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Introduction and problem statement

Introduction and problem statement
Finger-vein recognition is a process in which a person’s finger vein patterns are
captured using near-infrared (NIR) illumination and used as a basis for
biometric recognition.

Poorly designed scanner devices, poor NIR lighting, varying thickness of
fingers, etc., cause the images to contain ambiguous (low contrast) regions
between vein and non-vein areas.

The intensity distributions in these areas can hardly be described by a
mathematical model, making it difficult to propose a comprehensive
algorithmic solution to extract the actual vein pasterns.

Deep learning techniques (e.g CNNs), are gaining increasing interest within
the biometric community, and application of CNNs for vein extraction has
received some research attentions recently.

Large amounts of high-quality annotated samples (ground-truths) are typically
required for CNN training, which is very expensive and time consuming.

This process gets even more tedious and error-prone, in case the annotators
have to deal with ambiguous images (finger-vein images).
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Introduction and problem statement

Introduction and problem statement
We propose a novel approach for finger-vein recognition, focused on direct
extraction of actual finger-vein patterns from NIR finger images using
semantic segmentation networks.

We also tray to address problem of the ground-truth labels generation,
analyzing the effect of training data quantity on the network performance.

Also, we propose an efficient training model based on automatically generated
labels, aiming to eliminate the need for the required grand-truth labels, and
also improve the networks’ performance.

X We derive a set of features rather than direct use of NIR finger image itself.

X Proposing automatic label generation technique, we utilize the advances made
in any of the three major steps of traditional biometric systems (pre-processing,
feature extraction, alignment and matching).

X Finally, our approach allows to employ the generated binary labels in existing
multiple features fusion, or multi-sample recognition techniques.
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Experimental framework

Databases

We used the UTFVP database1 which contains 1440 finger-vein images
(672x380) from 60 volunteers, with 2 hands, 3 fingers (index, middle, and ring
fingers), 4 images per finger.

We established an annotation tool to generate the Manual labels for a subset
(400 samples) of the dataset (including at least one sample per subject).

(a) (b) (c) (d)

Figure: Sample finger-vein images in the UTFVP database (a, b), and their corresponding
generated Manual labels (c, d) respectively

Networks
CNN networks used: Unet [1], RefineNet [2], SegNet [3].

1http://scs.ewi.utwente.nl/downloads.
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Automated generation of CNN training data

Automated label generation
Given the problems with manual data annotation, generating ground-truth
labels automatically has been suggested for some CNN-based segmentation
tasks in many fields (in special medical imaging).

Aiming to improve the networks’ preference (by improving annotation accuracy
and precision in ambiguous areas), and eliminating the need for the Manual
labels, we used Maximum Curvature (MC) [4], Repeated Line Tracking (RLT)
[5], and Gabor Filter (GF) [6] algorithms to generate the corresponding (to the
Manual labels) ground-truth labels.

(a) (b) (c) (d)

Figure: Sample UTFVP image (a) and its corresponding automatically generated labels using MC
(b), GF (c), and RLT (d) algorithms respectively
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Training and evaluation

Training
We divided the dataset into two parts (testing sets), then for he Manual
labels, we created two disjoint training sets (containing 180 samples each)
within the testing set, then we created 6 disjoint training subsets (containing
180, 140, 100, 60, 20 and 5 labels, respectively) within each training set.

For the automatically generated labels we performed the same partitioning,
while we created 5 disjoint training subsets (containing 200, 160, 120, 80, and
40 labels, respectively) within each training set.

First, we trained the networks with each subset using Manual labels, and
evaluated the them on the oder testing set of the dataset, and vis versa.

We repeated the same training and evaluation process using the automatically
generated labels (keeping only 40 pcs of Manual labels).

Evaluation
Evaluation: receiver operator characteristic behavior (in particular EER, FMR
1000 (FMR), and ZeroFMR (ZFMR)), using FVC2004 protocol [7].
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Training and evaluation

Matching
For matching, we calculated the correlation between the binary feature maps.

The correlation between the input I (x , y) and the reference one is calculated
several times while shifting the reference R(x , y), whose upper-left position is
R(cw , ch) and lower-right position is R(w − cw , h − ch), in x- and y-direction.

Nm(s, t) =

h−2ch−1∑
y=0

w−2cw−1∑
x=0

I (s + x , t + y)R(cw + x , ch + y) (1)

where Nm(s, t) is the correlation. The maximum value of the correlation is
normalized and used as matching score:

S =
Nmmax

t0+h−2ch−1∑
y=t0

s0+w−2cw−1∑
x=s0

I (x , y) +
h−2ch−1∑

y=ch

w−2cw−1∑
x=cw

R(x , y)

(2)

where s0 and to are the indexes of Nmmax in the correlation matrix Nm(s, t),
and S values are: 0 ≤ S ≤ 0.5.
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Manual label training - experiment and results

First experiential stage using Manual labels

We analyzed the networks’ performance using different quantities of the
Manual labels.

Networks Unet RefineNet SegNet

Labels EER FMR ZFMR EER FMR ZFMR EER FMR ZFMR

180 pcs 0.87 1.85 5.18 2.73 5.83 11.85 2.91 6.75 12.63
140 pcs 1.15 2.08 4.30 2.73 6.62 9.02 3.09 8.79 16.94
100 pcs 1.04 1.88 3.47 3.09 8.61 18.24 2.21 6.20 17.03
60 pcs 1.71 3.65 11.52 2.32 6.01 9.39 2.35 6.66 11.25
20 pcs 0.64 1.94 6.34 2.26 5.83 8.19 7.26 25.09 53.70
5 pcs 3.80 11.75 24.30 1.76 4.12 6.34 9.71 25.69 31.57

Table: Networks’ performance (%), trained with different number of Manual labels

(a) (b) (c) (d)

Figure: Sample Manual training label (a) and the corresponding output results using U-net (b),
RefineNet (c), and SegNet (d) networks
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Automatic label training - experiment and results

Second experiential stage using MC labels
With same objectives in the first experimental stage and also improving the
network preference, we curried the same experiments on the networks using
labels generated by MC algorithm (along with 40 pcs of Manual labels).

Networks Unet RefineNet SegNet

Labels EER FMR ZFMR EER FMR ZFMR EER FMR ZFMR

200 pcs 0.32 0.60 0.92 0.28 0.37 1.57 1.43 2.45 5.64
160 pcs 0.51 1.20 5.18 0.28 0.69 1.29 1.34 2.31 3.42
120 pcs 0.41 0.64 1.25 0.36 0.69 1.11 0.73 1.66 2.91
80 pcs 0.41 0.55 0.78 0.47 0.97 1.25 1.15 3.47 9.12
40 pcs 1.25 1.38 2.17 1.43 2.50 12.91 4.44 12.96 16.80

Table: Networks’ performance (%), trained with different numbers of MC labels

(a) (b) (c) (d)
Figure: Sample MC training label (a) and the corresponding output results using U-net (b), RefineNet

(c), and SegNet (d) networks
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Automatic label training - experiment and results

Second experiential stage using GF labels
Likewise, we curried the same analytical experiments on the networks using
different quantities of labels generated by GF algorithm (along with 40 pcs of
Manual labels).

Networks Unet RefineNet SegNet

Labels EER FMR ZFMR EER FMR ZFMR EER FMR ZFMR

200 pcs 0.79 2.73 3.79 2.13 5.04 8.75 1.20 2.68 5.55
160 pcs 1.02 3.14 12.77 2.77 6.85 10.13 0.78 2.59 5.74
120 pcs 3.33 64.30 95.23 3.74 9.35 12.08 1.47 3.37 5.60
80 pcs 0.74 2.08 6.71 1.84 5.00 8.33 2.21 6.25 12.82
40 pcs 1.61 3.56 6.15 2.36 4.07 7.50 6.57 12.31 17.31

Table: Networks’ performance (%), trained with different numbers of GF labels

(a) (b) (c) (d)
Figure: Sample GF training label (a) and the corresponding output results using U-net (b), RefineNet

(c), and SegNet (d) networks
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Automatic label training - experiment and results

Second experiential stage using RLT labels
Similarly, we curried the same analytical experiments on the networks using
different quantities of labels generated by RLT algorithm (along with 40 pcs of
Manual labels).

Networks Unet RefineNet SegNet

Labels EER FMR ZFMR EER FMR ZFMR EER FMR ZFMR

200 pcs 2.09 11.62 24.86 1.10 2.82 3.75 1.29 3.00 7.59
160 pcs 2.45 15.78 23.33 1.61 3.05 5.00 1.29 3.14 6.48
120 pcs 1.16 5.46 11.20 0.78 1.89 3.51 1.43 3.51 5.69
80 pcs 2.36 14.95 35.09 1.38 3.00 4.90 4.87 12.31 19.02
40 pcs 1.57 8.61 17.96 1.80 3.47 6.20 13.41 35.23 43.19

Table: Networks’ performance (%), trained with different numbers of RLT labels

(a) (b) (c) (d)
Figure: Sample RLT training label (a) and the corresponding output results using U-net (b), RefineNet

(c), and SegNet (d) networks

12/20



Automatic label training - experiment and results
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Figure: DET curves for: Unet (left column), RefineNet (middle column), and SegNet(right
column) networks, trained whit: MC (first row), GF (second row), and RLT (third row) labels
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Performance evaluation

Evaluating performances
We compare the obtained recognition performance results to that of the MC,
RLT ,GF, and Deformation-tolerant Feature Point (DTFP) [8] algorithms.

Method MC GF RLT DTFP
Database EER FMR ZFMR EER FMR ZFMR EER FMR ZFMR EER FMR ZFMR
UTFVP 0.41 0.55 1.29 1.11 2.45 4.12 2.17 5.87 9.35 1.68 2.91 5.18

Table: Classic algorithms’ performance (%) on the UTFVP database

Unet shows better performance than the GF, RLT, and DTFP algorithms (i.e.
using 20, 180 labels), while RefineNet outperforms only RLT algorithm (i.e.
using 5 labels), and SegNet generally does not perform well on the dataset.

Using labels generated by MC algorithm:
RefineNet clearly outperforms the best classical algorithms result (obtained by
MC algorithm), when trained with sufficient (160, 200) pcs of training labels.

Unet also outperforms MC algorithm when trained with 200 pcs of
automatically generated labels, while generally outperforms GF, RLT, and
DTFP algorithms when trained with more than 40 labels.

SegNet outperforms GF, RLT, and DTFP algorithms when trained with 120
labels, while increasing the number of training labels of this type (up to 180
pcs) generally erodes its performance.
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Performance evaluation

Evaluating performances

Using labels generated by GF algorithm:

Compared to the results in the second table, only SegNet shows a limited
improvement when trained with 160 or more pcs of GF labels.

Unet and SegNet outperform the GF, RLT, and DTFP algorithms when trained
with distinct number (i.e. 80, 160 receptively) of GF labels, and RefineNet only
outperforms the RLT algorithm when trained with 80 pcs of this type of labels.

Using labels generated by RLT algorithm:

Compared to the results in the second table, only SegNet’s preference improved
slightly when trained with 160 or more pcs of automatically generated labels.

Compared to the results in the third table, RefineNet gained up to 50%
improvement, but Unet suffered a considerable degradation up to the same
order of magnitude in most cases. This is mostly due to the effect of labels
quality (accuracy) and the architectural specifications of the networks.
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Result analysis

Analyzing the results

Manual labels are restricted to rather large scale vessels, and the
corresponding patterns simply do not contain sufficiently high entropy to
facilitate high accuracy recognition. But more accurate labels such as MC
labels, and their corresponding outputs of CNNs, exhibit much more fine
grained vasculature details.

RefineNet maintains stable performance, and seems to stay invariant with
respect to the quantity of the training labels (using Manual labels), converges
well even with a limited number (5) of training labels, and its performance
improves introducing higher quantity of automated (more precise) labels.

U-net converges fast with a limited number of training labels (i.e. 20 labels),
and when trained with more precise labels is able to deal well with the
ambiguous regions in finger-vein images.

The SegNet enjoys stable (while not optimal) performance on the dataset,
deals better with false positive pixel labels, and seems to be more sensitive to
the quantity of the training labels.
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Conclusion

Conclusion

We proposed a new model for finger-vein recognition using fully convolutional
deep neural networks, focusing on direct segmentation of actual finger-vein
patterns from the finger images, and using them as the binary finger-vein
features for the recognition process.

We showed that automatically generated labels can improve the networks
performance in terms of achieved recognition accuracy.

It also turned out that these improvements are highly dependent on the
inter-play between properties of the used labels and the network architecture.

In any case we demonstrated that, beside improving the network performance,
utilizing automatically generated labels to train the networks eliminates the
need for the Manual labels, whose generation is an extremely cumbersome,
difficult, and error-prone process.
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Future work

In future works

We will assess the strategy to pre-train with Manual labels and then fin-tune
the networks with automatically generated ones.

In addition, we use labels generated by other automated feature extraction
techniques in a single training process.

Also, an evaluation of cross-vessel type (using training data of different vessel
types, e.g. retinal vasculature) training will be conducted.

Finally, we will look into augmentation techniques specifically tailored to the
observed problem with the Manual labels, i.e. scaling the data to model also
more detailed and finer vessel structures.
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End

Thank you, Remarks?
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