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Abstract: When multiple instances of single biometrics can be acquired from a
single input simultaneously, a multiple-step acquisition at additional transaction
time cost can be avoided. We present a rotation-invariant, peg-free multi-instance
Fingerprint and Eigenfinger-based biometric system extracting multiple features
from a palmar scan of the hand. Our evaluation targets (a) rankings of individual
fingers with respect to Minutiae and Eigenfinger features; (b) fusion of multi-
instance intra-feature (Minutiae or Eigenfinger) matching scores; (c) cross-feature
compared to intra-feature performance; (d) optimal weights for weighted versions
of five score-level fusion methods Max, Median, Min, Product and Sum, and (e)
aspects of computational demands for hand-based identification discussing the
usage of serial classifier combinations instead of classically employed parallel
ones. We examine results of an experimental approach to the problem of finding
a suitable fusion method by investigating the effect of matcher-specific combina-
tion weights on recognition accuracy and compare cross-feature and intra-feature
score combinations.
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1 Introduction

Multimodal biometric systems make use of multiple evidences of the same identity to
recognize a person in order to cope with unsatisfactory performance, flexibility in case of
failure to acquire single biometrics, and security of unimodal systems. Depending on the
type of information used in the fusion process, five different integration scenarios have been
identified in [1]: multiple sensors, multiple samples, multiple biometrics, multiple instances
and multiple matching algorithms. We concentrate on the multiple instances configuration,
since this scenario can be expected to combine largely independent information (in contrast
to multiple sensors when sensing the same instance, multiple samples and multiple matching
algorithms) without the necessity of additional sensors (such as for multiple biometrics
scenarios).

1.1 Objectives

There are many different modalities related to the human hand, most commonly used
are according to [2]: Fingerprint, Hand and finger geometry, and Palmprint. Originally,
different sensing devices have been developed for these modalities (see [3, 4]) and typically,
only one instance (i.e. finger) is acquired for verification or identification. This approach
bears the risk of a rather high FER (Failure to Enroll Rate), caused by the inability to acquire
features due to serious infringement or congenital physical anomalies. Especially public
access control and forensic applications demand biometric systems with high universality,
being able to tolerate e.g. polydactyly (supernumerary fingers) or dermatopathia pigmen-
tosa (a disease causing a lack of fingerprints). Multibiometric systems typically increase
universality by using more than one independent modality for verification or identification.
To give a concrete example: we have tested a person unable to enroll in a commercial
fingerprint system on our multibiometric system. None of the individual minutiae-based
matchers (see Fig. 1) was able to classify all genuine authentication attempts of this user
as genuine (the best index-finger matcher rejected a single attempt, the worst performing
little finger even rejected 7 out of 10 using learned thresholds resulting in almost equal
false match rate, FMR, and false non-match rate, FNMR). A combination of scores with
Eigenfingers, as proposed in this work, resulted in no classification errors for this user.
The existence of inherently low quality fingerprint images (e.g. for manual workers or
elderly people) as a significant drawback for the fingerprint modality and the proposal of
multibiometrics in order to overcome these limitations is also highlighted in [5]. But in
most multibiometric system configurations, this higher accuracy comes at the cost of lower
user throughput. Representative mean transaction times for Hand, Fingerprint, Face, Iris,
Vein and Voice can be found in [6] and are in the order of 10-20 seconds per modality.
Acquisition in serial order accumulates these costs, which can be avoided, when multiple
instances of single biometrics can be acquired from a single input source simultaneously.
Our proposed Fingerprint- and Eigenfinger-based biometric system illustrated in Fig. 2
exploits exactly this advantage and extracts localized features from a high-resolution scan
of the entire hand. While originally designed to combine also hand geometry and palmprint
features, we have decided to exclude these features from our system and to concentrate on
Minutiae and Eigenfinger features in this work. This decision is based on the following
considerations: (a) Minutiae and Eigenfingers provide most accurate results at acceptable
processing time requirements; (b) the addition of other hand geometry or palmprint-based
features results in little improvements, and; (c) this work focuses on an estimation of the



444 A. Uhl and P. Wild

best-performing score combination rule in cross-feature and intra-feature score combina-
tions. Due to the absence of public databases providing high-resolution (at least 250-500
dpi are necessary for minutiae extraction according to [3]) full-hand scans, we have ac-
quired custom databases following a strict test protocol. Image samples of acquired hands
are depicted in Fig. 3.

Figure 1 Detected minutiae (thicker lines correspond to higher minutiae quality) in fingerprints
(acquired by an optical flatbed scanner) of a user unable to enroll in a commercial fingerprint system.
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Figure 2 Architecture of the proposed system.
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Figure 3 Sample acquired hands

While numerous different classifier combination techniques exist (see e.g. [1, 7] for
overviews), score-level fusion is preferred over feature extraction level or abstract level
fusion in most practical implementations. Score-level fusion integrates well in biometric
systems, since: (a) it can be encapsulated in a separate fusion module between matching and
decision subsystems leaving single feature extractors and matchers unchanged; (b) the type
of information fused is known to be weakly dependent and still contains rich discriminative
information; (c) there is a set of fast combination rules, which can be executed on normalized
scores of individual matchers. We do not intend to introduce yet another novel fusion
method, but we aim at providing an assessment of well-known score combination methods
to evaluate (a) the amount of improvement when multiple instances of the same biometric
(Fingerprint and Eigenfinger) are combined, compared to just single instances; (b) total
joint performance of all individual classifiers and; (c) the process of estimating optimal
modality-specific weights highlighting the problem of overfitting.

Multibiometric fusion is able to address the problem of enrollment errors and insufficient
accuracy, but this comes at the cost of further processing overhead. Especially traditional
parallel fusion in identification mode, where the biometric sample is compared with each
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gallery image for each employed feature, lacks good scalability with respect to database
size. When serialized in a single-processor environment, the total processing time increases
linear in the number of users with a potentially large factor of employed matchers. One idea
to address this problem are hierarchical fusion schemes [8, 9] which follow the idea of bring-
ing the final matching decision forward in the chain of matchers and facilitate coarse-to-fine
matching. We highlight this problem for Minutiae and Eigenfinger matchers and examine
processing requirements of individual matchers. Furthermore we introduce a framework of
serial combinations enabling the application of arbitrary combination rules by introducing
an additional information flow between levels (accumulating matching information). By
examining serial fusion in two different configurations we will illustrate that (a) serial clas-
sifiers can decrease processing time significantly and at the same time retain high accuracy
of parallel configurations, and; (b) configurations where faster distance-based classifiers
reject a majority of bad matches before computationally more demanding best-alignment
based matchers contribute to the final decision are more accurate and faster than the best
single matcher.

1.2 Related work

Recent biometric systems [10–14] have also identified advantages of single-sensor ap-
proaches and proposed a couple of multibiometric solutions based on score-level fusion:
[10] obtained a perfect classification in verification mode by combining multi-instance fin-
gerprints of 50 people (600 images) from multispectral palmar scans of the human hand
using the simple Sum method for biometric fusion (following a proposal by [11], who use
randomly paired samples in their study). [12] combined Eigenfingers (and Eigenpalm)
scores using a weighted sum of scores yielding also no errors on a dataset of 110 users (550
images) and 0.72% total error rate in identification mode. By combining linear discrimi-
nant analysis (LDA) appearance-based features from palmprint, digitprints and fingerprint
regions as well as 14 geometrical measures, [13] achieved an equal error rate (EER) of
0.0005% on a dataset of 100 people (2000 images). [14] evaluate Principal Component
Analysis (PCA), Most Discriminant Features (MDF) and Regularized Direct LDA (RD-
LDA) feature extraction on palmar images, with RD-LDA performing best (100% correct
identification for 920 tests compared to 99.35% for the best single feature Palmprint). In
contrast to [10] our system does not make use of a specialized sensor. We extract features
from a palmar image of the human hand, acquired by a commercially available flatbed
scanner using a configuration similar to [13]. Due to the high availability of document
scanners (see, e.g. [15]), the presented method is a low-cost alternative enabling a wide
range of possible applications. Unlike [13], who down-scale ROIs (fingerprint regions are
resized to 64 × 64 patches) within the 600 dpi high-resolution image for LDA feature ex-
traction, we make full use of our 500 dpi input image and perform minutiae detection on
fingerprints after local contrast enhancement, which is able to increase performance sig-
nificantly [16]. In contrast to observations in [13, 16] we emphasize on both cross-feature
fusion and intra-feature comparisons between matchers of the same biometric feature in
this work and identify the best suitable fusion rule for each of configuration experimentally.
Compared to [11], fingerprint images are not paired with hand images, but all features are
extracted out of a single high-resolution scan. While a tradeoff between sensor quality and
recognition accuracy is obvious, we will show that a combination of two highly accurate
hand-based features, namely Eigenfinger and Minutiae, produces acceptable results also
with standard hardware available for large markets. However, if specialized sensors, such
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as in [10], are replaced by commercially available hardware, genuine and imposter score
distributions of single matchers are expected to overlap to a larger extent, thus the selection
of the best suitable fusion method is an important issue. Results in the past have shown,
that (a) the combination of only two multi-instance WSQ-compressed fingerprints acquired
by FBI-compliant fingerprint scanners may reduce FAR by 48-90% at fixed 0.01% FRR
[17]; (b) the performance of combination techniques largely depends on the modeling of the
underlying distributions [17]; (c) sum- and product-based fusion methods provide accurate
results [10, 13, 18]; (d) for the Sum rule a generalization to a Weighted sum rule improves
performance results compared to an unweighted Sum rule in case of combining matchers
with different strengths [3, 13, 19]. Motivated by these results, we investigate the perfor-
mance of weighted versions of standard combination techniques estimating the performance
improvement of this generalization. We aim at providing an answer to the question whether
the behavior described in (d) may also be observed for other methods. While surveys iden-
tifying the most suitable fusion rule for Fingerprint have been conducted ([20] identify the
superiority of Product over Sum, Max, and Min, [17] report best performance for Product of
Likelihood Ratios among Logistic Regression, Product of FARs, Max of FAR, Min of FAR,
Sum of raw scores, Sum of Z-normalized scores and Best Linear), our focus here lies on the
comparison of fusion behavior between intra-feature multiple-instance fusion (following
similar distributions), and cross-feature fusion (combining Eigenfinger and Minutiae from
different fingers). As the outcome on best fusion rule performance may be affected by
the choice of normalization techniques [13], we explicitly refer to Min-Max normaliza-
tion in our evaluation due to its widespread use and simple implementation. Furthermore,
we address the problem of general reproducibility of experiments by employing not only
one but two different databases. Extending closed-set results in parallel configuration for
hand-based identification reported in [13, 14] we present results for serial combinations
illustrating the tradeoff between matching time and accuracy.

1.3 Organization

This paper is organized as follows. Section 2 motivates and clarifies design issues
for preprocessing and feature extraction stages of the implemented single-sensor multiple-
instance Fingerprint and Eigenfinger recognition system. Employed score fusion methods
are discussed in Sect. 3. Section 4 focuses on aspects of computational demand and
discusses in this context the usage of serial classifier combinations instead of classically
employed parallel ones. Experimental setup and results for different score fusion techniques
are introduced and analyzed in Sect. 5. Conclusions are outlined briefly in Sect. 6.

2 Image processing and feature extraction

The architecture of the proposed system illustrated in Fig. 2 follows common mul-
tibiometric systems [11, 12] and consists of separate modules for the image acquisition,
preprocessing, feature extraction, matching, score level fusion and decision tasks. In con-
trast to the employed setup in [13] we do also process the thumb region, which provides even
better results than the little finger for the Minutiae feature. This section presents process-
ing stages prior to score level fusion. The first discussed preprocessing module operates on
gray-scale image data acquired by a flatbed scanner. We employ a HP Scanjet 3500c flatbed
scanner introduced in 2002 in a low-cost market segment supporting an area of 216× 297
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millimeters to acquire a palmar scan of the human hand. An analysis of resolution-duration
tradeoff at 100 dpi (the resolution at which Eigenfingers are processed in our system), 300
dpi (low-resolution fingerprint sensors) and 500 dpi (as recommended by the FBI for fin-
gerprint scanners [3]) resulted in average total acquisition times of 15, 25 and 95 seconds
respectively for this model and 14, 20 and 43 seconds for a newer HP G3010 model in
grey-scale mode. Color information further degraded scan speed by 20-40% (G3010) and
70-100% (3500c).

2.1 Preprocessing

The task of the preprocessing module is to provide each feature extractor with a nor-
malized hand, i.e. it provides (a) a rotation invariant representation of the full palmar
hand image with masked background, and; (b) hand contour information with localized
landmarks (finger peaks and valleys). Figure 4 lists all employed processing steps us-
ing Java-like pseudo-code: First, function CropInputImage performs segmentation
by means of Fast Otsu’s thresholding [21] on the gaussian blurred input image to iden-
tify the region of interest containing the hand. After masking background pixels (func-
tions HandMask and Multiply), rotational alignment is achieved iteratively by em-
ploying moment-based best-ellipse fitting [22] (functions CalculateCenterOfMass
and CalculateRotation) and removing visible arm parts at each iteration (function
IterativeArmRemoval) using a top-down scanning algorithm based on thresholding
of vertical slices. However, the final rotational alignment is estimated from the contour
(CalculateHandSilhouette) aligning the hand at the finger valley between ring and
middle finger (GetMiddleRingFingerValley) and using the least-squares approxi-
mated outer palm boundary for global rotation (GetPalmBoundaryLineRotation).
In contrast to existing systems operating on palmar hand scans acquired by optical scanners
[13, 23], which also employ global thresholding and extract the positions of landmarks
(peaks and valleys) by finding maxima and minima of the hand contour, we found that
their position is not stable under varying spreadings of fingers, contour artifacts caused by
jewelery and insufficient scanning depth. This problem has been solved by refining initial
contour candidates, intersecting the major axis of the best-fitting ellipse for each individual
finger with the contour (for peaks) and intersecting the bisector of approximated adjacent
finger boundaries with the contour (for valleys) [16].

At the end of the preprocessing stage, still regions of interest have to be identified for
each feature extractor. Therefore, the next step matches individual fingers (defined as the
binary large objects spanned by the contour polygon between two consecutive inter-finger
valleys) with best-fitting ellipses. For each finger, two regions are extracted as rectangular
bounding boxes aligned with respect to the major axis of each finger’s best-fitting ellipse:
a fingerprint region corresponding to the upper 1

3 part of the finger (and 1
2 for the thumb,

respectively) and a finger region clipped at the adjacent valley with closer distance to the
finger tip. Finger regions are down-scaled and aligned to a 128 × 384 canvas for index,
middle and ring finger and 128× 256 for thumb and little finger. Finally, contrast-limited
histogram equalization is applied for quality enhancement.
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1 void NormalizeHand(Bitmap hand)

{
3 final int max_iterations = 3;

Bitmap tmp , bin;
5 ContourInfo cinfo;

Point center;
7 float rotation;

9 tmp = CropInputImage(hand);
bin = HandMask(tmp);

11 hand = Multiply(tmp ,bin); // cropped and segmented hand
tmp = bin; // start to find arm parts in binary image

13 for (int i = 1; i < max_iterations; i++){
center = CalculateCenterOfMass(tmp);

15 rotation = CalculateRotation(tmp ,center );
tmp = Rotate(center ,rotation ,tmp);

17 tmp = IterativeArmRemoval(center ,rotation ,tmp ,bin);
} // within tmp all arm parts are removed

19 cinfo = CalculateHandSilhouette(tmp);
center = GetMiddleRingFingerValley(cinfo);

21 rotation = GetPalmBoundaryLineRotation(cinfo ,center );
tmp = Rotate(center ,rotation ,tmp); // tmp is normalized

23 tmp = IterativeArmRemoval(center ,rotation ,tmp ,bin);
cinfo = CalculateHandSilhouette(tmp);

25 AlignHandImage(hand ,cinfo ,center ,rotation );
AlignHandContour(cinfo); // hand and contour are aligned

27 Save(hand);
Save(cinfo); // normalized image and contour are stored

29 }
� �
Figure 4 Pseudo-code representation of the Normalization procedure.

2.2 Feature extraction and matching

The feature extraction module maps each region sample to a feature vector represen-
tation. Ideally, each feature vector is a very compact representation of the input sample
supporting good classification of authentication attempts into genuines (both feature vec-
tors share the same identity) and imposters (they do not share the same identity). The first
employed feature targets fingerprints and extracts information (i.e. ridge ending and bifur-
cation points) from the ridge structure, i.e. the outermost structural part of the epidermis,
which can successfully be extracted from palmar scans, given a sufficiently high resolu-
tion. However, even in our medium-sized database a couple of users with weakly expressed
ridge structure are present, as can be seen from Fig. 5. Using not only a single, but all
fingers and combining results with Eigenfinger results will be shown to reduce errors, which
would otherwise lead to a misclassification (or reject due to insufficient quality). Using
NIST’s Minutiae extraction tool mindtct [24] we extract position, orientation, quality and
type (bifurcation or termination) of Minutiae points from the 5 fingerprint regions.

Matching of templates is executed pairwise and a matching score is generated for each
comparison. For Minutiae matching NIST’s bozorth3 [24] matcher has been chosen, which
generates a similarity score based on the number of found corresponding minutiae pairs.

Each of the 5 finger regions of thumb, index, middle, ring and little finger is subjected to
Eigenfinger processing, a popular technique from face recognition [25]. After normalizing
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Figure 5 Good quality (left) and bad quality (right) fingerprints after enhancement.

each finger with respect to a mean image of the particular finger type, the resulting image
is projected into a subspace (so-called Eigenspace) obtained by estimating the 25 most
significant eigenvectors of the covariance matrix of a set of also 25 training images. Its
projection coefficients represent the projected finger image in an optimal way (see Fig. 6)
with respect to the given feature vector size (the subspace minimizes reconstruction errors
[12]) and are used as feature vector. According to [14], who give test results estimating the
optimum number of PCA coefficients with respect to EER performance of similar test data,
20 coefficients already provide high classification accuracy (an optimum was found for 100
PCA coefficients providing 0.5% EER compared to 0.53% for 20 coefficients). In contrast
to [12, 13] our digitprint algorithm is sensitive to both texture and shape, since we do not
restrict each finger to its textural strip. However, as can be seen from the example given in
Fig. 6, the method is sensitive to normalization errors: falsely detected finger valleys may
result in a larger finger region and thus differing projection coefficients, which naturally
also model finger length and shape. Again, a combination with Minutiae results helps to
minimize false decisions based on single bad results.

For matching, the Eigenspace-based algorithm employs a manhattan-distance-based
classifier and converts distance measures into similarity scores by subtracting the distance
from an empirically found maximum. For each feature we apply min-max normalization
in order to obtain similarity scores within the interval [0, 1].

3 Fusion and decision

The employed fusion approaches may be classified as transformation-based fusion at the
confidence and rank levels [1] using the combination schemes Max, Median, Min, Product,
and Sum for verification mode and Score sum, Borda count for identification mode. We
evaluate both Minutiae and Eigenfinger score fusion individually as well as the combination
of all 10 scores within the scope of a multiple-matcher scenario based on whole-hand images
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Figure 6 Low-scored intra-personal Eigenfinger authentication attempt (left: originals, right: fea-
ture vector projections)

as proposed by [11].

3.1 Fusion in Verification mode

In score-level fusion architectures operating in verification mode, the task of the fu-
sion module is to consolidate a vector S = (s1, s2, . . . , sm) of matching scores retrieved
by m different matchers. According to [26] there are two different approaches for post-
classification techniques, namely (a) the classification approach using e.g. Support Vector
Machines or k-NN to assign a class ω ∈ {ω1, . . . , ωn} to the input score vector (in case of
verification we have n = 2, ω1 = genuine and ω2 = impostor ), and (b) the combination
approach where individual matching scores are mapped to a single scalar value s = f(S).
This work examines the behavior of combination methods, which are applied as functions
on normalized scores. Therefore, scores of individual matchers si are initially transformed
into scores s′i within a homogeneous domain (similarity scores) and range (the unit interval
[0, 1]) using min-max normalization [1]:

s′i =
si − smin

i

smax
i − smin

i

(1)

where smin
i and smax

i are originally the minimum and maximum score values for each
matcher estimated from a test set. This simple normalization technique has proven suc-
cessful in practice (see [10, 26], for example). In order to eliminate its sensitivity to single
outliers, we have used the 0.001- and 0.999-quantile values, respectively, and all exceeding
values have been replaced by the nearest scalar in [0, 1].

[7] provide a theoretical framework using Bayesian statistics to formulate decision rules
for each combination technique. We follow the approaches in [20, 26], who introduce fusion
rules as simple mapping functions and use thresholding for the decision task. We focus on
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these rules, since they (a) are frequently employed [1, 13], (b) make little assumptions about
the type of underlying data. Furthermore we employ generalized versions using weights
wi ∈ [0, 1], 1 ≤ i ≤ m for each matcher accounting different strengths. For the Sum
method, weights are required to satisfy: w1 +w2 + . . .+wm = 1. Neutral weights for the
unweighted versions are wi = 1 ∀i with 1 ≤ i ≤ m for Max, Median, Min, Product and
wi =

1
m ∀i with 1 ≤ i ≤ m for the Sum score combination technique.

• (Weighted) Max: this method is tolerant to single bad quality results, e.g. single bad
fingerprint matching scores.

s =
m

max
i=1

wi · s′i; (2)

• (Weighted) Median: whereas the max score is sensitive to single good matching
results, the median tries to suppress outlying results of single matchers.

s =
m

median
i=1

wi · s′i; (3)

• (Weighted) Min: this combination technique is based on an approximation of the
product score (see [1]).

s =
m
min
i=1

wi · s′i; (4)

• (Weighted) Product: the most sensitive combination to single classifiers returning
small scores is the product method. It is statistically based on a direct assumption of
independence of single matchers [7].

s =

m∏
i=1

s′wi
i ; (5)

• (Weighted) Sum: The sum or mean of scores covered by this combination technique,
is frequently employed in the domain of whole-hand multibiometric systems [10, 12].

s =

m∑
i=1

wi · s′i; (6)

The determination of weights for the employed score combination techniques is a crucial
issue for the performance of the presented score level fusion techniques. One approach
to this problem is learning-based estimation: for user-specific weights, [26] proposed to
minimize the total error rate for a given test dataset for each user by exhaustive search with a
fixed step size over the total range. For globally determined weights, a technique frequently
adopted (e.g. in [12] for the combination of Eigenfinger and Eigenpalms or [19] for the
combination of face and iris scores) is to reflect unimodal performance. We have applied
the exhaustive search approach for weights estimation, but in contrast to [26] weights are
determined globally and not individually for each user. In order to reflect the behavior of
weighted score combinations on unseen data, a separate test set B is evaluated using all
parameters estimated from set A.
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3.2 Fusion in Identification mode

Depending on the type of matcher output in identification mode, we investigate two
types of identification fusion (see also [27]):

1. Measurement fusion being the task of finding a map M ,

M : D1
t × D2

t × . . .× Dm
t → [0, 1]t, (7)

where Di
t is the set of t-dimensional measurement vectors Si with Si[j] indicating

the degree that the sample image and the j-th gallery image share the same identity
according to the i-th feature and [0, 1]t is the domain of normalized similarities for
the combined feature. As a representative of this type of fusion we have selected the
Score Sum method (see [1]), which is related to the Sum rule and averages (min-max
normalized, i.e. ∀i : Di = [0, 1]) scores of matchers, i.e. the common score vector
is defined as:

SSS :=
1

m

m∑
i=1

Si. (8)

2. Rank fusion as a map R,

R : Ntm → Nt, (9)

combining rank index vectors Ii ∈ Nt of each feature i where Ii[j]= k indicates,
that the k-th gallery image is ranked at j-th position. We identify the rank vector Ri

in this case as the vector satisfying ∀j, x with 1 ≤ j, x ≤ t : Ii[j]= x⇔ Ri[x]= j.
We have selected Borda count (see [1]) as a representative for this type of fusion.
This voting-based rank fusion method sums up individual rankings resulting in a
consolidated rank index vector IBC. LetSt be the set of all permutations of {1, . . . , t},
then:

IBC ∈ St : ∀k, l with 1 ≤ k < l ≤ t⇒
m∑
i=1

Ri[IBC[k]] ≤
m∑
i=1

Ri[IBC[l]],(10)

3.3 Decision module

In verification mode, each score combination technique is designed to return a single
similarity measure, which is compared to a threshold. Depending on the outcome of this
comparison the authentication attempt is either classified as genuine or impostor. For
closed set identification, the rank-1 entry of the corresponding rank index vector, i.e. I[1]
is returned in case of rank fusion and the template index j with the highest score S[j] is
returned as result in case of measurement fusion.

4 Real-time issues

For biometric systems in online verification or identification scenarios, not only high
accuracy is of importance, but also timely response to authentication requests. The first
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problem to be solved is low user throughput at the image acquisition step. Since image
acquisition speed largely depends on the employed resolution, a resolution-duration tradeoff
of the employed scanning device has been discussed in Sect. 2. A more severe task
to be solved is scalability in identification mode with respect to large system databases.
Traditional parallel approaches require a matching of the probe image with all enrolled
gallery images. This results in m · t matches, where m is the number of employed matchers
and t is the number of gallery images. Thus, additional modalities can increase processing
time drastically when serialized in single-processor environments. This problem has been
identified in [8] and addressed by the introduction of hierarchical multifeature coding:
features are processed in serial order and reduce the set of possible candidates at each level.
Using this technique, [8] could reduce processing time requirements of their palmprint
identification system from 6.7 seconds to 2.8 seconds. This idea is also used in face detection
[9] in order to iteratively reject large numbers of non-faces. We seize this suggestion and
extend these models by an incremental computation of the traditional combination rule. We
therefore introduce two concepts in order to be able to compute outlined combination rules
in Sect 3.2 incrementally:

1. Sequential order of matchers: Each biometric matcher does not make use of the
full gallery D, but a subset thereof, specified by a characteristic function ci. For
technical purposes, we set

∀j with ci(j) = 0 : Ri[j] =∞ (BordaCount) and Si[j] = 0 (ScoreSum), (11)

respectively. Let R be the rank vector of the chosen combination rule using the first
i matchers and let d[i] be the desired output dimension, then:

∀j ci(j) :=
{

1 if i = 1 ∨ (i > 1 ∧ ci−1(j) = 1 ∧R[j] ≤ d[i− 1]),
0 otherwise.

(12)

2. Fixed output dimensionalities: we define output dimensionalities d[i], 1 ≤ d[i] ≤ t
satisfying ∀i : i > 1 ⇒ d[i] < d[i − 1], which restrict teach matcher’s output in
the chain. Finally, the resulting score or index vector is a transformed version of
the outcome of the combination technique using all m matchers accounting the final
dimensionality reduction tod[m] ranks. The combination method for serial classifiers
is applied m times (after each matcher) instead of just once for parallel combination.

While for dimensionality reductions by a constant factor a still the number of matches
increases linear with additional users (approximately t ·

∑m
i=0 a

−i instead of t ·m compar-
isons for t users and m matchers), this approach bears two advantages: (a) new matchers
cause little overhead in terms of processing time; (b) typical asymmetry of matching time
requirements can be exploited to reduce total processing time. Matching algorithms may
coarsely be divided into two types, (a) distance-based algorithms, which compute simple
(Euclidian, Manhattan or HD-based) distances between feature vectors at matching stage,
and; (b) best-alignment based algorithms, which employ more sophisticated matching be-
tween templates in order to tolerate, e.g., rotation or translation. Whereas the employed
Eigenfingers feature is a representative of the first type, matching of corresponding minu-
tiae sets requires an estimation of the best alignment and therefore belongs to the second
type. Using serial configurations as outlined above, a (possibly dynamic, dependent on the
number of members) set of fast matchers can reduce the set of candidate matches up to a
point where more costly, but accurate matchers are involved in the matching process.
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5 Experiments

Our assessment of the introduced single-sensor multi-instance Fingerprint and Eigenfinger-
based biometric system targets the following issues:

• Question 1: Which unimodal performance with respect to accuracy and processing
time of individual fingers can be achieved in both verification and identification mode?

• Question 2: Does fusion rule performance depend on the type of input data (intra-
feature or cross-feature fusion)?

• Question 3: Do weighted versions of the simple fusion methods show significantly
better performance than their unweighted counterparts?

• Question 4: Which performance with respect to processing time and accuracy can
be expected if serial instead of parallel combinations are employed in identification
mode?

As the main performance indicator, the equal error rate (EER), defined as the error where
false match rate (FMR) and false non-match rate (FNMR) are equal, has been selected for
verification mode assessments. We also give zero false match rates (ZeroFMR, the lowest
FNMR for zero false matches) and zero false non-match rates (ZeroFNMR, the lowest
FMR for zero false non-matches) for the assessment of high-security and high-convenience
scenarios, respectively. Single matchers are also depicted in form of a receiver operating
characteristics (ROC) curve plotting pairs of FMR and FNMR values for a given threshold.
For weight optimization, we use the area under the ROC curve (AUC) measure in order
to favor flatter ROC curves. Identification mode results are compared using the Rank-1
Recognition rate.

5.1 Setup

Due to the absence of large-scale publicly available hand databases supporting the
required resolution and permitting the parallel extraction of multiple modalities out of a
single scan of the human hand, two custom test setsA andB of right hands in 500 dpi and 8-
bit gray-scale mode have been acquired at our university. All 443 samples of 86 volunteers
(82.4% male, approximately 5 samples per person) in database A and 63 hand images of 31
users (57.1% male, approximately 2 samples per person) in database B were captured in a
controlled environment with the HP Scanjet 3500c sensor placed in a box with a round hole
at one end for hand insertion (in order to minimize environmental light). Users were advised
to touch the sensor, spread their fingers and try not to move during acquisition, but they
were free to choose an arbitrary placement on the sensor. The acquisition protocol allowed
watches and rings. None of the captured 4250 × 5850-sized images were excluded from
the dataset, even if instructions were violated, resulting in a total failure to acquire (FTA)
rate of 0.9% for set A. No failures were reported for set B. For closed set identification
test set A is sub-divided into 4 different enrollment sets using each a different sample per
class as enrollment template.
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5.2 Results

In order to estimate the performance improvement of presented (weighted) score-level
fusion techniques, we first assessed Question 1 targeting the accuracy of unimodal Minutiae
and Eigenfinger matchers on individual fingers using all possible combinations of samples
in set A (909 genuine and 95232 imposter comparisons). Figure 7 depicts all results in
form of ROC curves and Table 1 lists performance measures targeting both accuracy and
processing time.

An EER-ranking of individual fingers resulted in: index (1.29%), middle, ring, thumb
and last, little finger (8.94%). When compared with evaluations based on separate thumb
scans in [17] (which report the highest FRR-accuracy at 0.01% FAR for this finger), it is
interesting to see, that the thumb’s performance is inferior in systems operating on plantar
scans of the entire hand (such as in [10] where its ROC curve is classified least accurate
and even worse than for the little finger, possibly caused by missing finger alignment).
Another difference to [10, 17] is the good performance of the index compared to middle
and ring finger, which obviously reflects our system design cropping fingerprint regions
depending on the finger length with respect to the adjacent finger valleys. Thus, we conclude
that the size of the finger region is a crucial factor for individual performance. The best
found ZeroFMR was 6.16% (index) and the best ZeroFNMR was 48.09% (middle). For
the Eigenfinger algorithm, the middle finger performed best in terms of EER (2.53%),
followed by ring, little, index and thumb (15.00%). [12] reported the same ranking behavior.
Furthermore, we did not observe a different ranking behavior when using minimum half
total error rate (MinHTER, the minimum of the 1

2 -weighted sum of FMR and FNMR at
a given threshold) as comparator for both Minutiae and Eigenfingers. The best ZeroFMR
is provided by the middle finger (58.09%), the ring finger is best-suited for convenience
scenarios with 21.33% ZeroFNMR. When looking at closed-set identification performance
Rank-1 Recognition rates in the order of 85.6 − 99.1% for Minutiae and 56.7 − 91.6%
for Eigenfingers could be achieved for a medium-sized gallery (86 classes). Compared to
[14] identification performance for Eigenfingers is lower (they report Rank-1 Recognition
rates in the range of 94.9 − 97.1% for their PCA-based digitprint feature) which may be
caused by the small number of training samples for eigenspace computation and PCA-
coefficients (25 instead of 100) in this work. Regarding processing time performance it
becomes evident, that Minutiae matching is more time consuming (average matching times
of approx. 29−59milliseconds (ms) per comparison, resulting in total average processing
times in a range of 2478− 5225ms per identification request) than Eigenfinger processing
(features could create a ranking vector in almost less than 1ms). More accurate Minutiae-
based matchers are observed to exhibit longer average processing times than less accurate
ones. This is obviously caused by the fact that larger minutiae sets require more processing
time in order to find an optimal alignment, but on the positive side make false positive
matches unlikely to occur.

Regarding Question 2 we assessed performance of unweighted fusion methods, listed
in Table 2. For intra-feature comparisons on set A all combination methods except the Min
method resulted in better EER results than the best unimodal matcher. EER could be reduced
by 50−84% in case of Minutiae scores and 10−43% in case of Eigenfinger scores for Max,
Median, Prod and Sum combinations. For these methods also ZeroFMR (improvements by
89% in case of Minutiae and 72% for Eigenfinger) and ZeroFNMR (improvements by 93%
in case of Minutiae and 52% for Eigenfinger) are generally lower than for each unimodal
matcher. Similar results are obtained when comparing rules using MinHTER. Presumably,
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Figure 7 ROC for single Minutiae and Eigenfinger matchers as well as the Sum combination
method.

Table 1 Unimodal verification performance by means of EER, ZeroFMR, ZeroFNMR (in percent)
and Average Matching Time (in milliseconds) on setA, as well as closed-set identification performance
in terms of Rank-1 Recognition Rate (in percent) and Average Processing Time (in milliseconds).

Minutiae scores Eigenfinger scores
Little Ring Mid. Index Thu. Little Ring Mid. Index Thu.

EER 8.94 2.30 1.50 1.29 3.33 7.31 3.80 2.53 10.66 15.00

ZeroFMR 36.30 10.45 6.93 6.16 17.93 85.48 80.75 58.09 76.90 85.14
ZeroFNMR 93.51 72.18 48.09 98.88 99.65 75.81 21.33 21.86 75.25 90.73

MatTime 28.63 48.62 58.59 58.79 47.14 0.003 0.006 0.005 0.007 0.015

Rank-1 85.6 98.0 98.8 99.1 96.7 76.4 89.7 91.6 68.1 56.7
ProcTime 2478 4205 5111 5225 4090 < 1 < 1 < 1 < 1 < 1

the best score combination technique turned out to be the Sum of min-max-normalized
scores in both Minutiae and Eigenfinger scenarios exhibiting a flatter ROC curve than each
unimodal matcher, see Fig. 7. An evaluation on set B resulted in a similar behavior,
however for Minutiae more than one method yields perfect separation. The Min method
turned out to be unusable in both Minutiae and Eigenfinger recognition scenarios since
almost all performance measures degrade. This result supports theoretical and practical
considerations in [7], who show that the statistically motivated Sum rule outperforms the
other Min, Max, Product and Median rules in case of combining different estimates of the
same posterior probabilities. [13] employ fusion of LDA-based fingerprint, digitprint and
palmprint features examining (among others) Max, Min, Prod and Sum rules (on min-max
normalized scores) and report 13− 99.8% reduction in EER as well as a different ranking
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behavior (Product, Sum, Min, Max in the order of accuracy). Comparing their results
with our experiments we conclude, that Min and Max as well as the relative performance
differences between Product and Sum depend on the type of underlying score distributions.
However, Product and Sum are almost always among the two best untrained rules, which is
consistent with results in [13] also for different normalization techniques. For cross-feature
combination of all Minutiae and Eigenfinger scores, the best performance of unweighted
methods with respect to EER is delivered by the Product score combination (0.08%), closely
followed by Sum (0.11%) and yielding a total improvement of 94% compared to the best
individual matcher and 62% compared to the best unweighted combination method on
Minutiae scores only. While the Sum method proved to be the best alternative in case
of combining solely Minutiae or Eigenfinger scores, the Product combination exhibited
better results in the cross-feature (heterogeneous multiple-matcher and multiple-instance
combination of Minutiae and Eigenfinger scores) case with also low ZeroFMR (0.55%)
and ZeroFNMR (0.14%) values. Min and Max methods delivered unsatisfactory results,
see Table 3. A reason for this behavior becomes visible, if genuine- and imposter-score
distributions for Minutiae and Eigenfinger are inspected (see Fig. 8 for distributions for
the best-performing Minutiae and Eigenfinger instances). The imposter-score distribution
for Minutiae-based matchers exhibits low mean and rather small variance. Thus, the Min
method is oversensitive to Minutiae scores, while Max tends to ignore Minutiae scores
resulting in unsatisfactory results.
Table 2 Fusion results of unweighted and weighted combination methods by means of EER, Ze-
roFMR and ZeroFNMR values (in percent) for Minutiae scores and Eigenfinger scores on sets A and
B.

Fusion of Minutiae scores Fusion of Eigenfinger scores
EER ZeroFMR ZeroFNMR EER ZeroFMR ZeroFNMR

A B A B A B A B A B A B
Max 0.22 0.00 2.64 0.00 45.04 0.00 2.27 1.58 56.00 26.47 10.26 1.72

Median 0.65 0.05 1.65 2.94 20.35 0.05 1.88 2.70 37.07 20.59 26.63 3.18

Min 3.20 2.42 11.44 11.76 100 4.69 6.45 2.94 41.47 32.35 67.99 19.39
Product 0.31 0.00 0.88 0.00 3.21 0.00 1.88 2.69 18.92 17.65 19.03 3.07

Sum 0.21 0.00 0.66 0.00 13.80 0.00 1.45 1.48 16.28 17.65 10.45 1.82

W-Max 0.31 0.15 2.20 2.94 7.50 0.16 1.79 1.14 60.51 32.35 12.45 1.25
W-Median 0.37 0.15 1.76 5.88 1.65 0.16 1.49 0.31 33.11 23.53 5.82 0.31

W-Min 1.29 2.94 5.28 5.88 42.11 20.74 2.38 2.94 67.22 35.29 10.80 4.59

W-Product 0.16 0.00 0.88 0.00 1.69 0.00 1.31 0.45 14.19 17.65 4.24 0.47
W-Sum 0.11 0.00 0.55 0.00 2.97 0.00 1.20 0.41 17.38 17.65 5.25 0.42

Table 3 Fusion results (EER, ZeroFMR and ZeroFNMR in percent) on set A, if all 10 Minutiae and
Eigenfinger scores are combined.

EER ZeroFMR ZeroFNMR
Max 2.02 41.91 10.26
Median 0.22 2.53 4.72
Min 3.63 11.44 100
Product 0.08 0.55 0.14
Sum 0.11 1.21 1.97

In order to obtain answers to Question 3, we evaluated weighted versions of the presented
combination techniques. SetA has been employed to compute optimal weights with respect
to the AUC performance measure using an exhaustive discrete search in [0, 1] for a given
step size. This step size has been selected as 1

10 in case of Max, Min, Median and Product
combination, and 1

20 for Sum (using only weights summing up to 1). From the results
in Table 2 we can see, that it is an oversimplification to say that weighted combination
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Table 4 Parallel versus serial combination performance (Rank-1 Recognition Rate in percent and
Average Processing Time in milliseconds) for closed-set identification mode combining Minutiae-
Index, Minutiae-Middle, Eigenfinger-Middle, Eigenfinger-Ring.

Parallel combination Serial combination (configurations 1 and 2)
BordaCount ScoreSum BordaCount1 BordaCount2 ScoreSum1 ScoreSum2

Rank-1 99.7 99.9 99.2 99.4 99.9 99.8

ProcTime 10338 10338 2561 8110 2550 8109
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Figure 8 Genuine and imposter score distributions for Minutiae-Index (left), Eigenfinger-Middle
(middle) and Product (right).

schemes result in generally higher accuracy, since (a) by optimizing the AUC performance
EER, ZeroFMR or ZeroFNMR may increase and (b) even better performance on training
data (set A) can not automatically be extended to unseen objects (set B). This behavior
can also observed when MinHTER is used for optimization - resulting in an even worse
degradation of ZeroFMR and ZeroFNMR values - and may be caused by the problem of
overfitting. Thus, regarding Question 3, solely Weighted Product and Sum combination
yielded higher accuracy for almost all reported rates or retained perfect separation in both
training set A and test set B. Generally, on the training set A weights could improve EER
performance of unweighted combination methods by up to 63%.

Finally, Question 4 is targeted by an identification experiment comparing parallel and
serial combinations of the 2 most accurate matchers for both Minutiae and Eigenfinger
features. In our serial configuration setup we conservatively defined a class reduction
factor of two, i.e. d[0] = t

2 , d[i + 1] := d[i]
2 , and examined two natural choices for the

order of matchers:

• Configuration 1: this configuration selects fast classifiers at lower ranks followed
by more costly features, i.e. the order is Eigenfinger-Middle, Eigenfinger-Ring,
Minutiae-Index, Minutiae-Middle.

• Configuration 2: by selecting matchers in the order of accuracy we try to avoid an
early exclusion of the genuine identity: Minutiae-Index, Minutiae-Middle, Eigenfinger-
Middle, Eigenfinger-Ring.

Results for parallel and serial combinations are outlined in Table 4. Presumably, in
both configurations serial classifiers can almost retain high accuracy of parallel approaches
(BordaCount reports slightly worse accuracy with 99.2 − 99.4% instead of 99.7%, serial
ScoreSum combinations perform almost equally well with 99.8− 99.9%). But significant
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savings of processing time are feasible for serial configurations (up to a factor of 4 using the
fast configuration, and at least by over 20% using the conservative configuration) reducing
total matching time from over 10338 ms to 2550 ms . Generally, ScoreSum combination
performs better than BordaCount, which is not surprising, as it retains more discriminative
information. Finally, we applied an exhaustive search for an optimum configuration of
matchers (using a separate randomized training database and restricting the search to the 4
preselected matchers) with respect to a cost function with weights ω1 = 1, ω2 = 10−5 on
Rank-1 Recognition and Average processing Time. The best serial combination turned out to
be ScoreSum considering only three of the four matchers (Eigenfinger-Middle, Eigenfinger-
Ring, Minutiae-Index) with rather fast reduction of dimensions 9, 4, 1 yielding a total
accuracy of 98.7% at 616 ms (99.7% at 591 ms on training set).

6 Conclusions

We have introduced a multi-instance Fingerprint and Eigenfinger-based biometric sys-
tem and verified by experiment, that a combination of matching scores can increase per-
formance significantly, and thus tolerate the application of common flatbed scanners for
Fingerprint and Eigenfinger processing. As a by-product of this evaluation, we have ex-
amined the performance of (weighted) score combination methods based on min-max-
normalized scores in the given context of cross-feature and intra-feature multiple-instance
fusion. Simple Sum turned out to be best-suited for the separate combination of Minutiae
and Eigenfinger scores with a total EER of 0.21% for Minutiae and 1.45% for Eigenfinger
using a medium-sized dataset. Product combination delivered lowest error rates of 0.08%
EER, 0.55% ZeroFMR and 0.14% ZeroFNMR in the total combination scenario. Weights
obtained by exhaustive search could not be successfully applied to unseen objects for Max,
Median, and Min. Solely Weighted sum or product yields constantly better results also on
unseen objects. Serial classifiers turned out to decrease processing time significantly com-
pared to parallel approaches and to retain high accuracy of their parallel counterparts. Serial
Score Sum with a performance of 99.9% correct identifications at an average total process-
ing time of 2550 ms (compared to 10338 ms for Parallel Score Sum) reported even lower
processing time requirements than the most accurate single matcher (Minutiae-Middle with
98.8% at 5111ms). Further work will concentrate on larger datasets, parameter choice for
serial classification and different approaches to weights estimation.
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14 N. Pavešić, S. Ribarić, and B. Grad. Comparison of PCA -, MDF -, and RD-LDA - based feature
extraction approaches for hand-based personal recognition. In Proceedings of 2007 Interna-
tional Conference on Computer Systems and Technologies (CompSysTech’07), pages V.3–1–V.3–
7, 2007.

15 InfoTrends. Scanner market reaches maturity - penetration nearing one third of U.S. pc households,
2001. http://www.infotrends-rgi.com/public/Content/Press/2001/06.19.2001.html.

16 Andreas Uhl and Peter Wild. Personal recognition using single-sensor multimodal hand biomet-
rics. In A. Elmoataz, O. Lezoray, F. Nouboud, and D. Mammass, editors, Image and Signal
Processing. Proceedings of ICISP 2008, volume 5099 of LNCS, pages 396–404. Springer Verlag,
2008.

17 B. Ulery, W. Fellner, P. Hallinan, A. Hicklin, and C. Watson. Nistir 7356 studies of biometric
fusion. Technical report, Information Technology Laboratory, The National Institute of Standards
and Technology, 2006.

18 A. Ross and A. K. Jain. Information fusion in biometrics. Pattern Recognition Letters, 24(13):
2115–2125, 2003.

19 Y. Wang, T. Tan, and A. K. Jain. Combining face and iris biometrics for identity verification. In
J. Kittler and M.S. Nixon, editors, Proceedings of AVBPA, volume 2688 of LNCS, pages 805–813.
Springer Verlag, 2003.

20 G. Marcialis and F. Roli. Experimental results on fusion of multiple fingerprint matchers. In
J. Kittler and M.S. Nixon, editors, Proceedings of AVBPA, volume 2688 of LNCS, pages 814–820.
Springer Verlag, 2003.

21 P. Liao, T. Chen, and P. Chung. A fast algorithm for multilevel thresholding. Journal of Information
Science and Engineering, 17(5):713–727, 2001.

22 K. Sobottka and I. Pitas. Extraction of facial regions and features using color and shape infor-
mation. In Proceedings of the 13th International Conference on Pattern Recognition (ICPR’96),
pages 421–425, 1996.

23 E. Yörük, H. Dutagaci, and B. Sankur. Hand biometrics. Image and Vision Computing, 24(5):
483–497, 2006.



462 A. Uhl and P. Wild

24 National Institute of Standards and Technology. Fingerprint Image Software 2, 2006.
http://fingerprint.nist.gov/NFIS.

25 M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):
71–86, 1991.

26 A. K. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal biometric systems.
Pattern Recognition, 38(12):2270–2285, 2005.

27 L. Xu, A. Krzyzak, and C.Y. Suen. Methods of combining multiple classifiers and their applications
to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22(3):418–435,
1992.


	Introduction
	Objectives
	Related work
	Organization

	Image processing and feature extraction
	Preprocessing
	Feature extraction and matching

	Fusion and decision
	Fusion in Verification mode
	Fusion in Identification mode
	Decision module

	Real-time issues
	Experiments
	Setup
	Results

	Conclusions

