Comparison of PRNU Enhancement Techniques to Generate PRNU Fingerprints for Biometric Source Sensor Attribution

Luca Debiasi, Andreas Uhl

Department of Computer Sciences University of Salzburg

March 3rd, 2016

2 Data Sets and Experiments

3 Results

Outline

1 Introduction

2 Data Sets and Experiments

3 Results

Digital Image Forensics

Digital image sensors add signatures to the data they produce

- Intrinsic: Artifacts due to optical, electrical or mechanical limitations
- Extrinsic: Modifications when the data is processed
- Forensic characterization: Identify characteristics of the device by observing the produced data
- Forensic tasks:
 - Device Identification
 - Device linking
 - Recovery of processing history
 - Detection of digital forgeries

Photo-response non-uniformity

- Intrinsic property of CCD/CMOS sensors
- Noise-like pattern
- Variations in quantum efficiency among pixels
- PRNU noise residual W_l:

$$W_l = I - F(I)$$

PRNU fingerprint \hat{K} :

$$\hat{K} = rac{\sum_{i=1}^{N} W_i^i I^i}{\sum_{i=1}^{N} (I^i)^2}$$

where *I*... Image, *F*... Denoising Filter, *i*... *i*-th Image, *N*... Number of images

PRNU Contaminations

Image content related artifacts [1]

- Undesired contaminations affect both PRNU fingerprints and noise residuals
- Sources:
 - Non-unique artefacts (NUAs)
 - Image content
- Degrade quality of PRNU and decrease discriminative power of sensors

Focal length dependent NUAs [2]

2 mn

- Clustering of images acquired with the same source sensor from a mixed set of images
- Questions: How many distinct sensors are in the dataset? Which source sensor does each image belong to?
- Usually cameras are unknown and also their number
- Extraction of PRNU noise residual W_l for each image I
- Application of different clustering techniques using the noise residuals W₁

2 Data Sets and Experiments

3 Results

Data Sets

Data set name	Sensor model	Modality	Size (px)	GT
Lamp	OKI Irispass-h	Iris	640 × 480	?
H100_2009	Irisguard H100 IRT	Iris	640 imes 480	?
H100_2013	Irisguard H100 IRT	Iris	640 imes 480	1
IPH_2009	OKI Irispass-h	Iris	640 imes 480	?
IPH_2013	OKI Irispass-h	Iris	640 imes 480	1
FPV5	Digital Persona UrU4000	Fingerprint	328 imes 356	?
URU_1	Digital Persona UrU4000 #1	Fingerprint	328 imes 356	1
URU_2	Digital Persona UrU4000 #2	Fingerprint	$\textbf{328}\times\textbf{356}$	1

L. Debiasi, A. Uhl: Comparison of PRNU Fingerprint Enhancements for Biometric Source Sensor Attribution

- PRNU extraction from a 256 × 256 pixels patch in the image centre
- Wavelet-based denoising filter by Lukas et al. [3]
- PRNU Similarity Measure: Peak correlation energy (PCE)
- Common PRNU enhancements:
 - Wiener Filter in DFT
 - Zero mean
- Applied source sensor attribution techniques:
 - (KS)BCFAIC
 - (KS)SWFP
- Experiments:
 - Uncorrelated data PRNU FP vs. content related PRNU Enhancement
 - Uncorrelated data PRNU FP combined with content related PRNU Enhancement

Blind Camera Fingerprinting and Image Clustering (BCFAIC)

- Proposed by G. Bloy [4]
- Agglomerative clustering
- Construction of PRNU fingerprints from a mixed set of images
- Threshold function for comparison of FPs and noise residuals
- Generates list of clusters with associated images
- Known sensor extension (KSBCFAIC):
 - Use PRNU FP generated with uncorrelated data in first iteration of the algorithm
 - All images from this sensor should be assigned to the first cluster

Sliding Window Fingerprinting (SWFP)

- Proposed in [5]
- "Sliding window" moves sequentially over data
- Arbitrary but fixed window size
- PRNU FP is generated from images within window at each iteration
- Cross-comparison of all generated PRNU FPs at the end
- Difference in similarity scores shows transition between sensors
- Known sensor extension (KSSWFP):
 - Use PRNU FP generated with uncorrelated data and compares it to all generated PRNU FPs
 - High similarity scores show images from the same sensor

Uncorrelated data PRNU FP

- Acquisition of uncorrelated data challenging with some sensors
 - Liveness/Spoofing detection
 - No manual control of exposure or focus
 - Optimized to acquire sharp iris images
- Goal: Bright images with smooth content
- Generation of PRNU fingerprint (FP) for each sensor with uncorrelated images

Content Related PRNU Enhancement

- Image content related contamination of the PRNU
 - High-frequency components (e.g. edges and textured regions)
 - Correlated content among various images
 - Hard to separate and visible in the extracted PRNU
- Idea: The larger a component in the PRNU, the more likely it is contaminated by the image content
- Suppression performed using attenuation model 3 in DWT domain (*ELi*) proposed in [6] by C.-T. Li

2 Data Sets and Experiments

3 Results

BCFAIC ELi	Lamp	H100_2009	H100_2013	IPH_2009	IPH_2013	FPV5	URU_1	URU_2
Images	16213	908	1451	1620	970	19958	1000	1000
Total partitions	7	2	1	3	3	3	2	2
Partitions > 500	2	1	1	1	1	1	1	1
Partitions < 10	3	1	0	1	1	1	1	0
KSBCFAIC	Lamp	H100_2009	H100_2013	IPH_2009	IPH_2013	FPV5	URU_1	URU_2
Total partitions	8	2	1	3	3	3/3	2	2
Partitions > 500	3	1	1	1	1	2/2	1	1
Partitions < 10	4	0	0	1	1	0/0	50	0
KSBCFAIC ELi	Lamp	H100_2009	H100_2013	IPH_2009	IPH_2013	FPV5	URU_1	URU_2
Total partitions	7	3	1	3	3	3/3	2	2
Partitions > 500	2	1	1	1	1	2/2	14	
	2	2	0	2	2	0/0	0	0

(KS)SWFP: Uncorr. Data vs. PRNU Enhancement

17/22

Results KSSWFP: Combination of Uncorr. Data with PRNU Enhancement

L. Debiasi, A. Uhl: Comparison of PRNU Fingerprint Enhancements for Biometric Source Sensor Attribution

2 Data Sets and Experiments

3 Results

- Comparison of two different PRNU FP enhancement techniques:
 - Uncorrelated Data
 - Content related PRNU Enhancement
- Biometric sensors from two biometric modalities
- Iris sensors:
 - Use of uncorrelated data improved similarity between images for 1 sensor data sets
 - PRNU Enhancements helped clarify that 1 sensor was used for two data sets without ground truth
 - Combination of both enhancement techniques lowered the similarity scores
- Fingerprint sensors:
 - Results highly variable and unclear, even for data sets with ground truth
 - Uncorrelated data and PRNU enhancement did not affect results significantly
 - Probable cause: Quality of extracted PRNU

Thank you for your attention!

References

- C.-T. Li, "Source camera identification using enhanced sensor pattern noise", in Proceedings of the IEEE International Conference on Image Processing, ICIP '09, Cairo, Egypt: IEEE, Nov. 2009, pp. 1509–1512.
- [2] T. Gloe, S. Pfennig, and M. Kirchner, "Unexpected artefacts in prnu-based camera identification: A 'dresden image database' case-study", in *MM&Sec'12: Proceedings of the* 14th ACM Multimedia and Security Workshop, ACM, Sep. 2012, pp. 109–114.
- [3] J. Lukas, J. J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern noise.", *IEEE Transactions on Information Forensics and Security*, vol. 1, no. 2, pp. 205–214, Oct. 29, 2008.
- [4] G. Bloy, "Blind camera fingerprinting and image clustering", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 532–534, Mar. 2008.
- [5] L. Debiasi and A. Uhl, "Blind biometric source sensor recognition using advanced prnu fingerprints", in *Proceedings of the 2015 European Signal Processing Conference* (EUSIPCO 2015), 2015.
- [6] C.-T. Li, "Unsupervised classification of digital images using enhanced sensor pattern noise.", in ISCAS, IEEE, 2010, pp. 3429–3432.