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a b s t r a c t 

In this work, various wavelet based methods like the discrete wavelet transform, the dual-tree complex 

wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are applied for the 

automated classification of colonic polyps. The methods are tested on 8 HD-endoscopic image databases, 

where each database is acquired using different imaging modalities (Pentax’s i-Scan technology combined 

with or without staining the mucosa), 2 NBI high-magnification databases and one database with chro- 

moscopy high-magnification images. 

To evaluate the suitability of the wavelet based methods with respect to the classification of colonic 

polyps, the classification performances of 3 wavelet transforms and the more recent curvelets, contourlets 

and shearlets are compared using a common framework. Wavelet transforms were already often and 

successfully applied to the classification of colonic polyps, whereas curvelets, contourlets and shearlets 

have not been used for this purpose so far. 

We apply different f eature extraction techniques to extract the information of the subbands of the 

wavelet based methods. Most of the in total 25 approaches were already published in different texture 

classification contexts. Thus, the aim is also to assess and compare their classification performance using 

a common framework. Three of the 25 approaches are novel. These three approaches extract Weibull 

features from the subbands of curvelets, contourlets and shearlets. Additionally, 5 state-of-the-art non 

wavelet based methods are applied to our databases so that we can compare their results with those of 

the wavelet based methods. 

It turned out that extracting Weibull distribution parameters from the subband coefficients gener- 

ally leads to high classification results, especially for the dual-tree complex wavelet transform, the Ga- 

bor wavelet transform and the Shearlet transform. These three wavelet based transforms in combination 

with Weibull features even outperform the state-of-the-art methods on most of the databases. We will 

also show that the Weibull distribution is better suited to model the subband coefficient distribution 

than other commonly used probability distributions like the Gaussian distribution and the generalized 

Gaussian distribution. 

So this work gives a reasonable summary of wavelet based methods for colonic polyp classification 

and the huge amount of endoscopic polyp databases used for our experiments assures a high significance 

of the achieved results. 

© 2016 The Authors. Published by Elsevier B.V. 
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. Introduction 

In this paper, wavelet based methods are applied for the au-

omated classification of colonic polyps in endoscopic images.

avelet transforms like the discrete wavelet transform (DWT),

he dual-tree complex wavelet transform (DT-CWT) and the Ga-

or wavelet transformation have been widely used for the purpose
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Fig. 1. Wavelet vs new scheme: an illustration of the successive refinement by the 

two systems near a smooth contour, which is shown as the black curve separating 

two smooth regions. 
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f medical image analysis. In case of colonic polyp classification,

specially the DT-CWT proved to be quite suitable for the distinc-

ion of different types of polyps as can be seen in numerous previ-

us papers like e.g. Häfner et al. (2015a ); 2009 ); 2010 ) Also Gabor

avelets have proved to be quite suitable for colonic polyp classi-

cation ( Yuan and Meng, 2014; Häfner et al., 2009 ) and detection

 Hwang and Celebi, 2010 ). The DT-CWT and the Gabor wavelets are

oth directional selective wavelet transforms, contrary to the clas-

ical DWT. It has been shown in Häfner et al. (2009) , that these

wo directional selective wavelet transforms provide better results

han the DWT. So enhanced directional selectivity may be an ad-

antage classifying polyps. 

Based on the wavelet theory, new multiresolution analysis tools

ike the curvelet, contourlet and shearlet transform have been de-

eloped. These transforms (further denoted as Lets) are even more

irectional selective than the DT-CWT and Gabor transformation.

o the best of our knowledge, until now solely the curvelet trans-

orm was applied for the automated detection or classification of

olyps, however solely for small bowel tumors using capsule en-

oscopy ( Barbosa et al., 2009; Martins et al., 2010 ). 

In this paper we use a common framework to compare the re-

ults of the wavelet transforms and Lets for the classification of

olonic polyp in endoscopic images. To the best of our knowledge,

here has not been a comparison of wavelet transforms and Lets

ith respect to the classification of images so far (the same ap-

lies for related issues like image retrieval or pattern and object

ecognition). So in spite of the similarity of wavelets and Lets, this

s the first publication which systematically compares these trans-

orms with respect to their suitability to classify texture images.

n order to ensure a fair comparison of the wavelet based meth-

ds, we extract the same features (Gaussian, generalized Gaus-

ian and Weibull distribution parameters) and use the same num-

er of scale levels for each method. To ensure a high significance

f the results, the wavelet based methods are applied to a total

f 11 different endoscopic polyp databases. Feature extraction ap-

roaches using wavelet transforms already proved to be an appro-

riate choice in various publications. By means of our test we will

ee if the same applies to curvelets, contourlets and shearlets. Ad-

itionally we reimplemented some Let-based texture recognition

pproaches and applied them to the classification of our polyp

atabases to have a higher variability of extracted features and

o find out which features extracted from Lets are most appropri-

te for our task. The results of the wavelet based approaches are

ompared with those of 5 non-wavelet based state-of-the-art ap-

roaches in colonic polyp classification. 

But first let us introduce and motivate the employed wavelet

ased transforms: 

Wavelet transforms use filterbanks to form a time-frequency

epresentation for continuous-time signals. The main difference

etween the wavelet transform and the Fourier transform (FT)

s that wavelets are localized in time and frequency whereas

he standard Fourier transform is only localized in frequency. Be-

ause of the uncertainty principle, originally found and formu-

ated by Heisenberg, the frequency and time information of a sig-

al at some certain point in the time-frequency plane cannot be

nown. In other words: we cannot know what spectral compo-

ent exists at any given time instant. The best we can do is to

nvestigate what spectral components exist at any given inter-

al. The wavelet transform deals with that problem by decom-

osing a signal in frequency bands (called subbands), where the

igher frequency bands are better resolved in time (with less rel-

tive error) and the lower frequency bands are better resolved in

requency. 

Wavelets are widely used for data compression, signal analysis,

ignal reconstruction, denoising, etc. One of the most useful fea-

ures of wavelets is their ability to efficiently approximate signals,
hat means to represent a signal as accurately as possible by means

f a minimum of subband coefficients. Especially for signals with

ointwise singularities, the DWT is much more efficient than the

ourier transform. This motivates why wavelet transforms are now

eing adopted for a vast number of applications, often replacing

he conventional Fourier transform. 

However, the DWT does not perform as well with multidimen-

ional data. Indeed, the DWT is very efficient in dealing with point-

ise singularities only. In higher dimensions, other types of singu-

arities (e.g. edges in images) are usually present or even dominant,

nd the DWT and other traditional wavelet methods are unable to

andle them efficiently. In order to overcome this limitation of tra-

itional wavelets, one has to increase their directional sensitivity.

wo well known directional selective wavelet transforms are the

ual-tree complex wavelet transform (DT-CWT) ( Kingsbury, 1998 )

nd the Gabor wavelet transform ( Lee, 1996 ). 

Based on the wavelet theory, new multiresolution analysis tools

ave been developed that are especially designed to efficiently rep-

esentate edges and curves in 2-dimensional data. The idea be-

ind this new schemes can be described by the following scenario

 Easley et al., 2008 ). Imagine that there are two painters, one with

 “wavelet”-style and the other using the new scheme, where both

ish to paint a natural scene. Both painters apply a refinement

echnique to increase resolution from coarse to fine. Efficiency is

easured by the number of brush strokes needed to faithfully re-

over the scene. We consider the situation that a smooth contour

as to be painted like shown in Fig. 1 . 

2-D wavelets are constructed from tensor products of 1-D

avelets, so the “wavelet”-style painter is limited to use square-

haped brush strokes along the contour, using sizes correspond-

ng to the multiresolution structure of wavelets. As the resolu-

ion becomes finer, we clearly see the limitations of the painter,

ho needs to use many “dots” to capture the contour. The new

tyle painter, on the other hand, is much more effective by making

rush strokes with differently elongated shapes, where the direc-

ions of the shapes follows the contour. That means many wavelet

oefficients are needed to account for edges or curves and it would

e far more effective to have strongly anisotropic filters to repre-

ent edges of curves. This idea was implemented by a number of

ew wavelet-based approaches. The most established approaches

sing this new scheme are the curvelet transform ( Candes and

onoho, 2002 ), the contourlet transform ( Do and Vetterli, 2005 )

nd the shearlet transform ( Easley et al., 2008 ). We further denote

hese transforms as “Lets”. 

These Lets use non-separable filters which have elongated sup-

orts at various scales, directions and aspect ratios (the finer the

cale, the higher is the aspect ration or in other words the more

longated are the supports). This allows an efficient approximation

f smooth contours at multiple resolutions in much the same way

s the new scheme shown in Fig. 1 . Moreover, these Lets are able

o use different numbers of directions at each scale (generally, the

ner the scale, the more directions). 
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Fig. 2. The 6 pit pattern types along with exemplar images and their assigned 

classes in case of a two class (non-neoplastic vs neoplastic) differentiation. 
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The contributions of this manuscript are as follows: 

• We apply a total of 25 wavelet based methods for the auto-

mated classification of colonic polyps. 5 methods are based on

the curvelet transform, 5 on the contourlet transform, 6 on the

shearlet transform, 3 on the DWT, 3 on the DT-CWT and 3 on

the Gabor transformation. By means of these experiments we

are able to compare Lets and wavelet methods with respect to

their classification performance. Most of the methods were al-

ready proposed in different texture classification contexts , but

three of these methods are novel to the best of our knowl-

edge. In these three methods, the subband coefficients of the

curvelet, contourlet and shearlet transform are modeled by the

2 parameter Weibull distribution. We will show that modeling

the subband coefficients by means of the Weibull distribution

generally leads to the best results for classifying colonic polyps

using wavelet based methods. 
• We apply the Kolmogorov–Smirnov test as Goodness-of-Fit test

and show that the Weibull distribution is well suited to model

the subband coefficient distribution of the wavelet based trans-

forms, which explains the superior results using Weibull fea-

tures. It will turn out that the subbands are not actually

Weibull distributed, but at least almost Weibull distributed. 
• For our experiments we use a total of 11 different endoscopic

databases. 8 databases are gathered using a HD-endoscope with

8 different imaging modalities (Pentax’s i-Scan in combination

with staining the mucosa), 1 databases is gathered using high

magnification endoscopy (or also called zoom-endoscopy) in

combination with staining the mucosa and two databases are

gathered using a zoom-endoscopy in combination with narrow

band imaging (NBI). So we use a quite comprehensive collection

of databases for the classification of colonic polyps. The results

of the methods are compared and the differences between the

methods as well as their impacts to the results are analyzed. 
• 5 (non wavelet based) state-of-the-art approaches for colonic

polyp classification are applied to the classification of our

databases to compare their results with the results of the

wavelet based methods. In this way we are able to find out

if there are wavelet-based methods that can compete with

state-of-the-art approaches. We will see that some of the

wavelet-based methods even outperform the state-of-the-art

approaches, while others perform equally or inferior compared

to the state-of-the-art approaches. 

This paper is organized as follows. In Section 2 we briefly intro-

duce the concept of the computer-assisted diagnosis of polyps us-

ing mucosa texture patches and review the corresponding state-of-

the-art. In Section 3 , we describe and compare the wavelet based

approaches. The experimental setup, the used databases and the

results are presented in Section 4 . Section 5 presents the discus-

sion and Section 6 concludes our work. 

2. Colonic polyp classification 

Colonic polyps are a rather frequent finding and are known

to either develop into cancer or to be precursors of colon can-

cer. Hence, an early assessment of the malignant potential of such

polyps is important as this can lower the mortality rate drastically.

As a consequence, a regular colon examination is recommended,

especially for people at an age of 50 years and older. The current

gold standard for the examination of the colon is colonoscopy us-

ing a colonoscope. Modern endoscopy devices are able to take pic-

tures or videos from inside the colon, allowing to obtain images (or

videos) for a computer-assisted analysis with the goal of detecting

and diagnosing abnormalities. 

Colonic polyps are usually divided into hyperplastic, adenoma-

tous and malignant polyps. In order to determine a diagnosis based
n the visual appearance of colonic polyps, the pit pattern classi-

cation scheme was proposed by Kudo et al. (1994) . A pit pattern

efers to the shape of a pit, the opening of a colorectal crypt. The

arious pit pattern types and exemplar (zoom-endoscopic) images

f the classes are presented in Fig. 2 . The pit pattern classification

cheme differentiates between six types. Type I (normal mucosa)

nd II (hyperplastic polyps) are characteristics of non-neoplastic le-

ions, type III-S, III-L and IV are typical for adenomatous polyps

nd type V is strongly suggestive to malignant cancer. 

So this classification scheme allows to differentiate between

ormal mucosa and hyperplastic lesions, adenomas (a pre-

alignant condition), and malignant cancer based on the visual

attern of the mucosal surface. The removal of hyperplastic polyps

s unnecessary and the removal of malignant polyps maybe haz-

rdous. In this work we use the 2-class classification scheme differ-

ntiating between non-neoplastic and neoplastic lesions. This clas-

ification scheme is quite relevant in clinical practice as indicated

n a study by Kato et al. (2006) . 

For an easier detection and diagnosis of the extent of mucosal

esions, two common mucosal enhancement technologies were de-

eloped: 

1. Conventional chromoendoscopy (CC) came into clinical use 40

years ago. By staining the mucosa using (indigocarmine) dye

spray, it is easier to detect and differentiate colonic polyps. CC

is often used in conjunction with high-resolution or magnifica-

tion endoscopy. 

2. Digital chromoendoscopy is a technique to facilitate “chromoen-

doscopy without dyes” ( Kiesslich, 2009 ). The strategies followed

by major manufacturers differ in this area: 
• In Narrow band imaging (NBI, Olympus), narrow bandpass

filters are placed in front of a conventional white-light

source to enhance the detail of certain aspects of the sur-

face of the mucosa. 
• The i-Scan (Pentax) image processing technology

( Kodashima and Fujishiro, 2010 ) is a digital contrast method

which consists of combinations of surface enhancement,

contrast enhancement and tone enhancement. 

The FICE system (Fujinon) decomposes images by wave-

length and then directly reconstructs images with enhanced

mucosal surface contrast. 

Both systems (i-Scan and FICE) apply post-processing to the

reflected light and thus are called “computed virtual chro-

moendoscopy (CVC)”. 

Previous works for the computer assisted classification of

olonic polyps using highly detailed images gathered from endo-

copes in combination with different imaging modalities, can be

ivided in three categories: 

• High definition (HD) endoscope combined with or without

staining the mucosa and the i-Scan technology: 

In Häfner et al. (2014a ), shape and contrast features were ex-

tracted from blobs and in Häfner et al. (2015b ); 2014c ) fractal

analysis based features were extracted. 
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Fig. 3. Images of a polyp using digital (i-Scan) and/or conventional chromoen- 

doscopy (CC). 

Fig. 4. Example images of the two classes obtained by a HD endoscope using a 

combination of CC and i-Scan mode 2. 
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• High-magnification chromoendoscopy: 

In Häfner et al. (2012c ), the pit density was estimated using De-

launay triangulation, local binary patterns based features were

used in Häfner et al. (2009) and Häfner et al. (2012a ) and fea-

tures from wavelet transforms were extracted in Häfner et al.

(20 08) ; 20 09 ); 2010 ); 2015a ). 
• High-magnification endoscopy combined with NBI: 

Tamaki et al. (2013) extracted dense SIFT features and Gross

et al. (2012) extracted features describing the vessel structure. 

In this work we use endoscopic image databases of all three

ategories. 

One of the aims of this work is to compare the classification

esults of the databases of all three categories. 

In addition to classical endoscopy, endomicroscopy, computed

omography (CT) and wireless capsule endoscopy can be used

or the examination of the gastro-intestinal tract. Endomicroscopy

 Jabbour et al., 2012 ) is a technique to obtain histology-like im-

ges and is also known as ‘optical biopsy’. For example Andr ̇e et al.

2011) ; 2012 ) showed approaches based on semantics and visual

oncepts for the automated diagnosis of colonic polyps using en-

omicroscopy. CT colonography, also known as virtual colonoscopy,

s a minimally invasive technique for the investigation of the

olon. An example showing a detection and classification system

ased on Curvature Analysis using CT colonography can be seen

n Chowdhury et al. (2008) . Wireless capsule endoscopy ( Iakovidis

nd Koulaouzidis (2015) ; Yuce and Dissanayake (2012) ) is mainly

sed to examine parts of the gastrointestinal tract that cannot or

nly hardly be seen with other types of endoscopes (the small

owel). The capsule has the size and shape of a pill and contains a

iny camera. After a patient swallows the capsule, it takes images

f the inside of the gastro-intestinal tract. An example for the auto-

ated detection and classification of colonic polyps using capsule

ndoscopy can be seen in Romain et al. (2013) . 

.1. HD endoscopy combined with the i-Scan technology and 

hromoendoscopy 

In this work we use a total of 8 image databases gathered by

D endoscopy. HD-endoscopy has the advantage of an higher res-

lution compared to standard definition endoscopes. Each database

s gathered by a different combination of the i-Scan technology and

C, respectively no CC. 

The three i-Scan modes are as follows: 

1. i-Scan 1 includes surface enhancement and contrast enhance-

ment. Surface enhancement mode augments pit pattern and

surface details, providing assistance to the detection of dysplas-

tic areas. This mode enhances light-to-dark contrast by obtain-

ing luminance intensity data for each pixel and adjusting it to

accentuate mucosal surfaces. 

2. i-Scan 2 includes surface enhancement, contrast enhancement

and tone enhancement. Expands on i-Scan 1 by adjusting the

surface and contrast enhancement settings and adding tone

enhancement attributes to the image. It assists by intensify-

ing boundaries, margins, surface architecture and difficult-to-

discern polyps. 

3. i-Scan 3 also includes surface enhancement, contrast en-

hancement and tone enhancement. Similar to i-Scan 2, with

increased illumination and emphasis on the visualization of

vascular features. This mode accentuates pattern and vascular

architecture. 

In Fig. 3 we see an image showing an adenomatous polyp with-

ut image enhancement technology (a), example images using CVC

b,c,d), an image using CC (e) and images combining CC and CVC

y using the i-Scan technology to visually enhance the already

tained mucosa (f,g,h). 
In Fig. 4 we see exemplar images of the two classes (denoted

s class “Non-neoplastic” and class “Neoplastic”) obtained by a HD

ndoscope using a combination of CC and i-Scan mode 2. 

In this work we will examine the effects of combinations of CVC

nd CC on the classification results. 

.2. High magnification endoscopy in combination with 

hromoendoscopy 

High magnification endoscopes are defined by the ability to

erform optical zoom by using a moveable lens in the tip of the

ndoscope. In that way magnified images are obtained without los-

ng display quality. High magnification endoscopy enables the vi-

ualization of mucosal details that cannot be seen with standard

ndoscopy. The CC-high-magnification database is gathered using

oom-endoscopy in combination with chromoendoscopy. Example 

mages of the classes can be seen in Fig. 2 . 

.3. High-magnification endoscopy in combination with NBI 

NBI ( Gono et al., 2003 ) is a videoendoscopic system using RGB

otary filters placed in front of a white light source to narrow the

andwidth of the spectral transmittance. NBI enhances the visibil-

ty of microvessels and their fine structure on the colorectal sur-

ace. Also the pits are indirectly observable, since the microvessels

etween the pits are enhanced in black, while the pits are left in

hite. 

In this work we use two NBI-high-magnification databases. 

For one database, further denoted as the NBI-high-

agnification database Aachen, image labels were provided

ccording to their histological diagnosis (like for the previously

resented databases). Exemplar images of the two classes of this

atabase can be seen in Fig. 5 . 

For the second database, further denoted as the NBI-high-

agnification database Hiroshima, image labels were provided ac-

ording to the optical appearance of the polyps. The images were
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Fig. 5. Examples images of the two classes from the NBI-high-magnification 

database Aachen. 

Fig. 6. Examples images of the two classes from the NBI-high-magnification 

database Hiroshima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. 1-level 2-D DWT and the resulting subbands. 

Fig. 9. 3 level DT-CWT filter bank. 

 

f

γ  

 

o  

F

 

(  

fi  

p  

u

3

 

1  

i  

d  

t  

l  
labeled by at least two medical doctors and endoscopists who are

experienced in colorectal cancer and NBI classification. Exemplar

images of the two classes of this database can be seen in Fig. 6 . 

3. Wavelet and wavelet based feature extraction approaches 

In this section we will describe the wavelet based transforms

and the employed feature extraction approaches. 

3.1. The 2-D discrete wavelet transform 

The discrete wavelet transform (DWT) ( Mallat, 1989 ) generates

frequency bands by applying low-pass (h) and high-pass (g) filters

to the input signal followed by a subsampling of the filter outputs

with factor 2. To increase the frequency resolution, the decompo-

sition is repeated by decomposing the outputs of the low pass fil-

tering. (see Fig. 7 ). 

This results in a binary tree with nodes representing a sub

space with different time-frequency localization (see Fig. 7 ). This

tree is known as filter bank. Starting with a mother wavelet ψ , the

filters ψ j, k are shifted and scaled versions of the mother wavelet:

ψ j,k = 

1 √ 

2 

j 
ψ 

(
t − k 2 

j 

2 

j 

)
, (1)

where j is the scale (or decomposition level) and k is the shift pa-

rameter and both are integers. 
L

L

Fig. 7. The DWT filter bank and its frequency domain representation. 
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Then the wavelet coefficient γ j, k of a signal x ( t ) is computed as

ollows: 

j,k = 

∫ ∞ 

−∞ 

x (t ) ψ j,k dt . (2)

Given an image, the 1-D filter bank is first applied to the rows

f the image and then applied to the columns as can be seen in

ig. 8 . 

Like in Kwitt and Uhl (2010) , we use the CDF 9/7 filters

 Daubechies, 1992 ) for the DWT, which are biorthogonal wavelet

lters. If not stated otherwise, the DWT and also the other em-

loyed wavelet based transforms are applied to RGB color images

sing 4 decomposition levels. 

.2. The DT-CWT 

Kingsbury’s dual-tree complex wavelet transform ( Kingsbury,

998 ) is designed to overcome two commonly known shortcom-

ngs of the 2-D DWT, the lack of shift-invariance and the poor

irectional selectivity. The key concept of the DT-CWT in 1-D is

o use two separate DWT decompositions (see Fig. 9 ), where the

ow-pass filter of one tree is a half-sample delayed version of the

ow-pass filter of the other tree and the filters of one tree are the

everse of the filters of the other tree. 

The outputs of one tree can be interpreted as the real parts

nd the outputs of the other tree can be interpreted as the imag-

nary parts of complex wavelet coefficients. The redundancy of 2 d 

where d is the dimension of the signal being transformed) com-

ared to the DWT provides extra information for analysis. The DT-

WT leads to a fixed number of 6 detail subbands per decompo-

ition level in 2-D, capturing image details oriented at ≈ ±15 °, ≈
45 ° and ≈ ±75 °. In Fig. 10 we see the frequency tiling of a DT-

WT with two scales. 

.3. The Gabor wavelet transform 

Gabor wavelets use complex functions constructed to serve as a

asis for the Fourier transforms in information theory applications.

he Gabor wavelet transform has multi-resolution as well as multi-

rientation properties. Gabor wavelets minimize the product of its

tandard deviations in the time and frequency domain. In that way,
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Fig. 10. Contours of 70% peak magnitude of DT-CWT filters in the frequency plane. 

Fig. 11. Contours of half-peak magnitude of Gabor Wavelet filters in the frequency 

plane. 
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Fig. 12. The basic tiling of the frequency plane of the continuous (a) and discrete 

(b) curvelet transform. 
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he uncertainty in information (frequency resolution vs time res-

lution) carried by this wavelet is minimized. It has been found

hat the simple cells of the visual cortex of mammalian brains are

est modeled as a family of self-similar 2D Gabor wavelets ( Lee,

996 ). 

A generic 2-D Gabor function ( Manjunath and Ma, 1996 ) can be

ritten as 

(x, y ) = 

(
1 

2 πσx σy 

)
e 

(
−1 
2 

(
x 2 

σ2 
x 

+ y 2 
σ2 

y 

)
+2 π iW x 

)
, (3)

here σ x and σ y are the bandwidths of the filters and W is the

entral frequency. This function can be dilated and rotated to get a

ictionary of filters. 

The Gabor wavelet transform (GWT) is parametrized by the

umber of orientations and scales and the lower ( U l ) and upper

 U u ) center frequency of interest, which influences the calculation

f the scaling factor for the mother wavelet. Redundancy is mini-

ized by choosing the scaling factor and the bandwidth of the fil-

ers so that the half-peak magnitudes of the filter responses touch

ach other. The frequency tiling for a GWT using 6 orientations and

 scales can be seen in Fig. 11 . 

Manjunath and Ma (1996) found that a choice of 4 scales and 6

rientations with center-frequency (U l , U u ) = (0 . 05 , 0 . 4) (resulting

n a scaling factor of a = 2 ) is optimal for their problem (texture

nalysis) and we chose the same parameter values. 

.4. The curvelet transform 

The continuous curvelet transform (CCT) is based on tilling the

D Fourier space in polar “wedges”, with higher directional selec-

ivity for higher frequency bands (see Fig. 12 (a)). 

The CCT ( Candes et al., 2006 ) can be defined by a pair of win-

ows W ( r ) (the radial window) and V ( t ) (the angular window).

oth are smooth, nonnegative and real-valued and are defined as
caled Meyer window functions ( Daubechies, 1992 ): 

 (r) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

cos [ π/ 2 γ (3 r − 4)] 4 / 3 ≤ r ≤ 5 / 3 

1 5 / 6 ≤ r ≤ 4 / 3 

cos [ π/ 2 γ (5 − 6 r)] 2 / 3 ≤ r ≤ 5 / 6 

0 else 

(4) 

 (t) = 

⎧ ⎨ 

⎩ 

cos [ π/ 2 γ (3 | t| − 1)] 1 / 3 ≤ | t| ≤ 2 / 3 

1 | t| ≤ 1 / 3 

0 else 

(5) 

here γ is a smooth function satisfying: 

(x ) = 

{
0 0 ≤ x 

1 x ≥ 1 

, γ (x ) + γ (1 − x ) = 1 x ∈ R (6)

The frequency window U j is defined in the Fourier domain by

 j (r, φ) = 2 

−3 j/ 4 W (2 

− j r) V 

(
2 

	 j/ 2 
 φ
2 π

)
, (7)

here the support of U j is a polar “wedge” defined by the sup-

ort of W and V applied with scale dependent window width. The

requency window U j corresponds to the Fourier transform of a

urvelet ϕ j , which can be thought of as a “mother” curvelet in the

ense that the 2 	 j /2 
 curvelets at scale 2 − j are obtained by rotations

nd translations of ϕ j . 

Contrary to the DT-CWT and the GWT, which only cover part of

he frequency spectrum in the frequency domain, curvelets have a

omplete cover of the spectrum in the frequency domain. 

In Candes et al. (2006) , two second generation discrete curvelet

ransforms (DCT’s) are proposed, the DCT via unequispaced FFTs

fast fourier transforms) and the DCT via wrapping. We chose the

rapping based algorithm because it is the more often used al-

orithm for feature extraction purposes. This algorithm is imple-

ented in the tool CurveLab (available at http://www.curvelet.

rg/) . The DCT via wrapping uses a spatial grid to translate

urvelets at each scale and angle using 2-D FFT, with the assump-

ion that “Cartesian” curvelets are defined in a regular rectangular

rid (see Fig. 12 (b)). Then for each scale s = 2 − j and orientation

 , the product of U j (the curvelet in FT domain) and the image in

T domain is obtained. Finally the product is wrapped around the

rigin and the 2-D inverse FFT is applied to the wrapped product,

esulting in the curvelet coefficients at scale s and orientation n .

he frequency tiling of the DCT can be seen in Fig. 12 (b). 

It should be noted that in case of the DCT there is a different

enotation of the scale levels compared to the wavelet transforms.

cale level 1 of the DCT denotes the coarsest scale level and con-

ists of only one undirectional subband that can be considered as

he approximation subband or as the lowpass subband. Scale levels

 till L include the directional subbands and can be considered as

etail subbands. The higher the scale level, the finer the scale of

http://www.curvelet.org/)
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Fig. 13. Laplacian pyramid decomposition. The outputs are a coarse approximation 

a and a difference b between the original image and the prediction. 

Fig. 14. The contourlet filter bank: first the multiscale decomposition into octave 

bands by means of the Laplacian pyramid decompositions followed by the applica- 

tion of a directional filter bank to the bandpass channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. ST decomposition using the Laplacian pyramid and directional filtering. 
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the subbands (the higher the frequency content in the subbands),

which is the exact opposite of the wavelet transforms. That means

comparing a 5 level DCT and a 4-level wavelet transform (WT), the

level 1 subband of the DCT can be considered as the approximation

subband of the wavelet transform and the DCT subbands of the

levels {2,3,4,5} can be considered as the level {4,3,2,1} subbands of

the WT (with respect to the frequency partition). 

If not stated otherwise, we employ curvelets using the four DCT

subband levels {2,3,4,5} with 16 level 2 subbands, 32 level 3 sub-

bands, 32 level 4 subbands and 64 level 5 subbands. 

3.5. The contourlet transform 

In an attempt to provide a better discrete implementation of

the curvelets, the contourlet representation has been proposed by

Do and Vetterli (2005) . The contourlet transform is designed to

achieve essentially the same frequency tiling as the curvelet trans-

form, however contourlets allow a different (selectable) number

of directions at each scale and are not a discretization of the

curvelets. 

The multiscale decomposition of the contourlet transform (CT)

is obtained using the Laplacian pyramid (LP) decomposition ( Burt

and Adelson, 1983 ). The LP decomposition at each level generates a

downsampled low-pass version of the image and the difference be-

tween the image and the prediction, resulting in a bandpass image.

In Fig. 13 we depict the LP decomposition, where H is the lowpass

filter, G the synthesis filter and M the sampling matrix. 

At each level, a directional filter bank (DFB) is applied to the

bandpass image ( b ) that leads to a decomposition of 2 l ( l ∈ N )

subbands with wedge-shaped frequency partitioning as shown in

Fig. 14 . 

The DFB ( Do, 2001 ) is constructed from two building blocks.

The first one is a two-channel quincunx filter bank ( Vetterli, 1984 )

that divides a 2-D spectrum into 2 directions: horizontal and ver-

tical. The second building block of the DFB is a shearing operator,

which amounts to just reordering of image samples. 

We use the CT implementation described in Do and Vetterli

(2005) , which is public available ( http://www.mathworks.com/

matlabcentral/ fileexchange/8837-contourlet-toolbox). In all of our
mployed contourlet based approaches, the CDF 9/7 filters are used

or the CT decomposition. If not stated otherwise, we employ the

T using four decomposition levels with 8 orientations per level. 

.6. The shearlet transform 

The continuous shearlet transform ( Easley et al., 2008 ) is based

n parabolic scaling matrices A a to change the resolution and on

hear matrices B s to change the orientation: 

 j = 

(
a 0 

0 a 1 / 2 

)
, B s = 

(
1 s 
0 1 

)
, (8)

ith a > 0 and s ∈ R . 

The shearlets are given by 

 a,s,k (x ) = a 3 / 4 ψ(B s A a x − k ) , (9)

here k ∈ R 

2 is the translation. The continuous shearlet transform

s defined as the mapping for f ∈ R : 

H � f (a, s, k ) = 〈 f, ψ a,s,k 〉 . (10)

The discrete shearlet transform ( Easley et al., 2008 ) can be

iewed as a simplifying theoretical justification of the contourlet

ransform. The shearlet transform offers more flexibility than the

ontourlet and curvelet transform (the directions per scale and the

ocal support of the shearing filters are selectable). The first step

f the discrete shearlet transform (ST) is to accomplish a multi-

cale partition using the Laplacian pyramid decomposition similar

o the contourlet transform. Then the 2-D FFT is applied to the

esulting highpass images. The samples in the frequency domain

re taken not on a Cartesian grid, but along lines across the origin

t various slopes, known as pseudo-polar grid. In order to obtain

he directional localization, a band-pass filtering is applied using

 frequency window function W , which is localized on a pair of

rapezoids and constructed from the shearing filters using Meyer

avelets and which is also transformed to the frequency domain

nd taken on the pseudo-polar grid (for a more detailed descrip-

ion see Easley et al. (2008) ). The final step is to re-assemble the

artesian sampled values and apply the inverse 2-D FFT. The ST-

cheme is showed in Fig. 15 . 

The ST offers large flexibility in the choice of the frequency

indow and allows to choose an arbitrary number of directional

ubbands per decomposition level to adapt the transform to spe-

ific applications. In case of the DCT, only the number of the direc-

ional subbands of the second coarsest level (the coarsest level is

he low-pass subband) can be chosen, and even this number has to

e a multiple of 4. All other decomposition levels of the DCT have

 fixed number of directional subbands depending on the number

http://www.mathworks.com/matlabcentral/
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f the directional subbands in the second coarsest level. In case of

he CT, the number of subbands can be chosen free, but the num-

ers have to be dyadic. 

We use the 2D Shearlet Toolbox software ( http://www.math.

h.edu / ˜ dlabate/software.html), which is described in Easley et al.

2008) . It should be noted that contrary to the ST scheme shown

n Fig. 15 , we use the nonsubsampled shearlet transform using

he nonsubsampled Laplacian pyramid transform. Since already the

ormal ST is highly redundant because of the missing anisotropic

ubsampling, the nonsubsampled shearlet transform is even more

edundant. The ST subbands are all of the same size as the input

mage (like for the GWT). 

If not stated otherwise, we employ the ST using four decompo-

ition levels with 8 orientations per level and shearing filters with

 support size of 32 × 32. 

.7. Preprocessing 

In this work we apply three preprocessing steps before each of

he wavelet based methods. 

The first preprocessing step removes specular reflections, which

ften occur in endoscopic images and have a major impact to the

esulting subband coefficients in affected areas. Reflections are de-

ected by thresholding the Saturation and grayscale values of an

mage. Similar to Stehle et al. (2009) , a pixel is identified as part of

 specular reflection if its gray value is greater as 235 and its Sat-

ration is smaller than 0.09. As this kind of segmentation usually

ends to a under-segmentation, a morphological dilation using a

isc of radius r = 5 as the structuring element is applied to enlarge

he segmented area. The segmented area is set to the average RGB

olor values of the adjacent pixels of the segmented area. To avoid

harp transitions between the segmented area and the surround-

ng area, the pixels surrounding the segmented area with less than

 pixels distance to the segmented area are Gaussian blurred using

= 2 and a 10 × 10 mask. 

The most important preprocessing step is contrast-limited

daptive histogram equalization (CLAHE) Zuiderveld (1994) . CLAHE

s used to enhance the contrast and remove noise and intensity in-

omogeneities. CLAHE is applied using 8 × 8 tiles and an uniform

istribution for constructing the contrast transfer function. CLAHE

perates on small regions in the image, called tiles, rather than

he entire image. Each tile’s contrast is enhanced, so that the his-

ogram of the output image is approximately flat. CLAHE distinctly

nhances the results of the wavelet based methods. 

In the final preprocessing step, the images are (slightly) Gaus-

ian blurred using σ = 0 . 5 and a 3 × 3 mask. This step is done to

lightly smooth the images and to remove noise. 

If not stated otherwise, the employed wavelet based methods

re preprocessed using the previously described three steps, even

f the methods are originally proposed using different or no pre-

rocessing methods. For each method, the achieved classification

ates increase using our preprocessing approach compared to the

riginally proposed preprocessing approaches or no preprocessing

t all. 

.8. Feature extraction of the wavelet based methods 

For each of the wavelet based transforms (DWT, DT-CWT, Ga-

or wavelets, curvelet, contourlet and shearlet transform), the dis-

ribution of the subband coefficients is once modeled by means

f the Gaussian distribution, the GGD and the Weibull distribu-

ion ( Evans and Peacock, 20 0 0; Kwitt and Uhl, 2007 ). The Gaus-

ian distribution and the Weibull distribution are used to model

he subband coefficient magnitudes, whereas the GGD is used to

odel the original subband coefficients in case of the employed
avelet transforms producing real valued coefficients (DWT, con-

ourlets and shearlets) and the subband coefficient magnitudes in

ase of the employed wavelet transforms producing complex val-

ed subband coefficients (DT-CWT, Gabor wavelets and curvelets). 

We chose the Gaussian distribution because extracting mean

nd standard deviation (the two parameters of the Gaussian dis-

ribution) of subband coefficients is probably the most known and

ost used approach to extract features of wavelet based trans-

orms. The GGD is also a widely used feature to extract information

rom subbands of wavelet based transforms and it is able to model

he subband coefficient distributions more accurate than the Gaus-

ian distribution. In fact, the subbands of various types of wavelet

ransforms (with real valued subband coefficients) are well mod-

led using the GGD ( Do and Vetterli, 2002 ). The Weibull distribu-

ion has been chosen because it already has been successfully used

or the classification of polyps in combination with the DT-CWT

nd because it is able to accurately model the subband coefficient

istribution of all employed wavelet based transforms, contrary to

he Gaussian distribution and the GGD (see Section 5.1 ). 

The probability distribution of the GGD ( Do and Vetterli, 2002 )

s defined as 

p(x ;μ, α, β) = 

β

2 α�(1 /β) 
e −(| x −μ| /α) β , (11)

here �(.) denotes the gamma function, μ is the mean, α the scale

arameter and β the shape parameter. Only the parameters α and

are extracted as features from the subbands for further classifi-

ation. Distances between GGD feature vectors are measured using

he Kullback–Leibler distance ( Do and Vetterli, 2002 ), which is in

ase of the GGD defined as 

D (p(. ;α1 , β1 ) , || p(. ;α2 , β2 )) 

= log 

(
β1 α2 �(1 /β2 ) 

β2 α1 �(1 /β1 ) 

)
− 1 

β1 

+ 

α1 

α2 

β2 �((β2 + 1) /β1 ) 

γ (1 /β1 ) 
. (12) 

The probability density function of a Weibull distribution with

hape parameter c and scale parameter b is given by 

p(x ; c, b) = 

⎧ ⎨ 

⎩ 

c 

b 

(
x 

b 

)c−1 

e −( x b ) 
c 

for x ≥ 0 , 

0 for x < 0 , 

(13) 

here b > 0 and c > 0. The two parameters of the Weibull distri-

ution are estimated using the method of moments ( Niola et al.,

006 ). 

In case of the Gaussian and Weibull distribution, the resulting

eature vectors are L 2 -normalized and distances between the fea-

ure vectors are measured using the Euclidean distance. The L 2 -

ormalization is important to balance the different ranges of co-

fficient values per decomposition level. All our employed wavelet

ased transforms have in common that the coefficients in the sub-

ands representing the coarser image details are much higher than

he coefficients in the subbands representing the finer image de-

ails. Given our d -dimensional samples v 1 , . . . , v n , the normaliza-

ion formula for the m th feature of the j th feature vector is defined

y 

˜ 
 j (m ) = 

v j (m ) − v̄ (m ) 

s̄ ( m ) 
, (14) 

here v̄ (m ) and s̄ (m ) denote the sample mean and the sample

ariance of the m th features of the n feature vectors. In this way

e obtain re-scaled features with zero-mean and unit standard de-

iation. Now each feature contributes equally to the calculation of

he distance metric. 

The wavelet based transforms are applied using four decompo-

ition levels (scales) for the extraction of Weibull, GGD and Gaus-

ian features from the subbands. If not stated otherwise, all em-

loyed wavelet and wavelet based approaches are applied to RGB

http://www.math.uh.edu
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color images and the final feature vector consists of the concate-

nation of the features of the three color channels. So the length

of a feature vector l ( fv ) resulting from extracting Gaussian, GGD or

Weibull parameters from the subbands of a wavelet based trans-

form is given by 

l( f v ) = 3 ∗ 2 ∗ NrSB, (15)

where 3 is the number of color channels, 2 is the number of pa-

rameters extracted by the probability distributions and NrSB is the

number of subbands of the used wavelet based transform. 

Since we primarily focus on Lets in this work, we additionally

reimplemented 2 texture analysis approaches based on curvelets

( Gomez and Romero, 2011; Barbosa et al., 2009 ), 2 based on con-

tourlets ( Long and Younan, 2006; Dong and Ma, 2013 ) and 3 based

on shearlets ( Schwartz et al., 2011; He et al., 2013; Dong et al.,

2015 ), which extract features that are different to the three previ-

ously described statistical features (Gaussian distribution, GGD and

Weibull distribution). These approaches were published in well

known journals or conferences. 

3.8.1. Rotation invariant DCT using the dominant orientation 

In this approach ( Gomez and Romero, 2011 ), the same features

are extracted as in the approach extracting GGD features using the

DCT (DCT-GGD). Also the same distance metric is used. To achieve

rotation invariance, the features of each scale level are circular

shifted, using the dominant orientation as reference. The dominant

orientation is defined as the orientation whose associated direc-

tional (second level) subband has the highest sum of absolute val-

ued coefficients (the highest energy). Contrary to the original ap-

proach, we apply the same DCT decomposition as for the DCT-GGD

approach. This has the advantage of a better comparability to the

DCT-GGD approach, which is basically the same approach as the

considered one but without cyclic shifted features to achieve rota-

tion invariance. We further denote this approach as DCT-DO. 

3.8.2. DCT color covariance features 

This approach ( Barbosa et al., 2009 ) firstly extracts the means

and standard deviations (std) of the DCT subbands. Then the color

covariance of these features can be calculated as follows: 

 C (a, b, s, m ) = 

∑ 

α

(F m 

(a, s, α) − E{ F m 

(a, s, α) } ) 
× (F m 

(b, s, α) − E{ F m 

(b, s, α) } , (16)

where a and b represent two different color channels, F m 

the sta-

tistical texture descriptor ( m = 1 : mean, m = 2 : std), α is the con-

sidered angle of the DCT subband, s the considered DCT level and

E { F m 

( a, s, α)} the average of the statistical texture descriptor F m 

over the different directions in the color channel a . 

It should be noted that in this approach the HSV color space is

used instead of the RGB color space like for all other approaches

and that we did not apply CLAHE as preprocessing step (CLAHE

cannot be applied to all HSV color channels). The DCT decompo-

sition results in a lowpass subband and two levels of directional

subbands with 8 and 16 orientations (we only use the directional

subbands) resulting in a feature vector of an image of length 24 (6

combinations of color channels × 2 scale levels × 2 parameters).

We further denote this approach as DCT color covariance feature

(DCT-CCF). 

3.8.3. CT coefficients modeled by histograms 

In this approach ( Long and Younan, 2006 ), the CT subband co-

efficients are modeled using histograms with 10 bins. Distances

between two feature vectors are measured using the χ2 distance

metric: 

χ2 (x, y ) = 

∑ 

i 

(x i − y i ) 
2 

x i + y i 
. (17)
he CT is applied using 3 decomposition levels with 8 directional

ubbands per level resulting in 24 directional subbands and the

ow-pass subband. The final feature vector of an image has length

50 (3 color channels × 25 subbands × 10 bins per histogram). We

urther denote this approach as CT-Histogram. 

.8.4. CT subband clustering 

In this approach ( Dong and Ma, 2013 ) the k-means clustering

lgorithm is used to find 3 cluster centers of the CT subband coef-

cients, which are used as features for further classification. First,

he CT decomposes an image into L = 4 levels with 8 directional

ubbands per level and the low-pass subband. With increasing de-

omposition level i (from fine ( i = 1 ) to coarse ( i = 4 )), the av-

rage amplitude of the CT coefficients increases almost exponen-

ially. The by far highest coefficient values are in the low-pass sub-

and. To balance the different ranges of coefficient values per de-

omposition level, the low-pass subband coefficients are multiplied

y the factor of 1/4 L and the detail subband coefficients of de-

omposition level i ( i ∈ { 1 , 2 , . . . , L } ) are multiplied by the factor

f 1 / 4 i −1 (in the publication describing the approach ( Dong and

a, 2013 ) the authors wrote 1/4 i , but we think this is a typo since

his factor would not consider the far higher coefficient values in

he low-pass subband). Additionally, the variance and norm-2 en-

rgy of each subband is extracted, resulting in a feature vector’s

ength of 990 (3 color levels × 33 subbands × 5 parameters (3

lusters, variance and energy)). We further denote this approach as

T-Cluster. 

.8.5. Energy of the ST coefficients 

In this approach ( Schwartz et al., 2011 ), the energy of the sub-

and coefficients is used as feature: 

(s ) = 

∑ | s (x ) | , (18)

here s denotes a subband. The energy feature is computed from

he subbands of a 4 level ST decomposition with 8 directional sub-

ands per level. The resulting feature vectors are L2-normalized

nd have length 81 (3 color channels × 4 levels × 8 orientations

er level × 1 parameter). This approach will be further denoted as

he ST-Energy approach. 

.8.6. ST combined with a LBP based feature extraction 

In this approach ( He et al., 2013 ), a feature based on local bi-

ary patterns (LBP) ( Ojala et al., 2002 ) is extracted from the sub-

and coefficients of the ST decomposition. First, two local features

re computed as follows: 

 

l,d 
i, j 

= 

1 

9 

1 ∑ 

p= −1 

1 ∑ 

q = −1 

| s l,d 
i + p, j+ q | (19)

 

l,d 
i, j 

= 

−1 

log (9) 

1 ∑ 

p= −1 

1 ∑ 

q = −1 

| s l,d 
i + p, j+ q | 

norm 

l,d 
i, j 

log 

( 

| s l,d 
i + p, j+ q | 

norm 

l,d 
i, j 

) 

(20)

here s i, j is the shearlet coefficient at ( i, j ) in the d ’th directional

ubband within the l ’th decomposition level and 

orm 

l,d 
i, j 

= 

1 ∑ 

p= −1 

1 ∑ 

q = −1 

| s l,d 
i + p, j+ q | . (21)

hen these features are normalized and by means of thresholds t l n 
 n ∈ {0, 1, 2}) with t l 

1 
< t l 

2 
< t l 

2 
, an integer value m between 0 and

 is assigned to each local feature e l,d 
i, j 

( g l,d 
i, j 

analogous with different
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hreshold values) in each decomposition level l : 

 

l,d 
i, j 

== 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

0 for e l,d 
i, j 

< t l 0 

1 for t l 0 < e l,d 
i, j 

< t l 1 

2 for t l 1 < e l,d 
i, j 

< t l 2 

3 for e l,d 
i, j 

> t l 2 

(22) 

The local shearlet-based energy pattern (LSEP) is defined as 

SEP l i, j 

D ∑ 

d=1 

m 

l,d 
i, j 

3 

d−1 . (23) 

To achieve orientation invariance m 

l,d 
i, j 

is sorted before the LSEP

omputation, so that the values of a given level l and position ( i,

 ) are ascending in the orientation dimension ( D = 4 directions are

sed and so e.g. m 

l 
i, j 

= 2 , 1 , 2 , 0 becomes m 

l 
i, j 

= 0 , 1 , 2 , 2 ). 

The support size of the shearlet filters is 16 × 16. The final step

s to build histograms of the LSEP’s and to concatenate these his-

ograms into a feature vector. The final feature vector of an image

onsists of 270 elements (3 color channels × 3 scales × 2 local fea-

ures × 15 bins per histogram). Distances between feature vectors

re measured using the χ2 distance metric. We further denote this

pproach as ST-LSEP. 

.8.7. Linear regression of ST subbands 

In this approach ( Dong et al., 2015 ), regression is used as a tool

o investigate the dependences between shearlet subbands at dif-

erent scale levels. 

By applying the L = 3 level shearlet transform using shearlet

lters with support size 30 × 30, we obtain one low-pass sub-

and and D = 10 directional subbands at each scale. From each

ubband the norm-1 (mean) and norm-2 energy is computed. Such

 subband feature at scale i and direction d from an image n ( n ∈
 1 , . . . , N} ) of class c is further denoted as q i,d c,n . Then the samples

 (q i −1 ,d 
c,n ,q i,d c,n ) } N n =1 

(further denoted as { (x n , y n ) } N n =1 
) can be seen as

he N observations of ( X, Y ). The following linear regression models

he dependences between the shearlet subband features at neigh-

oring scale levels: 

(Y | X = x ) = β0 + β1 x (24) 

Using the training images, the estimates ˆ βc,i,d 
0 

and 

ˆ βc,i,d 
1 

are

omputed for each class c , where d denotes the direction and i the

cale level. 

Given a test image and a pair of extracted features ( q i −1 ,d , q i,d ),

he residual d c i, d is computed as follows: 

 

i,d 
c = | q i,d − ˆ q i,d | (25) 

here 

ˆ 
 

i,d = E(Y | X = q i −1 ,d ) = 

ˆ βc,i,d 
0 

+ 

ˆ βc,i,d 
1 

q i −1 ,d (26) 

The distance from the test image I to the c th class T c is defined

s the weighted summation of residuals (WSR): 

 W SR (I, T c ) = 

D ∑ 

d=1 

L ∑ 

i =1 

2 

i d i,d 
c,norm 1 

+ 

D ∑ 

d=1 

L ∑ 

i =1 

2 

i d i,d 
c,norm 2 

, (27) 

here d c, norm 1 ( d c, norm 2 ) is the residual using norm-1 (norm-2) en-

rgy as subband feature. The test image I is assigned to the class

orresponding to the minimum of { D W SR (I, T c ) } C c=1 
. 

So contrary to the other methods, there is no feature vector as

utput of a image. The output of an evaluation set image is the

redicted class. This approach will be further denoted as the ST-

eg approach. 
.9. Other methods 

In this sections we will describe a variety of state of the art

ethods for colonic polyp classification which are not based on

avelets or Lets. By means of these methods we are able to com-

are the results of the wavelet based approaches with the results

f state-of-the-art methods. 

.9.1. Blob-adapted local fractal dimension 

This feature extraction method ( Häfner et al., 2014c ) is derived

rom the local fractal dimension (LFD) ( Varma and Garg, 2007; Xu

t al., 2009 ). For a given pixel location x = (x 1 , x 2 ) , the local fractal

imension LFD( x ) analyzes the changes of the intensity distribution

f differently sized circle shaped regions of the image centered at

he point x . This is usually done by filtering the image I with cir-

le shaped binary filters with r = 1 , 2 , 3 , . . . , 8 and the LFD is com-

uted for each pixel location by estimating the slope of the filter

esponses with increasing radii. 

Contrary to the original LFD approach, the considered approach

 Häfner et al., 2014c ) enhances the viewpoint invariance using el-

iptic shaped binary and Gaussian filters, whose shape, size and

rientation is adapted to the local texture structure. The final fea-

ure vector consists of the histograms of the LFD’s. 

.9.2. Blob shape and contrast features 

This approach ( Häfner et al., 2014a ) consists of two steps. The

rst step is a segmentation algorithm, that applies local region

rowing to the maxima and minima of the image in a similar way

s the watershed segmentation by immersion ( Roerdink and Mei-

ster, 20 0 0 ). The resulting blobs represent the local texture struc-

ures of an image. 

In the second step, 3 shape features and a contrast feature are

xtracted from the blobs. The final feature vector consists of the

istograms of these 4 features. 

.9.3. Dense SIFT features 

This approach ( Tamaki et al., 2013 ) combines densely computed

IFT features with the bag-of-visual-words (BoW) approach. The

IFT descriptors are sampled at points on a regular grid. From

hese SIFT descriptors, cluster centers (visual words) are learned

y means of k-means clustering. Given an image, its corresponding

odel is generated by labeling its SIFT descriptors with the tex-

on that lies closest to it. We use the same parameters that led

o the best results in Tamaki et al. (2013) (grid spacing = 5, SIFT

cale 5 and 7), but with a lower number of visual words (only

00 instead of up to over 10 0 0 0 visual words in ( Tamaki et al.,

013 )). In our experiments, the lower number of visual words led

o better results and less (but still huge) computational cost. In

amaki et al. (2013) , this approach is used for the colonic polyp

lassification in NBI endoscopy, however, there is no reason why

his approach should not also be suited for other imaging modal-

ties like the i-Scan technology or chromoendoscopy. The compu-

ation of the SIFT descriptors and the following k-means clustering

s done using the Matlab software provided by the VLFeat open

ource library ( Vedaldi and Fulkerson, 2008 ). 

.9.4. Vascularization features 

This approach ( Gross et al., 2012 ) segments the blood vessel

tructure on polyps by means of the phase symmetry ( Kovesi,

999 ). Vessel segmentation starts with the phase symmetry filter,

hose output represents the vessel structure of polyps. By thresh-

lding the output, a binary image is generated, and from this im-

ge 8 features are computed that represent the shape, size, con-

rast and the underlying color of the connected components (the

egmented vessels). This method is especially designed to analyze

he vessel structures of polyps in NBI images and is probably not
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Table 1 

Summary and characterization of the used feature extraction methods except for 

the Gaussian, GGD and Weibull features. 

Method Description 

DCT-DO Rotation invariant version of DCT-GGD 

DCT-CCF Color covariance feature applied on means and std’s of 

the subbands 

CT-Histogram Histograms are built of subband coefficients 

CT Cluster Cluster centers of subband coefficients are used as 

features 

ST-Energy Extracts the energy of subbands 

ST-LSEP LBP based feature is extracted from the subbands 

ST-Reg Regression is used to investigate dependencies across 

different subband levels 

BA-LFD A viewpoint invariant feature analyzing changes in the 

intensity distribution 

Blob-SC Shape and contrast description of segmented blobs 

SIFT The BoW approach is applied to densely computed 

SIFT features 

Vasc. F. Blood vessel structure is segmented and described 

using 8 features 

MB-LBP Multiscale LBP variant 
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suited for imaging modalities that are not designed to highlight-

ing the blood vessel structure. Hence, this method is most proba-

bly not suited for any other image processing task than endoscopic

polyp classification using NBI. 

We use the implementation of the phase symmetry filter

( Kovesi, 20 0 0 ) for the vascularization feature approach. 

3.9.5. MB-LBP 

Based on a grayscale image, the LBP operator generates a bi-

nary sequence for each pixel by thresholding the neighbors of the

pixel by the center pixel value. The binary sequences are then

treated as numbers (i.e. the LBP numbers). Once all LBP numbers

for an image are computed, a histogram based on these numbers

is generated and used as feature vector. There are several varia-

tions of the LBP operator and they are used for a variety of image

processing tasks including endoscopic polyp detection and classi-

fication (e.g. Häfner et al. (2012b )). Because of its superior results

compared to the standard LBP operator LBP (8, 1) (with block size

= 3), we use a multiscale block binary patterns (MB-LBP) opera-

tor ( Liao et al., 2007 ) with three different block sizes (3,9,15). The

uniform LBP histograms of the 3 scales (block sizes) are concate-

nated resulting in a feature vector with 3 × 59 = 177 features per

image. 

3.10. Summary of the employed methods 

For each type of the employed wavelet-based transforms we

employ three approaches extracting three different types of statis-

tical features (Gaussian GGD and Weibull features), which describe

the subband coefficient distributions. The remaining methods are

listed and characterized in Table 1 . 
Fig. 16. Flowchart of the 
. Experimental results 

In this paper we use a total of 11 different endoscopic databases

o classify colonic polyps. 

For a better comparability of the results and to put more em-

hasis to the feature extraction, all methods are evaluated using

 k-NN classifier. To balance the problem of varying results de-

ending on k , we average the 10 results of the k-NN classifier with

 = 1 , . . . , 10 . 

Since we employ a high number of feature extraction ap-

roaches on many different databases, we decided to use the ac-

uracy as the only performance measure and resigned to use other

lassification measures like e.g. sensitivity and specificity or preci-

ion and recall. The advantages of the accuracy is the easy compa-

ability of the results (the accuracy is only one performance mea-

ure compared to the two performance measures for sensitivity

nd specificity or precision and recall). 

In Fig. 16 we show a flowchart summarizing our experimental

etup. 

.1. The CC-i-Scan database 

The CC-i-Scan database is an endoscopic image database con-

isting of 8 sub-databases with 8 different imaging modalities. The

 image sub-databases are acquired by extracting patches of size

56 × 256 from frames of HD-endoscopic (Pentax HiLINE HD+ 90i

olonoscope) videos either using the i-Scan technology or with-

ut any computed virtual chromoendoscopy ( ¬CVC in Table 2 ).

he mucosa is either stained or not stained. The patches are ex-

racted only from regions having histological findings. The CC-i-

can database is provided by the St. Elisabeth Hospital in Vienna

nd was already used for colonic polyp classification e.g. in Häfner

t al. (2014b ); 2014c ). 

Table 2 lists the number of images and patients per class and

atabase. 

Classification accuracy is computed using Leave-one-patient-out

LOPO) cross validation. The advantage of LOPO compared to leave-

ne-out cross validation is the impossibility that the nearest neigh-

or of an image and the image itself come from the same patient.

n this way we avoid over-fitting. 

In Table 3 we see the overall classification rates (OCR) for our

xperiment using the CC-i-Scan database. The column ∅ shows for

ach method the averaged accuracies across all image enhance-

ent modalities. The row ∅ shows the averaged accuracies across

ll wavelet-based methods. The highest results for each image en-

ancement modality across all methods are given in bold face

umbers. In Fig. 17 we once again show the averaged accuracies

cross all image enhancement modalities (column ∅ ) for an easier

omparison of the methods results. 

As we can see in Table 3 and Fig. 17 , extracting the Weibull

arameters as features leads to the best results for each wavelet-

ased method. The two directional wavelet transforms DT-CWT

nd GWT extracting Weibull features are the best performing
experimental setup. 
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Table 2 

Number of images and patients per class of the CC-i-Scan databases gathered with and without CC (staining) and 

computed virtual chromoendoscopy (CVC). 

No staining Staining 

i-Scan mode ¬CVC i-Scan 1 i-Scan 2 i-Scan 3 ¬CVC i-Scan 1 i-Scan 2 i-Scan 3 

Non − neoplastic

Number of images 39 25 20 31 42 53 32 31 

Number of patients 21 18 15 15 26 31 23 19 

Neoplastic 

Number of images 73 75 69 71 68 73 62 54 

Number of patients 55 56 55 55 52 55 52 47 

Total nr. of images 112 100 89 102 110 126 94 85 

Table 3 

Accuracies of the methods for the CC-i-Scan databases in %. The highest results for each image enhancement modality 

are given in bold face numbers. 

Methods No staining Staining ∅ 

¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3 

DWT-Gaussian 74.0 82.4 84.2 81.2 63.2 65.7 69.3 67.2 73.4 

DWT-GGD 75.0 82.8 84.0 81.3 67.2 70.0 80.1 68.1 76.1 

DWT-Weibull 74.2 80.0 81.1 86.5 68.4 73.3 82.6 64.6 76.3 

DTCWT-Gaussian 73.2 83.5 85.4 82.8 66.4 69.5 72.7 68.7 75.3 

DTCWT-GGD 75.0 86.0 85.6 83.7 74.2 67.6 68.6 71.5 76.5 

DTCWT-Weibull 79.6 86.4 84.8 89.5 72.3 77.0 82.6 67.1 79.9 

GWT-Gaussian 75.8 82.1 85.4 80.6 67.5 73.2 74.2 66.0 75.6 

GWT-GGD 79.3 82.9 83.4 82.2 75.0 69.5 74.4 72.5 77.4 

GWT-Weibull 83.5 88.0 85.1 85.2 71.3 78.8 82.8 68.0 80.3 

DCT-Gaussian 75.6 79.3 82.7 76.5 63.5 67.8 70.4 65.8 72.7 

DCT-GGD 77.8 82.1 81.6 77.7 69.6 69.4 69.6 68.7 74.5 

DCT-Weibull 80.0 80.2 82.6 81.6 65.1 71.2 77.1 66.0 75.5 

DCT-DO 67.3 76.0 78.9 73.3 66.9 60.6 66.8 63.2 69.1 

DCT-CCF 74.8 71.8 77.9 70.0 64.5 65.7 74.7 65.5 70.6 

CT-Gaussian 73.8 81.9 83.7 81.1 68.6 68.5 70.4 68.0 74.5 

CT-GGD 77.6 85.1 85.8 82.9 74.1 72.0 75.3 69.7 77.8 

CT-Weibull 79.8 83.3 87.2 86.0 71.5 71.0 81.7 69.9 78.8 

CT-Histogram 68.0 78.4 82.1 78.2 62.8 68.3 75.5 67.2 72.6 

CT-Cluster 75.6 80.1 84.3 79.9 70.4 66.0 67.9 65.2 73.7 

ST-Gaussian 72.8 83.2 82.6 80.1 63.1 69.7 72.5 66.4 73.8 

ST-GGD 75.8 85.6 84.6 82.8 70.8 72.9 75.5 68.6 77.1 

ST-Weibull 7.59 85.7 86.9 83.8 69.2 73.3 79.7 68.0 78.2 

ST-Energy 72.4 82.4 83.6 79.8 63.5 70.3 72.8 67.3 74.0 

ST-LSEP 71.6 77.7 84.2 77.8 65.4 69.4 81.8 66.8 74.3 

ST-Reg 76.6 79.0 83.2 84.3 63.6 73.8 67.0 75.3 75.4 

∅ 75.5 81.8 83.6 81.1 67.9 70.2 74.6 67.8 75.3 

BA-LFD 74.4 86.7 80.9 79.0 70.6 76.1 84.6 63.5 77.0 

Blob SC 78.6 84.7 87.4 86.6 66.3 77.0 79.5 70.8 78.9 

SIFT 75.4 86.9 84.0 78.8 70.5 79.4 77.0 65.3 77.2 

Vasc. F. 63.7 72.6 76.0 72.5 58.2 48.5 62.9 59.5 64.2 

MB-LBP 70.5 82.9 79.6 76.4 65.7 74.3 73.3 73.3 74.5 
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ethods. Their results are even higher than those of the state-of-

he-art approaches. Also ST and CT combined with Weibull fea-

ures are among the best performing approaches. Only the Blob-

C approach achieves similarly high results as the 4 wavelet-based

ransforms combined with Weibull features. DWT and DCT com-

ined with Weibull features only achieve average results. 

The results of the wavelet-based methods extracting Gaussian

arameters as features are quite similar to each other and aver-

ge compared to the results of other methods. The GGD parame-

ers provide constantly higher results than the Gaussian parame-

ers and constantly lower results than the Weibull parameters. 

As already mentioned before, DCT-GGD and DCT-DO are basi-

ally the same approaches with the exception that DCT-DO aims

o achieve rotation invariance by cyclic shifting features. When we

ompare their results we see that the cyclic shifting process dis-

inctly decreases the results. 

Like expected, the Vascular Features are not suited for the clas-

ification of polyps for this database. Especially the results of the

ubdatabases with stained mucosa are particularly bad because
he pits of the mucosal structure, which are filled with dye, are

rongly recognized as vessels. 

When we compare the results of the wavelet-based methods

cross the different imaging modalities (see row ∅ in Table 3 ),

t becomes clear that staining the mucosa leads to a degradation

f the results whereas the i-Scan modes improve the results. The

ame applies to the state-of-the-art methods. 

By means of the McNemar test ( McNemar, 1947 ), we assess the

tatistical significance of our results. With the McNemar test we

nalyze if the images from a database are classified differently by

he various wavelet-based methods, or if most of the images are

lassified identical by the various wavelet-based methods (whereat

e only differentiate between classifying an image as correct or

ncorrect). The McNemar test tests if the classification results of

wo methods are significantly different for a given level of signifi-

ance ( α) by building test statistics from incorrectly classified im-

ges. The test is carried out on the i-Scan 2 database without stain-

ng using significance level α = 0 . 05 . We chose this subdatabase

ecause it provides the best results over all 8 subdatabases
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Fig. 17. Averaged accuracies across all image enhancement modalities of the CC-i- 

Scan database. 

Fig. 18. Result of the McNemar test for the i-Scan 2 database without staining. A 

black square in the plot means that the two considered wavelet-based method are 

significantly different with significance level α = 0 . 05 . A white square means that 

there is no significant difference between the methods. 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Ground truth information based on histology for the 

CC-high-magnification image database. 

Non-neoplastic Neoplastic Total 

Images 198 518 716 

Patients 14 32 40 

Fig. 19. Accuracies and the standard deviations of the methods for the CC-high- 

magnification database. 
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with different imaging modalities. Results are displayed in

Fig. 18 . 

As we can see in Fig. 18 , the DCT-CCF, the DCT-DO and the CT-

GGD approach are classifying images significantly different to some

other approaches. For α = 0 . 01 there remains only one significant

difference between the DCT-DO and the CT-GGD approach. How-

ever, the outcomes of the McNemar test (and any other signifi-

cance test) are highly dependent on the sample size (the higher

the sample size, the more likely significant differences will occur

using the McNemar test). So the low number of significant differ-

ences is probably mainly caused by the low number of images of

the i-Scan 2 database (89), since there are distinct differences in

the results in Table 3 . 
.2. The CC-high-magnification database 

The high-magnification images are acquired at the Depart-

ent of Gastroenterology and Hepatology of the Medical Univer-

ity of Vienna using a zoom-colonoscope (Olympus Evis Exera CF-

160ZI/L) with a magnification factor of 150 and indigocarmine

ye-spraying. The database is acquired by extracting patches of

ize 256 × 256 from 327 endoscopic color images (either of size

24 × 533 pixels or 586 × 502 pixels) of 40 patients. Table 4 lists

he number of images and patients per class. 

Classification accuracy is computed using LOPO cross valida-

ion. In Fig. 19 we see the averaged accuracies (for k = 1 , . . . , N)

f our employed methods using the CC-high-magnification image

atabase. 

The error bars in the figure indicate the standard deviations

cross the 10 k-values of the kNN-classifier. As we can see in

ig. 19 , the wavelet-based methods extracting Weibull parameters

s features achieve the best results. Especially DT-CW T, GW T and

T combined with Weibull features outperform the other methods,

ut also DCT combined with Weibull features performs very well.

he state-of-the-art-approaches provide poor results compared to

he wavelet-based methods. 

Comparing the results using Gaussian, GGD and Weibull fea-

ures across the different wavelet-based approaches, the DT-CWT,

WT and ST provide the best results. The results of the DCT and

T are already distinctly lower and the DWT provides the worst

esults. 

Like in the previous database, extracting GGD features pro-

ides constantly better results than extracting Gaussian features

nd mostly worse results than extracting Weibull features. Similar

o the previous database, the cyclic shifting of the features of the

CT-DO approach decreases the results compared to the DCT-GGD

pproach without cyclic shifting. 
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Fig. 20. Result of the McNemar test for the CC-high-magnification database. A black 

square in the plot means that the two considered wavelet-based method are signif- 

icantly different with significance level α = 0 . 01 . A white square means that there 

is no significant difference between the methods. 

Table 5 

Ground truth information based on histology for the 

NBI image database Aachen. 

Non-neoplastic Neoplastic Total 

Images 173 214 387 

Patients 98 135 211 
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Fig. 21. Accuracies and the standard deviations of the methods for the NBI-high- 

magnification database Aachen. 

Fig. 22. Result of the McNemar test of the NBI-high-magnification database Aachen. 

A black square in the plot means that the two considered wavelet-based method are 

significantly different with significance level α = 0 . 01 . A white square means that 

there is no significant difference between the methods. 
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In Fig. 20 we see the result of the McNemar test for the CC-

igh-magnification database using significance level α = 0 . 01 . As

e can see in Fig. 20 , there are much more significant differences

etween the employed approaches than at the i-Scan 2 database.

his of course is partly mainly caused by the far higher number

f images of the CC-high-magnification database (716) than of the

-Scan 2 database (89). 

The DT-CW T , GW T and ST approaches using Weibull features

re significant better than the remaining approaches. 

.3. NBI-high-magnification database Aachen 

The NBI high-magnification images are acquired at the Univer-

ity Hospital Aachen using a NBI zoom endoscope, which can mag-

ify the image to a maximum of 150-fold (CF-Q160ZI, Olympus

edical Systems Europe). The database is acquired by extracting

atches of size 256 × 256 from 387 endoscopic color images of

ize 502 × 586 from 211 patients, where only one patch is ex-

racted per image. Table 5 lists the number of images and patients

er class. 

In Fig. 21 we see the averaged accuracies and the standard de-

iations of our employed methods for the NBI-high-magnification

atabase Aachen. We can see that the results of most of the meth-

ds are quite similar and that only the ST-LSEP approach achieves

 result over 80%. Contrary to the previous databases, the wavelet-

ased transforms combined with Weibull features only achieve av-

rage results. The DCT-CCF approach achieves the distinctly worst

esult. The results for the GGD features are constantly better than

hese of the Gaussian and Weibull features. 
This results are also reflected in the results of the MC-Nemar

est shown in Fig. 22 . The DCT-CCF approach is significantly worse

han most of the other approaches and the ST-LSEP approach is

ignificantly better than most of the other approaches. 

.4. NBI-high-magnification database Hiroshima 

The NBI high-magnification images are acquired at the Depart-

ent of Endoscopy of the Hiroshima University Hospital using a

BI zoom endoscope, which can magnify the image to a max-

mum of 75-fold (CF-Q160ZI, Olympus Medical Systems Europe).

hen the images were digitalized into 1440 × 1080 pixels. Care

as taken that the lighting conditions, zooming and optical mag-

ification were kept as similar as possible across different images.
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Table 6 

Ground truth information based on optical appear- 

ance of the polyps for the NBI-high-magnification 

database Hiroshima. 

Non-neoplastic Neoplastic Total 

Images 168 392 560 

Fig. 23. Accuracies and the standard deviations of the methods for the NBI-high- 

magnification database Hiroshima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. Result of the McNemar test of the NBI-high-magnification database Hi- 

roshima (2-class case). A black square in the plot means that the two considered 

wavelet-based method are significantly different with significance level α = 0 . 05 . A 

white square means that there is no significant difference between the methods. 
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The captured images were trimmed by medical doctors and endo-

scopists to a rectangle so that this rectangle contains an area in

which typical microvessel structures appear. The size of this (908)

rectangles varies between about 100 × 100 and 800 × 900 pix-

els. The database is acquired by extracting patches of size 256 ×
256 from the rectangular trimmed images (the wavelet based ap-

proaches need images of size 2 n × 2 n ). Unfortunately, we do not

have any information from which patient or which polyp the rect-

angular trimmed images were taken, we only know from which

rectangular images the 256 × 256 patches were extracted. So we

cannot use LOPO cross classification like for the other databases

or at least leave-one-polyp out cross validation to avoid biased re-

sults. We only can (and did) ensure that a 256 × 256 patch from

one rectangular trimmed image is not permitted to be a neighbor

of another 256 × 256 patch from the same rectangular trimmed

image using the kNN-classifier. So we use a sort of Leave-one-

parent image-out cross validation. Table 6 lists the number of im-

ages per class. 

In Fig. 23 we see the averaged accuracies and the standard de-

viations of our employed methods for the NBI-high-magnification

database Hiroshima. As we can see, GWT and ST combined with

Weibull features, the vascularization feature approach and espe-

cially the SIFT approach achieve the highest results. So this is

the only database where a non-wavelet based state-of-the-art ap-

proach achieves the best results. 

Comparing the results using Gaussian, GGD and Weibull fea-

tures of the different wavelet-based approaches, the DT-CWT,

GWT and partly also the ST provide the best results (like for

the CC-high-magnification database and similar to the CC-i-Scan

database). The results of the DCT, CT and DWT are slightly lower.

Once again, extracting GGD features provides constantly better re-

sults than extracting Gaussian features. The distinctly worst results

are provided by the DCT-CCF approach. Also the ST-Reg approach

performed comparatively weak. 
This results are also reflected in the results of the MC-Nemar

est shown in Fig. 24 , where it is shown that DWT-Weibull, DCT-

CF and ST-Reg are significantly worse than most of the other ap-

roaches. 

. Discussion 

In this section we will analyze the problems of some of the

pproaches and the reasons why some approaches work better or

orse than others. First we will analyze which probability distribu-

ion is best suited to model the subband coefficients, then we will

nalyze why the DCT-DO approach performs worse than the DCT-

GD approach, and finally we will discuss the problems of other

mployed approaches. 

.1. Subband coefficient distribution 

We have seen in Section 4 , that for most of the databases

he Weibull features achieved the highest results of all features

xtracted from the wavelet-based transforms. The Gaussian fea-

ures achieved average results. The results of the GGD features

ere constantly better than these of the Gaussian features, but

ostly worse than these of the Weibull features. So altogether, we

odeled the subband coefficient distribution using three different

robability distributions. We further denote these three approaches

s density-model approaches. 

In this section we will show that the Weibull distributions is

ost suited to model the subband coefficient distribution. 

But first let us take a closer look to the density functions of

he three probability distributions. The simplest distribution is the

aussian distributions. The density function has always the shape

f the Gaussian bell curve. μ is the location parameter and σ is the

cale parameter of the curve. Examples of three different Gaussian

ensity functions can be seen in Fig. 25 (a). 

The density function of the generalized Gaussian distribution

GGD) with shape parameter β and scale parameter α can already

orm slightly different shapes as can be seen in Fig. 25 (b). 
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Fig. 25. Gaussian probability density functions with different scale parameters σ (a), GGD probability density function with different shape parameters β (b), and Weibull 

probability density function with different shape parameters c (c). 

Fig. 26. DWT level 1 subband coefficients modeled by the Gaussian distribution and the GGD, where either the original coefficients (a) or the coefficient magnitudes (b) are 

modeled. 
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The Weibull density function can form totally different shapes

s can be seen in Fig. 25 (c). By means of the shape parameter

 the Weibull distribution can take the shape of other probabil-

ty distributions like the exponential distribution (for c = 1 ), the

ayleigh distribution (for c = 2 ) and the Gaussian distribution (for

 ≈ 3.602). 

Now let us take a closer look to the subband coefficient distri-

utions of our employed wavelet based methods. Here we have to

ifferentiate between the wavelet based methods producing com-

lex valued subband coefficients (DT-CWT, GWT, DCT) and those

roducing real valued subband coefficients (DWT, CT, ST). In case

f the complex valued coefficients, it is most common to model

he subband coefficient magnitudes. In case of the Wavelet based

ethods producing real valued coefficients, it is possible to model

he original subband coefficients (as done with the GGD) or the

ubband coefficient magnitudes (as done with the Gaussian and

eibull distribution). 

Using the Weibull distribution, we should always model the

ubband coefficient magnitudes, since the Weibull probability den-

ity function is zero for x < 0 as we can see in Eq. 13 . In case of the

aussian distribution and the GGD, it is theoretically possible to

odel the subband coefficients of the original subband coefficients

in case of real valued coefficients) as well as the coefficient mag-

itudes. However, both distributions are modeling the original (real

alued) subband coefficients far more accurately than the subband

oefficient magnitudes as can be seen in an example in Fig. 26 . 

In Fig. 27 we compare the results of the wavelet based meth-

ds producing real valued coefficients, where GGD and Gaussian
eatures are extracted either from the original coefficients or from

he coefficient magnitudes. 

As we can see in Fig. 27 (a), the classification rates for the Gaus-

ian distribution are higher modeling the coefficient magnitudes

han those modeling the original coefficients. In case of the GGD,

he results are similar for modeling the original coefficients and

he coefficient magnitudes. 

So the results for extracting Gaussian and GGD features from

avelet based transforms producing real valued coefficients are

igher or at least similar high when modeling the subband

oefficient magnitudes instead of modeling the original coeffi-

ients, although the original coefficients can be modeled far more

ccurate than the coefficient magnitudes. This is a strong in-

ication that the coefficient magnitudes provide a higher dis-

riminativity for the differentiation of polyps than the original

oefficients. 

In Fig. 28 , we see histograms of the subband coefficient magni-

udes from an endoscopic image. For each of the employed wavelet

ased transforms, there is one histogram of a subband from the

nest scale level. As we can see in Fig. 28 , the appearance and

hape of the subband coefficient distributions (the blue bars) of the

avelet based methods producing complex valued coefficients (top

ow) nearly remind of the exponential distribution, whereas those

avelet based methods producing real valued coefficients (bottom

ow) remind of the Rayleigh distribution. So the Weibull distribu-

ion could be able to accurately represent subband coefficient mag-

itude distributions, whereas the Gaussian and generalized Gaus-

ian distribution are obviously unable to represent the subband
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Fig. 27. Classification rates using DWT, CT and ST for extracting Gaussian (a) and GGD (b) features either from the subband coefficient magnitudes or from the original 

subband coefficients. 

Fig. 28. Histograms of the subband coefficient magnitudes of the employed wavelet based transforms (blue bars) and the fitted Weibull density function (red line). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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coefficient magnitudes. The red lines in Fig. 28 show the density

functions of the Weibull distributions fitted to the corresponding

subband coefficients. So for this example, the Weibull distribution

is in fact fitting the subband coefficients of all wavelet based trans-

forms quite well but not perfect. 

To see if the Weibull distribution actually fits the subband co-

efficient distribution of the subbands of our endoscopic images,

we apply the Kolmogorov–Smirnov test ( Chakravarti et al., 1967 )

as Goodness-of-Fit (GoF) test to all images (respectively the result-

ing subbands using our wavelet based transforms) of our employed

databases. In case of the CC-i-Scan database, we merge the images

of all 8 sub-databases to one image database. The Kolmogorov–

Smirnov statistic is a nonparametric test that quantifies a distance

between the empirical distribution function of the sample and the

cumulative distribution function of the reference distribution. The

null distribution of this statistic is calculated under the null hy-

pothesis that the sample is drawn from the reference distribu-

tion. We apply the Kolmogorov–Smirnov test at the 5% significance

level. A problem of the Kolmogorov–Smirnov test (and any other
oF test) is that the outcome is strongly effected by the num-

er of coefficients per subband. This is caused by the fact that a

igher number of coefficients reduces the uncertainty (the higher

he number of coefficients, the smaller the chance that the sub-

and distribution is only caused by coincidence) and vice versa. So

or a high number of coefficients (e.g. 256 2 ), the actual subband

istribution has to be nearly perfectly fitted by the Weibull distri-

ution so that the Kolmogorov–Smirnov does not reject the null-

ypothesis, whereas for a low number of coefficients the Weibull

istribution only needs to adequately fit the coefficients distribu-

ion. 

Now we have the problem that the size of the subbands (the

umber of coefficients per subband) varies across the different

avelet based transforms and the different scale levels. E.g. the

ubbands of the GWT and ST all have the size of the original

mage (256 × 256), whereas the subband size of the DCT and

T goes down to a minimum of 356 respectively 126 coefficients

er subband. That means we need a fixed number of coefficients

er subband to achieve a reliably information about how well the
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Fig. 29. GWT subband coefficient histograms (blue bars) with 50 bins, the fitted Weibull distributions (red line) and the null-hypothesis decisions and p-values of the 

Kolmogorov–Smirnov GoF test. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 30. Kolmogorov–Smirnov GoF test results for the 4 databases and all wavelet 

based transforms using the reduced subbands. 
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ubband distribution is fitted by the Weibull distribution using

he Kolmogorov–Smirnov test. That is the reason why we reduced

ach subband with more than 400 coefficients to about 400 coef-

cients. Empirical evaluation showed that n = 400 is a well cho-

en number of coefficients per subband so that the Kolmogorov–

mirnov test does not reject the null-hypothesis for a well fitted

ubband distribution and reject the null-hypothesis for a misfitted

ubband distribution. To get a representative sample of an original

ubband, we divide the range of coefficient values of the subband

n 50 equidistant, non-overlapping intervals I n , n ∈ { 1 , . . . , 50 } and

andomly sample | I n |∗400 
N (rounded to integer values) coefficients

ith values inside of the interval I n , where | I n | is the number of

oefficients inside of I n and N is the number of coefficients in

he whole subband. We further denote these subbands as reduced

ubbands. 

In Fig. 29 we see some examples of GWT subbands, their re-

uced subbands, the corresponding p-values and the decisions if

he null-hypothesis (subband is Weibull distributed) applies (h = 0,

hich means p ≥ α = 0 . 05 ) ) or not (h = 1 which means p < α).

n the first row we see the original subbands and in the second

he corresponding reduced subbands. The higher the p-value, the

etter the subband coefficients are modeled by the Weibull distri-

ution according to the Kolmogorov–Smirnov test. 

As we can see in the first row of Fig. 29 , a 256 × 256 sized

ubband has to be fitted nearly perfect by the Weibull distribu-

ion, so that the Kolmogorov–Smirnov test does not reject the null-

ypothesis ( Fig. 29 (e)). Even if the subband is quite well fitted by

he Weibull distribution ( Fig. 29 (d)), the null-hypothesis is clearly

ejected. 

For the reduced subbands on the other hand, a reasonable fit-

ing is enough so that the subbands are Weibull distributed regard-

ng to the Kolmogorov–Smirnov test. Fig. 29 (h) shows an example

f a very narrowly rejected null-hypothesis and Fig. 29 (i) shows

n example where the null-hypothesis narrowly applies. If a re-

uced subband is clearly not Weibull distributed ( Fig. 29 (f)), then

he Kolmogorov–Smirnov test still results in a clearly rejection of

he null-hypothesis. On the other hand, if a reduced subband is

uite well fitted by the Weibull distribution ( Fig. 29 (i,j)), then the

ull-hypothesis clearly applies. 

So we can see from the examples in the bottom row of Fig. 29 ,

hat if a reduced subband is Weibull distributed according to the

olmogorov–Smirnov test, then the extracted Weibull parameters

re representing the actual subband distribution relatively accu-

ate. That means that the Weibull parameters provide sufficient in-
ormation about the subband distribution for the further classifica-

ion of the images. 

In Fig. 30 we see the percentage of rejected null-hypothesis

f each database and wavelet based transform for applying the

olmogorov–Smirnov GoF test at the 5% significance level to the

educed subbands of each image of the databases. 

As we can see in Fig. 30 , the vast majority of the subbands of

ach of the wavelet based transforms are sufficiently well fitted by

he Weibull distribution. Especially in case of the CT and ST, nearly

ll subbands are well represented using the Weibull distribution.

nly in case of the CC-i-Scan database and DW T or DT-CW T, more

han 10% of the subbands are not sufficiently well fitted by the

eibull distribution. 

.2. DCT-DO and DCT-GGD 

As already mentioned before, the DCT-GGD and the DCT-DO ap-

roach extract the same features. The only difference is that the

CT-DO approach realigns the features by circular shifting them to

chieve rotation invariance. However, the results of the DCT-DO ap-

roach are worse than the results of the DCT-GGD for each of the

mployed databases. In this section we will find out the reason

or the worse DCT-GGD results. For this, we analyze distribution
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Fig. 31. Gaussian and GGD distribution parameters of DCT subband coefficients across different orientation. 
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parameters (mean (the location parameter of the Gaussian distri-

bution), GGD scale parameter α and GGD shape parameter β) of

the DCT subband coefficients for the different directions per scale.

In Fig. 31 we see the values of these parameters for three different

images of the CC-high-magnification database. One image is from

a non-neoplastic polyp, one from a adenomatous polyp and one

from a cancerous polyp. As we can see in Fig. 31 (apart from the

fact that the parameters of the first half of directions are identical

to the one of the second half of directions), the curves have a pe-

riodic pattern, which is similar for all three images at all 4 scale

levels. The curves of all three images have mostly identical peaks

and pits. These is highly visible for the curves of the means in the

first row of the figure, but also visible for the GGD parameters. 

That means that the coefficient magnitudes of the DCT are in

general higher for the subbands of certain directions than those

of certain other directions and hence not independent distributed

across the different directional subbands. There are typical shapes

and magnitudes for the subband coefficients at different directions

(relative to each other). 

So if the features are circular shifted on each scale level, using

the dominant orientation as reference, then the periodic pattern

along the directions is shifted. That means that two relative sim-

ilar feature vectors can become completely different after circular

shifting them if the two feature vectors have different dominant

orientations. The circular shifting does only make sense if the co-

efficient magnitudes of the DCT are independent distributed across

the different directional subbands. This is probably the reason for

the worse results of the DCT-DO approach compared to the results

of the DCT-GGD approach. 

5.3. Problems of various wavelet based approaches 

5.3.1. DCT-CCF 

The DCT-CCF approach achieved the worst results of all our

employed methods, although it was originally proposed for endo-

scopic image processing. To see if the covariance between features
f subbands from different color channels is generally suited for

he distinction of colonic polyps, we changed the original approach

nd computed the covariance using the Weibull features instead of

he originally proposed Gaussian features (mean and standard de-

iation). However, it turned out that this even decreases the results

ompared to the original approach. We also made an experiment

sing the RGB color space instead of the originally proposed HSV

olor space, but that only led to a small improvement of some of

he results. So the covariance of features extracted from subbands

f different color channels seems to be inadequate for the classifi-

ation of colonic polyps. 

.3.2. CT-Histogram and CT-Cluster and ST-Energy 

The problem with these three approaches is that their extracted

eatures are not able to accurately give the information about how

he subband coefficients are distributed in a subband. The parame-

ers of a distribution which is reasonably fitting the subband coeffi-

ient distribution are able to give more information about the dis-

ribution of the subband coefficients as compared to a histogram

ith 10 bins (where the location of the 10 bins has to be fixed

nd hence not optimal to model the coefficient distribution of each

ubband) or 3 cluster centers of a subband (CT-Cluster) or only the

nergy of a subband (ST-Energy). 

.3.3. ST-Reg 

The probably biggest problem with the ST-Reg approach for the

lassification of endoscopic polyp images is the quite big intraclass

ariability inside of our polyp databases. The images of polyps of

ne class can have quite different appearances, but the ST-Reg ap-

roach generates only one regression model per class. The ST-Reg

pproach computes a regression model which estimates the regres-

ion parameters βc 
0 

and βc 
1 

of a whole class c from the training

mages and then assigns a evaluation images to that class, whose

egression model fits best to the considered evaluation set image.

he problem is that only one regression model per class is only

ppropriate if the images of one class are quite similar. This is the
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ase for the Brodatz and VisTex texture database, the two texture

atabases for which this approach is originally proposed, but cer-

ainly not for our endoscopic image databases. 

. Conclusion 

In this work we showed that wavelet based approaches are well

uited for the automated classification of colonic polyps. The best

esults were achieved by modeling the subband coefficient distri-

ution by means of the Weibull distribution. For the DT-CWT, GWT

nd ST, these results even mostly outperformed the state-of-the-art

pproaches for colonic polyp classification. 

We found a strong indication that modeling the subband co-

fficient magnitude distribution provides a higher discriminativity

or the differentiation of polyps than modeling the original co-

fficients for those wavelet based transforms producing real val-

ed subband coefficients. By means of the Kolmogorov–Smirnov

oF test we found out that the subband coefficient magnitudes of

ur employed wavelet based transforms are not actually Weibull

istributed, but at least almost Weibull distributed. All other em-

loyed probability distributions (Gaussian distribution and general-

zed Gaussian distribution) are totally unable to model the subband

oefficient magnitudes, which explains their worse results com-

ared to the results using the Weibull distribution. 

Comparing the results using Gaussian and Weibull features

cross the different wavelet-based approaches, the DT-CW T, GW T

nd ST are generally providing clearly better results than the DWT,

CT, and CT. 

The already published approaches based on the contourlets,

urvelets and shearlets were not able to compete with approaches

xtracting Weibull features except for the NBI-high-magnification

atabase Aachen, were the ST-LSEP approach achieved the best re-

ult. Some of these already published approaches performed quite

oor like e.g. the DCT-CCF and the DCT-DO approach. 
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