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Abstract—Subject- and environmental-specific variations affect
the fingerprint recognition process. Quality metrics are capable
of detecting and rating severe degradations. However, measuring
natural variability, occurring during different fingerprint acquisi-
tions, is not in the scope of these metrics. This work proposes the
use of genuine comparison scores as a measure of variability. It is
shown that the publicly available PLUS-MSL-FP dataset exhibits
large natural variations which can be used to distinguish between
different acquisition sessions. Furthermore, it is showcased that
point-cloud (set) based neural networks are promising candidates
for processing fingerprint imagery as they provide precise control
over the input parameters. Experiments show that point-cloud
based neural networks are capable of distinguishing between the
different sessions in the PLUS-MSL-FP dataset solely based on
FP minutiae locations.

Index Terms—fingerprint similarity, fingerprint variability,
fingerprint ageing, deep learning, point-cloud

I. INTRODUCTION

The ISO/IEC 19795-1:2006 standard [1] states that “Longer
time intervals generally make it more difficult to match sam-
ples to templates due to the phenomenon known as template
ageing”. However, the main reasons for template ageing are
still undefined, as the sources have not been investigated in
detail. So far, only “high-level” explanations for these effects
have been given in various studies. For example, it was said
that changes in the individual’s behaviour and characteristic
of each subject can cause template ageing. However, this
definition is general and doesn’t precisely explain the changes
across various acquisition. For instance, these variations can be
caused by changes in the placement of the finger on the sensor
plate, the pressure applied to the sensor, the finger conditions
(e.g., injuries, diseases [2]) and biological finger ageing (i.e.,
[3], [4]). On the other hand, there also exist environmental-
specific conditions, e.g. changes in the ambient light, the tem-
perature, the acquisition protocol (sensor cleaning,...). Often
these conditions remain constant during an acquisition session
but change across different acquisition sessions.

In several studies ( [S]-[8]), the presence of template ageing
is explained or questioned, inter alia, using state-of-the-art
quality metrics (e.g., NFIQ2.0). However, it has not yet been
explicitly discussed whether and to what extent the above-
mentioned factors ultimately influence the measured quality
scores. For example, it seems plausible that a loss of collagen
in the course of ageing ( [3]) leads to slight changes in

the quality measure. Depending on how sensitively the used
quality metric reacts to changes, the detection of template
ageing effects might be possible or not. Hence, it is important
to deduce which properties of fingerprints are influenced by
such factors.

Fingerprint (FP) quality metrics are designed to describe

the suitability of a FP image for FP processing. However,
their purpose is not to quantify changes in FP templates,
e.g., positional changes influencing the comparison scores.
The first part of this work is aimed at proposing a simple
metric (Genuine Comparison Scores — GCS) for measuring
the variability between sets of FP of fingerprints samples.
Based on a publicly available FP dataset, it is showcased
that the GCS is suited for measuring the variability between
different acquisition sessions.
Furthermore, the current study is the first one to evaluate
if specialised neural network based approaches (point-set or
graph-based architectures) are capable of learning finger- print-
specific variances “encoded” in the FP minutiae. In contrast
to conventional CNN applied on 2D imagery, those architec-
tures provide precise control over the input features used for
learning, such as minutiae locations or angles. As a proof of
concept, it is shown that the applied architecture based on point
sets can distinguish between different acquisition session and
is not misguided by non-subject-specific features (e.g., sensor
noise).

The remainder of this paper is organised as follows: The
next Section II introduces the GCS similarity metric and
show its functionality based on the PLUS-MSL-FP dataset [8].
Section III explains the network architecture and experimental
setup used in this work. Finally, the experimental results are
discussed in Section IV followed by the conclusion in Section
V.

II. GENUINE COMPARISON SCORE SIMILARITY METRIC

As already mentioned in Section I no dedicated metric has
yet been proposed to measure variability among FPs. Quality
metrics are capable of measuring how qualified an imprint is
for FP comparison. Yet, it is necessary to quantify the extent
of changes detectable in FP samples collected over time.

In this work, the use of Genuine Comparison Scores (GCS)
is proposed to measure how a subject’s FP evolves over time
by taking into account intra-subject variations. Using the GCS



as a measure for FP similarity, this analysis can not only be
done on intra-session basis, but also on inter-session basis.
It also can be studied how comparison scores change over
time and if there is some overall trend (caused by physical
ageing, behavioural changes, etc.). To compute the GCS metric
for different collections of FP samples, firstly, comparison
scores need to be computed for all genuine FP pairs using FP
comparison tools such as Innovatrics ANSI', Neurotechnology
VeriFinger SDK? or NBIS3. Next, the obtained scores for
each collection of FP samples need to be aggregated using
an aggregation function such as mean, median, minium or
maximum dependent on the properties that should be studied.
In this work, averaging is used to aggregate the genuine
comparison scores.

In the current study the GCS is utilised to evaluate the
similarity between different acquisition sessions contained in
the PLUS-MSL-FP dataset. A detailed description of this
publicly available dataset, including 10 sensors in total (named
EikonT, EikonS, IBCol, IBCurve, NB, RealScan, LumiM, Lu-
miV, URU, Zvetco), can be obtained from [8]. All comparison
scores used in this work were computed with the VeriFinger
SDK 12.1. Note that the GCS are only calculated using fingers
(subjects) which occur in all of the four PLUS-MSL-FP dataset
sessions.
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Fig. 1: Average genuine comparison score for different ses-
sions. Each impression of Session 1 is matched against every
mated sample in another session.

Figure 1 shows the GCS obtained by the comparison of all
FP impressions in Session 1 with all mated impressions in
Session k where k denotes a session number from 1-4. Figure
2 shows the same evaluation but for all FP impressions in
Session 2 compared with impressions from Session k = 2, 3, 4.
It can be observed that the average intra-session GCS is always
considerably higher than the corresponding inter-session GCS.
However, this behaviour can easily be justified by visually

lhttps://www.innovatlrics.com; accessed on 2022-08-16)

Zhttps://www.neurotechnology.com/verifinger.html; accessed on 2022-08-
16)

3https://www.nist.gov/services-resources/software/nist-biometric-image-
software-nbis; accessed on 2022-08-16)
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Fig. 2: Average genuine comparison score for different ses-
sions. Each impression of Session 2 is matched against every
mated impression in another session.

comparing the FPs of different sessions. Apparently subject’s
FPs within a session have a similar appearance with respect
to factors such as alignment, contact pressure, etc.. A visual
comparison of FPs captured in different sessions can be found
in the Appendix in Figure 6. Note that the high intra-session
GCS do not result from FP impressions being compared to
itself which obviously will lead to high GCS.

Interestingly, comparing the intra-session scores from Ses-
sion 1 to Session 2 with regard to the average GCS, a similar
behaviour of the FPs can be found, although it is known that
subjects were allowed to hold the sensor in their hands from
the second session on, while they were prohibited in the first
session.

Looking at the average inter-session GCS in detail, a
possible trend can be recognized depicted by an average score
decrease if the time-interval between two FPs being captured
increases. In Figure 1, in case of 7 out of 10 sensors the
FP impression similarity becomes worst when samples from
Session 1 are compared with samples from Session 4 (longest
time-interval between two sessions). In case of RealScan, the
similarity score remains relatively stable across all sessions
with Session 1-4 exhibiting the highest similarity. Only in case
of LumiV and URU, the similarity of Session 1-4 comparison
clear outperforms the other session comparisons. A similar
behaviour can be seen when looking at comparisons with
samples from Session 2. In Figure 2, the tendency for FP
impression similarity to decrease over time can be found in
8 out 10 cases with GCS of samples from Session 2 and
4 being compared to be the worst. Again, only LumiV and
URU do not agree with the overall trend. Apart from subject-
and environmental-specific variations in general, this overall
trend might also be explainable by template ageing as sensor
specific influences have been ruled out [9], [10]. Interestingly,
the annual GCS drop is in line with the study [4] on FP ageing
which reported an annual decrease of the comparison scores
by around 2-3%.



III. NETWORK ARCHITECTURE AND EXPERIMENTAL
SETUP

In the previous section, a high difference in GCS for intra-

and inter-session comparisons was observed, while quality is
fairly stable across sessions as reported in [8] for the same
dataset. As already discussed, subject- and/or environmental
variations can lead to changes in the FP templates which
subsequently affect the recognition performance (template
ageing), but are not detectable as quality degradation. Yet,
it is unclear if a neural network can learn such FP-specific
variations. Traditional convolutional neural networks (CNNSs)
operating directly on 2D FP imagery might be sensitive to all
kinds of variations, including non-subject specific effects such
as sensor noise. Hence, it is desirable to have control over
the features considered during learning. Point-cloud or graph-
based approaches might be better suited for this task as input
features can be precisely controlled.
As a proof of concept, a neural network architecture used for
point cloud classification (PointNet [11]) is adapted to directly
process a set of minutiae locations. The proposed architecture
is therefore called Minutiae Position Net (MPNet) in this
work. It is trained to separate FPs acquired during different
acquisition session solely based on minutiae point locations.
Thus, the result of the session prediction can only be affected
by minutiae point-specific variations.

A. Minutiae Position Net (MPNet)

MPNet is a network architecture that can process unordered
2D point sets and is essentially a simplified version of PointNet
[11] where the two registration submodules have been omitted.
Figure 3 shows the building blocks of MPNet. To bring the
minutiae points obtained from the Verifinger SDK in a suitable
format for MPNet, at first 40 points have been randomly
sampled # from the minutiae point set. Then the set of minutiae
locations {(z;,z;)} where ¢ € [0,40) is transformed as
follows: (i) Normalize the range between 0 — 1 by dividing
through the image size. (ii) Center the point set around the
origin. In other words, we update each minutiae point (z;, y;)
with z; = #; — [min({zo, ..., 2n}) + max({zo,...,an})]/2
and y; = y; — [min({yo, ..., yn }) + max({yo, ..., yn })] /2.
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Fig. 3: MPNet takes n points as input and aggregates point
features by max pooling. The output is classification scores for
two classes (sessions). “mlp” stands for multi-layer perceptron,
numbers in bracket are layer sizes. Batchnorm is used for all
layers with ReLU.

4Number chosen empirically by analysing the number of minutiae in the
FPs. Random sampling guarantees that can get “seen” if the number of
minutiae in a FP exceeds 40

The network is trained using a Binary Cross Entropy loss
and an ADAM [12] optimizer (7,4, = 10~3) over a period of
15000 epochs with a batch size of 1024. Training samples are
augmented by randomly rotating (£180), horizontal / vertical
shifting (£0.1) and jittering (£0.02) of the point set.

B. Sampling Strategies

In the course of the experimental evaluation two different
sampling strategies for training and test data are applied. They
are described in the following:

Random-Stratified (RS): As the naming implies FP im-
prints are sampled completely randomly but in a stratified way
to follow the class distribution. In this scenario, at least one
imprint from each finger and session contained in the test set
is most likely also included in the training set (e.g., the first
imprint of a subject’s thumb in Session 1 is contained in test
set, while the second imprint of the thumb is contained in
the training set). Hence, the model is allowed to learn finger-
specific properties. 80% of the imprints are used for training
and 20% of the imprints are used for testing.

User-Strict (US): In this scenario, subject-wise sampling is
performed to ensure that no imprints from a subject in the test
set are present in the training set. If the model now learns
finger-specific features, it will result in overfitting. Hence,
when evaluating the model’s performance only generalizable
features, like environmental-specific ones, can be used to
correctly predict the session. 80% of the users are used for
training and 20% of the users are used for testing.

Experiments for each sampling strategy are run three times
using different training and test sets in each run. The reported
performance is the average performance (average F1-score) of
all three runs.

C. Evaluation metric

The separation between two acquisition sessions can be
interpreted as a two-class (binary) classification problem.
Thus, several metrics can be considered for evaluation, e.g.,
precision, recall, accuracy and Fl-score. As it is not possible
to exclude class imbalances and false positives and false
negatives are important, the F1-score (harmonic mean of the
recall and precision) is used in this work as defined in Equation
1, where TP denotes the true positives, FP the false positives
and FN the false negatives.

_ 2T P
 2TP+FP+FN

F1 (1

Note that an Fl-score greater than 0.5 does not imply a
performance better than random. However, it is possible to
derive a lower bound for a random predictor as described
below in Equation 2, where |Y| denotes the number of classes
(in the binary case |Y| = 2). Furthermore, « represents the
relative number of samples from one class and (1 — «) the
relative number of samples belonging to the other class, while
N depicts the total amount of samples.
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Fig. 4: Average Fl-scores for the RS sampling scenario computed from three runs.
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Subsequently, for each of the given two classes a lower
bound for a random prediction can be computed. These values
are used in Section IV as so called “prediction by chance”
in Figures 4 and 5, while the other values represent the F1
scores for each sensor contained in the utilised PLUS-MSL-
FP dataset.

IV. RESULTS

The Figures 4 (RS sampling) and 5 (US sampling) show
the average F1-scores over three runs for the session classifi-
cation problem. The vertical dashed line separates the different
session-specific experiments, i.e., discriminating FPs between

sessions S1 and S2, S1 and S3, S1 and S4, S2 and S3, S2
and S4, as well as S3 and S4. The average Fl-scores for a
given class are illustrated by the different points (lines). For
example, in the leftmost plot of Figure 4 S1 and S2 should be
separated. Depending on which session is considered as the
positive class, two different Fl-scores can be obtained. The
points in the S1 column represent the Fl-scores, where S1 is
the positive class. In case of the S2 column, session S2 is the
positive class. The different colours correspond to the sensors
used for acquisition. Finally, the solid black lines represent the
random prediction boundary (see Equation 2).

It can be seen in the RS sampling scenario (Figure 4) that
the architecture is capable of separating the different sessions
fairly consistently (except for LumiV and NB in case of the
rightmost plot) as the random predictor is outperformed. In
case of US sampling (see Figure 5) a separation is impos-
sible. Note, that the US strategy is more complex as only
session-specific environmental differences can be learned by
the network (as no subject-specific properties between training
and test dataset are shared). Based on the observation that
a session separation is not possible in case of US, session-



specific environmental variances contained in the dataset can
be excluded. However, as a separation is possible in case of
RS, this allows to conclude that subject-specific properties
contain enough discriminative information to distinguish be-
tween sessions. In other words, there exists a subject-specific
property (but not a generalisable one across different subjects),
which is characteristic for a single session.

Based on the GCS analysis performed in Section II, the
initial hypothesis was that FP minutiae allow to separate
between sessions to a certain extent. Hence, the obtained
results are in line with this hypothesis. Although, it is not
clear if these positional variations are introduced by reasons
resulting in template ageing or by other natural variances (e.g.,
sensor contact pressure). Furthermore, it can be concluded that
environmental-specific variations that might affect minutiae
positions are of less importance. Otherwise, a separation in
the US sampling scenario would also be possible (at least for
some Sensors).

V. CONCLUSION

This work proposes the use of a genuine comparison scores

(GCS) as a measure for FP variability, while quality measures
might not be suited for this purpose. By design, the GCS
metric only considers features relevant for FP comparison,
in particular minutiae points. Subsequently, the amount of
variability exhibited in the PLUS-MSL-FP dataset is measured
by applying GCS. Later on, the usefulness of point-cloud
based neural networks is demonstrated by separating the differ-
ent acquisition session contained in the dataset, solely using
minutiae locations. It turned out, that MPNet is capable of
separating between sessions in case random stratified sampling
is employed. Hence, it can be concluded that only finger-
specific variances are important for this separation.
In future work, additional features, such as minutiae angle,
are planned to be included as input parameter. Furthermore,
session separation can be considered as a multi-class classi-
fication problem. Additionally, it seems plausible that given
a longitudinal FP dataset captured over a long period of
time, point-cloud based neural networks can be used to study
physical FP ageing by trying to learn an “age” feature space
in which impressions captured close in time are also close
to each other in the feature space. Point-cloud based neural
networks could also be considered for FP synthesis to improve
the diversity of generated FPs or to preserve the identity of a
subject. For example, it would be conceivable to use a point-
cloud based neural network as an encoder for the inversion
of StyleGAN2 [13]. The encoder can be trained to directly
transfer minutiae points into the latent space of StyleGAN2
and obtain the corresponding subject in the latent space.

REFERENCES

[1] 1. ISO, “Tec 19795-1: Information technology-biometric performance
testing and reporting-part 1: Principles and framework,” ISO/IEC, Editor,
vol. 1, no. 3, p. 5, 2006.

[2] M. Drahansky, M. Dolezel, J. Urbanek, E. Brezinova, and T.-h. Kim,
“Influence of skin diseases on fingerprint recognition,” Journal of
Biomedicine and Biotechnology, vol. 2012, 2012.

(31

[4

=

(5]

[6

—_

[7

—

[8

[t

(9]

(10]

[11]

[12]

[13]

S. K. Modi, S. J. Elliott, J. Whetsone, and H. Kim, “Impact of age
groups on fingerprint recognition performance,” in 2007 IEEE Workshop
on Automatic Identification Advanced Technologies. 1EEE, 2007, pp.
19-23.

J. Galbally, R. Haraksim, and L. Beslay, “A study of age and ageing
in fingerprint biometrics,” IEEE Transactions on Information Forensics
and Security, vol. 14, no. 5, pp. 1351-1365, 2018.

S. Yoon and A. K. Jain, “Longitudinal study of fingerprint recognition,”
Proceedings of the National Academy of Sciences, vol. 112, no. 28, pp.
8555-8560, 2015.

S. Kirchgasser, A. Uhl, K. Castillo-Rosado, D. Estévez-Breso,
E. Rodriguez-Hernandez, and J. Hernandez-Palancar, “Fingerprint tem-
plate ageing revisited-it’s the quality, stupid!” in 2018 IEEE 9th Inter-
national Conference on Biometrics Theory, Applications and Systems
(BTAS). 1EEE, 2018, pp. 1-9.

R. Kessler, O. Henniger, and C. Busch, “Fingerprints, forever young?”
in 2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 8647-8654.

S. Kirchgasser, C. Kauba, and A. Uhl, “The plus multi-sensor and
longitudinal fingerprint dataset: An initial quality and performance
evaluation,” IEEE Transactions on Biometrics, Behavior, and Identity
Science, pp. 1-13, 2021.

C. Kauba and A. Uhl, “Fingerprint recognition under the influence
of sensor ageing,” IET Biometrics, vol. 4, no. 6, pp. 245-255, 2016.
[Online]. Available: http://dx.doi.org/10.1049/iet-bmt.2016.0106

R. Joechl and A. Uhl, “Apart from in-field sensor defects, are there
additional age traces hidden in a digital image?” in Proceedings of
the IEEE Workshop on Information Forensics and Security (WIFS2021),
Montpellier, France, 2021, pp. 1-6, accepted.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652-660.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila,
“Training generative adversarial networks with limited data,” in Proc.
NeurIPS, 2020.



APPENDIX
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(a) Sensor: Eikon 710 Touch (a.k.a. EikonT)
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(b) Sensor: IB Columbo (a.k.a. IBCol)
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(c) Sensor: IB Curve (a.k.a. IBCurve)

Fig. 6: Illustrative comparison of FPs captured in Session 2 and 4 of the PLUS-MSL-FP dataset with different sensors. The

shown FPs originate from the left thumb of User 8.



(d) Sensor: Lumidigm M311 (a.k.a. LumiM)
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(e) Sensor: Lumidigm V311 (a.k.a. LumiV)
(f) Sensor: RealScan G1 (a.k.a. RealScan)

Fig. 6: Illustrative comparison of FPs captured in Session 2 and 4 of the PLUS-MSL-FP dataset with different sensors. The

shown FPs originate from the left thumb of User 8.



(g) Sensor: NB-3010 (a.k.a. NB)
(h) Sensor: URU 5100 (a.k.a URU)
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MSL-FP dataset with different sensors. The

(i) Sensor: Zvetco P5000 (a.k.a. Zvetco)

Fig. 6: Illustrative comparison of FPs captured in Session 2 and 4 of the PLUS

shown FPs originate from the left thumb of User 8.



