}_{\mathsf{AP\&S}} & D_{AP\&S} = \begin{cases} |CS_1(i) - CS_2(i)| + & \text{if } i \in MCS_1 \triangle MCS_2 \\ P_{AP\&S} \\ |CS_1(i) - CS_2(i)| & \text{if } i \in MCS_1 \cap MCS_2 \\ 0 & \text{otherwise} \end{cases} \\ \\ \\ \mathsf{MS}_{\mathsf{AP,F}} & \mathsf{F} = \frac{MCS_1 \triangle MCS_2}{\min(|MCS_1|, |MCS_2|)}, \ MS_{AP,F} = MS_{AP} \cdot \sigma_{AP} + F \cdot \sigma_F \end{cases} \end{split}$$

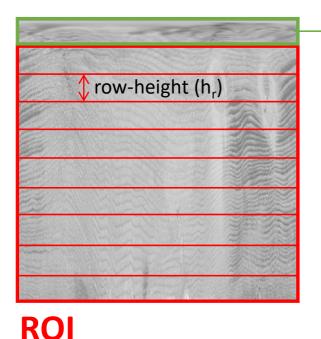
TREE LOG BIOMETRICS

₩ AP,F



Normalized polar transformation using the pith position (bi-cubic)

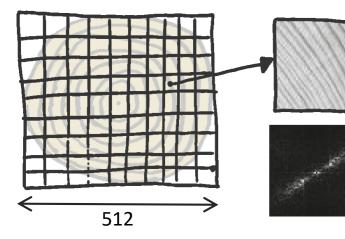
- Normalized polar transformation using the pith position (bi-cubic)
- Two formats: **512x64** and **512x512**

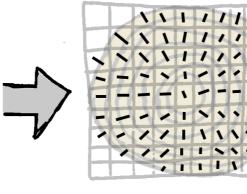


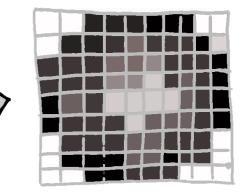
- Normalized polar transformation using the pith position (bi-cubic)
- Two formats: **512x64** and **512x512**
- Different feature extractors/ comparators USIT (University of Salzburg Iris Toolkit):

○ **ko** – Ko (2007) has its own comparator (koc)

- Normalized polar transformation using the pith position (bi-cubic)
- Two formats: **512x64** and **512x512**
- Different feature extractors/ comparators
- Ig and ko were extended to work with bigger textures:

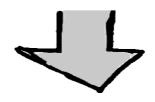

Excluded part


ROI = #rows x row-height:


 $\circ~$ different configurations for #rows (r) and row-height (h_r)

3. ENHANCEMENT

Input image


- Image registration
- Subdivide into blocks

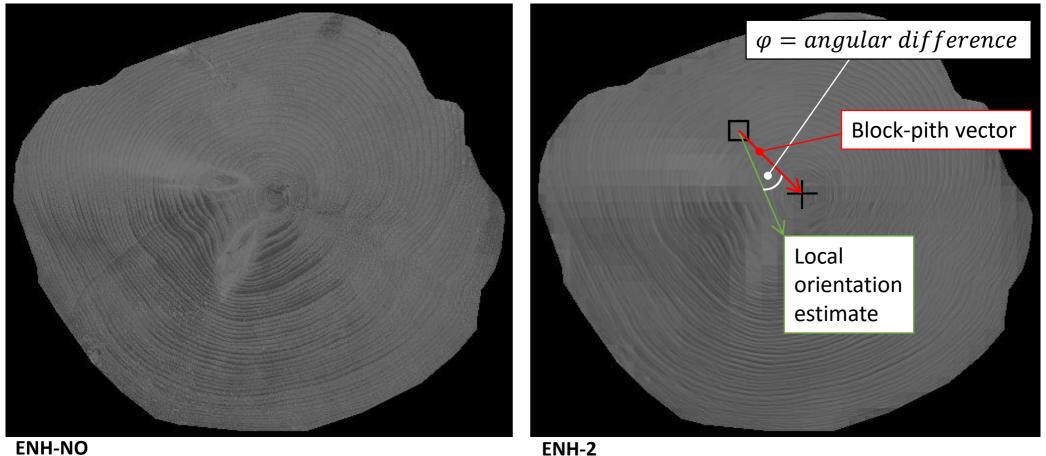
TREE LOG BIOMETRICS

Orientation image

Frequency image

- Local orientation estimation
- Smooth orientation field

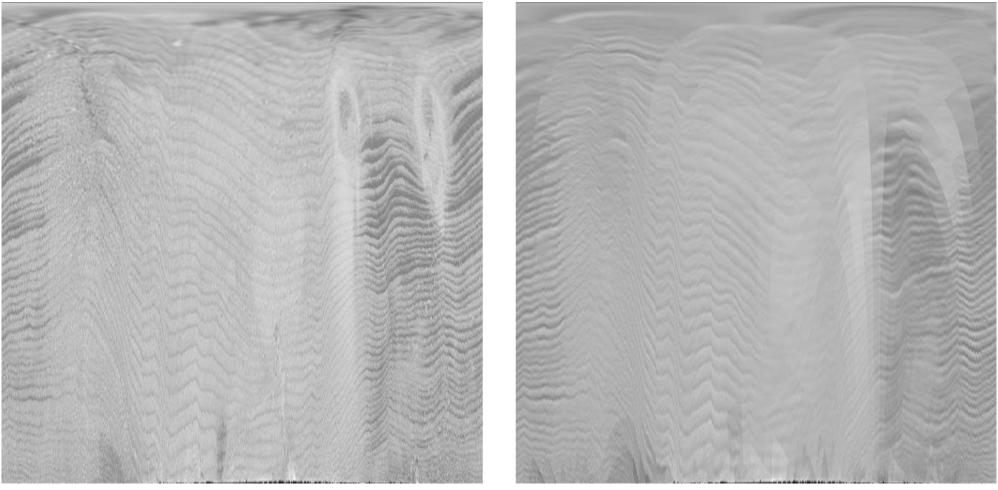
Adaptive FFT-filtering using Log-Gabor filters



TREE LOG BIOMETRICS

3. ENHANCEMENT – TWO VARIATIONS

- ENH-1: smoothed orientation and frequency field
- ENH-2: corrects the orientation and frequency field for each block


if $\varphi > t, t = \lambda * \log(pith \ distance)$

3. ENHANCEMENT – TWO VARIATIONS

ISSUE: ENH-1 & ENH-2: introduce block artefacts

ENH-2

ENH-NO

EXPERIMENTS – VERIFICATION PERFORMANCE

 Applicability of the fingerprint and iris-based configurations and the impact of enhancement:

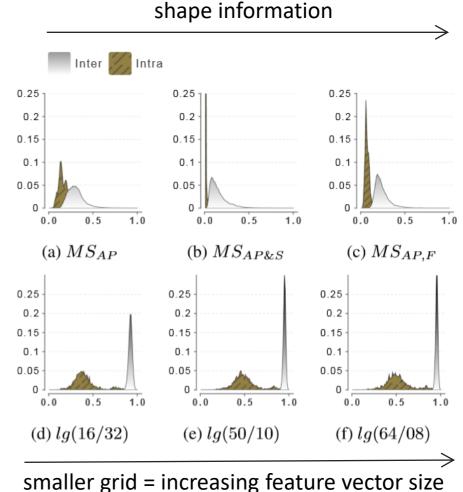
Co	onfiguration	ENH_{NO}	ENH_1	ENH_2
	MS_{AP}	15.7	1.7	0.9
${ m FP}$	$MS_{AP\&S}$	1.85	0.74	0.68
	$MS_{AP,F}$	1.53	0.37	0.17
[2	<i>lg</i> , <i>hd</i> (16/32)	0.21	0.68	0.82
S x5]	lg, hd (50/10)	0.16	0.72	0.32
IRIS 512x	lg, hd(64/08)	0.16	0.76	0.51
H 47	ko, koc	2.73	4.88	4.24
IRIS 512x64	cr, hd	5.27	3.41	4.97
	lg,hd	1.34	3.64	5.42
	qsw,hd	3.44	5.73	8.33
	ko, koc	4.95	8.09	7.35

Table 1: EERs [%] for the FP and iris configurations

FP:

- Enhancement improves the EERs
- Shape information is beneficial

IRIS:


- Bigger textures achieve better results
- Enhancement detoriates the EERs
- Ig shows the lowest EERs
- lg(50/10) ignores 12 pixel of each image the EER is the same as for lg(64/08)

EXPERIMENTS – VERIFICATION PERFORMANCE

 Applicability of the fingerprint and iris-based configurations and the impact of enhancement:

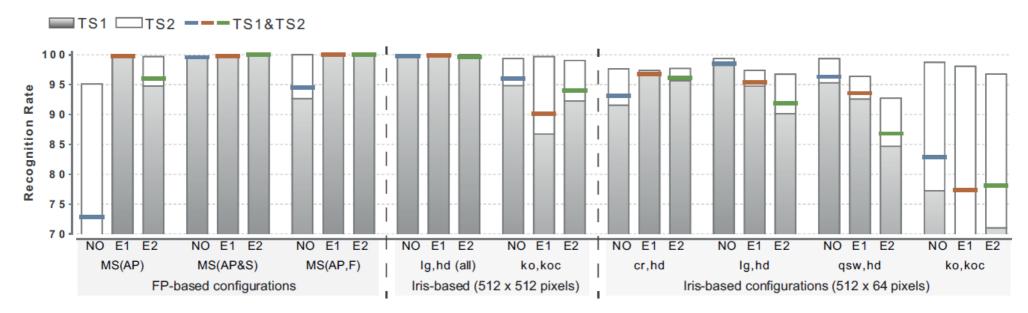
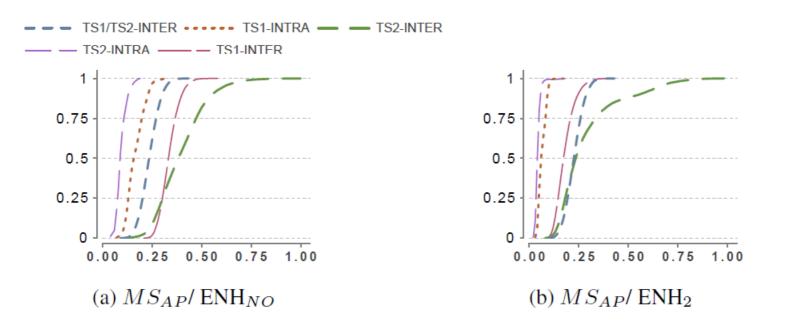

Configuration		ENH_{NO}	ENH_1	ENH_2
FP	MS_{AP}	15.7	1.7	0.9
	$MS_{AP\&S}$	1.85	0.74	0.68
	$MS_{AP,F}$	1.53	0.37	0.17
2	$ _ lg, hd(16/32) $	0.21	0.68	0.82
2	$\frac{1}{2}$ lg, hd(50/10)	0.16	0.72	0.32
	$\frac{19}{10}$, $hd(64/08)$	0.16	0.76	0.51
	ko, koc	2.73	4.88	4.24
IRIS 512x64	cr, hd	5.27	3.41	4.97
	d g = lg, hd	1.34	3.64	5.42
	$\frac{2}{2}$ qsw, hd	3.44	5.73	8.33
	ko, koc	4.95	8.09	7.35

Table 1: EERs [%] for the FP and iris configurations

EXPERIMENTS – IDENTIFICATION PERFORMANCE



- Rank 1 Detection rates
 - \circ $\,$ Rates for TS1 are lower than for TS2 $\,$
 - o Iris configurations achieve 100% recognition rates without enhancement
 - -> Implict use of shape information

EXPERIMENTS – SUBSET ANALYSIS

 Cumulative distribution functions for the different intra- and interclass score distribution subsets:

- \circ $\,$ Scores of TS1 are inferior than those from TS2 $\,$
- Enhancement improves the separability

EXPERIMENTS – TS1 ANALYSIS

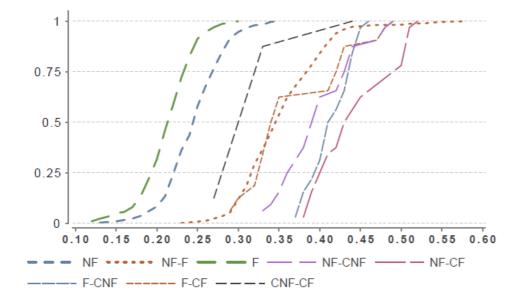
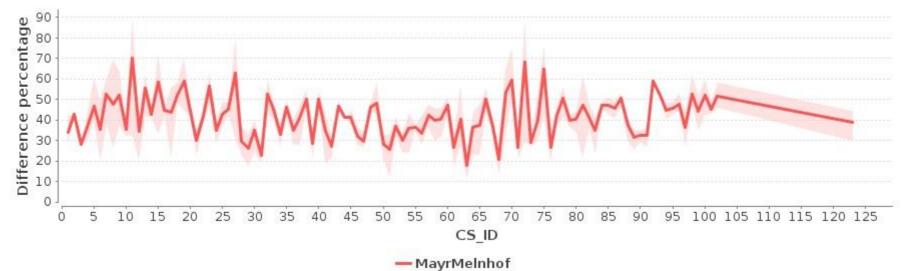



Fig. 10: Intraclass SD Subset Analysis for TS_1 . NF = No Flash, F = Flash, CNF = Cut No Flash, CF = Cut Flash. [X-Axis: Matching Score, Y-Axis: Probability]

- CS-Images captured with flash (F) are more similar to each other than those without (NF).
- Scores for CS-Images without flash to those with flash are inferior (NF-F)
- Cross-cutting detoriates the similarity (F-CF, F-CNF, NF-CF, NF-CNF)


CONCLUSIONS

- Fingerprint and iris recognition based approaches can be successfully transfered to the field of wood log tracking
- Fingerprint-based:
 - Enhancement significantly improves the performance
 - Explicit use of shape information in the matching procedure achieves the best results
- Iris-based:
 - Ig performs best Gabor features are well suited
 - Larger format is better suited
 - Increasing number of rows increases the performance
 - Implicit use of shape information



Appendix 1

MayrMeInhof - Intra/Pixel Differences

Entacher - Intra/Pixel Differences

Appendix 2

- HU-Moments (H₁-H₇)
- Circularity (C)
- Rectangularity (R)
- Eccentricity (E)
- Pith Eccentricity (PE)
- Centroid Distances (CD)
- Pith Distances (PD)
- Zernike Moments(Z)

High discriminative power and reliability!

 Validation and Reliability of the Discriminative Power of Geometric Wood Log End Features, ICIP'2015, Quebec, Canada

Appendix 3

TREE LOG BIOMETRICS

 Validation and Reliability of the Discriminative Power of Geometric Wood Log End Features, ICIP'2015, Quebec, Canada

SEG/PE	HU_1	HU_2	HU_3	HU_4	HU_5	HU_6	HU_7	С	R	Ε	PE	CD	PD	Z
GT	11.35	13.76	19.5	25.73	31.7	28.68	29.13	17.33	22.02	8.04	7.24	2.81	1.43	6.29
SEG-G/PE-PCA	36.0	38.92	39.69	45.04	45.14	40.94	43.84	34.82	49.65	29.79	29.15	28.0	19.98	5.71
SEG-G/PE-Peak	37.25	34.43	38.77	44.06	45.16	41.18	44.2	36.06	47.57	28.91	28.57	27.09	20.32	5.68
SEG-C/PE-PCA	37.78	39.09	37.31	44.81	46.73	40.7	43.49	29.11	38.46	23.99	27.6	20.43	16.71	5.57
SEG-C/PE-Peak	35.97	34.26	38.26	44.34	45.38	41.13	43.47	30.47	46.57	24.09	26.11	19.36	15.18	5.43

 Table 2: EERs[%] for each geometric feature.

CSSEG/PE	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4
GT	PD,CD	PD,CD,Z	PD,CD,Z,R
	0.74	0.54	0.68
SEG-G/PE-PCA	PD,H_4	PD,H_4,R	PD, H_4, R, H_7
SEC-O/IE-ICA	20.12	20.07	20.10
SEG-G/PE-PEAK	PD,C	PD,E,C	PD,CD,E,C
SEC-C/FE-FEAK	21.84	22.52	23.28
SEG-C/PE-PCA	PD,CD	PD,CD,E	PD,CD,E,H_6
SEU-C/LE-ICA	15.75	15.81	15.88
SEG-C/PE-PEAK	PD,CD	PD,CD,R	PD,CD,R,E
SEU-U/FE-FEAK	15.36	15.34	15.61

Table 1: EERs[%]: SFFS-based score level fusion. Z is not considered in case of SEG/PE.