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Abstract. The proof of origin of logs is becoming increasingly impor-
tant. In the context of Industry 4.0 and to combat illegal logging there is
an increasing motivation to track each individual log. This work presents
a two-stage convolutional neural network (CNN) based approach for
wood log tracing based on digital log end images. First, the log cross
section is segmented from the background by applying a CNN-based
segmentation method using the Mask R-CNN framework. In the second
step, wood log recognition is applied using CNNs that are trained on the
segmented wood log images using the triplet loss function. Our proposed
two-stage CNN-based approach achieves Equal Error Rates between 0.6
and 3.4% on the six employed wood log image data sets and clearly
outperforms previous approaches for image based wood log recognition.
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1 Introduction

Methods for wood log tracking are an essential component in solving a wide
variety of problems and requirements of an ecological, legal and social nature.
Currently, this mainly relates to proof the origin of wood products, e.g. by certi-
fication companies like the Forest Stewardship Council (FSC). However, efforts
towards traceability down to the individual log have been intensified by a va-
riety of stakeholders. The motivation for this is that, on the one hand, illegal
logging can be better combated and, on the other hand, the identification of
each individual log forms a basis for steps towards forest-based industry 4.0. In
the context of Industry 4.0, Radio Frequency Identification (RFID) is the state-
of-the-art for object recognition/tracking. However, like a set of other tracking
technologies for wood logs (e.g. punching, coloring or barcoding log ends [14]),
RFID requires physical marking of each tree which suffers costs. An alternative
to physical marking is to use biometric characteristics to recognize each individ-
ual log. A short summary on biometric log tracking using various characteristics
is presented in [7]. In a series of works between 2014–2016 we investigated wood
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Fig. 1. Exemplary scheme of enrolment and identification for wood log tracking

log tracking based on digital log end images in regard to the distinctiveness and
robustness of the annual ring pattern. For a literature review we refer to [6].
Figure 1 presents the scheme of such a log tracking system. Significant for this
work is that the utilized approaches were inspired by human fingerprint and iris-
recognition methods. Those rely on traditional feature extraction methods (e.g.
Gabor filterbanks) and moreover require a sophisticated pre-processing (segmen-
tation, pith estimation, rotational pre-alignment) of each log end image prior to
feature extraction. Comparison of the extracted features is also complex. Fur-
thermore, it has to be noted that for our previous works manually segmented log
end images and determined pith positions were utilized. Time has passed and
deep learning based approaches have become state-of-the-art. Not surprisingly,
deep learning-based methods have also been investigated in many application ar-
eas in the forestry and timber industry in recent years. Exemplary applications
are wood species identification using cross-section (CS) images [13, 5], remote
sensing-based tree species classification [1] or lumber grading [3] using wood
board surface images.

In this work we apply convolutional neural networks (CNNs) for two-stage
wood log recognition. CNNs are used for segmentation of the CS in the log end
image as well as for feature extraction that offers advantages in many ways. The
experimental evaluation is based on a database (DB) which was utilized in [10]
and a new DB denoted as 100 logs DB (HLDB). This work significantly con-
tributes to biometric log end recognition by showing that a CNN-based approach
does not require to determine the pith position and moreover no rotational pre-
alignment is required. Results show that CNN-based segmentation and feature
extraction shows a similar performance as the results presented in [10] which
are based on groundtruth data and traditional feature extraction methods. The
experimental evaluation on the new HLDB, for which no groundtruth data is
available, underpins this statement and shows the weaknesses of the traditional
methods that are mainly caused by inaccurate segmentation and pith estimation
results.
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(a) CSLDDB1 (b) CSLDDB2 (c) CSLDDB3

Fig. 2. Example image of each of the three sub-databases of CSLD

Section 2 introduces the DBs and describes the CNN-based segmentation of
the CS as well as the CNN-based log recognition and the experimental setup.
Section 3 presents the results and Section 4 concludes this work.

2 Material and Methods

2.1 Data Bases

Two different DBs are utilized: (i) the Cross Section Log Database (CSLD) which
was already utilized in [9, 10] and (ii) a new database referred to as 100 Logs
Database (HLDB).

The CSLD is a combination of images from three sub-databases with 50, 120
and 109 different logs, respectively. The images are recorded with a Canon EOS
DMark with a 35mm lens. In total, this database comprises 2270 CS images from
279 different logs. For this database, a manual segmentation of the log cross
section is available. For a detailed description of CSLD we refer to [10]. The
CSLD is utilized (i) to compare the CNN-based results to previous results which
were based on annotated groundtruth data and (ii) to train a segmentation CNN
in order to segment the images of HLDB, for which no manual segmentation is
available. Figure 2, shows one example image of each of the three sub-databases
of the CSLD dataset.

HLDB comprises different datasets which were all taken from the same 100
logs. CS-Images were acquired from both ends of each log. The first two datasets
HLDBFH and HLDBFL were taken in the forest (see Fig. 3(a)) using a Lumix
camera (Panasonic FZ45 Lumix camera) and a Huawei smartphone (Huawei P8
Lite 2017), respectively. Both datasets consist of 4 images for each log end. After
two images the camera was rotated by approximately 45 degrees and two more
images were captured. The next dataset, denoted as Sawmill dataset (HLDBSM ),
was captured after cutting off a thin disc from each log end (see Fig. 3(b)). Three
images with different rotations for each fresh cross-cut log end were acquired
using the Huawei smartphone.

The CS-Images of HLDBFH,FL,SM were taken without tripod which causes
different rotations, slightly varying perspectives toward the CS and slightly dif-
ferent positions of the CS in the image. Finally, one side of the 200 discs was
acquired using a , once raw (HLDBR) and once after they were sanded (HLDBS).
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(a) Forest site - HLDBFH,FL

(b) Sawmill yard - HLDBSM - discs were cut for HLDBR,S

Fig. 3. 100 Logs Image Database (HLDB): Fig. 3(a) shows log piles close to the forest
at which the forest datatsets were acquired. Fig. 3(b) shows the data acquisition at the
sawmill yard where discs of each log end were cut off.

The captured CSs are mirrored versions of the CSs in the Sawmill dataset. For
HLDBR four and for HLDBS six CS-Images with different rotations were cap-
tured, respectively. Fig. 4 shows exemplary images for all HLDB datasets from
the bottom end of log labelled #E001. It can be observed that the CS-Images
of the two forest datasets HLDBFH,FL look quite similar since the images were
taken with the same surrounding, the same log cut pattern and hardly any time
shift between the taking of the images of the two datasets. The CS-Images cap-
tured at the sawmill yard HLDBSM look completely different because of the
fresh cut that results in a totally different saw cut pattern and wood coloration.
The disc CS-Images HLDBR,S are captured under idealistic conditions and serve
as a reference in the experiments, especially the sanded CS-Images in HLDBS

which show a undisturbed annual ring pattern.

2.2 CS-Segmentation

Prior to any feature extraction, the CS area in the CS-Image needs to be localized
and segmented from the background. We apply the Mask R-CNN framework
[2] to get a segmentation mask. As net architecture we employ the ResNet-50
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(a) HLDBFH (b) HLDBFL (c) HLDBSM (d) HLDBR (e) HLDBS

Fig. 4. HLDB: Exemplary images for both log ends of log #E001 from all datasets
HLDBFH,FL,SM,R,S

architecture using a model pretrained on the COCO dataset. The segmentation
net is then trained on CSLD for which groundtruth segmentation masks are
available. The segmentation net is trained for 30 epochs in order to differentiate
the CS from the background. Then, the trained segmentation net is applied to
the HLDB datasets to segment the CS from the background. To also get CNN-
based segmentation masks for CSLD, we apply a 4-fold cross validation, where
one fold consists of a fourth of the 279 logs (the images of one log are all in the
same fold). 3 folds are used to train the segmentation net and the trained net is
applied to segment the images of the remaining fold.

The obtained segmentation mask of a CS-Image, which consists of probabil-
ity values between 0 and 1 for each pixel of the image, is binarized. All values
of the CNN segmentation mask that are below the threshold value t (t = 0.5
for HLDBSM,R,S and CSLD and t = 0.25 for HLDBFH,FL) are set to zero and
the remaining values are set to one. The binarized segmentation mask of the
CS is further used to set the background (all image positions with a zero in the
segmentation mask) to black. Finally, each CS-Image is reduced to the smallest
possible square shaped image section so that the CS (all image positions with a
’1’ in the segmentation mask) is still completely included in the image together
with a five pixel thick black border on each side of the image. A schematic rep-
resentation of the segmentation including the extraction of the square shaped
image patch containing the CS is displayed in Fig. 5. For CSLD we can quan-
titatively assess the outcome of the segmentation. Averaged over all CS-Images
in CSLD, 99.26% of the pixels per image were correctly segmented. In Figure 6,
we present exemplar outcomes of the segmentation and patch extraction process
for HLDBFL,FH,SM . The segmentation outcomes on HLDBSM,R,S all look per-
fectly fine based on the authors’ visual impression. For the two forest datasets
HLDBFH,FL, most images were well segmented, but on some images, parts of
the log CS were predicted as background which was the reason why we used a
smaller threshold (t = 0.25 instead of 0.5) to binarize the segmentation masks.
This reduced the risk to predict parts of the CS as background (as can be seen
in Figure 6(d)) but also led to the problem that for some images a bit of back-
ground surrounding the log CS was predicted as being part of the log CS (see
Fig. 6(f)).

The advantage of our proposed segmentation and square image patch extrac-
tion approach for log recognition is that the background of a log CS image does
not influence the log recognition. For CNN based recognition systems, where the
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Fig. 5. Segmentation & patch extraction of the CS-Image

(a) HLDBSM (b) HLDBSM (c) HLDBFH (d) HLDBFH (e) HLDBFL (f) HLDBFL

Fig. 6. Exemplary outcomes of the segmentation in combination with square image
patch extraction

images usually have to be resized to a fixed size before feeding them through
the network, an additional advantage is the reduced loss of image quality. The
segmented square shaped image patches are clearly smaller than the original CS-
Image and so less information on the log is lost by reducing the image resolution
to fit the required CNN input size.

2.3 Wood log recognition using CNN triplet loss

In biometric applications, the problem with common CNN loss functions (e.g.
the SoftMax loss) is that CNNs are only able to identify those subjects which
have been used for the training of the neural network. If new subjects are added
in a biometric application system, then the nets need to be trained again or else
a new subject can only be classified as one of the subjects that were used for
training (the one that is most similar to the newly added subject with respect
to the CNN). This of course renders the practical application of common CNN
loss functions impossible for biometric applications.

Contrary to more common loss functions like the Soft-Max loss, the triplet
loss [12] does not directly learn the CNN to classify images to their respective
classes. The triplet loss requires three input images at once (a so called triplet),
where two images belong to the same class (the so called Anchor image and a
sample image from the same class, further denoted as Positive) and the third
image belongs to a different class (further denoted as Negative). The triplet loss
learns the network to minimize the distance between the Anchor and the Positive
and maximize the distance between the Anchor and the Negative. The triplet
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Fig. 7. CNN training using the triplet loss

loss using the squared Euclidean distance is defined as follows:

L(A,P,N) = max(||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α, 0), (1)

where A is the Anchor, P the Positive and N the Negative. α is a margin that
is enforced between positive and negative pairs and is set to α = 1. f(x) is an
embedding (the CNN output) of an input image x. Figure 7 shows the scheme
of learning a CNN using the triplet loss. A triplet of training images (Anchor,
Positive and Negative) is fed through the CNN resulting in an embedding for
each of the three images. The embeddings of the three images are then used to
compute the triplet loss to update the CNN.

For our application this means that the CNN is trained so that the Euclidean
distances between the CNN feature vectors of all log CS-Images of the same class
(log) is small, whereas the Euclidean distance between any pairs of CS-Images
from different logs is large. We employ hard triplet selection [12] (only those
triplets are chosen for training that actively contribute to improving the model)
and the Squeeze-Net (SqNet) architecture [4]. SqNet is a small neural networks
that is specifically created to have few parameters and only small memory re-
quirements.

The size of the CNN’s last layer convolutional filter is adapted so that a 256-
dimensional output vector (embedding) is produced. Training is performed on
batches of 128 images. To make the CNN more invariant to shifts and rotations
and increase the amount of training data, we employ data augmentation for CNN
training. The images are randomly rotated in the range of 0-360 ° and random
shifts in horizontal and vertical directions are applied by first resizing the input
images to a size of 234× 234 and then extracting a patch of size 224× 224 (the
best working input size using the SqNet for log recognition) at a random position
of the resized image (±10 pixels in each direction). The CNN is trained for 400
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epochs, starting with a learning rate of 0.001 that is divided by 10 every 120
epochs.

2.4 Experimental Setup

In this work, a 4-fold cross validation is employed. For each dataset, the CNN is
trained four times, each time using three of the folds for training and evaluation
is applied on the remaining fold. Each fold consists of a fourth of the logs of a
dataset, where all images of a log are in the same fold. We further denote these
experiments as “SqNet”. In a second experiment, we additionally use training
data from logs of other datasets. For the HLDB datasets, we additionally use
the CSLD dataset for training (the CSLD dataset is added to the three training
folds). In case of the CSLD dataset, we additionally employ all the images of
HLDBFH for training. We further denote these experiments with additional
training data from another dataset as “SqNet+”. For performance evaluation
we have decided to present verification results, i.e. we compute the Equal Error
Rates (EERs) for the different datasets achieved with SqNet and SqNet+.

The EER is well suited to compare the CNN-based results to results achieved
with traditional approaches and with results achieved in prior works (e.g. in [10]).
We have to consider that each of the four trained CNNs per dataset (one per
fold) has a different mapping of the images to the CNN output feature space.
Thus, feature vectors of different folds cannot be compared in the evaluation
and the EER has to be computed separately for each fold. We report the mean
EER over the four folds.

As already mentioned before, the HLDB datasets consist of images from both
log ends which show no obvious visible similarities. To employ the maximum
number of images for CNN training, both ends are considered as different classes
thus resulting in 200 classes in total. To avoid any bias by assigning different
classes to the two sides of a log, we exclude those triplets during training where
the Anchor and the Negative are from the same log but different sides. The same
is applied for EER computation, where those comparison scores (scores between
images from different sides of the same log) are ignored.

Comparison Methods: In order to assess the performance of CNN-based wood log
recognition we compute EERs using the fingerprint- and iris-based approaches
proposed in [10]. For rotational pre-alignment, the CM (center of mass to pith
estimate vector) strategy is applied.

The iris-based results IRISV and IRISH are computed in the exact same way
as described in [10]. Features are computed with the Log Gabor configuration
LG (64/08) and for matching the shifting is done in the range of -21 to 21 feature
vector positions.

For the fingerprint-based approach we utilize a modified approach, based on
a circular grid, as introduced in [8], which does not require to compute feature
vectors for rotated versions of the registrated CS-Image. Identical as the template
comparison procedure for the iris-based approach, rotation compensation in the
matching stage is performed by shifting the feature vectors of each band. This
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circular grid fingerprint-based approach is referred to as FPCG. Contrasting
to our previous work, we do not utilize manually extracted groundtruth data
and instead use the CNN-based CS-Segmentation results and the pith position
determined using the approach described in [11].

3 Results and Discussion

In Table 1, we present the EERs of the CNN-based approaches and the com-
parison methods for each dataset. The best result for each dataset is marked in
bold letters. The main finding in Table 1 is that the CNN-based approaches are
clearly superior to the traditional ones. SqNet+ performs slightly better than
SqNet. So additional training data improves the results, although the additional
data is from another database with different image acquisition conditions and a
different camera.

Interestingly, the CNN results are quite similar across the different HLDB
datasets, despite the differing image acquisition conditions and cameras. For ex-
ample, the images of the HLDBS dataset offer a perfectly visible annual ring
pattern (sanded surface) and the scale and viewpoint of the images is constant,
whereas the two datasets acquired at the forest (HLDBFH,FL) offer a poor visi-
bility of the annual ring pattern due to the saw cut pattern and the images were
taken under varying scales and viewpoints. Despite that, the CNN results of the
forest datasets are slightly better than those of the HLDBS . So this together
with the fact that the CNN results on HLDBR (raw CS) are slightly better than
those on HLDBS (sanded CS) indicates that the saw cut pattern is an important
feature for CNNs that could be even more important for wood log recognition
than the annual ring pattern. Varying viewpoints and scales of the recorded
images does not seem to be a problem for the CNNs.

Considering the CSLD results, an EER of 0.9% achieved by IRISV with
manually segmented images was the best result presented in [10]. Using the
automated CS-segmentation instead of the manually segmented image data,
the results of the comparison approaches deteriorate greatly (3.4− 5.8% EER).
The results for the CNN-based approaches using segmentation groundtruth data
(SqNet = 0.7%, SqNet+ = 0.6%) outperform our previous results and the EERs
achieved with the automated CS-Segmentation (SqNet/+ = 1%) are only slightly
worse than those with manually segmented image data.

Thus, another main advantage of our proposed approach is that the proposed
CS-Segmentation is well suited to be used with the CNN-based recognition. This
statement is confirmed by the EERs presented for the HLDB datasets, which
are all below 3.4% for our proposed approach. The EERs presented for the
comparison approaches are not even close to this performance. By comparing
the EERs for the HLDB computed with the traditional approaches, it is ob-
vious that the EERs computed for HLDBS,R are better than those computed
for HLDBFL,FH,SM . The reason is that for HLDBS,R rotational pre-alignment is
more accurate than for the other datasets because of the more accurate CNN seg-
mentation for HLDBS,R. However, these observations highlight the main advan-
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Methods CSLD HLDBFH HLDBFL HLDBSM HLDBS HLDBR

C
N

N SqNet 0.7 / 1.0 3.2 2.4 3.1 3.4 2.8
SqNet+ 0.6 /1.0 2.8 1.7 2.6 3.4 2.6

C
o
m

p
.

IrisH 2.12 [10] /5.8 26.8 27.3 22.4 10.6 12.5
IrisV 0.9 [10] / 3.4 20.5 21.0 15.1 5.3 6.1
FPCG 2.1/3.9 16.9 19.5 20.3 8.0 8.3

Table 1. Recognition performance (Mean EER in [%]) on the 6 log CS datasets for
the proposed CNN-based method using the two different training strategies, as well as
three comparison approaches (Comp.) using classical hand-crafted biometric features.
On the CSLD dataset, recognition is applied on the manually segmented images (value
before the slash) and the CNN segmented images (value after slash).

tage of the CNN-based approaches: They work in combination with a fully auto-
mated CNN-based segmentation and do not require any rotational pre-alignment
prior to feature extraction.

4 Conclusion

Recently, there has been an increasing interest in methods for tracking round-
wood on the basis of each individual log. In prior works we proposed a phys-
ical free approach using log end images and methods inspired by fingerprint
and iris recognition-based approaches. Results were promising and showed good
performances when using groundtruth data for segmentation of the log end in
each image. However, in a real world application a fully automated system is
required. In order to close this gap, we employ a CNN-based segmentation ap-
proach combined with a CNN-based log recognition approach which is compared
to results achieved with the traditional log recognition approaches when using
automatically segmented images. Results showed, that the CNN-based wood
log recognition works well in combination with the CNN-based segmentation.
On the contrary, the traditional approaches suffer from the inaccuracies of the
CNN-based segmentation which affects the required rotational pre-alignment
strategy. It can be concluded that the proposed two-stage CNN-based wood log
recognition approach is well suited for individual wood log tracking. What re-
mains is to prove that this two-stage approach also works in a realistic scenario,
i.e. if logs can be tracked when using imagery captured at various stages of the
log tracking chain.
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