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Abstract

Finger vein recognition deals with the recognition of subjects based
on their venous pattern within the fingers. The majority of the avail-
able systems acquire the vein pattern using only a single camera. Such
systems are susceptible to misplacements of the finger during acqui-
sition, in particular longitudinal finger rotation poses a severe prob-
lem. Besides some hardware based approaches that try to avoid the
misplacement in the first place, there are several software based so-
lutions to counter fight longitudinal finger rotation. All of them use
classical hand-crafted features. This work presents a novel approach
to make CNNs robust to longitudinal finger rotation by training CNNs
using finger vein images from varying perspectives.

Conclusion

- First CNN based rotation tolerant single camera system

» Two different CNN architectures:
- Triplet-SgNet
- DenseNet-161 with SoftMax
- Two different training approaches:

-Images acquired at different rotation angles
- Artificial rotated versions of palmar images (data augmentation)

- Low (relative) performance degradation on the whole rotational
range (+45°)

- Augmented training data works only for Triplet-SqNet
- Baseline performance at palmar view still needs improvement

- Rotation tolerance is based on training data and not on the CNNs ar-
chitecture

Longitudinal Finger Rotation

- Misplacement of the finger during acquisition

- Can be reduced or prevented by the design of device (e.g. by adding
support structures)

- Negative influence can be reduced during pre-processing, feature ex-

traction or comparison
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Longitudinal finger rotation principle: a schematic finger cross section showing five veins (blue dots)
rotated from -30° (left) to +30° (right) in 15° steps. The projection (bottom row) of the vein pattern
is different depending on the rotation angle.

CNN Architectures Experiments / Results

Squeeze-Net (SqNet) with triplet loss function

Anchor

- Groups images of the same class
together in the output space

Embedding

-

.
-

L(A, P,N) = max(||f(A) — f(P)[|* = || f(A) — f(N)|]* + «,0)

A .. Anchor, P .. Positive, N .. Negative, « .. margin, f(x) .. embedding.
DenseNet (DenseNet-161) with SoftMax loss

- SoftMax loss function is based on assigning classes to images (prob-
ability values to each class).

CNN

o Shared
Positive weights

- Separates images from different
classes

CNN

- Can be applied to classes that
have not been included during
training

, Shared
Negative weights

CNN

- Evaluation can only be applied to already trained classes.
- Inpracticable for biometric applications.

- To avoid this problem, the net is trained with the Soft-Max loss func-
tion and then employed as feature extractor for evaluation by using
the CNN activations of intermediate layers.

Training Data

- Two data sets:

— PROTECT Multimodal Dataset(PMMDB)
- PLUSVein-Finger Rotation Data Set(PLUSVein-FR)

- Provide finger vein images all around the finger (360° in steps of 1°)

- Used subset: +-45° around the palmar view (= 0°)
- PMMDB for training, PLUSVein-FR for evaluation
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Acquired at 45°

Acquired at 0° Rotated to 45°

Varying ranges from which the training images are taken:

- Only from a single perspective (palmar view, 4-0°) = classical single
camera recognition system

- Different rotational ranges (+5 °, +15°, +30° and +45°)

Two sources for rotated images:
1.Images acquired at different rotation angles

2. Augmented images simulating rotations of the finger (circular pat-
tern normalization + shift)

Evaluation of the CNN'’s rotation tolerance

- CNNs: Triplet-SqNet (top row) and DenseNet-161 (bottom)
- Classical single camera recognition system with images acquired
from a single view (+0°))

- Training images taken in the range of +5°, 4+15°, +30° and +45°

- Rotation source: actually acquired (left) and augmentation (right)

PLUSVein-FR: Triple-SqNet - CPN, Training Data Acquired at Rotation Angles
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PLUSVein-FR: Triple-SqNet - CPN, Augmented Training Data
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PLUSVein-FR: DenseNet 161 - CPN, Training Data Acquired at Rotation Angles
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PLUSVein-FR: DenseNet 161 - CPN, Augmented Training Data
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Trend of the EER across different longitudinal rotations applying Triplet-SqNet
and DenseNet-161 trained with different rotational ranges

Comparison to State-of-the-Art

- Comparison to best performing methods of previous evaluations
(Prommegger et al. 2019, 2020)

- Inferior baseline performance @ palmar view

- Lower (relative) performance degradation for increasing rotational
distance

PLUSVein-FR: Comparison Proposed vs Best Hand-Crafted System PLUSVein-FR: Relative Performance Degradation: Proposed vs Hand-Crafted
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Performance degradation depending on the rotational difference.
Left: absolute EER values, right: relative performance degradation
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