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Abstract
The digital cameras contained in nearly all mod-
ern smartphone devices can be utilised for a broad
range of applications, e.g. biometric recognition
and extrinsic product authentication which are well-
established and work reliably. However, previous
research revealed undeniable problems with micro-
structure surface classification if different smart-
phone devices are involved (cross-device scenario).
This work is a step further towards understanding
the underlying reasons by employing different train-
ing strategies (training on general texture patches
and testing on the dental ceramic ones), analysing
the texture properties (information entropy) and
testing the performance of pairs and triples of the
same make and model of smartphones compared to
arbitrary device pairs.
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1 Introduction

Nowadays smartphone devices are utilised for a va-
riety of different tasks. Thanks to the digital cam-
eras contained in every modern smartphone device
they can also be employed as biometric capturing
devices for personal authentication [1] but also for
various kinds of classification purposes, e.g. detect-
ing paving materials in urban environments [2] or
wood type identification [3]. The classification of ob-
ject surfaces based on their micro-structure texture in
combination with smartphone devices to capture the
images of the objects’ surfaces (to alleviate the need
for special microscopes or other optical devices) is an
essential part in various practical applications with
mobile product authentication being only one exam-
ple.

There are several works showing that intrinsic
micro-structure based material classification is fea-
sible using commodity smartphone devices, e.g. in
[4]–[6] based on physical non-cloneable functions
(PUFs), relying on the surface micro-structure. Sun
et al. [7] utilised an efficient micro-structure ori-
entation estimation technique, modelling the en-
tire propagation path of the light. Schraml et al.
[8] presented an approach for drug packaging au-
thentication using micro-texture images in an open
set scenario. While for most applications (bio-
metric authentication, extrinsic product authenti-
cation, object detection and classification) a cross-
device scenario (more than one different smartphone
device used for training/enrollment and classifi-
cation/authentication) does not impact the perfor-
mance, cross-device intrinsic micro-structure based
material classification has hardly been investigated
so far. There is some evidence that the material clas-
sification performance is reduced in the cross-device
setting e.g. in [9], mentioning scaling issues (differ-
ent dpi resolutions) as well as artefacts introduced
during the image processing pipeline as main rea-
sons for the non-satisfactory performance.

Motivated by those works, our previous work
[10] investigated the applicability of surface micro-
structure images captured with commodity off-
the-shelf smartphone devices in combination with
a clip-on macro lens to perform intrinsic product
authentication for zircon oxide blocks (commonly
used for dental ceramics). The results confirmed
that the micro-structure based surface classification
works well in the intra-device (training and evalua-
tion only on the same smartphone device) scenario
but revealed undeniable problems in practical
applications if more than one type of smartphone
device is employed. While the PRNU [11] could

be ruled out as a reason, a device-inherent signal,
stemming from the image sensor itself as well as
an additional signal from the image processing
tool-chain (ISP) were identified as possible reasons
for the inferior cross-device performance. Our
follow up work [12] attempted to shed some more
light on the limiting factors and their underlying
reasons in cross-device micro-structure material
classification. The initial zircon oxide block dataset
was extended (7 smartphone devices instead of the
original 4) and in addition to the JPG images, sam-
ples were captured in raw mode (to rule out artefacts
stemming from the ISP). Moreover, a denoising filter
was applied to the images in order to remove the
PRNU noise signature. The experiments confirmed
that there is a device-inherent signal, which while
being stronger for the ISP processed JPG images, is
even present in the raw images and can partly be
attributed to the different physical structure of the
image sensors in different smartphone models (the
arrangement of the single pixels - colour filter array).
Hence, the device-inherent signal is assumed to be
composed of an ISP depended part and a sensor
hardware-related part, both not necessarily inde-
pendent (the ISP works on the images containing
the hardware-related signal). Additional device
identification experiments (instead of classifying the
different surface structures, the capturing devices
are classified) showed that this signal is strong
enough to perform reliable device identification
(with an accuracy of 99%) using the zircon oxide
block images.

For the domain of natural images, recent works
tried to separate the image content from the device-
specific artefacts introduced during the imaging pro-
cess: Cozzolino and Verdoliva [13] employed a con-
volutional neural network (CNN) architecture to ex-
tract a noise residual coined noiseprint which serves
as a model-specific fingerprint. Chen et al. [14]
adopted a Siamese network architecture to remove
artefacts in natural images introduced by the captur-
ing device as an anti-forensics tool. Manisha et al.
[15] utilized a CNN architecture to explore the exis-
tence of device specific artefacts other than PRNU.

The main aim of this work is to further investigate
the influence and characteristics of this device-
inherent signal for the domain of micro-texture
surfaces, especially the interdependence of the
image content and the device-inherent signal. This
is done by employing different types of textures
(two additional texture datasets) and a train-test
strategy for device identification, where training is
performed on general texture data and testing is
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done on zircon oxide block samples (and vice versa).
The ceramic samples serve as a representative of
surfaces with little structure and low texture similar
to medical packaging [8] and paper structure [4],
i.e. the results apply for other surfaces of similar
type analogously. Moreover, the individual samples
are categorised according to their image entropy
and the different categories are evaluated separately
to analyse the influence of certain texture/surface
properties on the classification performance. In
contrast to the PRNU [11] which is instance/device
specific, our previous results indicate that the
device-inherent signal could be rather model than
instance specific. Hence, there should be a signifi-
cant performance difference for device identification
if pairs of the same device model are employed
during training and testing (lower classification
performance) compared to pairs of different devices.
In order to verify this assumption, the zircon oxide
block dataset is extended to 19 devices in total,
by capturing sample data with four pairs (same
manufacturer and model) and one triple of devices.
Of course, the other two texture datasets are also
captured with all 19 devices. To further verify the
assumption that the device-inherent signal is model
specific, the material classification experiments
are conducted for the pairs/triples of the same
devices and compared to arbitrary sets of devices.
If the assumption holds, the material classification
performance should be influenced in the opposite
way than the device identification one, i.e. higher
performance for the pairs/triples of the same model
compared to the arbitrary sets.

The rest of the work is organised as follows: Sec-
tion 2 describes the datasets and their acquisition.
The experimental set-up, the utilised classification
approach and the evaluation results are explained in
Section 3. Finally the conclusion and an outlook on
future work is provided in Section 4.

2 Database
The acquired dataset used in the experimental part of
this study can be divided into three subsets / texture
types:

Ceramic The ceramic database comprises of im-
ages acquired from the top side of zircon oxide
blocks (see Fig. 1) produced by three different manu-
facturers: 10 blocks produced by Ivoclar Vivadent, 6
by Dentsply and 16 by 3M. Examples of the already
cropped ceramic patches can be seen in Fig. 2.

Figure 1: Unprocessed Zircon Oxide Ceramic Blocks.

Ceramic Sample Patches

Figure 2: Examples of ceramic patches.

Zinterhof Zinterhof sequence [16] are a simple
form of texture with an even spread of uniformly
distributed points in a uniform square and a spe-
cial form of Weyl sequences. In dimension d =
2 with a uniform distribution in the union square
Us = ∪di=1[0, 1[. Weyl sequences are defined as
xn = ({nθ1}, . . . , {nθd}) n = 1, 2, 3, . . . , where {a}
is the fractional part of a. Weyl sequences are uni-
formly distributed if and only if θi are independent
irrational numbers. For Zinterhof sequences we set
θi = e1/i, and consequently the sequence of points
to zn = ({ne1}, {ne1/2}) n = 1, 2, . . . , N , where N is
set depending on the number of points we require.
The resulting images, with the number of points N
to produce them, can be seen in Fig. 3. The textures
were then printed using a laser printer.

Brodatz The Brodatz Texture Database [17] con-
sists of 112 texture images. Six textures were chosen
which can be seen on Fig. 4.

For every ceramic block and every printed texture,
four images, one on every corner, were captured us-
ing a macro lens Agritix WIDK-24X01 Xylorix Wood
Identification Tool clipped onto a smartphone’s cam-
era. The macro lens has a circular illumination ring
which was used during the acquisition to suppress

Zinterhof Texture Sequence
N = 256 N = 1024N = 4096N = 16384N = 65536

Figure 3: Zinterhof textures: produced by painting
the points in a 600x600 pixel image. N indicates the
points per image.
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Figure 4: The six Brodatz textures used in this work.

Table 1: Smartphones and their imaging sensor res-
olution.

Smartphone Image
Resolution

Scaling
Factor

Google Pixel 1 3036 × 4048 0.683
Google Pixel 4a* × 3 3024 × 4032 0.686
Huawei P20 Lite* 3456 × 4608 0.600
Huawei P30 Pro* 2736 × 3648 0.758
iPhone 11* 3024 × 4032 0.686
iPhone 13 × 2 3024 × 4032 0.686
iPhone 13 Pro* 3024 × 4032 0.686
iPhone X 3024 × 4032 0.686
iPhone XS × 2 3024 × 4032 0.686
LG Nexus 5 × 2 2448 × 3264 0.847
Nokia 6.1 × 2 3456 × 4608 0.600
Samsung Galaxy A52* 3468 × 4624 0.598
Xiaomi Mi A3* 3000 × 4000 0.691

the influence of varying lighting conditions and en-
hance the visibility of the surface micro-structure.

In addition to the described textures, checker-
board pattern images were acquired, which revealed
that the fields of view between the various devices
are similar but the resolutions are only coarsely
matching. Therefore, a resolution normalization is
applied by down-scaling the images to a fixed res-
olution of 2074 × 2765. Sensor resolutions and cor-
responding scaling factors for each smartphone are
listed in Table 1. For tiling, images are first rotated
to landscape orientation. Afterwards, the images
are converted to gray-scale and nine patches of size
512 × 512 are cropped from the center from every
image.

Results from previous experiments [10] suggested
that the smartphone inherent ISP greatly influences
the cross-sensor performance. Hence, all images
were captured in raw in addition to the ”normal”
(ISP) image. Usually, the standard smartphone cam-
era application does not allow to capture raw im-
ages. Hence, suitable camera applications were em-
ployed: OpenCamera for devices running Android
and Halide Mark II for the iPhone devices. Two
applications are used for conversion from the raw
data, i.e. the colour filter array image, to an RGB
image: Darktable (DT) and dcraw together with the
additional parameter -d to omit demosaicing, hence
coined CFA (for colour filter array) in the later ex-

Real World
Scene

Raw Color
Filter Array

Image

Demosaicing 
(Minimal

Image
processing)

RGB Image
JPEG / HEIC

Image Signal
Processing 
(Denoising,

Compression,
...)

CFA DT ISP

Figure 5: Imaging pipeline with measurement points
for CFA, DT and ISP.

periments. A schematic depiction of the imageing
pipeline and corresponding measurement points for
CFA, DT and ISP is shown in Fig. 5. In order to re-
move PRNU and other sensor artefacts, ISP images
additionally underwent denoising by application of
the BM3D [18] denoising filter. Results in Section 3
generated using denoised images are denoted with
DN.

3 Experimental Evaluation
Two distinct feature extraction techniques are em-
ployed in this study: (i) Dense SIFT [19] (SIFT de-
scriptors applied on a fixed-spaced grid), which are
subsequently encoded using improved Fisher vector
encoding [20] in a similar way as originally proposed
in [21], and (ii) a local binary pattern (LBP) feature
descriptor [22] made rotational invariant by using a
number of rotational shifts of the pattern equal to
the number of points and taking the minimum. A
support vector machine is utilized to classify the en-
coded features.

The experiments are based on well-established
classic texture features (SIFT and LBP) rather than
on deep-learning techniques for two reasons: i) bet-
ter interpretability and more straightforward evalu-
ation of the classic texture features and ii) a lack of
sufficient training data for a deep-learning approach
due to the rather small sample datasets.

The accuracy, defined as the proportion of cor-
rect classifications, is used as an evaluation metric
to quantify the classification performance. The re-
ported value in the following experiments is the av-
erage accuracy, i.e. the arithmetic mean over all accu-
racies for a particular experiment. The experiments
can be separated into two main parts: The first part
(Experiment A - Experiment E) evaluates the influence
of the image content (surface texture, image entropy)
on the device inherent signal utilised for camera clas-
sification, where only seven devices are used, indi-
cated by * in Table 1. In the second part (Experi-
ment F and Experiment G) the assumption is tested if
the device-inherent camera signal is device or model
specific by utilizing more devices from similar mod-
els. Therefore additional samples with all 19 devices
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Figure 6: Experiment A: train on ceramic samples
and test on Zinterhof sequences

listed in Table 1 are used.

Experiment A A classifier is trained to classify de-
vices using ceramic images, which are low in texture.
Zinterhof patterns, which have increasingly more
image texture as the number of dotsN increases, are
used as test data. The results in Fig. 6 show the same
trend for ISP, ISP DN and CFA for both, SIFT and LBP,
indicating an inverse relation ofN and ability to clas-
sify devices, i.e. the classification accuracy decreases
with increasing image texture which is as expected.
More image content interferes with the device inher-
ent signal, suppressing it and leading to diminished
ability to separate devices. The accuracy raises again
towards the N = 216 which can be interpreted as
black being just inverted white (i.e. no texture as the
black spots cover the whole image).

Experiment B Here each N of the Zinterhof se-
quence is used in turn as evaluation set and the clas-
sifier is trained on the remaining sequences (instead
of the ceramic ones). This should test if training on
a range of textures can alleviate the trend from Ex-
periment A. The results are depicted in Fig. 7. In gen-
eral they suggest that employing more variety in tex-
ture during training, which corresponds to learning
different ”magnitudes” of device inherent signal, in-
deed improves the ability to separate devices as the
classification accuracy is improved compared to Ex-
periment A. However, for a higher N it seems to be
more difficult as the accuracy decreases, especially
for CFA. This might be due to the bigger difference
in the number of black dots between the textures (the
scale of N is log). ISP DN exhibits the same general
behaviour too, but performs worse than ISP, indicat-
ing that with the higher texture content, the denois-
ing is able to filter out the parts of the device inherent
signal which are essential for device classification.

0 27 28 29 210 211 212 213 214 215 216
0

0.2

0.4

0.6

0.8

1

Eval label (N)

ac
cu

ra
cy

ISP LBP ISP DN LBP CFA LBP
ISP SIFT ISP DN SIFT CFA SIFT

Figure 7: Experiment B: Zinterhof sequences - take
given label for evaluation, train model on the rest in
an x-fold manner.
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0

0.2

0.4

0.6

0.8

1

N
ac

cu
ra

cy

Zint ISP LBP Zint ISP DN LBP Zint CFA LBP
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ceramic ISP LBP ceramic ISP DN LBP ceramic CFA LBP
ceramic ISP SIFT ceramic ISP DN SIFT ceramic CFA SIFT

Figure 8: Experiment C: classifier trained on either
Zinterhof or ceramic and evaluated on Brodatz tex-
tures (per label)

Experiment C This experiment evaluates the gen-
eralisation capability. Classifiers are trained using
ceramic and Zinterhof pattern samples, respectively.
Brodatz texture images, which are meant to repre-
sent random texture in the wild, are used for eval-
uation. This shall answer the question of how much
texture is required during training such that the clas-
sifier works on all possible input images. The as-
sumption based on Experiment A is that the lower the
image texture during training, the lower the accuracy
of the classifier. The results depicted in Fig. 8 con-
firm this assumption. Training on the ceramic sam-
ples achieves the lowest camera classification accu-
racy throughout all Brodatz samples, no matter if ISP,
ISP DN or CFA samples are utilised, while training
on the Zinterhof samples generalises better, resulting
in a higher accuracy, especially for LBP (with SIFT
still working 3-4 times better than trained on the ce-
ramic samples). In contrast to Experiment B, here the
CFA samples are slightly better than the ISP ones.

Experiment D The results of Experiment A sug-
gested that the more image texture content, the less
accurate the camera classification works if trained

On the Influence of Texture Strength and Camera Signal on Micro-Texture Surface Classification 5 / 9
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Figure 9: Experiment D: Patch entropy analysis, train
on Ceramic, test on the rest, results for ISP SIFT

on the ceramic samples. In this experiment the
amount of image texture is quantified using the im-
age entropy to verify the earlier findings. The clas-
sifier is once again trained on the ceramic patches
and evaluated on the rest (Zinterhof, Brodatz and
checkerboard pattern), while the evaluation patches
are sorted based on the image entropy. The device
classification accuracy results in Fig. 9 only includes
patches within a certain entropy range for each bin.
Except for the spike at the beginning, the earlier find-
ings can be confirmed (c.f. Fig. 6), i.e. the accuracy
decreases with increasing image entropy. Hence, the
higher the image entropy, the more the camera inher-
ent signal is suppressed. The results are only shown
for ISP SIFT as the other combinations follow the
same trend.

Experiment E Based on the findings derived from
Experiment C, the opposite question is if training on
more diverse image texture improves the camera
classification accuracy, where the assumption is that
it does. Hence, in contrast to Experiment C, the clas-
sifier is trained on the Zinterhof patches and evalu-
ated on the ceramic samples (exhibiting low image
texture). The results listed in Table 2 are controver-
sial. For LBP, CFA confirms the assumption, while
ISP DN and ISP should have a much higher accu-
racy, thus, invalidating the assumption that more di-
verse texture during training (or training on Zinter-
hof samples) generalizes well. SIFT follows a similar
trend. However, results once more indicate that the
camera inherent signal is composed of an ISP as well
as a image sensor component, with the ISP compo-
nent being highly influenced by the image content
while CFA remains relatively stable (otherwise the
performance of ISP and ISP DN should be similar to
CFA).

Table 2: Experiment E: Accuracy of classification of
model trained on Zinterhof images applied to ce-
ramic images.

Source Accuracy Source Accuracy
CFA LBP 0.963 CFA SIFT 0.800
ISP LBP 0.477 ISP SIFT 0.625
ISP DN LBP 0.271 ISP DN SIFT 0.321

Table 3: Experiment F: device classification perfor-
mance (accuracy) for the different features on the
four defined subsets.

Source all all uid NDF NDF uid
ISP LBP 0.959 0.793 0.992 0.641
ISP DN LBP 0.789 0.606 0.962 0.537
CFA LBP 0.952 0.832 0.999 0.787
DT LBP 0.877 0.700 0.990 0.661

ISP SIFT 0.878 0.881 0.994 0.826
ISP DN SIFT 0.823 0.812 0.984 0.809
CFA SIFT 0.873 0.939 0.999 0.955
DT SIFT 0.805 0.775 0.974 0.765

Experiment F This experiment tests if the device-
inherent signal tends to be model or instance/device
specific by training and evaluating a camera iden-
tification classifier on four different subsets (of the
ceramic samples) in a leave-one-out cross-fold vali-
dation: all simply uses all the 19 available devices,
NDF (non-duplicates filtered) is a subset where only
devices are included which have more then one in-
stance, e.g., two different iPhones 13 from two dif-
ferent users. Both subsets are further subdivided
into uid, which keeps the user id for the device (or
device id), i.e., the iPhone 13 from user A and the
iPhone 13 of user B are separate classes (iPhone13-A
and iPhone13-B are the target classes), and the non-
uid where both, iPhone13-A and iPhone13-B belong
to the same single class (iPhone13 as target class).
If the device-inherent signal was instance specific,
there should be no considerable difference between
the four subsets, while if the contrary is true, NDF is
expected to achieve the highest device classification
performance.

The results given in Table 3 confirm that the de-
vice classification works well for the NDF subset
across all image sources. It still works well for the
all but inferior to the NDF one (note that there is a
lower set of classes with higher number of samples
per class in NDF). For the subsets where the user
id is kept (all uid and NDF uid) the device classi-

On the Influence of Texture Strength and Camera Signal on Micro-Texture Surface Classification 6 / 9
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Table 4: Experiment F: Dental ceramic material clas-
sification performance (accuracy) for the different
feature sources with the four sets given.

Source all all uid NDF NDF uid
ISP LBP 0.898 0.933 0.833 0.977
ISP DN LBP 0.907 0.933 0.875 0.968
CFA LBP 0.969 0.887 0.500 0.945
DT LBP 0.963 0.974 0.856 0.983

ISP SIFT 0.982 0.990 0.996 0.999
ISP DN SIFT 0.980 0.981 0.993 0.999
CFA SIFT 0.980 0.988 0.957 0.999
DT SIFT 0.995 0.998 0.994 0.999

fication performance drops. The all uid subset per-
formance drops less than the NDF uid subset due
to the number of classes with only a single device
available in the all subset, which of course perform
equally with and without uid. This trend is the same
throughout all image sources (ISP, ISP DN, CFA and
DT). The performance drop is a clear indicator that
the source/signal of the features used for classifica-
tion is model specific, i.e. the device inherent sig-
nal is rather model than instance specific. However,
even NDF uid is far away from random guessing, i.e.
while the majority of the camera inherent signal is
model specific there seems to be a part which is spe-
cific to the individual device.

To further validate the assumption that the main
part of the device-inherent signal is model specific,
the same experiment is conducted for material classi-
fication. Here the classes are reversed as the different
dental ceramic materials are the target classes: The
cross-fold validation puts a device either in the train-
ing or in the evaluation set. If the device-inherent
signal was instance specific, there should be distinct
”data” (images of the same model but different user
id should be different) in the training and test sets
for the uid subsets. If this assumption does not hold,
there is the same ”data” in training and test sets,
leading to an increase in accuracy (more pronounced
in the pair of NDF sets). The results provided in Ta-
ble 4 reflect the assumed accuracy increase in the uid
sets due to individual devices of the same model be-
ing similar for LBP but not SIFT. Again the increase
in the pair NDF sets is more pronounced than in the
all set due to the smaller number of classes.

The device as well as the material classification re-
sults confirm (for all image sources), that the main
part of the device-inherent signal is model specific.
However, there is also a smaller part of the signal
which is specific to each individual device, enabling
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Figure 10: Exp. G: Pairwise cross-sensor ceramic
classification.

device classification even between instances of the
same model (c.f. NDF uid in Table 3).

Experiment G As a further validation of the ce-
ramic material classification results in Experiment F,
here a one to one cross-sensor train-test evaluation
is performed: All ceramic samples captured with ex-
actly one of the 19 devices are used as training set
while all ceramic samples captured with a different
one are used as test set. If the assumption of Exper-
iment F still holds, the train-test pairs of the same
model should achieve a higher performance than un-
correlated pairs. The results are given in Fig. 10.
Each dot represents one train-test device pair with
different colours, black for pairs of the same model,
blue for pairs of the same make and orange for un-
correlated pairs (note that of course the uncorrelated
ones have the highest number of pairs). The assump-
tion that the main part of the device-inherent signal
is model specific is confirmed, as the pairs from the
same model achieve the highest performance across
all the three tested image sources, followed by the
pairs of the same make while the uncorrelated pairs
perform worst.

4 Conclusion
This work analysed the influence of the image tex-

ture on the device-inherent signal, utilised for cam-
era classification, as well as the question if the nature
of this signal is instance/device or model specific.
The experimental results confirmed that the device-
inherent signal is strongly interdependent with the
texture/image content and weak in nature. If the
training and testing is performed on different tex-
tures, there is a significant drop in the device clas-

On the Influence of Texture Strength and Camera Signal on Micro-Texture Surface Classification 7 / 9
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sification accuracy. The higher the image entropy
the more the signal is suppressed and the lower the
classification accuracy. The device as well as ma-
terial classification results on the pairs and triples
of devices from the same model revealed that the
main part of the signal is rather model than in-
stance/device specific (on sets of devices from the
same model device identification performs worse
while material classification performs better than on
arbitrary sets).

References
[1] A. Das, C. Galdi, H. Han, R. Ramachandra, J.-L.

Dugelay, and A. Dantcheva, “Recent advances
in biometric technology for mobile devices”,
in 2018 IEEE 9th International Conference on Bio-
metrics Theory, Applications and Systems (BTAS),
2018.

[2] S. Jain and M. Gruteser, “Recognizing textures
with mobile cameras for pedestrian safety ap-
plications”, IEEE Transactions on Mobile Com-
puting, vol. 18, no. 8, 2019.

[3] X. J. Tang, Y. H. Tay, N. A. Siam, and S. C. Lim,
“Mywood-id: Automated macroscopic wood
identification system using smartphone and
macro-lens”, in Proceedings of the 2018 Inter-
national Conference on Computational Intelligence
and Intelligent Systems, ser. CIIS 2018, Associa-
tion for Computing Machinery, 2018.

[4] S. Voloshynovskiy, M. Diephuis, F. Beekhof,
O. Koval, and B. Keel, “Towards reproducible
results in authentication based on physical
non-cloneable functions: The forensic authen-
tication microstructure optical set (famos)”, in
2012 IEEE International Workshop on Information
Forensics and Security (WIFS), 2012.

[5] M. Diephuis, S. Voloshynovskiy, and T.
Holotyak, “Sketchprint: Physical object micro-
structure identification using mobile phones”,
in 2015 23rd European Signal Processing Conf.
(EUSIPCO), 2015.

[6] O. Taran, J. Tutt, T. Holotyak, R. Chaban, S.
Bonev, and S. Voloshynovskiy, “Mobile au-
thentication of copy detection patterns: How
critical is to know fakes?”, in 2021 IEEE Interna-
tional Workshop on Information Forensics and Se-
curity (WIFS), 2021.

[7] Y. Sun, X. Liao, and J. Liu, “An efficient
paper anti-counterfeiting method based on
microstructure orientation estimation”, in
ICASSP 2021 - 2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), 2021.

[8] R. Schraml, L. Debiasi, C. Kauba, and A.
Uhl, “On the feasibility of classification-based
product package authentication”, in IEEE
Workshop on Information Forensics and Security
(WIFS’17), 2017.

[9] R. Schraml, L. Debiasi, and A. Uhl, “Real or
fake: Mobile device drug packaging authenti-
cation”, in Proceedings of the 6th ACM Workshop
on Information Hiding and Multimedia Security,
ser. IH&MMSec ’18, Association for Comput-
ing Machinery, 2018.

[10] J. Schuiki, C. Kauba, H. Hofbauer, and A. Uhl,
“Cross-sensor micro-texture material classifi-
cation and smartphone acquisition do not go
well together”, in Proc. of the 11th International
Workshop on Biometrics and Forensics (IWBF’23),
2023.

[11] J. Lukas, J. J. Fridrich, and M. Goljan, “Digi-
tal camera identification from sensor pattern
noise.”, IEEE Transactions on Information Foren-
sics and Security, vol. 1, no. 2, 2008.

[12] J. Schuiki, C. Kauba, H. Hofbauer, and A. Uhl,
“Limiting factors in smartphone-based cross-
sensor microstructure material classification”,
in 22th Int. Workshop on Digital-forensics and Wa-
termarking (IWDW’23) (to appear), ser. Springer
LNCS, vol. 14511, 2023.

[13] D. Cozzolino and L. Verdoliva, “Noiseprint:
A cnn-based camera model fingerprint”, IEEE
Transactions on Information Forensics and Secu-
rity, vol. 15, 2020.

[14] C. Chen, Z. Xiong, X. Liu, and F. Wu, “Camera
trace erasing”, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020.

[15] Manisha, C.-T. Li, X. Lin, and K. A. Kotegar,
“Beyond prnu: Learning robust device-specific
fingerprint for source camera identification”,
Sensors, vol. 22, no. 20, 2022.

[16] H. Hofbauer, A. Uhl, and P. Zinterhof, “Zin-
terhof sequences in grid-based numerical inte-
gration”, in Monte Carlo and Quasi-Monte Carlo
Methods 2006, Springer-Verlag, 2008.

[17] P. Brodatz, Textures; a photographic album for
artists and designers, English. Dover Publica-
tions New York, 1966.

On the Influence of Texture Strength and Camera Signal on Micro-Texture Surface Classification 8 / 9



A
U

TH
O

R
V

ER
SI

O
N

CO
M

PI
LE

D
O

N
Ja

nu
ar

y
25

,2
02

5

[18] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazar-
ian, “Image denoising by sparse 3-d transform-
domain collaborative filtering”, IEEE Transac-
tions on Image Processing, vol. 16, no. 8, 2007.

[19] D. G. Lowe, “Distinctive image features from
scale-invariant keypoints”, Int. J. Comput. Vi-
sion, vol. 60, no. 2, 2004.

[20] F. Perronnin, J. Sánchez, and T. Mensink, “Im-
proving the Fisher kernel for large-scale im-
age classification”, in Computer Vision – ECCV
2010, Springer Berlin Heidelberg, 2010.

[21] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed,
and A. Vedaldi, “Describing textures in the
wild”, in 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2014.

[22] T. Ojala, M. Pietikäinen, and T. Mäenpää,
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