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Motivation
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Knowing the image origin offers several advantages in a biometric
system:

Forensic applications, e.g. prevent insertion attack by ensuring authenticity
and integrity of images
Non-Forensic applications, e.g. selective processing of iris images1

Analyse intrinsic traces in images without need for additional information
(Digital image forensics)

1S. S. Arora et al. “On iris camera interoperability”. In: 2012 IEEE Fifth International
Conference on Biometrics: Theory, Applications and Systems (BTAS). 2012, pp. 346–352
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Classification Techniques

Goal: Find origin of image (unit/model)

Train a classifier with features extracted
from images

Determine sensor/data set for each query
image using this classifier

Two different techniques:
1 PRNU based sensor identification (PSI)
2 Image texture classification (ITC)
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PRNU Based Sensor Identification (PSI)

PRNU
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Iris Texture Classification (ITC)

Features
Dense SIFT (DSIFT): Local descriptor for keypoints based on a region
around it, which are distributed on a dense grid

Dense Micro-block difference (DMD): Pairwise differences of random
small blocks of the image capturing its micro-structure

Local Binary Pattern (LBP): Variations of pixels in a local neighborhood

Class ID correspon-
ding to iris dataset

Ocular Image

Extract DMD / 
DenseSIFT / LBP

feature vector

Encoding using
GMM, PCA and

Improved FV

Classify IFV using
Linear SVM
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Data Sets & Experimental Set-up

CASIA V2 CASIA
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Figure: Sample images from the 19 investigated iris datasets.

Experimental Set-up:
5-fold cross validation with averaging of results
Random split of datasets in training set (TR) and test set (TE)
Different patch sizes: 64×64 up to 512×512
Score level fusion: Different Score normalisations and fusion schemes
Evaluation of Results: Accuracy (ACC) and average precision (AP)
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Experiment 1: Iris Dataset Discrimination
ITC - DSIFT
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ITC PSI FUSION
DSIFT DMD LBP BM3D Li FS BDDF

mACC 98.78 88.51 91.96 67.82 65.92 60.20 99.48
mAP 99.51 91.23 95.05 67.93 65.26 40.72 99.86

Table: Mean accuracy (mACC) and mean average precision (mAP) for all 19 datasets.
Patch size 128, TS size 192, TE size 192.
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Experiment 2: Impact of Patch & Training Set Size
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Figure: Accuracy for selected patch sizes and different training set sizes (left).
Average precision plots for BDDF with patch size 64 and training set size 1 (right).
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Experiment 3: Unit Level Discrimination

Figure: Results for the 6 camera models with 5 instances each from the Dresden DB2.
Natural images have been used instead of iris images because of lack of comparable
iris data.

2Thomas Gloe and Rainer Böhme. “The Dresden Image Database for benchmarking digital
image forensics”. In: SAC 2010: Proceedings of the 2010 ACM Symposium on Applied
Computing. 2010, pp. 1584–1590
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Application Specific Discussion

Selective iris image processing:
Discrimination at model level is sufficient
ITC yields very good results
PSI works well only with larger patch sizes
Fusion of ITC and PSI yields even better results, especially for low number
of training images and small patch size

Insertion attack detection:
Discrimination at unit level is required
PSI works well, but has weaknesses (patch size, cropped and resized
images)
ITC is not able to discriminate multiple units of same model in this scenario
Fusion of both ITC and PSI is beneficial to overcome individual
weaknesses
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Conclusion and Future Work

Examination of approaches to deduce origin from iris images
Images from 19 different iris data sets/sensors, 5 units from 6 camera
models from Dresden DB
Evaluation of impact of different training and patch sizes
Both techniques show good performance in determining the origin of the
images, but each one has its advantages and drawbacks:

PSI is able to distinguish the origin at unit level, but only for larger patch
sizes
ITC works almost perfect to distinguish origin at model level, but fails at unit
level
Fusion of both approaches helps to improve results, especially in worst
case scenario

Future work: Performance at unit level with biometric data
No dataset with multiple units of the same iris sensor model exists→
Establish such a data set for this investigation

Perform extended tests at unit-level with both approaches and fusion
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