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Abstract: Non-reference image quality measures (IQM) as well as their associated natural scene statistics (NSS) are used to
distinguish real biometric data from fake data as used in presentation/sensor spoofing attacks. An experimental study shows
that a support vector machine directly trained on NSS as used in blind/referenceless image spatial quality evaluator provides
highly accurate classification of real versus fake iris, fingerprint, face, and fingervein data in generic manner. This contrasts to
using the IQM directly, the accuracy of which turns out to be rather data set and parameter choice-dependent. While providing
very low average classification error rate values for complete training data, generalisation to unseen attack types is difficult in
open-set scenarios and obtained accuracy varies in almost unpredictable manner. This implies that for each given sensor/attack
set-up, the ability of the introduced methods to detect unseen attacks needs to be assessed separately.

1 Introduction
We have observed a drastic increase in biometric authentication
techniques being applied in various applications, ranging from
border control to financial services. This is done to either
complement or even replace classical authentication techniques
based on tokens or passwords. Of course, this increased usage has
also caused fraudulent attacks being mounted more often against
biometric systems. Besides injecting fraudulent data into the
communication inside a biometric system or attacking the template
database, attacks against the proper functioning of the biometric
sensor gain increasing importance. Such attacks are usually termed
‘presentation’ – or ‘sensor-spoofing’ – attacks and are conducted
by presenting artefacts mimicking real biometrics traits to the
biometric sensor to be deceived or by replaying earlier captured
biometric sample data on some suited device, thus also attempting
to deceive the sensor (‘replay attack’).

Counter-measures to this type of attacks have of course been
considered already and are typically termed as ‘anti-spoofing’ or
‘presentation-attack detection’ measures [1]. In this context, very
different approaches have been followed. The first type of anti-
spoofing approach targets the liveness of the presented biometric
traits in a passive or active manner and is thus termed as ‘liveness-
detection’. For example, pulse can be measured from facial video
or hippus can be determined from temporal high-resolution iris
video (in both cases, passive liveness detection is conducted). An
example for active liveness detection is to determine reaction to
illumination changes in pupil dilation during data acquisition for
facial, periocular, or iris recognition systems. Passive liveness
detection is efficiently able to prevent attacks conducted by e.g.
gummy fingers or facial masks; however, it can be fooled by a
replay attack as signs of liveness are also present in recaptured
video. Active liveness detection on the other hand is able to
withstand both types of attacks.

The second anti-spoofing approach directly focuses on the
replay of previously recorded biometric sample data – as this attack
involves the recapturing of previously recorded data by the
biometric sensor the corresponding counter-measure is termed
‘recapturing detection’. Techniques in this category include the
detection of unnatural movement in video footage as indication of
an attack, e.g. caused by hand motion when presenting a photo or
display device to the sensor. Other approaches look into the
interference between display refresh rate of the replaying device
and temporal resolution of the video captured by the biometric

sensor to detect an ongoing replay attack. Obviously, these
methods are not able to detect attacks conducted with artefacts as
they are directly and solely focused on the replay of the data.

The third type of anti-spoofing approach is more generic and
uses texture properties of real biometric trait data acquired by the
biometric sensor to discriminate from either recaptured data or data
resulting from presenting some spoofing artefact to the sensor.
Contrasting to liveness-based methods, which are specific to the
target modality, and recapturing detection, which is limited and has
to be focused to specific sensor/display type (including print-outs
of course) combinations, texture-based methods usually employ
generic texture descriptors together with subsequent machine
learning techniques to discriminate real biometric data from
spoofed variants. Of course, for this purpose, training data for
classifier training is required. For example, a large variety of local
image descriptors have been compared with respect to their ability
to identify spoofed iris, fingerprint, and face data [2] and of course
highly successful texture descriptors like local binary patterns have
been extensively used for this purpose. However, it is often
cumbersome to identify and/or design texture descriptors suited for
a specific task in this context. Therefore, also generative techniques
like deep learning employing convolutional neural networks have
been successfully applied to discriminate real from spoofed
biometric data [3, 4].

A very different way to identify spoofed data is to look into the
quality of the imagery, assuming that the quality of the real
biometric data is better or at least different from spoofed data. This
of course can be seen as a specific type of texture-based
discrimination approach. Related work considers two approaches
in this context: first, the approach can be entirely agnostic of the
considered modality by using general purpose image quality
measures (IQM) [5, 6], and second, image quality metrics can be
tailored to the biometric modality under investigation (see e.g. [7]
which use face-specific data quality in order to recognise spoofing
attacks against face recognition systems). The major contribution
of this paper is to employ general purpose non-reference IQM (also
termed ‘blind’ IQM) as well as the underlying natural scene
statistics (NSS) in biometric spoofing attack/presentation attack
detection and to assess their corresponding performance in
different application settings. Complementing earlier results [5],
we use (i) a different and larger set of non-reference IQM (six
instead of two) and (ii) do not fuse the results with full-reference
IQM values but focus on using one or several fused blind IQMs as
generic spoofing detection technique.
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Extending own prior work on using non-reference IQM for
presentation attack detection [6, 8], (i) we add support vector
machine (SVM) as a second classifier, also avoiding data-
dependent parameter optimisation in its employment and thus
achieving better result generalisability and present ISO/IEC
30107-3 compliant evaluation, (ii) we directly train blind/
referenceless image spatial quality evaluator (BRISQUE) NSS on
our data instead of using IQM output as classification input
features, and (iii) we experimentally evaluate a specific type of
open-set classification scenario, where our presentation attack
detection schemes are confronted with real sample data of different
sensors (i.e. looking into cross-sensor spoofing detection) and fake
sample data of unseen subjects.

Section 2 introduces and explains the blind IQM as used in this
paper. The databases specifically provided to test presentation
attack detection techniques for iris, fingerprint, face, and fingervein
recognition used in the present work are described in Section 3.
Section 4 presents corresponding experimental anti-spoofing
results in three distinct experimental set-ups, while Section 5
provides the conclusions of this paper.

2 Non-reference image quality metrics
Non-reference or blind IQM are easier in deployment when
compared with full-reference or reduced-reference IQM as no
information of the full-quality reference image is required for
application. On the other hand, they are also harder to design as
this lack of comparison data renders the design of these IQM much
more difficult. There are different ways how to design blind IQM,
depending on the necessity and type of training data used and the
extent of generalisation potential of the admissible distortion types
considered. Thus, depending on these design principles, we face
some limitations. Among the techniques designed so far, we may
distinguish opinion-aware (OA) IQM designs, where the IQM are
trained on databases containing distorted imagery for which human
annotations in terms of quality are available, and opinion-unaware
(OU) IQM designs, which only rely on deviations from statistical
regularities seen in natural images without the requirement of
training on human annotated distortion databases. OA IQM are
intrinsically limited as their assessment is limited to quality
impairment resulting from distortion types they have been trained
on. The examples for the first type, i.e. OA IQM, are distortion
identification-based image verity and integrity evaluation
(DIIVINE), blind image quality index (BIQI), and BRISQUE,
while natural image quality evaluator (NIQE), blind image
integrity notator (BLIINDS-II), and blind image quality assessment
through anisotropy (BIQAA) are OU IQM.

Systematic comparisons of non-reference or blind IQM (NR
IQM) as considered subsequently in spoofing detection have been
published on traditional IQM tasks [9, 10]. Similarly, in non-
trained [9] as well as in specifically trained manner [10], the
correspondence to human vision is highly dependent on the target
data set and on the nature of distortion present in the data. Thus,
present studies did not identify a ‘winner’ among the techniques
available concerning the correspondence to subjective human
judgement and objective distortion strength.

2.1 OU NR image quality metrics

NIQE: The NIQE [11] is a spatial-domain IQM relying on an NSS
model. The image is partitioned into patches for which sharpness is
determined and only patches with sufficient sharpness are
considered further. Those patches are pre-processed by local mean
removal and divisive normalisation. From these data, for each
patch, 36 NSS features are computed and these are fit to a
multivariate generalised Gaussian (MVG) model. This MVG
model is then compared to the ‘natural’ MVG model which is
obtained by conducting the same procedure on natural images of
good quality only. The extent of deviation from this model
determines quality.

BLIINDS-II: The BLIINDS-II [12] computes NSS from a local
discrete cosine transform (DCT) domain. After partitioning the
image into patches, a local 2D DCT is computed on each of the
blocks. Subsequently, the DCT domain in each block is partitioned

into a low-frequency, mid-frequency, and high-frequency DCT
subband, respectively. Furthermore, the DCT block is partitioned
into three differently oriented subregions. Subsequently, an MVG
fit is computed for each of the DCT subbands defined in this
manner. From these parameters, the quality is derived in
comparison to corresponding MVG parameters computed from
high-quality imagery.

BIQAA: BIQAA [13] is the only NR IQM considered in this
work which does not rely on NSS. In contrast, BIQAA measures
the variance of the expected entropy of the image to be assessed in
a set of predefined directions. Entropy is computed on a local basis
by using a spatial-frequency distribution as an approximation for a
pre-defined probability density function. For BIQAA, the
generalised Renyi entropy and the normalised pseudo-Wigner
distribution (PWD) are chosen in the used implementation. In this
context, a pixel-by-pixel entropy value is computed enabling the
generation of entropy histograms. The variance of the expected
entropy is measured for different directions, and the differences are
used to indicate anisotropy. Directional selectivity can be achieved
by using an orientation-selective one-dimensional (1D) PWD
implementation.

2.2 OA NR image quality metrics

BRISQUE: BRISQUE [14] operates in the spatial domain and uses
virtually the same NSS as NIQE. The major difference to NIQE is
the training on distorted images. For this purpose, similar kinds of
distortions as present in the LIVE image quality database were
introduced in each training image with varying strengths to create a
set of the distorted images: JPEG 2000, JPEG, white noise,
Gaussian blur, and fast fading channel errors. Subsequently, a
mapping is learned from feature space to quality scores resulting in
a measure of image quality. For that purpose, a SVM regressor is
used.

DIIVINE: The DIIVINE [15] employs a two-stage framework
consisting of distortion identification with subsequent distortion-
specific quality determination. DIIVINE considers three common
distortion types, i.e. JPEG compression, JPEG2000 compression,
and blur.

In order to compute statistics from distorted images, the
steerable pyramid decomposition is used. The steerable pyramid is
an over-complete wavelet transform offering enhanced orientation
selectivity when compared to using classical wavelet transform, as
e.g. in BIQI.

BIQI: The BIQI [16] is based on a two-stage framework like
DIIVINE as well and employs a classical wavelet transform over
three scales using Daubechies 9/7 wavelet biorthogonal wavelet
basis. The computed wavelet subband coefficients are used to
compute NSS parameters (again an MVG fit is conducted): The
first step is image distortion classification (which is based on a
measure of how the NSS are modified and uses five distortion
types: JPEG, JPEG2000, WN, Blur, and FF), the second step is
quality assessment, using an algorithm specific to the distortion
identified.

2.3 Natural scene statistics

IQM applied to images result in a single quality score in a certain
range ([0, 100] in our set-up) for each IQM. Typically, these scores
are obtained by applying machine learning techniques to map NSS
to quality scores based on human judgement of distorted images or
undistorted images only. Thus, the actual quality score delivered by
IQM is neither directly related nor does it necessarily fit well to our
application case for discriminating real from spoof biometric data.
An alternative solution to this drawback is to avoid the deviation
via quality scores but to train NSS directly on the ‘real’ and ‘fake’
labels of our data. Doing this, we also avoid the dimensionality
reduction to a 1D quality score but retain the full NSS information
for training.

3 Used spoofing/presentation attack databases
ATVS-FIr DB: The ATVS-Flr database consists of fake and real iris
samples of both eyes of 50 subjects and complements the real data
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of the BioSecure data set [17]. Four samples of each iris were
captured in two acquisition sessions with the LG Iris Access
EOU3000. Thus, the database holds 800 real image samples (100
irises × 4 samples × 2 sessions). The fake samples were also
acquired with the LG Iris Access EOU3000 from high-quality
printed images of the original sample. As the structure is the same
as for the real samples, the database comprises 800 fake image
samples (100 irises × 4 samples × 2 sessions). Fig. 1 displays
example images. 

The data set has been used before in spoofing/presentation
attack detection investigations, e.g. [2, 5, 18].

ATVS-FFp DB: The ATVS-FFp database consists of fake and
real images taken from a human's index and middle finger of both
hands. Those fingerprints can be divided into two categories: with
cooperation (WC) and without cooperation (WOC). ‘WC’ means
that acquisition assumes the cooperation of the fingerprint owner,
whereas images taken ‘WOC’ are latent fingerprints which had to
be lifted from a surface.

Independent of the category, four samples of each finger were
captured in one acquisition session with three different sensors:

• flat optical sensor Biometrika Fx2000 (512 dpi),

• sweeping thermal sensor by Yubee with Atmel's Fingerchip
(500 dpi),

• flat capacitive sensor by Precise Biometrics model Precise 100
SC (500 dpi).

As a result, the database consists of 816 real/fake images (68
fingers × 4 samples × 3 sensors) samples taken WC and 768 real/
fake images (64 fingers × 4 samples × 3 sensors) samples taken
WOC. Fig. 2 displays example images from this data set. 

The data set has been used before in spoofing/presentation
attack detection investigations, e.g. in [19–21].

IDIAP replay-attack DB [22]: The replay-attack database for
face spoofing consists of 1300 video clips of photo and video
attack attempts to 50 clients under different lighting conditions. All
videos were generated by either having a real client trying to access
a laptop through its webcam or by displaying a photo/video to the
webcam. Real as well as fake videos were taken under two
different lighting conditions:

• Controlled: The office light was turned on, blinds are down,
background is homogeneous.

• Adverse: Blinds up, more complex background, office lights are
out.

Fig. 1  ATVS-FIr DB samples
(a) Iris; right eye; real, (b) Iris; right eye; fake

 

Fig. 2  ATVS-FFp DB samples
(a) WC; fake; capacitive, (b) WC; real; capacitive, (c) WOC; fake; capacitive, (d) WOC; real; capacitive, (e) WC; fake; optical, (f) WC; real; optical, (g) WOC; fake; optical, (h)
WOC; real; optical, (i) WC; fake; thermal, (j) WC; real; thermal, (k) WOC; fake; thermal, (l) WOC; real; thermal

 

316 IET Biom., 2018, Vol. 7 Iss. 4, pp. 314-324
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



To produce the attack, high-resolution videos were taken with a
Canon PowerShot SX150 IS camera. The way to perform the
attacks can be divided into two subsets: the first subset is
composed of videos generated using a tripod to present the client
biometry (‘fixed’). For the second set, the attacker holds the device
used for the attack with his/her own hands (‘hand’).

In total, 20 attack videos were registered for each client, 10 for
each of the attacking modes just described:

• four times mobile attacks using an iPhone 3GS screen (with
resolution 480 × 320 pixels),

• four times high-resolution screen attacks using an iPad (first
generation, with a screen resolution of 1024 × 768 pixels),

• two times hard-copy print attacks (produced on a Triumph-Adler
DCC 2520 colour laser printer) occupying the whole available
printing surface on A4 paper.

As the algorithms used in our experiment are not compatible
with videos, we extracted every Xth frame from each video and
used them as test data in our experiment. Fig. 3 displays example
images used in experimentation. 

The data set has been used before in spoofing/presentation
attack detection investigations, e.g. in [2, 3, 5, 7, 22].

The spoofing-attack finger vein database [23]: This data set is
provided by IDIAP Research Institute, consisting of 440 index
finger vein images (both real authentications and spoofed ones (i.e.
attack attempts)) corresponding to 110 subjects. Two different
types of samples are available (as shown in Fig. 4): full (printed)
images and cropped images where the resolution of the full images
is 665 × 250 and that of the cropped images is 565 × 150 pixel,
respectively. 

This data set has been released in the context of the ‘1st
Competition on Counter Measures to Finger Vein Spoofing
Attacks’ [23] and now it is the data basis for most research in
finger vein sensor spoofing [24–26].

4 Experiments
4.1 Experimental set-up

For each image in the databases, quality scores were calculated
with the IQM described in Section 2. We used the MATLAB
implementations from the developers of BIQI, BLIINDS-2, NIQE,
DIIVINE, BRISQUE (all available from http://live.ece.utexas.edu/
research/quality/) and BIQAA (available at https://
www.mathworks.com/matlabcentral/fileexchange/30800-blind-
image-quality-assessment-through-anisotropy). In all cases, we
used the default settings. We normalised the result data with the
result that 0 represents a good quality and 100 the bad one which is
already the default result in all cases except BIQAA. Originally,

Fig. 3  IDIAP replay-attack DB samples
(a) Adverse; real, (b) Adverse; fixed; fake highdef, (c) Adverse; hand; fake mobile, (d) Controlled; real, (e) Controlled; fixed; fake highdef, (f) Controlled; hand; fake mobile, (g)
Adverse; fixed; fake print, (h) Adverse; hand; fake highdef, (i) Adverse; fixed; fake mobile

 

Fig. 4  Finger vein DB samples
(a) Full; real, (b) Full; fake, (c) Cropped; real, (d) Cropped; fake
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the data of BIQAA is between 0 and 1. However, the values are so
small that we had to define our own limits for the normalisation. A
thorough analysis shows that our values are all between 0.00005
and 0.05; therefore, we used these figures as our limits. Moreover,
we had to change the ‘orientation’ of the BIQAA quality scores to
be conforming to our definition. Summarising, the following
formula (1) was built:

x′ = 100 − x − 0.05
0.00005 − 0.05 ⋅ 100 (1)

4.1.1 Experiment 1: training sensor/setting identical to
evaluation sensor/setting: In the first stage of experiment 1, we
only consider the distribution of the quality scores. Our aim was to
eventually find a threshold between the values of the real data and
the fake ones for the various IQM.

Afterwards, in the second stage, we used the quality scores for a
leave-one-subject-out cross-validation (training data is all data but
the samples of the current subject to be classified, which is applied
to each subject) to get an exact assertion about the classification
possibility with NR IQM. To classify our data, we used k-nearest
neighbours (kNN) as well as SVM classification. For kNN, our
used k were 1, 3, 5, 7, and 9 (denoting the number of images with
the closest feature vector considered) for this experiment and we
exhaustively evaluate all combinations of IQM (i.e. resulting in
different feature vector dimension and composition). Thus, we
combined several quality scores of the different measures into one
vector and used this for the kNN classification. The distance for the
kNN-classification was the distance between the two vectors
corresponding to the two images in question. The kNN results
presented are the best ones, which means that we introduce a bias
in the results here to see what is possible, but the best configuration
in terms of IQM combination and k will be data dependent and will
probably not generalise. For SVM, we use feature vectors
consisting of all IQM scores (i.e. dimension 6) applying LIBSVM
[27] with RBF kernel for training and thus, no bias by selecting
certain IQM is introduced as all IQM are used. The grid-parameters
(c, g) for the scalable vector regression were searched on a grid in
logarithmic space. In order to conduct a fair evaluation in the used
cross-validation, (c, g) are optimised within each training fold but
then applied to the evaluation data.

The quantitative performance of the different techniques is
measured according to the metric developed in ISO/IEC 30107-3 in
terms of: (i) attack presentation classification error rate (APCER),
which is defined as the proportion of an attack presentation
incorrectly classified as normal (or real) presentation (false-
negative spoof detection); (ii) normal presentation classification
error rate (NPCER), which is defined as the proportion of a normal
presentation incorrectly classified as an attack presentation (false-
positive spoof detection). Finally, the performance of the overall
technique is assessed in terms of average classification error rate
(ACER):

ACER = APCER + NPCER
2 .

Of course, the lower the values of ACER (as well as APCER and
NPCER), the better is the performance of the spoofing detection.

4.1.2 Experiment 2: training with BRISQUE NSS: In our
experiment 2, we applied the BRISQUE NSS data and trained it on
our labels. As first option, we applied kNN to the 36-dimensional
BRISQUE NSS again using different values for k, presenting the
best result achieved. As second option we applied SVM: The
BRISQUE software does not only provide a pre-trained model
delivering quality scores but also offers the option for training on
different labels than quality scores using LIBSVM [27]. This is
applied within the cross-validation evaluation.

4.1.3 Experiment 3: training sensor/setting different from
evaluation sensor/setting: As correctly pointed out in [28],
sensor spoof detection can of course not be considered a closed set

problem. This means, that in a real-world scenario, the training
data for a specific sensor will never be complete as in general we
do not know which artefacts will be used by an attacker – thus the
classifier should also work on unseen spoof types. This of course
raises the question how to train a classifier based on such
incomplete training data, a typical case of open set binary
classification. The fact that the performance of a classifier will
decrease when testing with samples unseen in training has been
well studied in machine learning and pattern recognition, e.g.
related to the ‘over-fitting problem’. This generalisation problem of
data-trained classifiers has been discussed also in the context of
general image classification [29] and in biometrics (see e.g. in
gender classification [30]). The general open-set recognition
problem has recently been addressed [31–33] and the developed
open-set classification techniques have been successfully applied to
soft biometrics (mark, scar, and tattoo classification [34]), camera
attribution and device linking [35], and fingerprint spoof detection
[28]. In the latter work, emphasis is set to detect also attacks with
unseen spoofing artefact fabrication material. Contrasting to that,
one aspect of experiment 3 covers the issue of cross-sensor or
inter-database spoofing detection. This means that unseen attacks
involve samples acquired with different sensors than those the anti-
spoofing system has been trained on, a topic that has gained
increasing importance. Recent work has considered this scenario
with various presentation attack detection methods for fingerprint
[36–38], face [39], speaker [40], and iris [41, 42] recognition
techniques, respectively.

In experiment 3, we investigated two different settings to
simulate open-set scenarios: first, the ATVS-FFp database contains
classical fingerprint imprints (WC) and latent fingerprints (WOC).
So far, we have strictly separated those two sets as for both types
real and fake versions are available. In order to simulate the open-
set scenario, we trained the used classifier with classical imprints,
while we evaluated on the latent fingerprint data. This can be seen
as a special case of considering unseen fabrication material.

As a second setting, we used real sample data captured by
different sensors and investigate how the spoof detection
techniques trained on the sample data used before do react. In this
setting, it is not entirely clear what to count as correct or incorrect
decision (i.e. how to define APCER and NPCER): a (real) sample
captured by a different sensor could be rated as ‘real’ as it
corresponds to data captured from a real finger; on the other hand,
it could be rated as ‘fake’ as it has been captured by a different
sensor and might be the result of a successful injection attack. We
follow the first consideration also due to the possibility to consider
cross- and multi-sensor spoof detection techniques. Thus, a real
sample captured by a different sensor should be rated correctly as
being ‘real’, thus accumulating errors (samples rated as ‘fake’) in
NPCER.

For iris samples, we used the SDUMLA-HMT data: This multi-
modal data set was collected during the summer of 2010 at
Shandong University, Jinan, China. One hundred and six subjects,
including 61 males and 45 females with age between 17 and 31,
participated in the data collecting process, in which five biometric
traits – face, finger vein, gait, iris, and fingerprint, are collected for
each subject [43]. SDUMLA-HMT is available at http://
mla.sdu.edu.cn/sdumla-hmt.html. Every subject provided ten iris
images, i.e. five images for each of the eyes.

For fingerprint samples, we employed samples of 49 individuals
from the CASIA-FingerprintV5 data set (http://
biometrics.idealtest.org/dbDetailForUser.do?id=7) also used in [44,
45]. From these individuals, five samples per finger 1, 26, 7 are
used.

Finally, for fingervein samples, two data sets are used. For real
samples, we used the UTFVP fingervein database ([46], available
at http://pythonhosted.org/bob.db.utfvp/), consisting of a total of
1440 images, taken from 60 subjects, 6 fingers per subject and 4
images per finger. For fake images, we used the VERA spoofing
fingervein database (https://www.idiap.ch/dataset/vera-
spoofingfingervein) consisting of 4 spoof images from 50 subjects.
It has to be noted, that this data set has been acquired with the same
sensor as the spoofing-attack finger vein database used in
experiments 1 and 2 and consists only of fake data (only subjects

318 IET Biom., 2018, Vol. 7 Iss. 4, pp. 314-324
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



differ between the two data sets). Thus, contrasting to the cases
before, samples from this data set should be correctly classified as
‘fake’ and errors (i.e. samples rated as ‘real’) were counted in
APCER. See Fig. 5 for an example of each data set. 

Note, that in experiment 3, we have an intrinsic separation of
training and evaluation data (contrasting to experiments 1 and 2).
Therefore, we did not apply a leave-one-subject-out cross-
validation but a direct classification of the evaluation samples
based on the training data. In the second setting, involving the
additional data sets containing real or fake data only, we only get
NPCER or APCER results, thus ACER does not make sense and is
omitted.

4.2 Experimental results

4.2.1 Experiment 1 – results: In Figs. 6 and 7, we display the
distribution of single IQM values for real and fake data. For some
cases, we notice a decent separation of the values almost allowing
to specify a separation threshold. In the figures, we have depicted
the threshold leading to the lowest ACER and have coloured the
areas correctly classified in green. However, for most
configurations, this simple strategy does not lead to useful results.

In many cases (see e.g. Fig. 7), we could not recognise any
separation between the distributions because they exhibited a
similar mean and spread for real and the fake data. That was the
reason for employing training-based classification techniques and
fusion techniques. 

In the case of kNN classification with only one IQM, we
already obtain surprisingly good results [6, 8]. However, we were
not able to identify a single IQM specifically well suited for the
target task. In contrast, it seems that the different distortions
present in the spoofed data are quite specific in terms of the nature
and characteristic of the distortions, which is the only explanation
of different IQM performing best on different data sets.

In fact, our results confirm the general results on IQM quality
prediction performance [9, 10] in that it is highly data set and
distortion-dependent which IQM provides the best results.

A further increase in classification accuracy (as computed by
100 − (APCER + NPCER)) is obtained by the combination of
several IQM. Table 1 shows the best metric combinations in the
case of kNN-classification for the considered databases from an
exhaustive search. On average, we could improve our results by
7% compared to the single measure results [6, 8] and so most of
the results are over 90%. 

Fig. 5  Examples for unseen data used in experiment 3
(a) SDUMLA iris sample, (b) CASIA fingerprint sample, (c) UTFVP fingervein sample, (d) VERA fake fingervein sample

 

Fig. 6  Quality score distribution (positive examples)
(a) Fingerprint (capacitive, with coop) with NIQE, (b) Fingerprint (thermal, without coop) with BIQAA, (c) Fingervein (Full), with BIQI
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From the latter table, we notice that there is a trend of getting
best results when combining a larger number of IQM, confirming
earlier results in this direction [5]. In order to look into this effect
more thoroughly (and to clarify the role of the k-parameter in kNN
classification), we have systematically investigated the results of
the exhaustive classification scenarios in [6, 8]. We found that
combining more metrics and choosing k large leads to better results
on average, whereas the top results are achieved when using three
to six metrics depending on the considered data set. For optimal
values of k, we are not able to give a clear statement as k was also
found to be 1 for three data sets in Table 1.

In Table 2, we display ISO/IEC 30107-3 compliant results
comparing kNN and SVM classification. For correctly interpreting
these results, it is important to consider that for kNN classification,
we present the best result in terms of ACER achieved when
considering all admissible values for k and all possible
combinations of IQM. For the kNN case (left table half), we also
provide the corresponding k value and the number of employed
IQM in this best configuration. For SVM, we do not introduce any
bias by including all six IQM score values into the feature vector. 

The overall trend in terms of ACER is quite comparable for
both kNN and SVM, as the databases exhibiting large and small

ACER are identical for both techniques. For both kNN and SVM,
there is no clear trend if APCER is usually larger as NPCER or
vice versa. Also, there is no clear trend, which classification
approach is better – SVM is superior for three data sets, while kNN
is for six data sets. However, given that the kNN results come from
a data-dependent parameter optimisation, SVM is strongly
preferable as these results will generalise well as they are not at all
fitted to the data. Overall, we face quite significant variations in
terms of achieved ACER magnitude which implies that the
methodology cannot be recommended as a general spoof detection
approach but is restricted to suited data sets.

4.2.2 Experiment 2 – results: In Table 3, we show the results
achieved when using BRISQUE NSS feature vectors instead of
IQM ones, for both kNN as well as SVM classification. We
observe identical behaviour with respect to the relation between
APCER and NPCER as observed for IQM feature vectors (no clear
trend which type of error is more frequent). When considering
ACER, there is no clear improvement when changing from IQM to
NSS feature vectors in the case of kNN classification. 

Fig. 7  Quality score distribution (negative examples)
(a) Eye with BLIINDS, (b) Face fixed with BIQAA, (c) Fingervein (cropped) with DIIVINE

 
Table 1 Best IQM combinations for kNN classification
Database Combination k Accuracy, %
Iris BIQI, BLIINDS, NIQE, DIIVINE, BRISQUE, BIQAA 9 85.81
fingerprint (optical, with coop) BIQI, BLIINDS, DIIVINE, BIQAA 7 81.25
fingerprint (capacitive, with coop) BIQI, BLIINDS, NIQE, DIIVINE, BRISQUE, BIQAA 3 96.69
fingerprint (thermal, with coop) BIQI, BLIINDS, (NIQE), DIIVINE, BRISQUE 1 99.63
fingerprint (optical, without coop) BIQI, BLIINDS, (NIQE), DIIVINE, BRISQUE 7 87.69
fingerprint (capacitive, without coop) BLIINDS, NIQE, BIQAA 5 92.19
fingerprint (thermal, without coop) BIQI, BLIINDS, NIQE, BRISQUE, BIQAA 1 98.44
face (hand) BLIINDS, (NIQE), DIIVINE, BRISQUE, BIQAA 7 92.86
face (fixed) BIQI, BLIINDS, NIQE, DIIVINE, BRISQUE, BIQAA 5 92.38
fingervein (full) BIQI, DIIVINE, BRISQUE 1 99.79
fingervein (cropped) BIQI, BLIINDS, NIQE, BRISQUE 9 85.63
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Table 2 Comparing kNN and SVM classification using IQM features
kNN-IQM

Database ACER APCER NPCER k # IQM
iris 7.09 5.69 8.5 9 6
fingerprint (optical, with coop) 9.38 12.87 5.88 7 4
fingerprint (capacitive, with coop) 1.65 1.29 2.02 3 6
fingerprint (thermal, with coop) 0.18 0.18 0.18 1 4
fingerprint (optical, without coop) 6.15 9.96 2.34 7 4
fingerprint (capacitive, without coop) 3.91 4.10 3.71 5 3
fingerprint (thermal, without coop) 0.78 0.98 0.59 1 5
face (hand) 3.57 4.29 2.86 7 4
face (fixed) 3.81 5.24 2.38 5 6
fingervein (full) 0.1 0 0.21 1 3
fingervein (cropped) 7.19 6.88 7.5 9 4

 

 
SVM-IQM

Database ACER APCER NPCER
iris 2.22 4.06 0.38
fingerprint (optical, with coop) 13.14 13.26 13.05
fingerprint (capacitive, with coop) 1.19 0.74 1.65
fingerprint (thermal, with coop) 0.18 0.18 0.18
fingerprint (optical, without coop) 6.25 10.16 2.34
fingerprint (capacitive, without coop) 4.69 5.47 3.91
fingerprint (thermal, without coop) 0.88 0.59 1.17
face (hand) 4.52 5.71 3.33
face (fixed) 5.23 8.1 2.38
fingervein (full) 0.1 0 0.21
fingervein (cropped) 5.0 5.21 4.79

 

Table 3 Comparing kNN and SVM classification using NSS features
kNN-NSS

Database ACER APCER NPCER k
iris 0.88 1.06 0.69 1
fingerprint (optical, with coop) 7.90 7.72 8.09 5
fingerprint (capacitive, with coop) 0.83 0.92 0.74 1
fingerprint (thermal, with coop) 0.92 0.37 1.47 1
fingerprint (optical, without coop) 9.08 4.3 13.86 3
fingerprint (capacitive, without coop) 4.00 1.76 6.25 7
fingerprint (thermal, without coop) 0.78 0.59 0.98 7
face (hand) 5.95 5.71 6.19 5
face (fixed) 8.1 8.1 8.1 5
fingervein (full) 0.1 0.21 0 1
fingervein (cropped) 0.94 1.46 0.42 3
 

 
SVM-NSS

Database ACER APCER NPCER
iris 0.06 0.06 0.06
fingerprint (optical, with coop) 0.64 0 1.29
fingerprint (capacitive, with coop) 0.28 0 0.55
fingerprint (thermal, with coop) 0.18 0.18 0.18
fingerprint (optical, without coop) 1.37 0.2 2.54
fingerprint (capacitive, without coop) 0.1 0.2 0
fingerprint (thermal, without coop) 0.29 0.2 0.39
face (hand) 2.14 0.48 3.81
face (fixed) 2.62 1.43 3.81
fingervein (full) 0 0 0
fingervein (cropped) 0.1 0.21 0
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The situation is very different when considering the SVM
results. NSS-based ACER values are clearly better for all but a
single database (for which the values are identical) compared to
IQM ones, partially considerably so. For example, ACER is
reduced from 13.14 to 0.64 for the optical fingerprint data set (WC)
and from 4.69/5 to 0.1 for both the capacitive fingerprint data set
(WOC) and the full sized fingervein data set, respectively. Also,
ACER values are superior for SVM compared to their kNN
counterparts in the case of the NSS feature vectors. This is of
particular interest, as the SVM results are expected to be highly
generalisable due to the avoidance of data-specific bias. The
significant superiority of SVM-NSS compared to kNN-NSS can
probably be attributed to the significantly higher dimension of its
feature vectors compared to SVM-IQM, for which SVN is much
better able to exhibit its strengths as compared to kNN. As a
consequence, we propose the employed SVM-NSS technique as a
generic and rather accurate spoof detection methodology.

4.2.3 Experiment 3 – results: The set of last experiments is
devoted to the open-set topic, i.e. looking into effects in case the
type of evaluated samples are not part of the available training set.
Table 4 shows the results when classifying real and fake latent
fingerprints (denoted as WOC) when classification is based on
classical fingerprint data (WC). We compare all four considered
classification techniques in this table. 

When comparing the obtained ACER results with the
corresponding ones in Tables 2 and 3, we realise that in all four
classification cases, ACER values are clearly worse in the ‘open-
set’ scenario. Interestingly, worst ACER results are now exhibited
for SVM-NSS, the approach clearly performing best in the ‘closed-
set’ scenario. While this is surprising at first sight, it is not in fact.
SVM-NSS is able to generate a very accurate model of the training
data and thus performs quite well when working on seen spoof
data. Contrasting, when confronted with unseen data very different
from the training data, many errors do occur. Interestingly, not a
single real sample is incorrectly classified as a fake one. However,
almost every second fake sample is misclassified into a real one.

This is also a very different behaviour as seen with the closed-
set scenario. In the open-set scenario, we observe significantly
different magnitudes for APCER and NPCER, and the relation
depends on the feature vector type. While for IQM-based feature
vectors NPCER is clearly larger, the opposite is true for NSS-based
ones.

Finally, in Table 5, we display results when confronting our
spoof detection methodology with samples from unseen sensors or
unseen subjects. As explained earlier, we only present NPCER or
APCER values, as the employed data set only contain real or fake
samples, but not both. Again, we compare the four classification
methodologies considered so far. Additionally, kNN-IQM ∅
denotes the NPCER/APCER averaged over all results varying the
number of used IQM exhaustively and taking the minimal value for
k = 1, 3, 5, 7, 9. The aim is to show that average behaviour of the
kNN behaviour may significantly deviate from the best results
presented so far in the results. The results in the table clearly
confirm this – average results are clearly worse as compared to the
best ones as shown in the first column. In some cases, the
difference is small (e.g. fingervein full), in other cases results
change from perfect spoof detection to entirely useless results like
for iris when changing from the best result to the average
behaviour. This also implies that data dependency for kNN is rather
high which leads to poor generalisation potential for this approach. 

When looking at the results overall, we do hardly observe any
general trends apart from the fact that results seem to strongly
depend on the data sets considered and features/classification
schemes employed. SVM-NSS, the classification scheme of choice
for the closed-set scenario, performs perfectly for fingervein data,
thus enabling cross-sensor spoof detection. On the other hand, for
iris data, it does not work at all, classifying almost every real
sample data as fake one while for fingerprint data every other real
sample data is classified as fake. When looking at the actual
pictorial data, it seems that fingervein data from different sensors is
more similar than iris or fingerprint data from different sensors is
(e.g. compare Figs. 4 and 5 for the fingervein case). NSS used with
kNN classification exhibits the best overall results, with perfect
classification for iris, three out of six fingerprint settings as well as
for correctly detecting fake fingervein sample of unseen users but
identical sensor. Applying SVM to IQM directly leads to consistent
misclassifications in many cases, however, for two cases, the
classification is almost perfect. The kNN results using IQM
underpin the necessity of the k-parameter optimisation in case
sensible results are expected. One might expect that corresponding
fingerprint sensor types (i.e. optical versus optical) lead to lower
error rates that different ones; however, the results do not reflect
this behaviour. Overall, it is impossible to explain most effects in a
sound manner, like the almost opposite behaviour for kNN and
SVM on iris data for both feature vector types or the single outlier
result of kNN-NSS for full fingervein data versus UTFVP. Also,

Table 4 Training with classical fingerprint data (WC), evaluation on latent fingerprints (WOC)
Database kNN-IQM

ACER APCER NPCER
fingerprint (optical, without coop) 12.6 5.66 19.53
fingerprint (capacitive, without coop) 7.52 3.52 11.52
fingerprint (thermal, without coop) 5.66 1.56 9.77
database kNN-NSS

ACER APCER NPCER
fingerprint (optical, without coop) 13.47 21.29 5.66
fingerprint (capacitive, without coop) 17.57 35.17 0
fingerprint (thermal, without coop) 2.54 4.49 0.59
 

 
Database SVM-IQM

ACER APCER NPCER
fingerprint (optical, without coop) 18.65 2.15 35.16
fingerprint (capacitive, without coop) 9.77 0.59 18.95
fingerprint (thermal, without coop) 23.54 0.2 46.88
database SVM-NSS

ACER APCER NPCER
fingerprint (optical, without coop) 25 50 0
fingerprint (capacitive, without coop) 23.34 46.68 0
fingerprint (thermal, without coop) 19.82 39.65 0
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the reasons for the entire failure of IQM feature vectors as opposed
to NSS feature vectors for the full fingervein versus VERA data are
hard to figure out.

5 Conclusion
We have found a high dependency on the actual data set/modality
under investigation when trying to answer the question about the
optimal settings when using non-reference IQM for biometric
spoof detection. For some data sets, we obtain almost perfect
separation of real and fake sample data, while for others, ACER
values up to 10% can be observed.

The situation changes considerably, when directly training NSS
features (in our experiments those used by BRISQUE) on our data,
especially when using SVM classification. In this setting, worst
ACER values are bound by 3.8%, with a majority of computed
ACER values being significantly <1%, which makes this approach
an interesting candidate for a generic spoof detection methodology.

In case the proposed spoof detection techniques are confronted
with data from unseen sensors and/or subjects (modelling a more
realistic open-set classification scenario incomplete training data),
many results seem to be rather unpredictable. Thus, it seems to be
advisable to apply recent open-set classification schemes to result
in more stable and more generalisable results in case unseen data is
to be expected.
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