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Abstract

2D contactless to contact-based fingerprint (FP) com-
parison is a challenging task due to different types of dis-
tortion introduced during the capturing process. While
contact-based FPs typically exhibit a wide range of elastic
distortions, perspective distortions pose a problem in con-
tactless FP imagery. In this work, we investigate three sim-
ple parametric warping models for contactless fingerprints
— circular, elliptical and bidirectional warping — and show
that these models can be used to improve the interoperabil-
ity between the two modalities by simulating unfolding of a
generic 3D model. Additionally, we employ score fusion as
a technique to enhance the comparison performance in sce-
narios where multiple contactless FPs of the same finger are
available. Using the simple circular warping, we have been
able to decrease the Equal Error Rate (EER) from 1.79% to
0.78% and 1.82% to 1.31% on our dataset, respectively.

1. Introduction

During the last decade, many solutions for contactless
FP recognition have been developed [7]. These solutions
offer many advantages over traditional contact-based solu-
tions such as better hygiene and better user acceptance due
to the less constrainted capturing environment. However,
the fact that FPs have been acquired in a contact-based man-
ner for decades raises the question if an ”old” contact-based
FP can be compared with a ”new” contactless FP.

From several publications [11, 12, 14] we know that
the FP comparison performance drops dramatically when
comparison FPs captured with different sensors, especially
when the fingerprints are captured with contactless and
contact-based sensors [2, 15, 9, 5, 8]. An obvious rea-
son that negatively impacts the sensor interoperability of
contact-based and contactless FPs, is in the nature of
contact-based FP acquisition where a finger is pressed or

rolled against a platten surface. Pressing/Rolling inevitably
leads to elastic distortions. On the other hand, contactless
FP sensors have a higher risk of being negatively impacted
by perspective distortions due to the high degree of freedom
available to fingers along the three axes during the sensing.

Various publications directly address the problem of
the elastic distortions in the context of 2D contactless to
contact-based FP comparison. Lin and Kumar [10] pro-
posed a generalized deformation correction model which
relies on robust thin-plate splines. The authors concluded
that the current cross-comparison error rates are not yet low
enough for deployment but perspective distortion correction
is expected to reduce the error rates.

Dabouei et al. [3] proposed the use of a TPS (Thin Plate
Spline) model with warping parameters directly learned by
a neural network. Their method also implicitly provides
a way to transfer the style of contact-based FP images
to contactless images. We ourselves we found their ap-
proach to have problems if contact-based FP impressions
as groundtruth for training exhibit strongly varying defor-
mations, rotations and positions.

A solution to this problem was recently presented in [6].
Instead of directly using contact-based FPs as groundtruth
for TPS parameter prediction, textural representations from
2D contact-based and 2D contactless FPs extracted using a
CNN (DeepPrint [4]) were used as groundtruth. Unfortu-
nately, the approach also requires a (pre-)trained DeepPrint
model.

Not directly concerned with contact-based to contactless
FP comparison but concerned with the problem of compar-
ing multiple contactless FPs is [13]. The authors presented
a CNN-based core point detection and pose-compensation
approach in order to address unwanted pose changes with
contactless FP samples. In their work the authors made
use of an ellipsoidal model to approximate the shape of the
finger.
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1.1. Our work

Our work deals with the problem of 2D contactless to
contact-based FP comparison. Recent work [13] showed
that a simple parametric ellipsoidal model can be used to
compensate the finger pose in contactless FP imagery by
projecting the finger onto an ellipsoid and rotating the ellip-
soid in 3D space. This raises the question if the approach
can be extended to work for contactless to contact-based FP
comparison by unfolding the 3D model onto a 2D plane.
To answer this question we propose three different warp-
ing methods (circular, elliptical and bidirectional) which are
based on three different parametric 3D models. We then
test their ability to mimic the physical deformation of a fin-
ger that is pressed against a platen surface by investigat-
ing whether the contactless to contact-based FP comparison
performance is improved. Additionally, we test max/mean
score fusion as a technique to improve the comparison per-
formance for scenarios where multiple contactless images
are available. All experiments are conducted on a chal-
lenging, self-acquired dataset of contactless and contact-
based FP images. All contactless FP images were captured
with an standard iPhone without imposing restrictions on
the hand placement or camera placement. Only the distance
to the camera was implicitly constrainted by the use of a
fixed focal length lens setting.

The paper is organized as follows: In Sec. 2 we present
the three different warping methods/models which are in-
vestigated in this work. In Sec. 3 we detail the experimental
setup. We introduce the dataset, explain the FP comparison
pipeline and score fusion. In Sec 4 we report and discuss the
results and in Sec. 5 we provide some concluding remarks.

2. Contactless fingerprints warping based on
simple parametric 3D models

Contact-based fingerprints are typically captured by
pressing or rolling of the finger against a platen surface.
The result is a physical deformation of the skin due to
the rolling motion. To be able to compare a contact-less
fingerprint with a conventional contact-based fingerprint
we need to simulate the physical deformation caused by
the rolling motion by means of warping of the contactless
fingerprint. Generally, this boils down to unfolding a 3D
object (i.e., a 3D fingertip) onto a flat 2D plane. However,
reconstructing the exact 3D shape of a finger from a set
of contactless fingerprint is an extremely challenging
tasks and it is almost impossible if we are only given a
single fingerprint image. To overcome this problem in this
work, we approximate the 3D finger shape using a simple
parametric model for the finger such as a cylinder. Given
a front-view image of the finger, we obtain the unwarped
fingerprint by projecting the fingerprint texture onto the

rotation rotation
Right Left

Figure 1: Illustration of the idea behind circular warping.
The top row shows the rotation around the longitudinal axis
which we want to simulate. The bottom row shows how
this rotation looks in the circular model. The circular finger
slice is rotated and rolled off onto a flat plane.

3D-parametric model and unfolding the parametric model
by simulating a rotation in various directions.

Circular warping: A cylinder c parameterized by ra-
dius rc and height hc is used to model the shape of the
finger. For a given contactless fingerprint image I , we
choose rc = w

2 and hc = h
2 where w denotes the width

and h the height of the fingerprint image. We think of
model warping as of a simulated roll-off motion around the
longitudinal finger axis onto a flat ”roll-off” plane L. An
example of this process is illustrated in Figure 1. To find
the point (Lx, Ly) on the roll-off plane L that corresponds
to the point (Ix, Iy) in the fingerprint image I , we need to
calculate the arc length of the circular curvature for each
horizontal cylinder slice. The resulting warping function
that solves this task is shown in Eqn. 1.

Lx = rc · arcsin
(Ix
rc

)

Ly = Iy

(1)

Elliptical warping: Alternatively, taking into account that
each slice of the finger is shaped more like an ellipse rather
than a circle, we can approximate the shape of the finger
using an 3D ellipsoid e parameterized by the length of the
major axis ae, the length of the minor axis be and the height
he. Similar to the authors in [13], we consider a fixed ratio
of 1.2 between the major and minor axis where be = ae

1.2 .
he is again chosen based on the height of the fingerprint
I . Similar to the cylindrical model, we need to ”unfold”
the fingerprint by simulating a roll-off motion onto a 2D
plane L. To accomplish this we also need to compute the
arc length of ellipse of each slice of the ellipsoid. Therefore
recall the standard parametric representation of an ellipse
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which is shown in Eqn. 2 where x and y represent points on
the ellipse.

x = a · cos(t)
y = b · sin(t)

where

t =
[
0, 2π

)
(2)

To calculate the arc length between two points (x1, y1),
(x2, y2) on the ellipse, we first have to calculate the cor-
responding angles t1 and t2 using the parametric equation.
Knowing both angles we can calculate the arc length using
Eqn. 3.

L(t1, t2) =

∫ t2

t1

√
b2 cos2(t) + a2 sin2(t) dt (3)

Next, to take into account that to simulate the fingerprint
roll-off motion we only have to simulate the roll-off motion
for a single half-circle, we fix the lower integration bound-
ary t1 = 0. The result is the warping function shown in
Eqn. 4. Also note the term Lmax

2 which ensures that the
origin of the roll-off plane L is shifted to the center of the
unwarped image.

Lx =
Lmax

2
−
∫ Tx

0

√
b2e cos

2(t) + a2e sin
2(t) dt

Ly = Iy

where

Tx = arccos
(Ix
ae

)

Lmax = L(0, π)

(4)

Bidirectional warping:
So far, the cylindrical as well as the ellipsoidal model,

only address finger deformations in the direction of the
transversal axis. However, the tip of the fingertip is not only
bent in transversal direction but also in longitudinal direc-
tion. To simulate a rotation around the transversal axis (be-
sides to the rotation around the longitudinal axis) as shown
in Fig. 2, we need to extend the 3D parametric in a way to
it also models the curvature of the fingertip. To accomplish
this we extend the cylindrical model by rounding off the top
part of a cylinder to model the fingertip. Figure 3 shows
the front view, top view and side view of the parametric
model for the finger. Unfolding this 3D model requires us
to not only simulate a rotation around the longitudinal axis
but also around the tranversal axis for top part of the finger-
tip. Looking at Figure 3, we can derive the equations for the
heights hXY (x), hXZ(x) and hY Z(y) for each point x or y
on the x-axis or y-axis. The resulting equations are shown
in Eqn. 5.

Figure 2: Example of the transversal finger rotation which
we want to simulate with the bidirectional model

hXY (x) = rmax · sin
(
arccos

( x

rmax

))

hXZ(x) = rmax · sin
(
arccos

( x

rmax

))

hY Z(y) = rmax · sin
(
arccos

( y

rmax

))
(5)

As can be seen in Eqn. 5, the height equation is the same
for every view. Hence, the radius of the warping circle r(?)
for any point ? can be defined as shown in Eqn. 6.

r(?) = hXY (?) = hXZ(?) = hY Z(?) (6)

Combining Eqn. 6 with the warping equation of the cylin-
drical model (Eqn. 1) yields the warping equation for the
bidirection warping model shown in Eqn. 7.

Lx =




r(Iy) · arcsin

(
Ix

r(Iy)

)
if Iy ≥ 0

rmax · arcsin
(

Ix
rmax

)
if Iy < 0

Ly =

{
r(Ix) · arcsin

(
Iy

r(Ix)

)
if Iy ≥ 0

Iy if Iy < 0

(7)

3. Experimental setup
To evaluate how the different warping models presented

in Sec. 2 affect the contactless to contact-based compar-
ison performance, we used a commercial state-of-the-art
FP recognition system (Neurotechnology VeriFinger SDK
11.1) to extract FP templates from three different datasets
and to compare them using the full match protocol. The full
match protocol computes all possible permutations of con-
tactless to contact-based FP pairs. We compute and report
the comparison performance for three different datasets us-
ing the EER.

3.1. Datasets

In this work, three datasets consisting of 2D contactless
and contact-based fingerprints were acquired from 28
volunteers. Contactless fingerprints for each dataset were
extracted from videos showing an individual’s hand from
different perspectives. These videos were recorded with
an iPhone 10 running a camera app that allows to fix the
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Figure 3: The finger model used for bidirectional warping shown in frontal, top and side view.

focal length of the camera lens. Fixing the focal length
is beneficial as it allows to constraint the pixel density
(Dots-per-Inch, a.k.a. DPI) of the contactless FPs. Since
contact-based FPs are normalized to 500 DPI, the same
needs to be done to contactless FPs. For obvious reasons,
correcting the pixel density (DPI) is difficult if we do not
know the resolution of the source image. However, due
to the fixed lens setting, we can conclude that contactless
FP images in our dataset which appear to be in-focus
should exhibit a pixel density of around 900 DPI. To
identify whether a contactless FP is in-focus or not, we
first segmented and cropped out the fingertips from each
video frame using a segmentation network (Deeplab [1]).
We then assessed the quality of each fingerprint with the
quality metric proposed in [8].

Dataset A (DB-A): The dataset is composed of 880
contactless FP images and 880 contact-based FP images
captured from eleven individuals (eight fingers per individ-
ual). Fingertips of the index, middle, ring and pinky fingers
were extracted from the video frames as explained above
and ranked according to their quality. We then selected
the ten highest quality frames available for each finger by
hand. With ”by hand” we mean that the correctness/quality
of each image was verified by a human. For instance,
images which exhibit a high quality score but are strongly
rotated have not been added to the dataset. Contact-based
samples were captured using the Greenbit DactyScan84C
FP scanner. Ten contactless FPs of each finger were
captured from each individual. Sample images from the
dataset are shown in Figure 4a.

Dataset B (DB-B): The dataset is composed of 1360
contactless FP images and 680 contact-based FP images
captured from 17 individuals (eight fingers per individual).
Two videos (indoor/outdoor) were recorded from each
hand of the individual. As in the case of DB-A, we selected

the ten highest quality contactless FP images of each finger
by hand. Five contact-based fingerprints of each finger
were captured using a Suprema RealScan-G1 FP scanner.
Sample images from the dataset are shown in Figure 4b.

Dataset C (DB-C): To increase the credibility of EERs for
experiments where score fusion is applied, we decided to
build another dataset with an increased number of genuine
pairs out of DB-B’s raw video footage. The dataset uses
the same videos and contact-based FPs as dataset DB-B.
However, in contrast to DB-B we fully automatically
extracted and selected the ten highest quality FP images
for each finger in every single video. Consequently, the
dataset has almost twice as many contactless FP images
(2680 contactless images) as dataset DB-B. Note that by
”fully automatic” we mean that contactless FP images
extraction and selection entirely relies on the output of
the segmentation network and quality metric — no human
validating the data was involved. For this reason, we also
expect DB-C to be more challenging than dataset DB-B.
Sample images from the dataset are shown in Figure 4c.

3.2. FP image comparison pipeline

Given a contactless FP as well as a contact-based FP
sample, we first applied one of the three warping mod-
els presented in Sec. 2 to the contactless RGB FP image.
Examples of the warped images can be found in Fig. 5.
We then postprocessed the unwarped FP using the FP en-
hancement technique which has been shown to work well
for contactless images in [8]. Applying the enhancement
technique to the contactless FP, the unwarped image is first
transformed to the greyscale domain where grey value in-
version as well as horizontal flipping is applied. Next, the
image is de-blurred by substracting an average-filtered ver-
sion of the image from the greyscaled and flipped imprint.
In the last step, CLAHE [16] is used to enhance the contrast
of the image followed by area adaption. Area adaption en-
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(a) Dataset DB-A

(b) Dataset DB-B

(c) Dataset DB-C

Figure 4: Contactless and contact-based FP samples from
each of the three datasets

sures that the contactlessly captured FPs have similar shapes
to contact-based samples.

After warping and enhancing of the contactless FP, the
resulting FP is compared against the contact-based FP using
a commercial state-of-the-art FP recognition system (Neu-
rotechnology VeriFinger SDK 11.1). As we already pointed
out, the pixel density (DPI) plays an important role when
comparing FPs. To address the problem of varying FP tem-
plate resolutions, VeriFinger SDK provides an option to
specify the DPI of the given image. Note that if the op-
tion was not given, we would have to rescale the image to
500 DPI ourselves. As we know that contactless images in
our dataset have approx. 900 DPI, we test three different
types of DPI settings: 850 DPI, 950 DPI and DPI Fused.
In the case of DPI Fused, the unwarped and enhanced FP
is compared against the contact-based FP two times (using
850 DPI and 950 DPI). The higher score is then used as the
final match score.

3.3. Multi-image FP comparison using score fusion

The fact that we have captured multiple contactless FP
images of the same finger, raises the question whether we
can somehow combine images of the same finger to the
comparison performance. A naive strategy is max/mean
score fusion. Given a set of contactless FP images (ten
samples in our case) and a single contact-based FP image,
we compare each contactless sample against the contact-
based sample. Based on the chosen score fusion strategy,
we either selected the maximum match score or mean match
score for the selected samples. Note that we only report fu-
sion results for datasets DB-C as score fusion has the draw-

(a) Non-warped image (b) Circular warping

(c) Elliptic warping (d) Bidirectional warping

Figure 5: Comparison of different warping models applied
to the non-warped image (top-left).

back of reducing the number of genuine/imposter compari-
son scores and so the credibility of the measured EER. For
example, in case of DB-A the initial number of genuine
comparison scores (when no score fusion is applied) was
8800. Applying score fusion reduced to number to only
880. In case of DB-B, the number of genuine comparison
scores was reduced from 6800 to 680. Hence, the resolu-
tion of the FMR axis is only 0.11% and 0.15%, respectively.
In the case of DB-C we at least retain 1340 genuine com-
parison scores resulting in a FMR axis resolution of 0.07%
when fusing the scores.

4. Experimental results
4.1. The impact of FP warping on the comparison

performance

Table 1 shows the contactless to contact-based FP com-
parison performance (EER in %) for the different datasets
and pixel densities. As can be seen in the results, the choice
of the pixel density has a strong impact on the EER. Look-
ing at the scenario where no warping is applied (warping
model ”None”), we can notice that EERs are considerably
different depending on whether the pixel density is set to
850 DPI or 950 DPI. For instance, in the case of DB-A, the
EER is only 1.62% for 850 DPI but 3.47% for 950 DPI. The
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Warping
model DB-A DB-B DB-C

850 DPI 950 DPI DPI Fused 850 DPI 950 DPI DPI Fused 850 DPI 950 DPI DPI Fused
None 1.62% 3.47% 1.79% 2.93% 2.38% 1.82% 2.48% 2.56% 1.83%

Circular 0.85% 1.95% 0.78% 3.42% 1.69% 1.31% 2.65% 1.85% 1.52%
Elliptical 0.88% 2.47% 0.93% 2.95% 1.77% 1.31% 2.49% 1.97% 1.53%

Bidirectional 0.84% 2.01% 0.88% 4.58% 1.62% 1.42% 3.81% 1.85% 1.66%

Table 1: Comparison of the contactless to contact-based FP comparison performance (EER in %) of the different warping
models. The best (lowest) EER in each column is highlighted in green.

Warping
model No Score Fusion Max Score Fusion Mean Score Fusion

850 DPI 950 DPI DPI Fused 850 DPI 950 DPI DPI Fused 850 DPI 950 DPI DPI Fused
None 2.48% 2.56% 1.83% 1.01% 1.09% 0.87% 1.13% 1.27% 0.97%

Circular 2.65% 1.85% 1.52% 1.10% 0.88% 0.96% 1.22% 0.81% 0.82%
Elliptical 2.49% 1.97% 1.53% 1.09% 1.09% 0.79% 1.05% 1.05% 0.74%

Bidirectional 3.81% 1.85% 1.66% 1.12% 0.81% 0.70% 1.94% 0.74% 0.75%

Table 2: Comparison of the contactless to contact-based FP comparison performance (EER in %) for dataset DB-C when
max/mean score fusion is applied. The best (lowest) EER in each column is highlighted in green.

contrary is the case for DB-B. The EER has decreased from
2.93% (850 DPI) to 2.38% (950 DPI). Fortunately, score
fusion of different DPIs seems to be a reasonable option to
cope with the problem of different pixel densities. As can
be seen in the columns DPI Fused, the reported EERs tend
to be relatively robust.

Taking a look at the overall comparison performance, we
can see that warping almost always provides better results
than omitting the warping step. In particular it is interesting
to see that the simplest warping method (Circular warping)
worked best most of the time, especially in the case of DPI
Fused. This suggest that it is not worth applying the more
complex warping methods. Note that in the case of DB-A
(DPI Fused), the EER decreased by more than half (from
1.79% to 0.78%). In the case of DB-B and DB-C the EER
decreased by around 0.5% and 0.3% in the DPI Fused set-
ting, respectively. However, it should also be mentioned
that in some cases warping has increased the EER, i.e., in
the case of DB-B (850 DPI) and DB-C (850 DPI). The fact
that this behavior becomes apparent for all warping meth-
ods might be caused by the choice of the pixel density.

4.2. Computational costs

To be able to use a warping method in practice, not only
the comparison performance but also the time required to
warp an image play an important role. Hence we want to
briefly comment on the computational costs of each method.
Circular warping was straightforward to implement and the
fastest warping method in our experiment with an average

warping time of 4.4 ms/image. Elliptical warping was more
challenging to implement in a time-efficient manner. Unfor-
tunately, there exists no closed form solution for the integral
which has to be solved to obtain the arc length of an ellipse
and solving the integral numerically is slow. In our experi-
ment, elliptical warping using a numeric integral solver took
652 ms/image. However, we were able to achieve a signif-
icant speed by precomputing points located on the unit el-
lipse. For a given image, we then rescaled the precomputed
point set and linearly sampled the relevant points. This way
it took only 5.7 ms to elliptically warp an image. The slow-
est method in our expirement was the bidirectional warping.
Unfortunately, computing the inverse mapping of the bidi-
rectional warping function is difficult as it requires to solve
a complex non-linear equation system. For this reason bidi-
rectional warping of an image took around 13 sec/image
using our implementation. However, we strongly believe
that it is possible to speed up the bidirectional warping by
means of a rescaling/sampling approach.

4.3. The impact of score fusion on the comparison
performance

As discussed in Sec. 3.3 the availability of multiple con-
tactless images raises the question whether fusing the match
scores for those image can be used to improve the FP com-
parison performance. The results for dataset DB-C when
max/mean score fusion is applied are shown in Table 2. As
can be immediately seen in the table, score fusion clearly
improves the comparison performance no matter if warping
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is applied or not. In both fusion methods, max and mean
fusion, improve the EER by more than a half. The best
results are achieved if max/mean score fusion is combined
with DPI fusion. This seems obvious since this is more or
less a combination of best of both worlds.

Again we can notice a similar behavior as reported in Ta-
ble 1 where warping improves the comparison performance
in almost any case. However, this time circular warping can
not be claimed to work best. Instead, taking into account
that elliptical warping is on a par with bidirectional warping
in the Mean Fusion case, we can claim bidirectional warp-
ing to work best. Why this is the case is not entirely clear at
this point. Further experiments using more data need to be
done to investigate this phenomenon.

Finally, we briefly want to comment on the score fusion
results for DB-A and DB-B. As explained in Sec. 3.3 the fu-
sion score analysis for these datasets lack credibility due to
the limited number of genuine comparison scores where-
fore we decided to not provide a detailed comparison of
the different warping methods when score fusion is applied.
However, we can still comment on the overall trend. Sim-
ilar to DB-C, we could see max/mean score fusion clearly
improves the result. For pixel density, in case of max fu-
sion DB-A / DPI Fused / No warping the EER dropped
from 1.79% to 0.26% and in case of DB-B / DPI Fused /
No warping it dropped from 1.82% to 0.37%. Considering
the limited number of genuine comparison scores, we can
only say that warping overall tends to improve the result.

5. Conclusion

In this work, we have dealt with the problem of phys-
ical deformations in the context of 2D contactless to 2D
contact-based FP comparison. We have proposed and in-
vestigated three simple parametric warping models (circu-
lar, elliptical and bidirectional warping) which can warp a
contactless FP to better match contact-based FPs. Besides
that, we have shown score fusion to be an effective and easy
way to improve the FP comparison performance for sce-
narios where multiple contactless FP images for the same
finger are available. All methods were tested on a dataset
composed of challenging contactless FP images which were
captured with a standard smartphone and strong perspective
distortions. Our results show that warping, in particular cir-
cular warping, is an simple tool to improve the contactless
to contact-based FP comparison performance. Using circu-
lar warping we were able to decrease the EER from 1.79%
to 0.78% and 1.82% to 1.31% on our datasets, respectively.
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[8] C. Kauba, D. Söllinger, S. Kirchgasser, A. Weissenfeld,
G. Fernández Domı́nguez, B. Strobl, and A. Uhl. Towards
using police officers business smartphones for contactless
fingerprint acquisition and enabling fingerprint comparison
against contact-based datasets. Sensors, 21(7):2248, 2021.

[9] J. Libert, J. Libert, J. Grantham, B. Bandini, K. Ko,
S. Orandi, and C. Watson. Interoperability assessment 2019:
Contactless-to-contact fingerprint capture. US Department
of Commerce, National Institute of Standards and Technol-
ogy, 2020.

[10] C. Lin and A. Kumar. Matching contactless and contact-
based conventional fingerprint images for biometrics iden-
tification. IEEE Transactions on Image Processing,
27(4):2008–2021, 2018.

[11] A. Ross and R. Nadgir. A calibration model for fingerprint
sensor interoperability. In Biometric Technology for Human
Identification III, volume 6202, page 62020B. International
Society for Optics and Photonics, 2006.

[12] A. Ross and R. Nadgir. A thin-plate spline calibration model
for fingerprint sensor interoperability. IEEE Transactions on
Knowledge and Data Engineering, 20(8):1097–1110, 2008.

[13] H. Tan and A. Kumar. Towards more accurate contactless
fingerprint minutiae extraction and pose-invariant matching.
IEEE Transactions on Information Forensics and Security,
15:3924–3937, 2020.

[14] S. Wood and C. Wilson. Studies of plain-to-rolled fingerprint
matching using the nist algorithmic test bed (atb), 2004-09-
27 2004.

[15] W. Zhou, J. Hu, S. Wang, I. Petersen, and M. Bennamoun.
Performance evaluation of large 3d fingerprint databases.
Electronics letters, 50(15):1060–1061, 2014.

[16] K. Zuiderveld. Contrast limited adaptive histogram equal-
ization. Graphics gems, pages 474–485, 1994.

Authorized licensed use limited to: UNIVERSITY SALZBURG. Downloaded on September 29,2021 at 11:12:08 UTC from IEEE Xplore.  Restrictions apply. 


