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Abstract. This paper addresses a simple and effective approach of face
and face-part classifier fusion under Gaussian assumption, which is able
to process heterogeneous visible wavelength (VW) and near infrared
(NIR) image data. Evaluations using existing and publicly available Ada-
Boost-based individual classifiers on the recently released CASIA-V4 iris
distance database of close-up portrait images as well as on YaleB indi-
cate, that (1) single classifiers are largely affected by the type of training
data, especially for NIR and VW data, and therefore prone to errors, (2)
by combining individual classifiers a more robust classifier is obtained,
(3) processing time overhead is negligible, if individual classifiers exhibit
a low false positive rate, and (4) the proposed fusion approach is not
only able to reduce false positives, but also false negative detections.
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1 Introduction

Biometric systems without active participation of users by means of which people
can be identified in surveillance scenarios, are an active research topic. A new
generation of portal-based iris-and-face recognition devices [12], [21] operating
on full portrait images is about to replace traditional stop and stare high-cost
iris recognition cameras with low throughput and narrow depth of field.

Fusion of face and iris biometric modalities for personal identification is ini-
tially proposed in [20] for Eigenfaces and dyadic wavelet-transform based iris
recognition with reported perfect separation on good-quality randomly paired
datasets (90 subjects). Fisher linear discriminant analysis is employed in [7] on
good-quality face and iris matching scores gained from also randomly paired sam-
ples (40 subjects) and is shown to improve accuracy. The first single-sensor face
and iris multibiometric system based on Eigenfaces and IrisCode-based iris recog-
nition is proposed in [24] using a high-resolution dataset (76 subjects) acquired
by a 10 megapixel 850nm NIR camera at 60-80cm distance. Score-combination
of left-eye, right-eye and face yielded 0.25% False Rejection Rate (FRR) at 0.1%
False Acceptance Rate (FAR), significantly better than face (2.65% FRR) and
iris (4.58% FRR) as single features.
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All such systems depend on efficient and robust detection of eyes in face
images before iris segmentation is able to extract the highly unique texture.
Coarse segmentation errors in early steps make subsequent finer normalization
impossible. While various different approaches for detecting faces, as well as face-
parts, for example eye, nose, mouth or eyepairs, exist (see [23] for a survey), the
high variability in recording conditions of surveillance-type imagery suggests
to combine successful approaches to achieve even higher recognition accuracy,
e.g. [6], [16], [4], [22], [14]. While face recognition typically operates on very
low resolution VR input [18], it is iris recognition with its demands for high
resolution focused NIR images of human eyes which challenges current state-of-
the art systems, often solved by employing separate cameras for face and eye
extraction [21]. However, recent challenges, like MBGC1 and NICE2 emphasize
both face recognition in NIR as well as iris recognition under VW to merge both
technologies. While we have presented robust iris segmentation techniques able
to operate under heterogeneous conditions in [17], this work aims at combining
object detection approaches to solve the heterogeneous face detection and eye
localization problem before segmentation.

The remainder of this paper is organized as follows: Section 2 reviews related
work regarding face and face-part detection. Subsequently, the proposed fusion
framework is described in Sect. 3. Experiments are outlined in Sect. 4 using two
different open face databases and comparing results with basic AdaBoost-based
reference systems. Finally, Sect. 5 forms the conclusion of this work.

2 Related work

The detection of people from facial images combining iris and face as biometric
modalities requires the tasks of face detection and eye localization to be solved.
A face (object) detector is a function f : I 7→ {b1, . . . , bk(I)} assigning each
image I the set of k(I) regions bi = (xi, yi, wi, hi) with origin xi, yi and size
wi × hi containing a face (object) within the image. The task of eye (object-
part) localization is usually much simpler, i.e. a function e : (b, I) → (b1, . . . , bl)
assigning an image I and region of interest (face) b the l (fixed, e.g. l = 2 for left
and right eye) locations of instances of eyes (object-parts) within b in I [10]. A lot
of highly accurate specialized object detectors exist [23]: (1) knowledge-based,
(2) feature invariant, (3) template matching and, most notably, (4) apprarance-
based methods, learning face models from training images widely adapting Viola-
Jones’ [18] approach and subject of this work.

In applications not only the face, but multiple face-part objects with spatial
relationships need to be detected in order to (1) increase recognition accuracy
by biometric fusion, e.g. [24], or (2) benefit of more accurate face alignment,
e.g. [10], [19]. Depending on the amount of information available, detector fusion
approaches may be grouped into feature-level fusion (having access to individual
features exploited by function f), score-level fusion (in architectures, where f

1 Multiple Biometric Grand Challenge, http://face.nist.gov/mbgc/
2 Noisy Iris Challenge Evaluation Part I, http://nice1.di.ubi.pt/

http://face.nist.gov/mbgc/
http://nice1.di.ubi.pt/


82 A. Uhl and P. Wild

evaluates candidate boxes b by means of score-based metrics) and decision-level
fusion (where the only information available is f(I), i.e. the result).

Belaroussi et al. [2], [3] is an example of the first feature-level fusion type,
their proposed face detection scheme is a weighted sum of different location
maps based on an apprarance-based associative multi-layer perceptron (Dia-
bolo) map, an ellipse general Hough transform map, and a skin map, with a
product-combination of eye detectors. Jin et al. [9] present a hybrid eye detec-
tion approach integrating characteristics of single-eye and eyepair-detectors. In
a first stage eye candidates are determined by a cascade projecting normalized
eye images onto a weighted eigenspace and further filtered by eyepair templates.
They also employ Gaussians to model the probability distribution of left-eye
classes within the eigenspace.

Most fusion methods are score-based: Ma et al. [11] examine a novel ap-
proach for finding eyes in faces using a probabilistic framework, i.e. after face
detection an apprearance-based eye detector is applied to derive detection scores
for varous locations, which are then fused by pairwise assessment of candidates.
Xiao [22] employs weighted sum rule fusion on the detection scores to combine
multiple detection algorithms on the same face image for the target application
of face detection in dark environments (illumination by monitor light source).
Weights are estimated depending on image quality (contrast, sharpness, color
bit depth) by applying fuzzy adaptive fusion. Belhumeur et al. [4] train a global
model of part-locations as hidden variables of a Bayesian objective function and
combine the outcome of local detectors with a non-parametric set of prior mod-
els of face shape. Each local detector returns a score at each evaluation point
used as likelihood that the desired part is located at this position. They keep
track of the best global models and adopt a RANSAC-like generate-and-test
approach to find a list of models that maximize the conditional probability. In
their work they refer to [5], who also detect multiple candidate facial features
and select the most face-like constellation using a statistical model, also able to
deal with incomplete constellations. Aarabi et al. [1] present a fusion scheme of
different frontal face detectors for live web-based face detection. They combine
computationally inefficient, but reliable template-based techniques, popular neu-
ral networks, and subspace methods by moving a window of varying size over the
image and optimizing for a fusion of face detection metrics. While these methods
show good performance, they require access to detection scores, which are not
always available. We therefore target the latter decision-level fusion scenario.

Decision-level fusion techniques in face detection are typically nested ap-
proaches reducing false negatives of face detectors by applying face-part detec-
tion on the found face objects. Wang et al. [19] study a hierarchical system
detecting first a face and then locates eyes within the face boundary. Cristinacce
et al. [6] propose a nested variant of locating facial features after face detection
and combine individual locator results using a novel algorithm they call Pairwise
Reinforcement of Feature Responses (PRFR) learning the pairwise distribution
of all true feature locations relative to the best match of each individual feature
detector. Face detection is used to predict approximate locations for each facial
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feature and local detectors are constrained to these locations. Nanni and Lumini
[14] combine multiple face and eye detection systems using a serial scheme. In the
first stage they employ two face detectors and eliminate false positive detections
in the second stage with a proposed novel eye detector yielding 99.3% detection
rate on BioID (faces detected with errors less than 25% offset with respect to the
inter-eye distance) instead of 67%-97.8% for partial combinations. In case the
second stage does not find eyes, the window is rejected as false positive. Micilotta
et al. [13] present a coarse-to-fine approach for combining AdaBoost-based single
body part detectors (face, torso, legs and hand-based classifier) using a Gaussian
Mixture Model and RANSAC for assembly (selection of random body configu-
rations), heuristics to eliminate outliers, a comparison of configurations with a
trained a priori mixture model of upper-body configurations and selection of the
configuration maximizing the likelihood.

Hierarchical methods are ideally suited for combination of methods with
high positive rate, but very low false negatives and more accurate but possibly
costly methods to eliminate false positives in the second stage. Our method is
different in being able to account for false negatives as well, in contrast to e.g.
[14]. While [6] make only use of position, we also take the detection size (wi, hi)
into consideration.

3 Proposed system

We propose a fusion framework for object detectors fi : I 7→ {bi1, . . . bik(I)}
detecting faces and face-part objects, see Fig. 1. While our fusion method is
generic in accepting arbitrary detectors, for experiments we employ Viola-Jones
[18] based detectors for faces, eyes, eyepairs and noses, shipped with OpenCV3

following Lienhart et al. [15]’s implementation. These detectors perform (1) fea-
ture extraction calculating properties of image regions, (2) evaluation selecting
discriminative features with respect to the object to be detected and (3) classi-
fication judging whether a given window represents the object or not.
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Fig. 1. Proposed model-driven face with face-part classifier fusion.

3 OpenCV Library, http://opencv.willowgarage.com
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3.1 Combining face and face-part classifiers

The combination of face and face-part classifiers requires the following steps:
(1) model estimation builds a Gaussian model of priors and is computed be-
forehand, (2) individual detection employs single classifiers in parallel and/or
serial combination, (3) grouping of results identifies the best-fitting subset of
detection results with respect to an energy function taking spatial relationships
into account, and (4) refitting of individual detection results with respect to the
model.

Model estimation starts with a training phase. For each image Ij in a training
set I = {I1, . . . , In}, and each object detector fi ∈ {f1, . . . , fm}, we calculate
the sets Ci = ∪n

j=1 fi(Ij), from which all false detections are excluded (e.g.
by rejecting all detection results with offsets greater than a fixed offset limit).
In order to obtain scale-independent comparable results for regions b ∈ fi(Ij),
position coordinates and size triples b = (x, y, s) are given with respect to a co-
ordinate system employing the midpoint between left and right eye R as origin,
and the inter-eye distance S as unit value, see Fig. 2. We employ a single size
parameter s instead of width and height, since typically classifiers employ a fixed
w/h size ratio. Gaussian distributions Nx,Ny,Ns are fitted to the parameters
of each detector fi using its output on I, i.e. we estimate the mean of param-
eters µx, µy, µs and standard deviations σx, σy, σs for each fi. Now, instead of
predicting the position of the classifier, given the ground truth face position, we
can use the output of fi given an image I to exstimate the approximate local-
ization R of the face according to the trained model. While for detectors in case
of single localizations (l = 1, e.g. nose, mouth, eyepair) this procedure applies
straightforward, detectors with multiple expected detections (l > 1, e.g. eyes)
need multiple prediction models (for left and right eyes two reverse predictions
are estimated, from which one is rejected during grouping). For training, µx, µy

also consider the flipped classifier output for left and right eyes as well as the
nose classifier. Also σy for eyes is corrected (by factor 3) to account for more
variation with respect to head tilt. For face and eyepairs, location parameters
µx and µy, respectively, are set to zero, to avoid overfitting with respect to the
dataset. Finally, Z-normalization is applied to the Gaussians.

After individual face(part) detection, the best-fitting subset of detection re-
sults has to be identified with respect to the trained model. First, for m single
classifiers, we select all combinations that can be formed for a subset containing
i classifiers, i ∈ {1, . . . ,m}. By iterating from c = 1 to c = 2m and selecting
the t-th classifier to be part of the subset, if the t-th bit in c is set, c[t] = 1,
all possible combinations of detection results for these detectors are considered.
There may be no combinations for a selected subset, if the classifier finds no
objects of its type. Second, the location (reference position R) and size (inter-
eye distance S) of the face with respect to a detection result (x, y, s) of the t-th
detector is predicted using the trained classifier models Nx,Ny,Ns for detector
type t. Origin R = (X,Y ) and inter-eye distance S are predicted as:

X := x− µx · s, Y := y − µy · s, S :=
s

µs
(1)
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Each of the three model parameters is assumed to exhibit a scattering of α := σx ·
S, β := σy ·S, γ := σs ·S. For a set L := {L1, . . . , Lm}, Li = (Xi, Yi, Si, αi, βi, γi)
of model locations we define the average model location Avg(L) as follows:

Avg(L) = (XAvg , YAvg , SAvg), XAvg := (
m∑
i=1

1

αi
) · (

m∑
i=1

Xi ·
1

αi
),

YAvg := (
m∑
i=1

1

βi
) · (

m∑
i=1

Yi ·
1

βi
), SAvg := (

m∑
i=1

1

γi
) · (

m∑
i=1

Si ·
1

γi
). (2)

Location and size are weighted with the inverse deviation of each individual
model prediction. Finally, it is desirable to estimate, how likely a subset rep-
resents a face. For L and a corresponding average model location Avg(L) =
(XAvg , YAvg , SAvg) we define the location energy:

E(L) := 1

m

√√√√1 +

m∑
i=1

max(
|Xi −XAvg |

αi
,
|Yi − YAvg |

βi
,
|Si − SAvg |

γi
) (3)

This energy function turned out to be a good compromise between few well-
fitting classifiers and many worse-fitting classifiers. Small values (less than 1)
represent good model fits.

Finally, detection results of individual classifiers and the best-fitted model
have to be combined for the face-part location task. Once, we have identified the
best-fitting average model Avg(L), we can now reset the position of individual
classifiers. Each classifier (left eye, right eye, eyepair, nose, face), which is part
of the best-fitting model is left at its original position. Each classifier not partic-
ipating in the best average model is reconstructed based on the model, i.e. from
µx, µy, µs of the corresponding classifier type.

3.2 The Viola-Jones approach

Single detectors in experiments are based on Viola-Jones’ approach. Viola et al.
[18] developed a very robust, accurate and real-time capable technique to the ob-

R

Nx(µx, σx)

Ns(µs, σs)

Ny(µy, σy)

fi

s

(x, y)

fi µx σx µy σy µs σs

Eyeright 0.5 0.06 0 0.06 0.55 0.12

Eye left −0.5 0.06 0 0.06 0.55 0.12

Face 0 0.04 0.28 0.03 2.45 0.12
Eyepair 0 0.015 0 0.007 1.69 0.06
Nose 0 0.06 0.58 0.09 0.61 0.10

Fig. 2. Reference model under Gaussian assumption with trained parameters.
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ject detection problem by employing rectangular Haar-features computed from
the integral image for fast calculation (areas are calculated with 4 index oper-
ations). Each feature computed for fixed-sized windows x within I corresponds
to a weak classifier hj together with parity pj (sign) and threshold θj (obtained
by calculating means for the feature on both class sets and averaging) [18]:

hj(x) =

{
1 if pj · fj(x) < pj · θj
0 otherwise.

(4)

In order to build strong classifiers from these simple weak ones, AdaBoost
selects a small number of important features (at the drawback of long exhaustive
classifier training and feature selection). This way, classifiers are trained by se-
lecting one feature at a time and updating weights to produce a strong classifier
using single features for T rounds [18]:

h(x) =

{
1 if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise.
(5)

Finally, a cascaded combination of classifiers is established, letting only win-
dows pass on, which likely represent positive matches. This way, focus is given
to promising regions, while retaining low false negative rate to speed up recog-
nition (each node is trained with the false positives of the prior to quickly reject
more likely non-face windows), i.e. iterative checks and rejection as soon as one
classifier classifies the window as “non-face”.

4 Experiments

Experiments target the application of eye detection in portrait images. We have
compared results of the proposed model-driven face with face-part classifier fu-
sion with the following alternatives: (1) single classifier, i.e. an eye-only classifier,
and (2) a nested classifier performing a face cascade, i.e. eyes are detected in the
most prominent face detection result. In order to judge the accuracy of detec-
tion results, we employ left-eye and right-eye offset (LO, RO) in percent of the
inter-eye distance, the detection rate (DR) with respect to successful eye detec-
tions (detections with less than 20% LO and RO, respectively), and detection
processing time (DT) in seconds. All results are given in Table 1.

Experiments are carried out using two different datasets: (1) Casia-D is a sub-
set of 2 images per user (282 images) from the first publicly available long-range
(3m) and high-quality NIR iris/face dataset with 2352 × 1728 pixel resolution,
CASIA-V4-Distance4 with manually selected eye and nose positions for ground
truth; (2) Yale-B is a manually labeled subset of 252 images from challenging
(varying illumination, different pose) VW 640×480 pixel resolution full-portrait
face images (90 pixels eye distance) in Yale Face Database B [8].

From the detection rates in Tab. 1 we can see, that the proposed method
delivers clearly the best results for the NIR dataset Casia-D with 5.95% LO and
5.74% RO and a total of 96.4% detection rate. Since the proposed method in

4 CASIA Iris Image Database, http://biometrics.idealtest.com

http://biometrics.idealtest.com
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Table 1. Offsets in percent of inter-eye distance (S) and Detection rates (Eye offset
less than 20% of S) and Detection time (DT) per image of tested algorithms.

Algorithm
Left-eye Offset Right-eye Offset Detect Rate (%) Detect Time (s)
Casia-D YaleB Casia-D YaleB Casia-D YaleB Casia-D YaleB

Eye-only 19.48 14.06 32.73 17.13 65.8 87.3 0.60 s 0.61 s

Nested 81.6 3.78 139.9 5.26 14.6 97.6 0.65 s 0.28 s

Proposed 5.95 4.30 5.74 3.91 96.4 99.2 1.28 s 0.28 s

addition to performing a nested cascade for face detection tries each combination
of detected face parts with the corresponding face to determine the combination
that best matches a trained model, it is much more stable to single false detec-
tions. This is very likely the case, if the tested dataset differs in nature and/or
recording conditions from the dataset used for feature training. Both eye-only
with 19.48% LO, 32.73% RO and 65.8% DR and nested with 81.6% LO, 139.9%
RO (these high rates occur, since frequently no eye can be detected) and 14.6%
DR do not deliver satisfactory results. For YaleB, results are much closer, still
the proposed variant delivers highest 99.2% DR (4.3% LO, 3.91% RO), before
nested with 97.6% DR (3.78% LO, 5.26% RO) and eye-only with 87.3% DR
(14.06% LO, 17.13% RO).

Regarding speed, the proposed method with 1.28 seconds DT per image
needs twice as much time for Casia-D than the other approaches, because of
many false-detections of faces and the conducted re-run on the entire image,
not performed by the nested variant with 0.65 seconds DT (eye-only is only
slightly faster with 0.6 seconds DT). However, the additional time needed by
grouping and refitting is negligible, as can be seen from the low difference in
YaleB detection times between Nested and Proposed (both 0.28 seconds per
image). This re-run is not needed for YaleB, as it contains full portraits, no close-
up images, see Figs. 3, 4. Eye-only is much slower than Nested for YaleB, because
nested detection operates on a very small image (due to low resolution input
and pyramidal operation mode, i.e. detection always operates on the smallest
downscaled version greater than 256× 256 pixels).

Recapitulatory, while the idea of grouping and refitting needs a check of
all subsets of classifier results, and thus exponential complexity in the number

Fig. 3. YaleB Results: Nested (top) vs. Proposed (bottom)
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Fig. 4. Casia-D Results: Nested (top) vs. Proposed (bottom)

of returned detection results, practical evaluations show, that given a sufficient
accuracy of individual responses the average case can be executed quite fast.

5 Summary

This work examined an approach to overcome limited capabilities of detection
techniques with respect to database-independent face/eye detection. Experimen-
tal results indicated, that face and face part classifier fusion works relatively
robust and does not consume significantly more time than nested approaches.
By exploiting spatial relationships between single detectors, heterogeneous de-
tection of faces and face-parts (eyes, nose, epairs, etc.) in NIR and WV images
can be achieved, benefiting of the best currently available detectors for each type
of imagery without suffering from a high individual false-detection rate because
of high variability between training and testing datasets. Future topics of re-
search include testing on different datasets, an optimization of models for the
refitting task, and a combination with iris segmentation for combined iris and
face recognition. While several approaches exist reducing false positive detec-
tions by incorporating multiple (face-part) detectors, the proposed technique is
one of very few fusion techniques also able to reduce false negatives restaurating
missing information (caused by, e.g., occlusions), alleviates simple integration
into existing detectors, and does not require access to detection scores.
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