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Footprint-based biometric verification
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We investigate the potential of foot biometric features based on geometry, shape and texture
and present algorithms for a prototype rotation invariant verification system. An introduction to
origins and fields of application for footprint-based personal recognition is accompanied by a com-
parison with traditional hand biometry systems. Image enhancement and feature extraction steps
emphasizing on specific characteristics of foot geometry and their permanence and distinctiveness
properties, respectively, are discussed. Collectability and universality issues are considered as well.
A visualization of various test results comparing discriminative power of foot shape and texture is
given. The impact on real-world scenarios is pointed out, and a summary of results is presented.
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I. INTRODUCTION

Among the numerous biometric techniques used for hu-
man identification, foot biometry has been largely ne-
glected so far. Even though the human foot has been
extensively studied in medical and forensic research [6]
and obviously bears similar distinctive properties like the
human hand, its use in commercial biometric systems is
considered complicated. Reasons include a nonhabitu-
ated environment, user-unfriendly data acquisition (due
to the practice of wearing shoes) and, last, uncomfortable
associations at the acquisition step. By tradition in Arab
countries, it is considered offensive to show someone the
sole of your foot.

Most access control systems rely on face, fingerprint,
hand geometry, iris, palmprint and signature features
(see [3]), and in the future many more business appli-
cations (e.g. banking) will employ biometric identifica-
tion. While some biometric features are not secret and
may be generated out of publicly available data, it is in
each user’s interest that private biometric features such
as retina or even fingerprints are not compromised. How-
ever, precisely because foot biometry is not and proba-
bly will never be a suitable authentication mechanism
for high-security applications, storage of foot biometric
features does not necessarily imply security threats.

If the environment allows user-friendly data acquisi-
tion, e.g., thermal baths, or security issues demand un-
critical features, foot biometry may be considered as a
useful alternative. Within special environments, foot
biometry might even be implemented as a covert system
in contrast to hand biometric techniques. Therefore, the
image acquisition step used in this work is inherently sim-
ple, and it does not employ any special illumination, nor
does it use pegs to cause any further inconvenience.

The first footprint-based recognition dates back to
Kennedy [6] in the late 1980s, who used inked bare-
foot impressions to extract 38 local geometrical features,
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such as length between heel and tips of toes, optical cen-
ters of heel and toes or width of ball and heel. While
Kennedy’s work concentrated on forensic applications,
the first scheme concentrating on footprint-based authen-
tication using simple Euclidian distance between foot-
prints was introduced by Nakajima et al [11]. Operating
on pressure distribution data and simple Euclidian dis-
tance, recognition rates of 85% could be achieved. Fur-
ther work concentrates on static and dynamic footprint-
based recognition using hidden Markov models [4, 5] with
recognition rates of about 80 to 97.8% dependent on fea-
ture selection and database size. Since neither taking
ink-based impressions in the first case nor recognition
rates of 80 to 85% are suitable for commercial security
applications, we investigate more elaborate approaches
to foot biometrics. While the idea of using shape and
skin texture information of the human hand is not new
and numerous biometric features are described in detail
in [7, 17, 18], we examine the application of some of these
features in foot biometrics. Traditional hand biometric
features are most likely to be applicable to foot biomet-
rics; thus, we investigate their discriminative properties.
However, techniques also used in face recognition (e.g.
Eigenfaces as described in [16]) can be successfully im-
plemented. Second, a goal of this paper is the introduc-
tion of a prototype footprint verification system. Imple-
mented biometric measurements involve:

• Shape and geometrical information focusing on
characteristics such as length, shape and area of
the silhouette curve, local foot widths, lengths of
toes, and angles of inter-toe valleys;

• soleprint features analogous to palmprint-based
verification extracting texture-based information of
the sole of the foot;

• minutiae-based ballprint features employing differ-
ent techniques used in fingerprint verification sys-
tems;

• Eigenfeet features (corresponding to Eigenfaces in
traditional face recognition) in the principal com-
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ponent subspace for recognition of both shape and
textural information.

A short introduction to hand and finger biometric fea-
tures and their application in foot biometrics will be
given in the first part of this paper. Section II describes
the overall system architecture and explains the various
normalization and image enhancement steps. Various im-
plemented features and how they can be extracted from
a normalized foot-image is presented in detail in Sec. III.
How to perform matching is presented in Sec. IV. Ex-
perimental setup and test results are presented in Sec.
V, and the impact of results for real-world setups is an-
alyzed. This includes a description of several advantages
and disadvantages of the introduced foot biometry sys-
tem. Last, Sec. VI presents our conclusions.

II. SYSTEM SETUP

There are numerous biometric systems providing per-
sonal verification based on hand images. Since capturing
and normalization of dorsal (towards the upper surface)
foot images in real-world scenarios is rather complicated
and makes it difficult to implement a covert system, we
limit our observation to plantar (opposite of dorsal) foot
biometric systems and palmar (towards the palm) hand
biometrics respectively. All such systems have in com-
mon a less complex image acquisition step. Images can
be captured by flatbed scanners or cameras at a low
resolution rate starting at 45 dpi [18]. Although hand
geometry-based metrics do not vary significantly across
different people [3], they can nevertheless be used for the
verification task.

We have designed an image-based multimodal foot-
print verification system using input images with 256
grey levels of an HP 3500c flatbed scanning device as the
single sensor operating at 600dpi resolution. The scanner
supports an area of 216×297 mm resulting in 5102×7016
input images, which was found to be sufficient for single
foot captures. In order to provide each of the different
feature extractors with adapted image resolutions, bilin-
ear downsampling is applied. Like most other biometric
systems (see e.g. [7],[14]) the proposed foot-biometric
authentication system consists of separate modules for
preprocessing, including image registration and enhance-
ment, feature extraction (details are described in Sec.
III); and matching (see Sec. IV).

A. Preprocessing

Preprocessing is important for reliable foot recogni-
tion. Nakajima et al. [11] could improve their Euclidian-
distance-based footprint recognition method on raw im-
ages from roughly 30% to 85% by just achieving nor-
malization in direction and position. While for uncon-
strained hand images a re-alignment of individual fingers

using texture blending [17] is promising, an adaption to
foot biometrics is considered complicated due to close-
fitting toes and has not yet been implemented. How-
ever, a successful alignment of toes could further increase
recognition rates of global features. So far, in the pre-
processing stage the following steps are executed:

1. Binarization using Canny edge detection and
thresholding.

2. Rotational alignment using statistical moments.

3. Displacement alignment restricting the image to
the bounding box of the footprint.

Last, background pixels are masked and the processed
footprint is scaled to provide each of feature extractors
with appropriate resolution input. While most of the
introduced feature extractors (Silhouette, Shape, Toe-
Length, SolePrint) demand an aligned 512 × 1024 foot-
print image as input, the Eigenfeet algorithm works on
a subsampled low resolution 128× 256 and minutiae ex-
traction is performed on the maximum 600-dpi version.

1. Binarization

In order to preserve edges for accurate shape feature
extraction, we first employ Canny edge detection [1] with
binary thresholding on the original image B to keep the
most significant edges only, which reliably represent foot
contours. Then, within the obtained image B1 we fill the
interior of the foot using binary thresholding on B, i.e.
B2(x, y) = max(binb(B)(x, y), B1(x, y)) where binb(B)
denotes the binarization of B using threshold b. This
binarized image B2 is next subjected to morphological
dilation using a square structuring element S to close
the boundary:

B3 = B2 ⊕ S = {(x, y)|Sxy ∩B2 6= ∅} (1)

where Sxy denotes a shift of S by (x, y). This operation is
followed by a removal of small white 4-connected binary
large objects (BLOBs) and a filling of all black BLOBs
except the background to get the binarized image B4.
Last, we employ morphological erosion on this image:

B5 = B4 ⊗ S = {(x, y)|Sxy ⊆ B4}. (2)

2. Rotational alignment

To achieve rotational alignment, we match the foot-
print with the best-fitting ellipse, as described in [15].
This method has been used in face recognition [2] and
hand recognition systems [7] and has proven to be suc-
cessful also for alignment of footprints [11]. The goal is
to estimate the angle Θ between y-axis and the major
axis of the best matching ellipse. Having extracted the
center of mass C = (x, y) (which is also the center of the
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ellipse, see Sec. III) and letting x′ = x−x and y′ = y−y,
then the angle Θ of inclination is given by:

Θ =
1

2
arctan(

2µ1,1

µ2,0 − µ0,2
) (3)

µ2,0 =

n∑
i=1

m∑
j=1

(x′ij)
2B(i, j) (4)

µ1,1 =

n∑
i=1

m∑
j=1

x′ijy
′
ijB(i, j) (5)

µ0,2 =

n∑
i=1

m∑
j=1

(y′ij)
2B(i, j) (6)

III. FEATURE SELECTION

To cope with unacceptable False Acceptance Rates
(FARs) and False Rejection Rates (FRRs), we design a
multimodal foot biometric system [13] in the sense of
combining different representation and matching algo-
rithms in order to improve recognition accuracy. There-
fore, we observe hybrid approaches and even extend
our considerations to fingerprint biometrics since typi-
cal ridge structures are also present on large parts of the
foot.

A. Classification According to Feature Selection

According to [17] common hand biometric systems and
therefore foot biometric systems can be classified in an
analogous manner as follows:

• Schemes relying on geometric features comprising
silhouette shape and the lengths and widths of fin-
gers, among others;

• Palmprint-based verification systems extracting
palm curves;

• Hybrid approaches (such as [7]) employing fusion at
the feature extraction, matching-score, or decision
level to improve error rates.

Additionally, a lot of systems concentrating on fin-
gerprint verification exist (such as the NFIS2 minutiae-
matching software from NIST [12]). However, fingerprint
matching results are fused with hand geometry in multi-
ple biometric schemes [13] rather than combined employ-
ing a single sensor [8]. A reason for this might be that,
usually, fingerprint matching requires special hardware
for image acquisition and does not work on low-resolution
input. Nevertheless, when ridge structures can success-
fully be extracted from the captured scans of palms or
feet, system performance can be increased using fusion
without the cost of additional sensors or further inconve-
nience caused by multiple-step data acquisition.

In the next few paragraphs, we introduce possible
foot biometric features and how they can be derived
from their hand biometric counterparts. Furthermore,
we point out problems concerning feature extraction due
to anatomical differences between hand and foot and an-
alyze possible resorts.

B. Geometric Features

Geometric measurements are frequently employed in
hand biometric systems due to their robustness to en-
vironmental conditions, and a large number of possible
features fall into this category. Considering the sole of the
foot to be prone to injuries, shape-based features seem
also well suited for the foot verification task. However,
due to different spreadings of toes, we expect a rather
high intra-personal variability in general. One reason for
this is that many hand recognition schemes rely on a ro-
bust identification of finger tips and finger valleys. When
interfinger valleys cannot be detected reliably, a normal-
ization, i.e., correct placement of individual fingers, is
hard to achieve. The extraction of these characteristic
landmarks is often facilitated by pegs [14], while more
advanced schemes like [18] are peg-free but demand high
contrast between background and palm. Since an intro-
duction of pegs is unacceptable for the image acquisi-
tion step, and spread toes are not the default case, the
reliable detection of inter toe valleys deserves closer at-
tention in foot biometrics. Regardless the expected weak
performance of shape features, we try to map both global
features (focusing on palm width, length or hand area)
and local features (representing, e.g., finger lengths and
widths at various positions) to their counterparts in foot
biometrics.

A list of implemented features for the foot-shape-based
verification task can be found in Table I.

1. Silhouette

In addition to the height and width of the foot as
recordable features, which can obviously be derived anal-
ogously to hand geometry, the first feature to be intro-
duced focuses on the contour polygon. Silhouette geom-
etry is used in [18] to construct a feature vector project-
ing contour points in two dimensions onto the eigenspace
spanned by the 40, 100, 200 or 400 most-significant eigen-
vectors of covariance matrix C obtained by a set of sam-
ple hand contours. While at first glance, the idea of ap-
plying the same scheme in foot biometrics is promising,
the alignment of toes in a preferred direction in order
to be able to capture the correct silhouette for matching
is troublesome. For this reason, we apply a rather sim-
ple feature extraction and use dynamic time warp in the
matching stage to cope with missing parts in the contour
polygon. That is, we compute distances sk = |Sk − C|
for k ∈ {1, . . . , l(S)}, where S = {S1, S2, . . . , Sl(S)} is
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Algorithm Features Classifier

Silhouette
Contour distance to centroid, length and enclosed

area of silhouette polygon
Dynamic time warp matching

Shape 15 local foot widths and positions Based on Manhattan distance

ToeLength 5 toe lengths and 4 intertoe angles Based on weighted Euclidian
distance

Soleprint
Variance of 288 overlapping blocks in edge-detected

image (similar to [7]) Based on Euclidian distance

Eigenfeet
Projection of subsampled footprint onto feature space
spanned by 20 most-significant principal components Based on Manhattan distance

Minutiae
Using the NIST [12] mindtct minutiae extractor on

ballprint region under the big toe
Based on NIST [12] bozorth

matcher

TABLE I: Employed geometric and texture-based features

FIG. 1: Silhouette: Rejected genuine attempt (m1 = 0) due
to slightly spread toes.

the silhouette polygon at appropriate sampling rate, C
is the center-of-mass, and L(S), A(S) are the length and
enclosed area, respectively, of the silhouette polygon, to
obtain our feature vector f1 = (s1, . . . , sl(S), L(S), A(S)).
Having a binary image B of size n×m and letting A be
the number of white pixels representing the foot, then
C = (x, y) can be determined as follows:

x =
1

A

n∑
i=1

m∑
j=1

jB(i, j), y =
1

A

n∑
i=1

m∑
j=1

iB(i, j) (7)

Figure 1 illustrates the silhouette polygons of two sam-
ples acquired from the same user.

2. Shape

While the shape of the human wrist is often neglected
in biometric systems, the actual shape of the foot is char-

FIG. 2: Shape: Imposter attempt.

acterized by its local widths and bending. The next fea-
ture is an approach that takes this fact into account (see
Fig. 2). After aspect ratio preserving normalization of
the footprint in order to achieve predefined rotation and
size, the foot is divided into N vertical slices V0, . . . VN−1
with equal dimensions. The y-monotone polygon Sy is
now used to compute the average width of the foot per
slice, i.e. the average width wi of the set Vi ∩ Sy for
i ∈ {0, . . . , N−1} of in-foot pixels. Using a binary repre-
sentation B of size n×m and the characteristic function
χ, we get:

wi =
N

n

n∑
j=1

m∑
k=1

χVi∩Sy
(j, k) (8)

The final feature vector is now constructed as f2 =
(w2, . . . wN−1), with N = 15. We neglect the first two
slices to suppress noise caused by toes. A significant
problem concerning foot shape mentioned in [11] is the
fact that feet are generally about 5 mm larger in the
evening than in the morning due to hypostatic conges-
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FIG. 3: ToeLength: Imposter attempt.

tion. Also a significant change in weight may cause high
intrapersonal variability.

3. ToeLength

Hand extremities, i.e., the finger tips and the finger
valleys, are typically exploited using a binary represen-
tation of the input image and deriving a different num-
ber of features. Kumar et. al. [7] for example, use 12
hand extremity features including 4 finger lengths, 8 fin-
ger widths (2 widths per finger). Sanchez-Reillo et. al.
[14] use even more local finger widths, namely 25 features.
More recent schemes [18] employ an extraction of contour
shape information for individual fingers and incorporate
principal component analysis and/or independent com-
ponent analysis for the construction of the feature vec-
tor. Mapping hand extremity features to toes in foot
biometrics is promising, but a crucial problem is that in
unstrained pose, toes are close to each other. Thus a
simple binary thresholding using Otsu’s Method, as in
[7], will not suffice in general. Instead, we employ both
binarization and a Canny Edge detection [1] algorithm
to first find candidate points for toe valleys by detecting
the entrance between two toes. Then candidate points
are improved by following the edge separating two toes
within a cone centered in the center of mass of the bi-
nary foot image. We then extract 9 toe extremity values,
comprising the 5 toe lengths and the 4 intertoe angles
as depicted in Fig. 3, to construct the feature vector
f3 = (L1, α1, L2, α2, L3, α3, L4, α4, L5).

An interesting convenience having extracted the length
of the big toe and its neighboring one is a preclassification
of feet. Just as fingerprints can be separated into basic
pattern-level classes known as arch, left loop, right loop,
scar, tented arch, and whorl [12], it is possible to classify
feet according to the differences in length of hallux and
second toe into egyptian (hallux longer than second toe),
greek (second toe longer than hallux) and square (both
toes have almost the same length) feet. Orthopaedic sur-
geon Morton [9] was the first to describe this phenomenon
of the second toe (also called Morton’s toe) being longer
than the great toe as a part of Morton’s syndrome.

C. Texture-Based Features

Skin-texture-based identification on palmprints in-
volves the challenge of extracting line structures. Using
feet instead of hands a new problem arises, since typi-
cal principal lines are not present. Instead a comb-like
pattern is visible, which seems to be sensitive to differ-
ent pressure distributions. For this reason, we apply a
simpler generic but robust method [7] to extract texture-
based patterns. While line information is extracted at
lower resolution using directional Prewitt edge detection,
typical ridge structure is also present in the footprint at
high resolutions even if no special ridge extraction device
such as a fingerprint scanner is used. For this reason,
we incorporate a minutiae based feature extraction step
developed for fingerprint matching [12] estimating local
ridge structure on a specified part of the 600dpi input im-
age. Last, both shape and texture information are pro-
cessed using principal component analysis [16] at lowest
resolution rate. Table I lists the incorporated texture-
based features Soleprint, Eigenfeet and Minutiae.

1. Soleprint

In cooperative environments, e.g., access control in
thermal baths, we expect intraclass pressure distribution
to exhibit low variance. Additionally, for hand biomet-
rics, Kumar et al. [7] report their texture-based feature to
outperform their introduced geometric scheme. However,
due to less distinctive line structures, dorsal injuries, tex-
tile defilement, and skin creases caused by touching the
scanning device, it is not clear whether this general state-
ment also holds for foot biometrics. For this reason, we
apply their classical palmprint-based feature extraction
step to foot biometrics and later on compare its matching
performance.

After rotational alignment, Kumar et al. [7] extract
a square palmprint region Rp of fixed size sp × sp cen-
tered at the center-of-mass Cp such that the square is
completely inscribed the palm. While the palm is iden-
tifiable as a square region, the part of the foot which
constitutes the sole image used for feature extraction is
yet to be determined. Letting F denote the binary n×m
footprint and n = h(F ) be the height of the foot, we have
chosen the largest inscribed rectangle R ⊂ F with height
a and length b such that:

a =
3h(F )

5
, R∩{(x, y)|y < h(F )

5
∨y > 4h(F )

5
} = ∅. (9)

We then scale the extracted region R to predefined size
300 × 600 pixel, which is twice the size of Rp. Then we
normalize R to predefined mean φd and variance ρd as in
[7]. We have chosen φd := 100 and ρd := 200. All new
pixel values R′(x, y) fulfill:

R′(x, y) :=

{
φd + λ if R(x, y) > φ,

φd − λ else.
(10)
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FIG. 4: Soleprint: Rejected genuine attempt (m2 = 7) due to
creases in rotated sole.

where

λ =

√
ρd(R(x, y)− φ)2

ρ
. (11)

For line and crease detection of the sole, we employ
5× 5 Prewitt kernels pi in different directions (0 deg, 45
deg, 90 deg, and 135 deg) and get accumulated edges (see
Fig. 4):

K(x, y) = max{R1(x, y), . . . , R4(x, y)} (12)

where Ri(x, y) = pi ∗ R′(x, y), i.e., the normalized foot-
print is convoluted with each of the Prewitt kernels. The
actual feature vector f4 = {σ2

1 , . . . , σ
2
288} consists of an

extraction of variances of 288 overlapping blocks, each of
size 24× 24 pixels.

2. Eigenfeet

The motivation behind the Eigenfeet feature, which is
derived from Eigenfaces, introduced by Turk and Pent-
land [16], is a method based upon the most relevant fea-
tures for classification instead of an arbitrary selection
of features. The main idea is to think of an image Γ as
an m×n-dimensional vector that can be represented ex-
actly in terms of a linear combination of principal compo-
nents, i.e., eigenvectors (also called Eigenfaces for facial
images), computed on the covariance matrix of training
images. Eigenvectors are ordered according to eigenval-
ues and only the ones with the M highest eigenvalues are
kept, leaving the most-important features that are criti-
cal for the recognition task. Feature extraction using the
Eigenfeet algorithm is equal to projecting the 128× 256
input image onto the feet space spanned by the 20 most
significant eigenvectors depicted in Fig. 5 obtained by a

FIG. 5: Eigenfeet: Computed eigenfeet of 20 footprints.

set of also 20 training images. Thus, in the strict sense,
the Eigenfeet feature is a both texture-based and shape-
based approach, since foot silhouette information is also
encoded within eigenvectors. Matching involves a simple
distance metric in foot space with thresholding.

A computation of Eigenfeet, which precedes enrollment
and matching, involves the following two tasks [16]:

1. Acquisition of an initial training set of centered
m × n foot images represented as vectors Γi for
i ∈ {1, . . . ,M}, from which the average foot vector
Ψ is subtracted:

Φi = Γi −Ψ, Ψ =
1

M

M∑
i=1

Γi (13)

2. Computation of mn×mn covariance matrix:

C =
1

M

M∑
i=1

ΦiΦ
T
i = AAT (14)

and eigenvectors uk with according eigenvalues λk.
For computational efficiency, often the M×M Ma-
trix ATA is used instead, since the M eigenvectors
vk of ATA correspond to the M largest eigenval-
ues uk of AAT fulfilling the equation uk = Avk
and usually M is much smaller than mn.

3. Ordering and selection of the L highest eigenvectors
with corresponding eigenvalues.

Having selected a set of Eigenfeet ui with i ∈
{1, . . . , L} and average foot Ψ, feature extraction com-
prises the following steps:

1. Normalization of the foot vector Γ calculating Φ =
Γ−Ψ.

2. Projection onto eigenspace to get the feature vector
components ωi = uTi Φ. The feature vector consists
of exactly L components f5 = (ω1, . . . , ωL) such
that Φ is approximated by:

Φ ∼
L∑

i=1

ωiui (15)

Last, matching is executed using Manhattan distance.
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FIG. 6: Minutiae: A typical ballprint region containing 300
to 400 minutiae.

3. Minutiae

We use the NFIS2 [12] minutiae extraction and match-
ing software MINDTCT and BOZORTH3 to extract
minutiae information out of the ballprint region under
the big toe. After rotational alignment, we extract
a rectangular region of fixed size h

6 ×
w
2 centered at

B = ( 3w
4 ,

3h
12 ), where h and w are the height and width of

a bounding box circumscribing the input footprint. We
then employ contrast-improving histogram stretching on
the extracted region, which is still at 600-dpi resolution.
While MINDTCT binarizes this input image and detects
up to 400 minutiae per ballprint image (depending on
image quality, see Figure 6), BOZORTH3 is employed at
the classification stage operating in 1:1 comparison mode.

IV. MATCHING

Since we incorporate multiple biometric features, there
are several possible information fusion mechanisms for
matching according to [13], namely (1) fusion at feature
extraction level, (2) fusion at matching score level, and
(3) fusion at decision level. We examine both (2) using a
weighted sum of matching scores and (3) using a majority
vote scheme.

Most of the employed algorithms (Shape, ToeLength,
SolePrint, Eigenfeet) use (weighted) Euclidian or Man-
hattan distance between the user’s feature vector f and
the claimed identity’s reference vector t for classification,
see Table I. The incorporated BOZORTH3 matcher for
the Minutiae feature already outputs a matching score,
and the Silhouette algorithm differs in the way that an
evaluation function e is used. For all 1 ≤ i ≤ n, we let
f [i] denote the i-th element of f and let t[j] be the j-th
(1 ≤ j ≤ m) element of the reference template, and we
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FIG. 7: Silhouette: Genuine and imposter distributions.

then define:

e(f, t) = αD(f, t) +β|f [n−1]− t[m−1]|+γ|f [n]− t[m]|,
(16)

where D compares silhouette data sets using dynamic
time warping (DTW) [10] with a cost function c(i, j) =
(f [i]−t[j])2. Dynamic time warping computes an optimal
match between f and t using:

d(i, j) :=



0, if i = 1, j = 1

c(i, j) + d(i− 1, 1), if i > 1, j = 1

c(i, j) + d(1, j − 1), if i = 1, j > 1

c(i, j) + min(d(i− 1, j),

d(i, j − 1), d(i− 1, j − 1)), else.
(17)

The minimum distance between both data sets is
D(f, t) = d(n,m).

Last, for each algorithm a discrete matching scoremi ∈
N ∩ [0, 100] for 1 ≤ i ≤ 6 is calculated.

V. EXPERIMENTAL RESULT

We investigate achievable recognition accuracy and
both inter- and intraclass variability of single incorpo-
rated foot biometric features examining distributions of
genuine and imposter footprints diagrammed in Figures
7-12. We understand the genuine distribution as being
the distribution of scores generated from pairwise com-
parisons of samples from the same person, while samples
from different persons contribute to the imposter distri-
bution. Different algorithms are compared using False
Match Rate (FMR) and False Non Match Rate (FNMR)
at different thresholds t depicted in the form of a Re-
ceiver Operating Characteristics (ROC) Curve in Figure
13. Last, we try to analyze matching performance re-
sults.

A. Test Setup

The experiments were conducted by using our database
of 135 male and 25 female footprints of 32 volunteers aged
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FIG. 8: Shape: Genuine and imposter distributions.
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FIG. 9: ToeLength: Genuine and imposter distributions.
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FIG. 10: Soleprint: Genuine and imposter distributions.
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FIG. 11: Eigenfeet: Genuine and imposter distributions.
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FIG. 12: Minutiae: Genuine and imposter distributions.
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FIG. 13: Comparing Receiver Operating Characteristics.

20 to 40. Each of the 5 acquired footprint samples of the
right foot per user was recorded with the user sitting in
front of the scanning device. Thus, the footprints are
not heavily loaded with full weight. Image capturing is
preceded by a cleaning of scanning device and sole. In
order to minimize the influence of environmental light, all
samples were captured in a shaded room within a time
span of 15 min per user. It is clear, that both small
member database size and short time span yields weak
results for real-world applications. However, the absence
of large-scale publicly available footprint databases is an
open problem. ([11] use 110 samples of 11 users over the
period of 1 month, [4] use 300 samples of 5 users captured
at the same time for testing.) The acquired test dataset
does not include any of the 20 images used for computing
the predefined Eigenfeet matrix, and only two persons are
recorded in both sets. To get an impression of inter and
intra-class variability concerning the employed features,
we executed 320 genuine attempts (each footprint was
matched against the remaining images of the same foot)
and 12,400 imposter attempts on the test set.

B. Matching Performance

In order to compare matching performance we have se-
lected for each algorithm the operating point with closest
distance to the first median, i.e., which is closest to a vir-
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tual operating point yielding Equal Error Rate (EER, the
value such that FAR = FRR).

The first feature to be analyzed is the Silhouette al-
gorithm. As we have expected, silhouette shape is a
volatile feature and shows an extremely high EER of
about 29% due to the large overlap between genuine and
imposter distributions, as shown in Fig. 7. An inter-
esting phenomenon is the large amount of genuine foot-
prints achieving the lowest score 0 due to the sensitivity
to spread toes, as can be seen in Fig. 1. This results in
high intrapersonal variability even though dynamic time
warping is employed. Compared to other features listed
in Fig. 13, Silhouette and ToeLength are the worst per-
forming algorithms.

For the Soleprint feature, we first expected matching
results similar to palmprints in the hand biometric case.
But whereas Kumar et al. [7] achieve a FAR of 4.49%
and an FRR of 2.04%, we observe rates to be an order
of magnitude higher (FMR 19.5% and FNMR 20.94%)
in the foot biometric case. Besides the absence of typ-
ical expressive lines, creases (often appearing in rotated
footprints, see Fig. 4 for an example) constitute a sig-
nificant problem. Another challenge is textile defilement
due to the practice of wearing socks, which was avoided
in advance by cleaning the sole before image acquisition.

The Eigenfeet feature proved to be most suitable for
footprint-based personal recognition. It does not need
highly resolved input images and compared to other
footprint-features it uses small-size feature vectors of 160
bytes. Its accuracy performance of FMR 2.52%, FNMR
2.18% is quite competitive and can be compared with re-
sults from hand biometry systems [7, 14]. But the effect
of training set size and lime lapses between recordings on
verification performance is yet to be analyzed.

Using length of toes and intertoe angles for footprint-
based verification has shown to be less powerful than
other geometric and texture-based approaches. Choosing
almost identical FMR and FNMR, Fig. 13 indicates that
rates for the ToeLength feature are as high as 26.75%
and 26.56%, respectively. Due to close-fitting toes at the
absence of pegs, intertoe valleys could not be detected
correctly in many cases.

Good performance results, especially for low FMR at
acceptable FNMR could be obtained using the Minutiae
algorithm. Its matching accuracy of FMR 1.35% and
FNMR 4.06% is similar to the Eigenfeet feature, but re-
quires higher resolution to correctly identify ridges and
minutiae. However, genuine matching scores returned
by BOZORTH3 are lower than fingerprint acceptance
thresholds recommended by NIST [12], possibly caused
by the higher number of minutiae (300-400 per ballprint
in contrast to 40-100 per fingerprint).

Last, the local width-based Shape feature also per-
formed well for footprint-based verification. It exhibits
an FMR of 6.13% at FNMR 5.31%, which is slightly
worse than the Eigenfeet feature, but still acceptable.

If we combine matching results of the three best al-
gorithms – Eigenfeet, Minutiae and Shape – recognition

Algorithm Threshold FMR FNMR

Silhouette 51 28.91% 29.38%

Soleprint 62 19.5% 20.94%

Eigenfeet 69 2.52% 2.18%

ToeLength 52 26.75% 26.56%

Minutiae 6 1.35% 4.06%

Shape 90 6.13% 5.31%

TABLE II: Comparing recognition performance scores

Algorithm FMR FNMR

Fusion at decision level 0.95% 1.88%

Fusion at matching score level 1.05% 1.25%

TABLE III: Improvement of accuracy using fusion techniques

accuracy can further be improved (see Table III). We em-
ploy information fusion at the decision level using major-
ity vote and at the matching stage using a sum rule. In
the first case, single reported matching scores using the
thresholds in Table II are combined using the class voted
by the majority of single biometric classifiers. The sec-
ond technique assigns (equal) weights to each modality
and computes a sum of individual matching scores.

Presumably, looking at the results about matching per-
formance in Fig. 13 and error rates in Tables II and III,
three main results are obtained:

1. Experimental results show that matching perfor-
mance is split into two classes. In case of the
better performing algorithms Eigenfeet, Minutiae
and Shape, EERs of approximately to 2 to 6%
are achieved, while Silhouette, Soleprint and Toe-
Length show EERs of 20-30%.

2. The Eigenfeet algorithm is the feature of choice if
only low-resolution input is available.

3. Combining Eigenfeet, Minutiae and Shape can fur-
ther improve matching accuracy (≈ 1% EER).

C. Impact on Real-World Setups

Footprint-based biometric verification for a population
size of 32 is shown to be theoretically applicable in en-
vironments where user-friendly and accurate data acqui-
sition can be achieved. Exhibiting correct classification
rates of up to 99%, the proposed system outperforms first
existing attempts on personal recognition or identifica-
tion using footprints [11] with recognition rates of 85%.
However, its operation in identification mode instead of
verification mode, i.e., matching is executed against all
templates in the database and not against a claimed iden-
tity template, is not yet analyzed and subject to further
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inspection. It is clear that for commercial applications
(such as access control in wellness domains, spas or ther-
mal baths), this might be an important issue. Addition-
ally, larger time lapses between recordings of samples or
different recording conditions (wet feet) deserve further
attention. For traditional access control, where highest
reliability and accessibility is required (and no privacy
issues exist), it is better to stick to classical fingerprint,
iris or face biometrics. But footprints are suitable for
restricted area access-control in, e.g., public baths, when
high accessibility is achieved due to the absence of socks
and closed shoes. As [11] suggested for Japanese apart-
ments, if a sensor is placed on the entrance floor of re-
stricted areas where people step without shoes, footprints
can be obtained without the need for cooperation. Last,
its use in multimodal biometric systems, when different
biometrics are combined, is promising.

VI. SUMMARY

We have proposed a footprint-based biometric verifi-
cation system employing six geometric, shape-based and
texture-based features, partly derived from hand, face,
and fingerprint biometrics [7, 12, 16] and have compared
their accuracy performance.

The incorporated Eigenfeet feature based upon PCA
showed the best results with 2.52% FMR and 2.18%
FNMR. But also the application of minutiae-based or

shape-based features provided reasonable recognition ac-
curacy. We have experienced problems employing feature
extraction using edge-detection on the sole of the foot
due to creases at different rotations of the foot. The ex-
traction of toe lengths and inter-toe angles turned out to
be a difficult task and together with the Silhouette fea-
ture comparing foot silhouettes all three algorithms with
EERs exceeding 20% are not suited for commercial appli-
cations. With fusion techniques [13] recognition accuracy
could further be improved (EERs of approx. 1%).

The proposed approach has the advantage of being
image-based, and no special hardware is required to
capture footprints. However, the impact of water on
footprint-based recognition (e.g., for its use in thermal
baths) and dependency on recording times has yet to be
studied. Recapitulating, using footprint-based personal
recognition might be the biometric identifier of choice
when three conditions hold: (1) the environment guar-
antees the clean and comfortable capture of footprints,
(2) no high security is demanded, and (3) users claim
a need for noninvasive identifiers in the sense of privacy
issues.
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