
SIMILARITY BASED CROSS-SECTION SEGMENTATION IN ROUGH LOG END IMAGES

Andreas Uhl, Rudolf Schraml {uhl,rschraml}@cosy.sbg.ac.at Department of Computer Sciences University of Salzburg

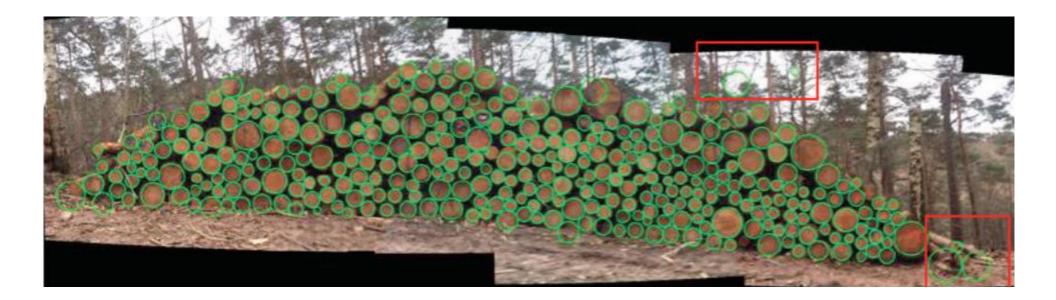
- I. MOTIVATION
- **II. MAIN OBJECTIVES**
- **III. APPROACH OUTLINE**
- **IV. RESULTS DISCUSSION**

CS-FINGERPRINTS

MOTIVATION/APPLICATIONS

I. AUTOMATED LOG GRADING

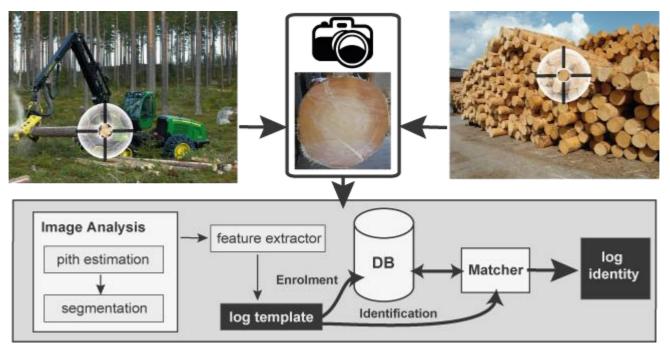
- Pith Estimation
- Annual Ring Measurements:
 - Counting / Average Ring Width
- Reaction Wood Estimation
- Knot Detection
- Dendrochronology/ Tree Ring Dating


K. Norell

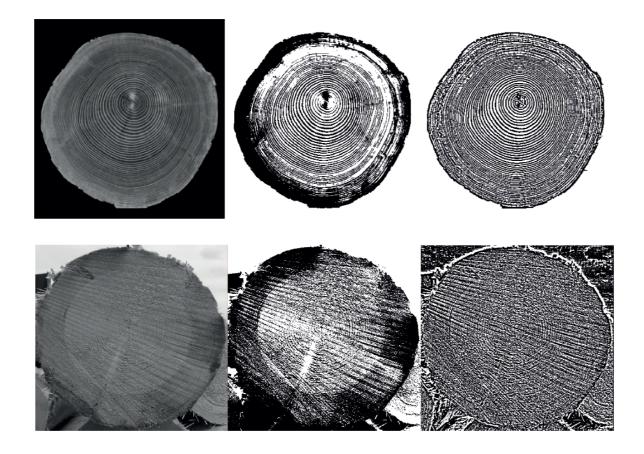
Automatic counting of annual rings on Pinus sylvestris end faces in sawmill industry, Computers and Electronics in Agriculture, Volume 75, Issue 2, February 2011, Pages 231-237

MOTIVATION

- I. AUTOMATED TIMBER GRADING
- **II. PHOTO-OPTICAL TIMBER STACK MEASUREMENT**


Ch. Herbon, K. Tönnies and Bernd Stock Detection and Segmentation of Clustered Objects by Using Iterative Classification, Segmentation, and Gaussian Mixture Models and Application to Wood Log Detection, GCPR'14, Münster (GER)

I. AUTOMATED TIMBER GRADING II. PHOTO-OPTICAL TIMBER STACK MEASUREMENT


III. BIOMETRIC LOG RECOGNITION

R. Schraml, J. Charwat-Pessler and A. Uhl **Temporal and longitudinal variances in wood log cross-section image analysis**, ICIP'14, PARIS (FR)

MOTIVATION/ RESEARCH GAP

I. AUTOMATED TIMBER GRADINGII. PHOTO-OPTICAL TIMBER STACK MEASUREMENTIII. BIOMETRIC LOG RECOGNITION

Computed tomography cross-section images

Rough log end images:

- Saw cut
- Cracks, Knots
- Discolourations
- Muck/Dirt
- Background

OBJECTIVES / REQUIREMENTS

I. ACCURACY II. TIMING

CS-FINGERPRINTS

 Cross-section segmention in rough log end images is a typical task for region-based segmentation approaches:

T. Chan and L. Vese,
An Active Contour Model without Edges,
IEEE Transactions on Image Processing (2001)

 T. Chan et al.,
Histogram Based Segmentation Using the Wasserstein Distance, SSVM (2007)

Jung et al.,
Texture segmentation via non-local nonparametric active contours,
EMMCVPR (2011)

SIMILARITY BASED – REGION GROWING

- Inspired by the EMD-region-based level set formulation
- Based on similarity of adjacent image sections
- Utilize ease and fast computeable texture features
- Different metrics to compute distances between feature histograms
- Subdivided into three consecutive stages:

CLUSTER INITIALISATION

CS-FINGERPRINTS

CLUSTER GROWING

SHAPE ESTIMATION

CLUSTER INITIALISATION

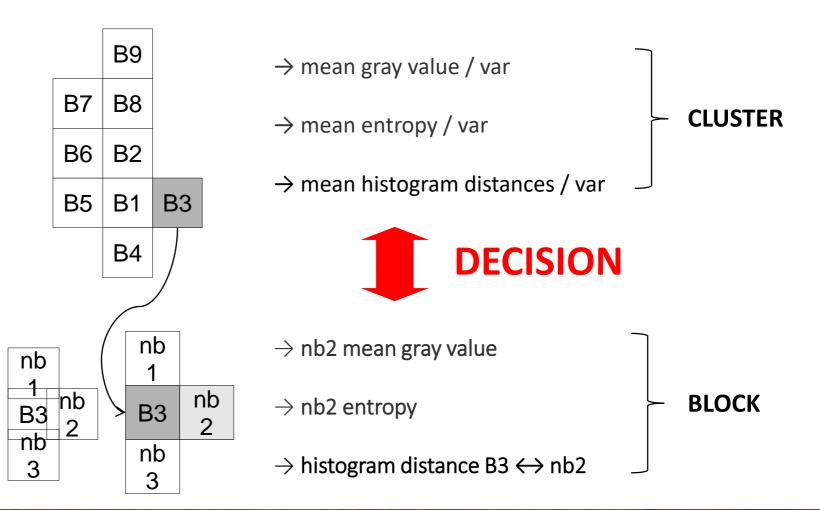
CLUSTER GROWING

SHAPE ESTIMATION

- 1. Utilize the **pith position**
- 2. Select a number of seed blocks equally distributed close to the pith
- 3. Initialise a cluster for each seed block using its adjacent neighbours

Cluster intitialisation:

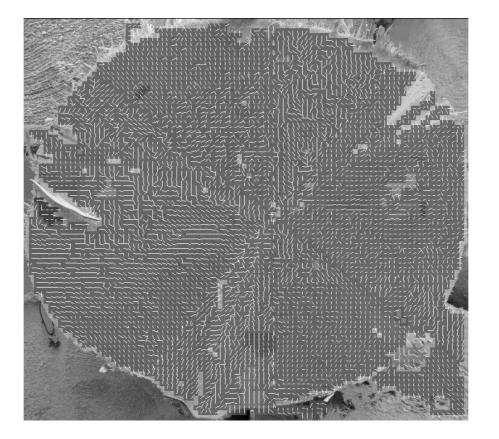
- Mean gray value/ variance
- Mean entropy/ variance
- Mean intensity or LBP histogram distance/ variance


CS-FINGERPRINTS

APPROACH OUTLINE:

CLUSTER GROWING

SHAPE ESTIMATION

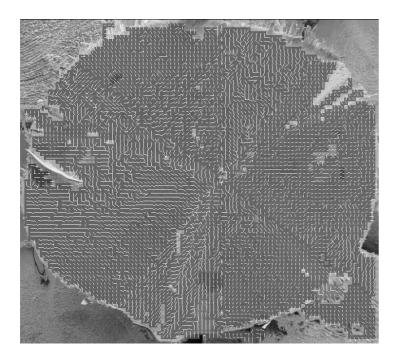


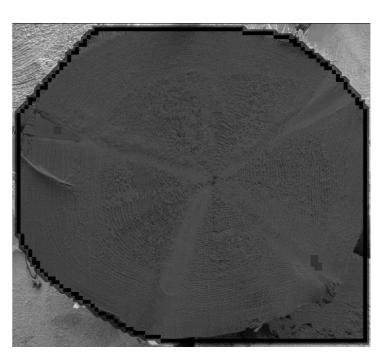
CLUSTER INITIALISATION

CLUSTER GROWING

SHAPE ESTIMATION

Merge all clusters - intermediate result

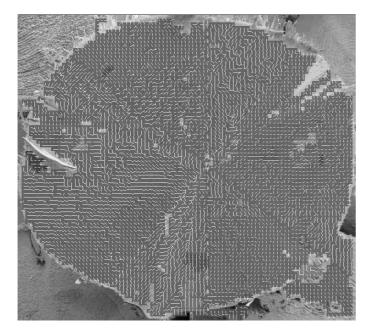


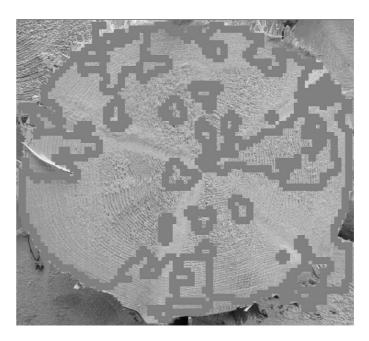

CLUSTER INITIALISATION

CLUSTER GROWING

SHAPE ESTIMATION

- Estimate the cross-section boundary
- Convex hull is no solution → Concave hull



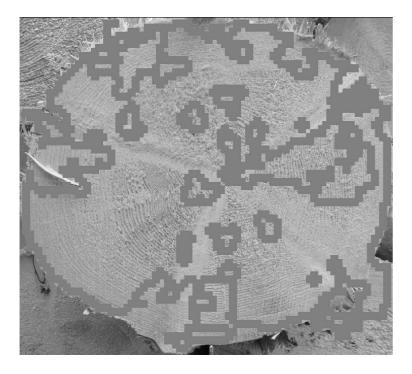

SEED BLOCK SELECTION

CLUSTER GROWING

SHAPE ESTIMATION

1. Determine boundary blocks

CS-FINGERPRINTS

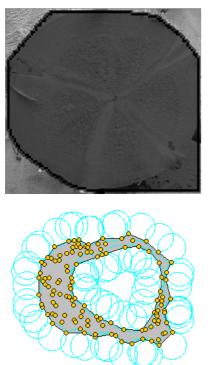


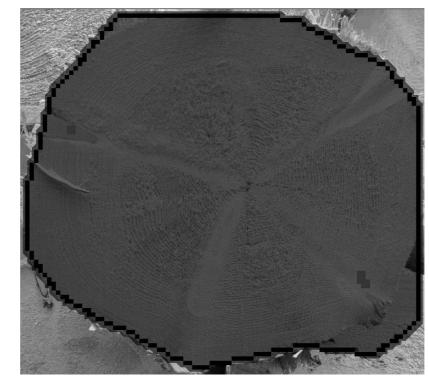
SEED BLOCK SELECTION

CLUSTER GROWING

SHAPE ESTIMATION

- 1. Determine boundary blocks
- 2. Eliminate outliers: Circle/Ellipse fitting




SEED BLOCK SELECTION

CLUSTER GROWING

SHAPE ESTIMATION

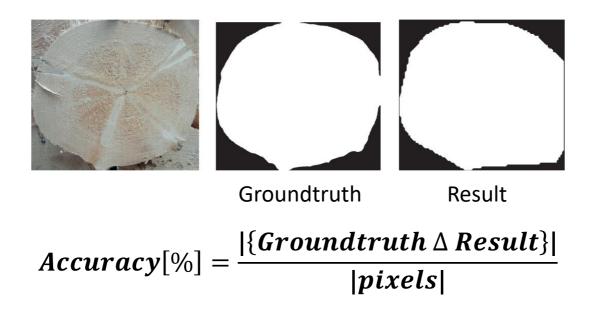
- 1. Determine boundary blocks
- 2. Eliminate outliers: Circle/Ellipse fitting
- 3. Compute the Alpha shape (Concave hull)

- #108 spruce log end images (1024x768 pixels)
- Different configurations:

- Blocksizes: 16x16 and 32x32 pixels (non- and halfoverlapping)
- Cluster growing: texure features, histogram distances, variance factors

• Four experiments:

- Experiment #1: Intensity histograms as texture features
- Experiment #2: LBP histograms as texture features
- Experiment #3: Circle/Ellipse fitting
- Experiment #4: Timing performance evaluation



EXPERIMENTS - EVALUATION

- Average timing performance [ms]
- Segmentation accuracy = segmentation error in %
 - Mean [%], StDev [%] and R = span between min. and max.

segmentation error

EXPERIMENT #1: Intensity histograms

Blocksize 16x16						Blocksize 32x32					
H_d	V_f	Mean	StDev	R	[ms]	H_d	V_f	Mean	StDev	R	[ms]
non-overlapping						non-overlapping					
L_1	0.9	7.29	3.74	17.0	312	L_1	1.3	10.05	3.46	18.0	258
L_2	1.0	7.97	3.4	15.0	310	L_2	1.7	11.13	3.87	17.0	261
H	0.9	7.72	4.16	17.0	312	Н	1.0	9.45	3.81	18.0	267
X^2	0.6	8.55	4.27	17.0	310	X^2	0.6	10.88	4.11	19.0	260
EMD	0.5	6.45	3.41	17.0	304	EMD	1.2	9.34	3.49	16.0	262
	half-overlapping				half-overlapping						
L_1	-0.5	10.04	5.64	20.0	2135	L_1	-0.3	8.03	3.03	14.0	1103
L_2	-0.4	10.52	4.68	20	2175	L_2	-0.2	8.44	3.12	15.0	1090
H	-0.3	11.11	5.99	21.0	2278	H	-0.3	7.13	3.16	14.0	1078
X^2	-0.9	6.71	4.14	19.0	2000	X^2	-0.6	8.12	3.05	15.0	1064
EMD	-0.1	5.53	3.3	14.0	1867	EMD	0.4	8.35	3.57	17.0	1043

- For three of four configurations the EMD shows the best results
- Smaller blocksizes increase the accuracy but the timing performance decreases

CS-FINGERPRINT

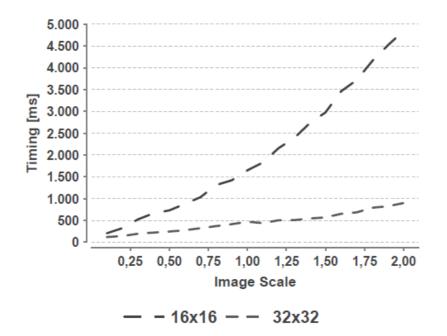
Half-overlapping blocks enable a more accurate segmentation

EXPERIMENT #2: LBP histograms


LBP histograms									
Config.	H_d	V_{f}	Mean	StDev	R	[ms]			
3x3 LBPs									
16x16 no	L_2	0.9	9.85	4.75	20.0	772			
32x32 ho	L_2	-0.2	8.88	3.83	25.0	3273			
3x3 uniform LBPs									
16x16 ho	X^2	-0.4	8.57	2.91	14.0	6636			
32x32 no	L_2	0.5	9.66	3.64	14.0	711			
3x3 multiscale LBP									
16x16 no	L_2	0.0	9.37	7.31	73	1294			
32x32 ho	L_2	0.3	7.53	3.45	14.0	5084			
3x3 multiscale & uniform LBPs									
16x16 no	L_1	0.9	8.89	4.29	16.0	1250			
32x32 ho	L_2	0.1	7.5	3.41	15.0	5206			

- Best results are achieved using the euclidean distance
- Smaller blocksizes do not increase the accuracy
- LBP extensions improve the accuracy
- Strongly varying results!

CS-FINGERPRINTS


EXPERIMENT #3: Circle/Ellipse fitting

Intensity histograms										
16x16	H_d	V_f	Mean	StDev	R	[ms]				
				2.83	12.0	610				
ho	EMD	-0.1	5.1	2.85	13.0	2597				

- Best configurations are recomputed including circle/ ellipse fitting
 - **o** Improvement of the segmentation accuracy
 - Time consuming

EXPERIMENT #4: Timing performance

- Testset images were scaled in a range from {0.1,0.2, ..., 2}
- Intensity histograms and half-overlapping blocks are utilized
- Timings for 32x32 blocks increase roughly linearly
- For 16x16 blocks the number of points considered for the Alpha shape computation increases rapidly: O (n logn)

CONCLUSIONS

- Ease and fast computable approach
- Intensity histograms and EMD:
 - Accurate and Robust
- LBP histograms:
 - Less accurate and irregular results
- Evalutation forms a solid basis for further research
- Active contour approaches are probably more robust to similar textured cross-sections in the background

CONCLUSIONS

- Ease and fast computable approach
- Intensity histograms and EMD:
 - Accurate and Robust
- LBP histograms:
 - Less accurate and irregular results
- Evalutation forms a solid basis for further research
- Active contour approaches are probably more robust to similar textured cross-sections in the background

QUESTIONS?