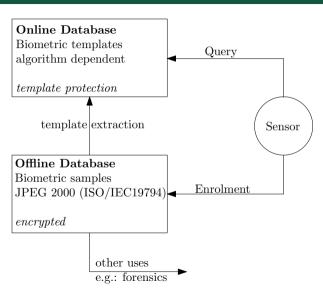
Highly Efficient Protection of Biometric Face Samples with Selective JPEG2000 Encryption

Hofbauer¹, Martínez-Díaz², Kirchgasser¹, Méndez-Vázquez², Uhl¹


¹University of Salzburg

²Advanced Technologies Application Center, Havana

ICASSP'21 Paper #1610

This project received funding from EU Horizon 2020 research program under grant agreement No. 690907 and from the Austrian Science Fund under project No. P27776.

Introduction I

Introduction II

We investigate a lightweight JPEG2000 encryption scheme for compressed face data.

- selective bit-stream protection using AES
- no reduced recognition accuracy
- low computational effort

Drawback: a certain amount of data is left in plain text

- security analysis is required (similar to template protection)
- impact of JPEG2000 coding
 - layer progression
 - resolution progression
 - encryption amount and position for optimal protection/speed

Evaluation Methodology I

JPEG 2000 based parameters:

■ Evaluate layer and resolution progression (JPEG 2000)

Biometric based parameters:

- Where is the most relevant information for the face recognition algorithms?
- What is the minimum amount of encryption required to protect the biometric face sample?

Focus is on the beginning of the codestream:

- Beginning: Structural data
- Towards end: refinement for fine textures.
- face information depends on structural data

Evaluation Methodology II

Sliding Window Encryption to detect the location of relevant data.

- A small part of the codestream is encrypted (window)
- Offset is varied (sliding window)

Increasing Window Encryption to find the minimum encryption emount.

- Offset is fixed from the beginning (no sliding window).
- Encryption amount is increased.

Evaluation Methodology III

Actuall setups:

- small encryption window is a sliding window encryption
 - window size is 0.5% of the bitstream
 - offset varies from 0% to 15% in steps of 1%
- large encryption window is a sliding window encryption
 - \blacksquare window size is 4%
 - \blacksquare offset is varied from 0% to 20% in 2% steps
- increasing encryption window is an increasing window encryption
 - \blacksquare window size increases from 1% to 15% in steps of 1%.
- Coding parameters for each of the above tests (progression type):
 - layer progression
 - resolution progression

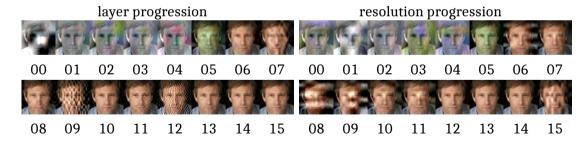
Evaluation Methodology IV

Face Recognition Methods

- Traditional
 - Local Binary Patterns (LBP)
 - Multi-Block LBP (MBLBP)

Histogram per 14x14 cell region, chi-squared similiarity measure.

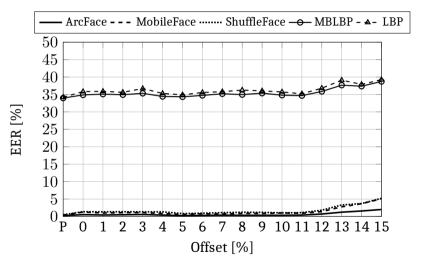
- CNN based methods
 - ResNet-ArcFace (ArcFace)
 - MobileFaceNet (MobileFace)
 - ShuffleFaceNet (ShuffleFace)


Dataset I

- The Labeled Faces in the Wild (LFW) database
 - \blacksquare 13, 233 face images
 - 5,749 different identities
 - large variations in pose, expression and illumination
- 10-fold split of 6000 face pairs each
- face images were aligned and cropped
 - 112x112 pixel
 - RetinaFace detector
 - JPEG2000 encryption on cropped image

Dataset II

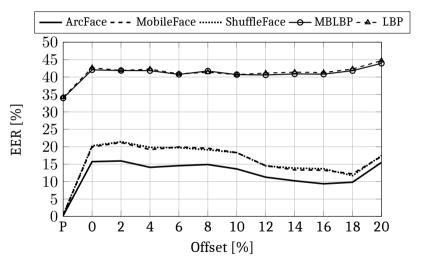
An illustration: **Small encryption window** Offset as given in both layer and resolution progression.



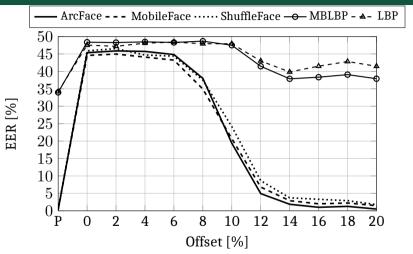
Dataset III

An illustration how this looks in practice. Layer progression

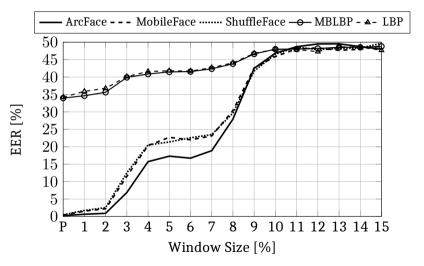
Evaluation—Small Window Encryption I


Resolution progression with error correction.

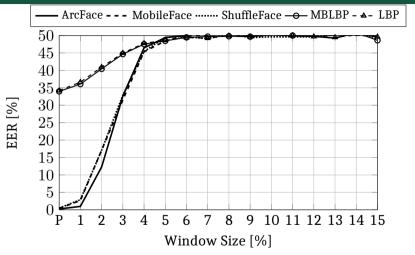
Evaluation—Small Window Encryption II


 $Layer\ progression\ with\ error\ correction.$

Evaluation—Large Window Encryption I


Resolution progression with error correction.

Evaluation—Large Window Encryption II


Layer progression with error correction.

Evaluation—Increasing Window Encryption I

Resolution progression with error correction.

Evaluation—Increasing Window Encryption II

Layer progression with error correction.

Conclusion

- Traditional and deep learning based methods exhibit an identical behavior.
- Faster traditional methods can be used for analysis of selective encryption options.
- When **storing** facial biometric samples with JPEG2000 it is recommended to use the **layer progression type**.
- The **relevant** part for biometric face recognition is at around **4–12**% of the total codestream.
- The most **secure** method for encryption is to start at the **beginning and at least** include the first 12%.