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Abstract—We study the impact of highly correlated image
content on the estimated photo response non-uniformity (PRNU)
of a sensor unit and its impact on the sensor identification per-
formance. Based on eight publicly available finger vein datasets,
we show formally and experimentally that the nature of finger
vein imagery can cause the estimated PRNU to be biased by
image content and lead to a fairly bad PRNU estimate. Such bias
can cause a false increase in sensor identification performance
depending on the dataset composition. Our results indicate that
independent of the biometric modality, examining the quality of
the estimated PRNU is essential before the sensor identification
performance can be claimed to be good.

I. INTRODUCTION

In the field of digital image forensic the photo response non-
uniformity (PRNU) of an imaging sensor has emerged as an im-
portant tool for various forensic tasks like device identification,
device linking or the detection of digital forgeries. Inhomo-
geneity of silicon wafers and imperfections introduced during
the sensor manufacturing process cause varying sensitivity of
each pixel to light. The consequence is a sensor-specific, noise-
like pattern termed PRNU which is an intrinsic property of the
sensor and present in every image.

However, besides its applicability for forensic tasks in gen-
eral, the PRNU also turned out to be useful in the biometric
context. A common example is the detection of a fabricated
biometric trait that could have been injected at many points
within a biometric system. As fabricated biometric data can
be expected to exhibit a different PRNU than the source
sensor, PRNU-based sensor identification can be use to detect
fabricated data. In biometrics, most work in the field of sensor
identification deals with iris [1], [2], [3], [4], [5], [6] and finger-
print sensors [7]. Most of the work confirms that PRNU-based
approaches are well-suited for sensor identification, only in [5],
[6] considerably fluctuating equal error rates and thresholds
depending on the sensor were reported.

More recently, researchers studied the applicability of
PRNU-based sensor identification for finger vein imagery and
investigated which regions work best for sensor identification
[8]. The outcome was that PRNU-based sensor identification
works well for finger vein imagery but regions that contain
biometric trait (finger vein tissue) should be preferred over

background regions. The authors justified the poor performance
of background regions by the fact that the image content is
highly correlated in such regions.

However, in theory, extracted noise residuals should always
be independent of the image content. Consequently, if cor-
related content caused the poor performance, noise residuals
would have to be strongly contaminated with structures directly
inferred from the image content and the estimated fingerprint
be a poor estimate of the true sensor PRNU. In addition to that,
we would expect to see a false increase in sensor identification
performance considering the nature of publicly available finger
vein datasets and the fact that images of a dataset are typically
captured with the same sensor. In other words, there is a risk
of mixing up sensor identification with a task better referred as
”dataset identification”.

To better understand the problem simply consider a dataset
composed of visually similar-looking images captured with
two different sensors. In such case, the sensor identification
performance can be expected to be low if the estimated PRNU
is heavily biased by the image content as it is impossible to
identify the source sensor based on the image content. However,
if all images are captured with the same sensor — to the best of
our knowledge, this is the case for all publicly available finger
vein datasets available at this point — there is risk of achieving
a good identification performance although the classification is
based on image content rather than the PRNU.

In this work, we evaluate the impact of image content on
a sensor unit’s estimated PRNU in the context of finger vein
imagery. More precisely, we test whether the sensor identifica-
tion performance in image regions with characteristic, dataset-
specific structures outperforms regions without such structures.
Strong performance differences may indicate a strongly biased
PRNU and that we should be careful about the real sensor
identification performance. To develop an understanding of how
crucial this effect might be, we then analyze how image denois-
ing changes the correlation between residuals and the estimated
PRNU. As denoising destroys the residual information and
therefore the sensor PRNU, the image content can be expected
to have a huge effect on the identification performance if the
PRNU still strongly correlates with the residuals in case of

2020 25th International Conference on Pattern Recognition (ICPR)
Milan, Italy, Jan 10-15, 2021

978-1-7281-8808-9/20/$31.00 ©2020 IEEE 7782



denoised images.
Note that although this work has been conducted in the

context of finger veins, our findings can be equally transferred
to other biometric modalities. In fact, simple due to the na-
ture of biometric image acquisition where stable acquisition
conditions are typically desirable, it’s not unlikely that we
encounter highly correlated image content. As a result, it’s
highly probable that similar observation can be made for other
biometric modalities as well.

II. ESTIMATING THE SENSOR PRNU

A commonly used method for constructing the sensor PRNU
was proposed by Fridrich in [9]. For a set of N grayscale
images {I1, ..., IN} ∈ Rw×h taken by the same sensor, the
idea is to first extract the residual noise matrix Wk ∈ Rw×h

for each image Ik where k ∈ {1, ..., N} as shown in Eqn.
1. I(0)

k ∈ Rw×h denotes the ”true scene” image that would
be captured in the absence of imperfections/distortions such as
dark current, shot noise, etc.

Wk = Ik − I(0)
k (1)

The sensor PRNU K can then be estimated using MLE
(Maximum Likelihood Estimation) as shown in Eqn. 2. Note
that all matrix operations are understood element-wise.

K̂ =

∑N
k=1WkIk∑N
k=1 Ik

2
(2)

The challenge though is that I(0)
k is unknown in practice and

can only be approximated by F (Ik) where F is some denoising
function. Various denoising functions have been proposed to
allow I

(0)
k ≈ F (Ik). Examples for such denoising function

include the denoiser proposed by Lukas in Appendix A of
[10], Mihcak et al. in [11] and BM3D by Dabov et al. in
[12]. Additionally, a lot of effort went into the development
of enhancement techniques to improve the estimated residual
noise Wk.

III. ABOUT THE DIFFICULTY OF PRNU EXTRACTION FOR
FINGER VEIN IMAGERY

Despite the availability of different denoising methods opti-
mized for residual noise extraction, the quality of the estimated
PRNU can be shown to heavily depend on the image content in
strongly textured regions and around edges (regions with non-
smooth image content). This can be easily seen by comparing
the nature of regions with smooth/non-smooth image content
in the frequency domain. Due to the inability of the denoising
filter to separate content from noise perfectly, the remnant of
the image content in Ik − F (Ik) will be relatively large in
non-smooth regions due to structures, such as edges, being
confused with noise. In smooth regions, though, it will be
relatively small. For this very reason, [9] already stated that
images with high luminance and smooth content should be
prefered for PRNU estimation.

Considering the nature of publicly available finger vein
datasets, it can be seen that the assumption of ”smooth image

content” only holds for some subregions in the image. A
closer look at the sample images in Fig. 1 unveils that most
datasets exhibit what we refer to as regions with characteristic
structures. These are regions with edge-like structures, such
as the finger positioning apparatus or a prominent illumination
pattern, which are present in every single image of a dataset
and positionally stable (always appear at the same location in
the image), a.k.a. highly correlated image content.

To better understand the impact of such structures on the
PRNU estimate, we have to take a look on how Eqn. 2 is
derived in [9] and what assumptions are made during this
process. We therefore first look at the definition of the model for
the residual noise Wk where the term Ξk ∈ Rn×m represents
the sum of all noise/error components of the image Ik (such
as the dark current, offset or content leftover in Ik − F (Ik)).

Wk = Ik − F (Ik)

= IkK + Ξk

(3)

For the derivation of the ML estimator, it is then assumed that
the content leftover in Ik−F (Ik) in Ξk is small compared the
signal IkK and Ξk can be therefore considered as independent
of IkK.

However, as we already observed before, the assumption that
the content leftover is small does not apply for areas with
characteristic structures in finger vein images. As a result, it is
unreasonable to model Ξk by WGN (White Gaussian Noise) as
proposed in [9]. Things get even worse if we take into account
that our characteristic structures recur in every image. To make
this problem more obvious we denote the content leftover in
Ik−F (Ik) as Ψk and exclude it from the term Ξk. The resulting
model is shown in Eqn. 4. In this new model, the assumption
that Ξk can be modeled by WGN is again reasonable.

Wk = IkK + Ξk + Ψk (4)

Eqn. 4 can then be rewritten to Eqn. 5 by element-wise division
through Ik.

Wk

Ik
=
(
K +

Ψk

Ik

)
+

Ξk

Ik
(5)

As can be seen in Eqn. 5, we now find the term Ψk

Ik
to directly

bias the PRNU K as additive component. Additionally, we can
expect Ψk

Ik
to be large (and almost constant!) in regions with

characteristic structures. As a result, it can be concluded that
the estimated PRNU (Eqn. 2) will be heavily biased by the
image content in regions with characteristic structures.

IV. EXPERIMENTIAL DESIGN

As the primary goal in this work was to understand the
impact of the image content on the PRNU fingerprint quality,
we decided to compare the PRNU-based sensor identification
performance in different image regions, each region exhibiting
different types of image content and properties (see Sec. IV-B).
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Fig. 1. Sample images of four different finger vein datasets. The arrows mark sample regions which we expect to exhibit characteristic structures. Typically
these are prominent edge-like structures that are occur at the same position in every image of a dataset.

We then repeated these experiments using different state-of-the-
art denoisers as well as enhancement methods.

Note that, if your assumption holds, we expect PRNUs
generated from regions with characteristic, (partially) stable
structures to (falsely!) outperform regions without such struc-
tures in sensor identification.

A. Datasets

All tests were conducted with the following publicly avail-
able datasets. For each dataset we composed equally sized
subsets of 120 images. Note that, after checking the dataset
descriptions and corresponding literature, we agreed to assume
that a single sensor unit was used to capture all images of a
dataset. However, we could not explicitly verify that this is the
case (e.g., based on image metadata).

• SDUMLA-HMT [13] - Images are stored in BMP for-
mat with 320×240 pixels in size. Our composed subset
consists of images of index, middle and ring fingers (one
image / finger) taken from the first 20 subjects in the
dataset.

• IDIAP VERA (IDIAP-REAL) [14] - Images are stored in
PNG format with a size of 250×665 pixels. Our composed
subset consists of images of the left and right index finger
taken from the first 60 subjects.

• FV-USM [15] - Images of the dataset are stored in JPEG
format with a size of 480×640 pixels. Our composed
subset consists of images of the four fingers (one image /
finger ) taken from the first 30 subjects.

• MMCBNU 6000 (MMCBNU) [16] - Images are stored in
BMP format with a size of 640×480 pixels. Our composed

subset consists of one images of each finger taken from
the first 20 subjects.

• PLUS-FV3-Laser-Palmar (Palmar) [17] - Images are
stored in PNG format with a size of 600×1024 pixels.
Our composed subset consists of one image from each
finger taken from the first 20 subjects.

• THU-FVFDT 1 - Images are stored in BMP format with
a size of 720×576 pixels. Our composed subset consists
of all images taken from the first 120 subjects.

• UTFVP [18], [19] - Images are stored in PNG format with
a size of 672×380 pixels. Our composed subset consists
of images taken from the first 20 subjects.

• HKPU-FV [20] - Images are stored in BMP format with a
size of 513×256 pixels. Our composed subset consists of
one image of both fingers taken from the first 60 subjects.

B. Image regions and properties

For each dataset, we manually defined a set of equally sized
image regions (50 × 50 pixels) and manually categorized
them into one out of five region types by carefully examining
each region’s image content. Of course, the choosing the right
categorization was often a rather subjective thing. A good
way of determining the best region type turned out to be by
looking at the content of the PRNU fingerprint.

Region Types:

• Fingervein (FV) - Region mostly contains finger vein
tissue

1https://www.sigs.tsinghua.edu.cn/labs/vipl/thu-fvfdt.html
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• Background (BG) - Mostly contains strongly varying
non-finger vein content. No characteristic structures (e.g.
edges).

• Static (ST) - Contains a characteristic structure that occurs
at the same pixel position in each image.

• Semi Static (SS) - Contains a characteristic structure but
its location varies slightly in every image

• All Black (AB) - No image content. Pixels are uniformly
black in almost every image. PRNU estimation is almost
impossible.

A visualization of all chosen crop regions can be seen in Fig.
2. Please make sure to have a color copy of this work when
looking at the figure since region types are color-coded.

C. Workflow

We started by choosing one of the eight finger vein datasets
as the ”Sensor PRNU” dataset and applied subject-wise 4-
fold cross-validiation to partition the dataset into 4 folds (30
images/fold) by splitting the images based on their subject ids.
We then used the images of 3 folds (90 images) as the training
set to estimate the sensor PRNU. The images in the remaining
fold (30 images) were joint with the images of the remaining
datasets (7×120 images) to form the test set.
For PRNU estimation and residual extraction we applied
the method described in Sec. II together with different
PRNU/residual enhancement methods and denoising filters pro-
posed in literature. An overview of the different ”enhancement
modes” can be found in Table I. For further details on the
PRNU/residual enhancement methods please consider reading
the work referenced in the table caption.
After estimating the sensor PRNU we calculated the match
score ρ[RI ,IQK] as shown in Eqn. 6 for all different region
combinations by cropping the corresponding image region from
the sensor PRNU K as well as the query image IQ and
query image residual RI from the test set. NCC denotes the
normalized cross correlation.

ρ[RI ,IQK] = NCC(RI , IQK) (6)

This process was then repeated for all 4 folds and datasets.

Finally, each match score can be ”linked” to one of the
following six region pairs depending on the region types it
was calculated from.

Region Pairs:

• P-FV / FV - PRNU / residuals from the ”Sensor PRNU”
dataset are taken from a FV region. Residuals of the other
datasets are taken from a FV region.

• P-BG-AB / BG-AB - PRNU / residuals from the ”Sensor
PRNU” dataset are taken from a BG or AB region.
Residuals of the remaining datasets are taken from a BG
or AB region.

• P-ST / BG-AB - PRNU / residuals from the ”Sensor
PRNU” dataset are taken from a ST region. Residuals of
the other datasets are taken from a BG or AB region.

• P-SS / BG-AB - PRNU / residuals from the ”Sensor
PRNU” dataset are taken from a SS region. Residuals of
the other datasets are taken from a BG or AB region.

• P-ST / FV - PRNU / residuals from the ”Sensor PRNU”
dataset are taken from a ST region. Residuals of the other
datasets are taken from a FV region.

• P-SS / FV - PRNU / residuals from the ”Sensor PRNU”
dataset are taken from a SS region. Residuals of the other
datasets are taken from a FV region.

V. EXPERIMENTAL RESULTS

A. Identification performance in different image regions

Table II, III and IV show the sensor identification per-
formance for PRNUs generated from the THU-FVFDT,
SDUMLA-HMT and IDIAP-REAL dataset. These are the
datasets which we identified to have static SS and semi-static
ST region types in Sec. IV-B. As in this work we primarily
want to study the performance difference between characteristic
(static, semi-static) and non-characteristic (non-static) regions,
we omit showing results for other ”sensor PRNU” datasets in
this work. The identification performance is reported as AUC
ROC (Area under the Receiver Operating Characteristic curve)
score.

The THU-FVFDT identification performance shown in Ta-
ble II confirms the hypothesis made in Sec. IV. No matter
which enhancement methods are applied, the identification
performance achieved with PRNUs generated from static ST
(P-ST/BG-AB, P-ST/FV) and semi-static SS (P-SS/BG-AB, P-
SS/FV) regions largely outperforms the performance of PRNUs
generated from finger vein FV (P-FV/FV) or background BG-
AB (P-BG-AB/BG-AB) regions.

A similar behavior, but not quite as clear as for THU-FVFDT,
can be found for SDUMLA-HMT in Table III. Considering the
identification performance, PRNUs generated from static ST
(P-ST/BG-AB, P-ST/FV) regions again outperform the PRNUs
generated from background (P-BG-AB/BG-AB) regions. Never-
theless, we can still observe a good identification performance
in foreground (P-FV/FV) regions. Note that the performance
for P-SS region pairs (P-SS/BG-AB, P-SS/FV) could not be
evaluated due to the absence of semi-static SS regions in the
SDUMLA-HMT dataset.

Sensor identification in the case of IDIAP-REAL (Table IV)
in general seems to work extremely well. No matter whether
which region is taken, the identification performance is almost
perfect. Again, P-SS region pairs could not be evaluated due to
the absence of SS regions.

B. Performance comparison of different denoising modalities

Although identifying which denoising modalities (denoising
and residual enhancement methods) work best for finger vein
imagery was not the primary goal in this work, it is at least
worth to point out some interesting observations.

Fig. 3 and 4 show the (sensor-)averaged sensor identification
performance for different denoising modalities in the region
pairs FV and BG-AB.
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Fig. 2. Visualization of image regions used for each dataset. Different colors represent different region types. Yellow - FV: Finger vein region. Red - BG:
Background region. Magenta - ST: Characteristic, positionally stable structures. Cyan - SS: Characteristic structures but not positionally stable. White - AB:
Black pixel values only.

Extraction
Mode Denoiser PRNU

Enhancement
PRNU

Residual Enhancement
Residual

Enhancement
LUKAS Lukas Wiener DFT Wiener DFT
BM3D BM3D
LI-3 Mihcak Li-3 Li-3
LI-5 Mihcak Li-5 Li-5
CAL Mihcak Caldelli Caldelli

SEA+FDR Mihcak SEA FDR + Li-3 FDR + Li-3

Ref: Lukas [10], Li-3 [21], Li-5 [21], Caldelli [22], FDR [23], SEA [24], Wiener DFT [9], Mihcak [11], BM3D [12]
TABLE I

OVERVIEW OF DIFFERENT ENHANCEMENT MODES

Region Pair Enhancement Mode

LUKAS BM3D LI-3 LI-5 CAL SEA+FDR

P-FV / FV 0.65 (0.07) 0.80 (0.08) 0.78 (0.09) 0.76 (0.09) 0.75 (0.09) 0.78 (0.06)
P-BG-AB / BG-AB 0.88 (0.10) 0.84 (0.04) 0.92 (0.06) 0.92 (0.07) 0.91 (0.07) 0.86 (0.06)

P-ST / BG-AB 0.99 (0.01) 0.85 (0.10) 0.99 (0.01) 1.00 (0.00) 1.00 (0.01) 0.83 (0.09)
P-ST / FV 1.00 (0.00) 0.94 (0.07) 1.00 (0.00) 1.00 (0.01) 1.00 (0.01) 0.91 (0.06)

P-SS / BG-AB 0.93 (0.11) 0.89 (0.08) 0.95 (0.07) 0.97 (0.06) 0.97 (0.06) 0.95 (0.05)
P-SS / FV 0.94 (0.11) 0.96 (0.06) 0.97 (0.07) 0.97 (0.05) 0.98 (0.05) 0.98 (0.03)

TABLE II
SENSOR IDENTIFICATION PERFORMANCE (AUC ROC) FOR PRNUS ESTIMATED FROM THE THU-FVFDT DATASET

Region Pair Enhancement Mode

LUKAS BM3D LI-3 LI-5 CAL SEA+FDR

P-FV / FV 0.99 (0.01) 1.00 (0.01) 0.99 (0.02) 0.99 (0.01) 0.99 (0.01) 0.99 (0.02)
P-BG-AB / BG-AB 0.88 (0.14) 0.89 (0.10) 0.90 (0.11) 0.98 (0.02) 0.98 (0.02) 0.85 (0.13)

P-ST / BG-AB 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 1.00 (0.00) 1.00 (0.01) 0.98 (0.02)
P-ST / FV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01)

P-SS / BG-AB - - - - - -
P-SS / FV - - - - - -

TABLE III
SENSOR IDENTIFICATION PERFORMANCE (AUC ROC) FOR PRNUS ESTIMATED FROM THE SDUMLA-HMT DATASET
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Region Pair Enhancement Mode

LUKAS BM3D LI-3 LI-5 CAL SEA+FDR

P-FV / FV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.02)
P-BG-AB / BG-AB 0.97 (0.07) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01)

P-ST / BG-AB 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
P-ST / FV 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

P-SS / BG-AB - - - - - -
P-SS / FV - - - - - -

TABLE IV
SENSOR IDENTIFICATION PERFORMANCE (AUC ROC) FOR PRNUS ESTIMATED FROM THE IDIAP-REAL DATASET

While it can be seen in Fig. 3 that BM3D (0.957) and
SEA+FDR (0.949) perform best in finger vein regions, exactly
the opposite is the case for background BG-AB regions in Fig.
4. For the BG-AB region pair, LI-5 (0.860), CAL (0.858) and
LUKAS (0.853) perform best. In general, it’s fairly interesting
to see that there is a trend for denoising modalities to perform
worse in background regions if they perform well in finger vein
regions (and vice versa).

Region Pair: P-FV / FV

Fig. 3. Average sensor identification performance for region pair P-FV / FV
using different extraction modes

Region Pair: P-BG-AB / BG-AB

Fig. 4. Average sensor identification performance for region pair P-BG-AB /
BG-AB using different extraction modes

VI. IMPACT ANALYSIS — WHAT IF WE CHOSE THE WRONG
REGION?

The findings described in Sec. V-A provide evidence for the
estimated PRNU being biased by image content in regions
with characteristic structures. Nevertheless, it’s not entirely
clear how these contaminations impact the true sensor iden-
tification. Keep in mind that images of all datasets used in
our experiments were captured with the same sensor and it
is therefore difficult to quantify the real-world impact of the
contaminations.

To develop an intuition for the criticality of the contami-
nations we conduct a simple experiment. Assuming that we
previously obtained a good estimate of the true sensor PRNU
from a given set of images, the correlation with noise residuals
extracted from the image set can be expected to be high.
However, if we correlate the fingerprint with residuals of
denoised image versions, the average correlation score should
decrease (be close to 0) because denoising destroys the residual
information. However, if the PRNU is contaminated with struc-
tures inferred from the image content, the impact of denoising
can be expected to be low as most characteristic structures will
still be preserved in the denoised image. This indicates that the
image content is more important for matching than the residual
noise.

To verify whether this is the case, we first estimated the
sensor PRNU for each of the eight datasets presented in Sec.
IV-A. For each fingerprint, we then calculated the average NCC
with residuals extracted from a single (but large) image region
which only exhibits finger vein tissue. Similarly, we repeated
this process with BM3D-denoised version of the images. Note
that, if we only focused on regions that exhibit finger vein
tissue, the contamination of the PRNU with characteristic
structures can be expected to be low if not non-existent. We
then repeated the process using non-cropped (full) images. We
expect the overall decrease in identification performance to be
much less significant for datasets with characteristic structures.

The results for the described experiment are shown in Table
V. As can be seen the relative change in correlation for
”Full image” is much lower than for ”Finger vein” in case of
THU-FVFDT, FV-USM, HKPU-FV and SDUMLA-HMT. Note
that with THU-FVFDT and SDUMLA-HMT the list includes
exactly those datasets which we assumed to have characteristic
structures in Sec. IV-B. It’s also interesting to see that in case of
THU-FVDT, denoising even causes an increase in identification
performance.
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Fig. 5. Comparison of PRNUs obtained from original images with PRNUs from denoised images. As can be seen in the images, characteristic structures (edges)
appear more prominent in the denoised versions.

Dataset Finger vein region Full (non-cropped) image

Original Denoised Change Original Denoised Change

THU-FVFDT 0.11 0.05 ↓ 55.7% 0.13 0.14 ↑ 05.4%
FV-USM 0.26 0.10 ↓ 60.6% 0.32 0.21 ↓ 35.0%

MMCBNU 0.19 0.10 ↓ 46.4% 0.20 0.10 ↓ 46.7%
PALMAR 0.48 0.11 ↓ 77.3% 0.46 0.10 ↓ 77.6%
UTFVP 0.73 0.13 ↓ 82.0% 0.65 0.15 ↓ 77.4%

HKPU-FV 0.15 0.08 ↓ 45.8% 0.21 0.20 ↓ 05.7%
IDIAP 0.63 0.15 ↓ 75.8% 0.60 0.16 ↓ 74.0%

SDUMLA-HMT 0.26 0.10 ↓ 60.6% 0.32 0.21 ↓ 35.0%

TABLE V
AVERAGE CORRELATION SCORE OF ORIGINAL AND DENOISED IMAGES

Additionally, to get a better sense of what denoising does
to noise residuals, we visually compare the original PRNU
to the PRNU of the denoised images in Fig. 5 2. What can
be seen is that denoising causes characteristic structures to
appear more prominent. As a result it seems most likely
that regions with characteristic structures (highly correlated
content) can have a huge impact on the sensor identification
performance. Therefore, there are strong reasons to believe that
PRNU estimates obtained from characteristic structures are not
trustworthy.

VII. CONCLUSION

In this work, we studied the impact of highly correlated
image content on the estimated PRNU of a single sensor unit
and its impact on the sensor identification performance in
the context of finger vein imagery. We showed formally and
experimentally that in regions with characteristic, positionally
stable structures (e.g, introduced by the finger positioning
apparatus or the illumination pattern) the estimated PRNU is
biased by the image content. Our results indicate that this
bias (and so the choice of the image region) can have a huge
impact on the sensor identification performance. Although we
are not able to quantify the impact of the content due to a lack
of visually similar-looking images captured with the different
sensors, our work demonstrates that we need to be very careful
about PRNU-based sensor identification results if image content

2 For better readability please look at the figure in a digital version

is highly correlated (unfortunately this is very often the case
for biometric datasets). Depending on the dataset composition,
a bias of the PRNU with image content can even cause a false
increase in sensor identification performance.

REFERENCES

[1] F. Marra, G. Poggi, C. Sansone, and L. Verdoliva, “A deep learning
approach for iris sensor model identification,” Pattern Recognition Letters,
vol. 113, pp. 46–53, 2018.

[2] C. Kauba, L. Debiasi, and A. Uhl, “Identifying the origin of iris images
based on fusion of local image descriptors and prnu based techniques,” in
Biometrics (IJCB), 2017 IEEE International Joint Conference on. IEEE,
2017, pp. 294–301.

[3] L. Debiasi and A. Uhl, “Blind biometric source sensor recognition
using advanced prnu fingerprints,” in Signal Processing Conference
(EUSIPCO), 2015 23rd European. IEEE, 2015, pp. 779–783.

[4] S. El-Naggar and A. Ross, “Which dataset is this iris image from?” in
WIFS, 2015, pp. 1–6.

[5] N. Kalka, N. Bartlow, B. Cukic, and A. Ross, “A preliminary study
on identifying sensors from iris images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2015, pp. 50–56.
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