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Abstract—Depending on the product category the authenticity
of a consumer good concerns economic, social and/or environ-
mental issues. Counterfeited drugs are a threat to patient safety
and cause significant economic losses. Different from physical-
marking based approaches this work investigates authentication
of drugs based on intrinsic texture features of the packaging
material. Therefore, it is assumed that the packaging material of
a certain drug shows constant but discriminative textural features
which enable authentication, i.e. to prove if the packaging
material is genuine or not. This objective requires considering a
binary classification problem with an open set of negative classes,
i.e. unknown and unseen counterfeits. In order to investigate
the feasibility a novel drug packaging texture databases was
acquired. The experimental evaluation of two basic requirements
in texture classification serves as an evidence on the basic
feasibility.

I. INTRODUCTION

Counterfeiting is an economic issue affecting all industries.
The OECD [1] reports that in 2013 2.5% of the worldwide
traded products were counterfeited ones. For the European
Union (EU) a remarkably higher value of 5% for counterfeited
and imported products is reported. In case of medicals, coun-
terfeits cause an economic loss and are moreover a potential
threat to the consumer and patient health. On the European
level, the Falsified Medicines Directive (FMD) 2011/62/EU
should be implemented until 2018. The overall aim is to im-
prove patient safety stipulating an efficient anti-counterfeiting
system. The actual solution is based on product serialization,
i.e. each package is assigned a unique identifier (e.g. 2D
barcode) which enables to track and identify each medical
package along the supply chain. Hence a central database
is required to enable authentication of each package. Such a
system will not be available in developing countries. Further-
more, it suffers costs and is exposed to getting compromised
by forgers. For example, packages will have to be equipped
with safety features in order to avoid tampering. Summarizing,
serialization-based product authentication requires to adapt the
production, shows significant risks & costs and cannot be
implemented in a set of countries.

For this reason, we move from serialization to classifica-
tion. This means that a product is authenticated based on
constant but discriminative intrinsic features of the product
or packaging material. Therefore, we target at pill drugs
which are packaged in blisters and housed in a cardboard
packaging. In [2] we showed that 9 different drugs from 3
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manufacturers and some forged ones can be classified based on
their cardboard packaging material, in a closed-set multi-class
scenario. Results were promising and showed a classification
accuracy of 100% for all 8 drugs. However, the testset is
fairly small and drug package material authentication is a
simplistic two-class (binary classification) problem, i.e. a drug
is classified as being genuine or not. Contrasting to the setup
in [2], package authentication has to be considered as an
open set binary classification problem. In the training stage,
the authentication system can capture only a limited subspace
of other (known) drugs and forged packagings. It is a basic
requirement that the authentication system is able to reject
unseen counterfeited packages not known or available at the
time of training. For a drug packaging authentication system
this requires that a specific drug is distinguished from other
known and unknown forgeries and drugs which is referred
to as open set recognition. The general open set recognition
problem has recently been addressed in the works of [3], [4],
[5] which are outlined in Section II. Furthermore, in [6], [7],
[8] the authors investigate the performances of the invented
open set classification approaches in different applications.

In this work, we investigate the feasibility of a classification-
based drug authentication system based on images of the
cardboard packaging and top & bottom blister surface textures.
Within this work the cardboard packaging texture and the
blister top & bottom textures are referred to as modalities.
A substantial drug packaging texture database, consisting
of images from 45 drugs (multiple instances, i.e. multiple
packages in the range of 1 and 15 per drug are acquired).
Due to security concerns, strategic purposes and legal issues
(toll, pharma industry) no forged packages were available.

So far, packaging or paper authentication refers to iden-
tification or serialization of each instance. These are based
on the concept of physically unclonable functions (PUFs)
which rely on the mapping between a challenge and response
function depending on the physical nature of the object. PUFs
are unclonable and unpredictable and thus ideally suited to
implement identification-based anti-counterfeiting approaches.
These either rely on extrinsic or intrinsic PUFs, i.e. which are
attached to the product or can be derived from a part of the
product itself. The encrypted PUF signature can be attached
to the product enabling off-line authentication. [9], [10], [11]
showed that the microstructure in a certain region of a paper or
package material is discriminative enough to identify it (Paper
PUFs). Detailed investigations on paper identification, using a
publicly available microstructure dataset [12], are presented



in [13], [14]. In [13] publicly availablethe authors explore
the applicability of two approaches to overcome geometric
distortions. The same approaches and a hybrid one are used
to investigate package identification using mobile phones in
[14]. Furthermore, in [15] a new feature descriptor for micro-
structure identification using mobile phones is introduced. By
comparing the performances for different PUFs the results
in [16] indicate that the approach by [11] outperforms the
approaches by [12], [13], [14] but it requires a commodity
scanner. Thus, in [17] the authors showed that mobile devices
and the camera built-in flashlights can also be used to capture
images as required for [11].

As identified in previous literature the fibre structure of
paper or packaging material is positional highly unique and en-
ables to identify single instances. The move from identification
to classification, as done in this work, raises two fundamental
research questions:

Positional invariance: Paper PUFs rely on the local unique-
ness of the paper fibre texture. Thus, for the paper or card-
board packaging fibre structure it is not clear if (i) the fibre
structure shows constant features across different regions and
(ii) if those features are discriminative enough to distinguish
between different types of paper or cardboard packaging.

Instance generalisation: The second question is a spe-
cialisation of the first for which the positional invariance
is considered across different instances (i.e. packages) of a
modality. Instance generalisation is a pre-requirement for a
real-world application. For paper and packaging material it
is not clear how the texture and the computed features vary
between different instances, i.e. if a classifier which is trained
with features from one instance is able to authenticate unseen
features from another package instance and to distinguish them
from other types of paper or cardboard packaging.

In this work, positional invariance and instance generali-
sation of the corresponding textural features are investigated
for all three modalities. By considering these pre-requirements
for classification-based drug packaging authentication, this
work enables to draw fundamental conclusions. Based on the
new insights the feasibility of a novel serialization-less anti-
counterfeiting approach can be considered.

Section II introduces into open set drug package authenti-
cation: (i) Section II-A describes a possible scheme for an
package authentication system and (ii) in Section II-B the
open set recognition problem is considered in more detail.
Section III introduces the acquired database. The classification
pipeline is outlined in Section IV. Experiments and results are
presented in Section V and Section VI concludes this paper.

II. OPEN-SET DRUG PACKAGE AUTHENTICATION

A. Drug package authentication system

For a given drug sample a mobile application guides the
user to open/disassemble the drug packaging and to capture
images of three different packaging modalities: The cardboard
packaging texture ICB as well as the textures visible on the
top and bottom blister sides (IBT , IBB). Furthermore, the
user is guided to capture the product code IPC (e.g. EAN

which is the European article number). All four images com-
pose the authentication vector ÂV = (ICB , IBT , IBB , IPC).
IPC is processed in order to determine the product code
specifying the target product. ICB , IBT , IBB are prepro-
cessed (segmentation, image enhancement). For the result-
ing texture images TCB , TBT , TBB a set of feature vec-
tors FVCB = {ĉb1, ..., ĉbi}, FVBT = {b̂t1, ..., b̂tj} and
FVBB = {b̂b1, ..., b̂bk} are computed, where the number of
feature vectors per modality i, j, k depends on the size of
the preprocessed images and on the utilized feature extraction
strategy. Based on the product code, the authentication system
selects the corresponding precomputed classification models
MCB ,MBT ,MBB from a model repository. If the required
models are not available on the device they could be requested
from a remote repository. For each model M and a given
feature vector v̂ the prediction function pF (M,v) = 1 in case
the vector is labelled as being genuine and −1 if not. For
each model MCB ,MBT ,MBB and the corresponding feature
vector sets FVCB , FVBT , FVBB the prediction function is
applied to all feature vectors which leads to the predictions for
each modality of the packaging instance PCB = {p1, ..., pi},
PBT = {p1, ..., pj} and PBB = {p1, ..., pk}. Finally, a
decision function f(PCB , PBT , PBB) = (v, p) needs to be
defined, where v ∈ {1,−1} gives the final authenticity vote of
the authentication system and p ∈ [0, 1] specifies a probability
score for the final vote which are then presented to the user.

Such an authentication system relies on the assumption that
different modalities of the packaging material of all instances
from the same product show constant but discriminative fea-
tures which enable to detect and distinguish the product from
a known and unknown set (=open set) of other as well as
from counterfeited products. For training of a classifier, only
a limited subset of other drugs and available counterfeits is
utilized. As a precondition for authentication, the classifier
must be able to reject unseen data. This is a typical binary
classification problem, either a given sample is labelled as
genuine or not. The undefined set of unknown other classes
leads to an open set recognition problem. This differs from
closed-set classification where only known classes are sepa-
rated from each other. Substantial efforts in the field of open
set recognition were made in [3], [4], [5]. In [3] the authors
introduce and formalize the open set recognition problem.
Furthermore, in [3], [4], [5] the authors propose different SVM
extensions which specifically address the open set recognition
problem. In order to investigate the two research questions
and as a consequence to prove the principal feasibility of
an authentication system we base our experiments on the
formalization of the open set recognition problem provided
in [3], [4].
B. Formalization of the open set recognition problem

In [3] the authors define the Open Space Risk as RO(f) =∫
O

f(x)dx∫
SO

f(x)dx
. SO needs to be considered as a large ball which is a

subspace of the open space including all training samples. O is
the open space. f(x) is a recognition function where f(x) = 1
if x is recognized as the class of interest y and f(x) = 0 if



(a) Collected drug packages (b) Image acquisition setup

(c) CB sample (d) BT sample (e) BB sample

(f) CB image (g) BT image (h) BB image
Fig. 1: Image Acquisition Overview: 3rd Row: exemplary images showing
the selected 128×128 and 256×256 image patches.

not. Consequently, the open set risk RO is the fraction of the
positively labelled open space in SO compared to the positive
labelled samples in O. The goal in open set recognition is to
minimize the open space risk RO whilst balancing it against
the empirical (known) risk RE computed over the available
training data. Therefore, P̂ = {p1, ..., pn} are samples from
the positive training class P and N̂ = {n1, ..., nm} are
samples from a set of other known classes N . N̂ is defined
as the negative training data. U is the larger universe of
negative unknown classes only utilized for evaluation and
E = {e1, ..., ez}, ei ∈ P ∪ N ∪ U specifies all evaluation
data. For a given training data P̂ ∪ N̂ and the open space
and empirical risk functions RO, RE the open set recognition
problem is to find a function f , where f(x) > 0 for positive
recognitions, which minimizes the open set risk:

argmin
f
{RO(f) + λrRE(f(P̂ ∪ N̂))} (1)

where λr is a regularization constant.
Hence, open set recognition is a minimization problem

which combines the open set and the empirical risk over the
space of allowable recognition functions. Further, the empirical
risk (i.e. the training error) can be optimized using predefined
constraints. The stated minimization problem requires a set
of known classes which are utilized for training and a set
of known unknown classes in U which are only used for
evaluation.

III. DRUG PACKAGINGS TEXTURE DATABASE (DPT-DB)
For image acquisition, a large variety of drug packages

were collected from different pharmacies (1st row in Fig. 1).

From each drug package (=instance) the CB fibre texture
on the inner raw side of the packaging, the BT texture
(blister top side) and the BB texture (blister bottom side) were
captured. For image acquisition a Canon 70D (100mm lens and
flashlight), mounted on a tripod, was utilized (see Fig. 1b).
From each CB,BT&BB instance images from different and
non-overlapping sections were captured (e.g. Fig. 1c)). In
total images for 45 drugs from 28 different producers were
taken. For each drug between 1 and 15 package instances
are available. All captured images were manually cropped
ensuring that just texture remains.

IV. CLASSIFICATION PIPELINE

Two different classification scenarios are considered: (i)
CLASS to investigate the positional invariance of the
CB,BT&BB texture. (ii) PACKAGE to prove instance invari-
ance which is a step towards a real-world setup. In order
to train and evaluate SVM-based classifiers data needs to be
sampled and then partitioned into training (T) and evaluation
(E) data. The amount of data (k) to be sampled is predefined
for both scenarios. In this work, data relates to image texture
patches of CB,BT&BB. For patch sampling, each CB,BT&BB
image is subdivided into a grid which is specified by the size
of the feature descriptor (e.g. 128×128 or 256×256 pixels).
The 3rd row in Fig. 1 depicts sample images for CB,BT&BB
for which the image patch grids are shown.

In case of CLASS k patches are sampled from all instances
of each drug and modality. Contrary, for PACKAGE k patches
are selected from each instance of each drug and modality.
This is important in that for cross-validation the partitioning
into T and E differs in principle as illustrated in Fig. 2. For
CLASS the k patches of a drug and modality are partitioned so
that different patches of each instance are included in T & E.
On the other hand for PACKAGE the patches are partitioned
instance-wise into T and E.

A. Feature vector computation

For each selected patch in CLASS or PACKAGE a set of
discriminative features is computed. Prior to feature extraction
Contrast Limited Adaptive Histogram Equalization (CLAHE)
[18] is applied to each patch (parameters: block radius=50,
bins=256, slope=40). Exemplary CLAHE enhanced patches
are shown in the 1st and 2nd row of Fig. 3.

a) Feature Extraction: For the experiments feature ex-
traction approaches producing low dimensional feature-vectors
are utilized, mainly due to the fact that high dimensional fea-
tures and feature encoding cause computational and memory
issues when computing all classification configurations (CCs)
for different SVMs, i.e. RAM & I/O limitations. We already
did small-scale experiments on a subset of the CCs with SIFT,

 PACKAGE
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1 2 3 4

E

 PACKAGE

1 2 3 4

CLASS

|1|,|2|,|3|,|4| = k|1+2+3+4| = k

Fig. 2: Training (T) and evaluation (E) data sampling and partitioning
strategies applied for CLASS and PACKAGE



Fig. 3: Preprocessed patches of the CB,BT&BB images in Fig.1 - 1st Row:
256×256 pixels, 2nd Row: 128×128 pixels

SURF & feature encoding and the results indicate that the
classification performance even increases.

The following features are utilized: Local Binary Pattern
(LBP) [19], Local Ternary Pattern (LTP) [20], LiLBP (LiLBP)
[21], Histogram of Gradients (HOG) [22], Dual Tree Complex
Wavelet Transform (DTCWT) [23], Multifractal Spectrum
(MFS) [24], Edge Co-Occurence Matrix (ECM) [25].

For each selected patch of CLASS & PACKAGE a feature
vector for each listed feature extraction approach is computed.

B. Classification Approaches

For classification LIBSVM [26] and the open set extensions
provided by [27] are utilized. From LIBSVM we use the
ONE-CLASS and the C-SVC SVM (BINARY C-SVC)for one-
class and binary classification, respectively. Additionally, as
an approach specifically addressing open set recognition, the
WSVM [4] is applied for binary classification. As the ONE-
CLASS SVM uses a radial basis function (RBF) kernel, the
same is chosen for BINARY C-SVC and WSVM.

In the experiments, the classification approaches are utilized
to investigate a large set of different CCs. D = {d1, ...d45}
is the set of drugs and DM = {dm1, ..., dm28} is the
set of drug manufacturers in the testset where fdm(di) :
D → DM specifies the drug manufacturer for each drug.
M = {CB,BT,BB} specifies the packaging modalities.
FE = {fe1, ..., fen} is the set of feature extraction methods
and CS = {CLASS, PACKAGE} gives the classification
scenarios. The feature vector sets for a certain drug d ∈ D
& modality m ∈ M , for the k-patches defined for the cla
ssification scenario cs ∈ CS computed with feature extraction
method fe ∈ F , are given by FV(d,m,f,cs) = {fv1, ..., fvk}.
Following, a specific CC is defined by the tuple

CC = (d ∈ D,m ∈M,fe ∈ FE, cs ∈ CS) (2)

where d specifies the target drug which should be authen-
ticated. The respective set of feature vector sets for CC is
given by FVCC = {FV(d1,m,f,cs), ..., FV(d45,m,f,cs)} which
is composed by the CC specific feature vector sets from
each drug. The positive training data PCC = FV(d,m,f,cs) is
specified by the target drug d in CC. The negative training
data NCC = {FVCC} \ {FV(d,m,f,cs)} is composed by
all feature vector sets of all other drugs. The positive and

negative training data PCC , NCC are then used for nested
cross-validation using a specific classification approach.
C. Cross-fold validation

Optimization is crucial as the standard LIBSVM parameters
did not succeed in our experiments. Therefore, cross-validation
(CV) strategies have been carefully designed and employed in
order to optimize the SVM parameters and to strictly avoid
that training data is used for evaluation.

Therefore, the negative training data is split into known
negatives KNCC and unknown negatives UNCC =
NCC/KNCC . Therefore, for KNCC the feature vector sets
from a fixed number of drugs (e.g. 6) are selected, where the
manufacturers are different to the target drug manufacturer of d
in CC. Now, a set of positive training data PCC , a set of known
negatives KNCC and unknown negatives UNCC is available.
Based on PCC ,KNCC , UNCC nested CV procedures for
CLASS and PACKAGE are defined as illustrated in Fig.4.

For CLASS, we apply a k-fold data split strategy, i.e.
PCC ,KNCC are class-wise split into k-folds {P1, ..., Pk} and
{KN1, ...,KNk}, i.e. all drug classes are distributed equally
in the k folds. In the outer loop, we iterate over the k positive
and k negative known data folds. Thereby, the ith positive
and jth negative was selected for evaluation. The evaluation
set is given by Ei,j = Pi ∪ KNj ∪ UNCC and the training
set by Ti, j = {P1, ..., Pk}\{Pi}∪{KN1, ...,KNk}\{KNj}.
Thus a large set of known unknown drugs UNCC are used
only for evaluation. Note that |{KN1, ...,KNk}\{KNj}| is
reduced to the same size of the positive training data |Pi|
in a classwise manner. For each Ti,j in the inner CV loop
the best hyperparameters are determined in a grid search.
Same as in the outer loop, k-fold validation is performed
repeatedly in order to test a set of SVM parameters. For the
ONE-CLASS SVM just the positive samples in Ti,j are split
into k-folds and the known negative training samples are only
used for validation. As a measure for the performance the F-
Measure is utilized which is well suited to balance between
specialisation and generalisation in binary classification tasks.
For the binary SVM approaches, each prediction is assigned
a probability. In the inner loop, the probabilities are used to
determine a threshold which maximizes the F-Measure. The
SVM parameters delivering the highest F-Measure (and the
probability threshold in case of binary SVMs) are selected for
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CC

CLASS PACKAGE
128×128 256×256 128×128 256×256

CB BT BB CB BT BB CB BT BB CB BT BB

ONE-
CLASS

LTP

0.83 +−7.9
LTP

0.9 +−6.2
LTP

0.92 +−5.8
LTP

0.91 +−4.4
LTP

0.85 +−13.6
LBP

0.87 +−13.5
LBP

0.81 +−8.7
LBP

0.86 +−6.3
LTP

0.84 +−11.3
LTP

0.85 +−9.1
LBP

0.88 +−5.0
LBP

0.85 +−7.1

BINARY LTP

0.88 +−6.9
LiLBP

0.94 +−3.2
LTP

0.93 +−4.1
LTP

0.91 +−5.2
LiLBP

0.92 +−9.0
LTP

0.93 +−5.0
LTP

0.82 +−9.5
LTP

0.92 +−3.7
LTP

0.87 +−8.9
LTP

0.85 +−5.5
LTP

0.94 +−5.7
LiLBP

0.87 +−10.0

WSVM LTP

0.86 +−7.6
LTP

0.93 +−4.1
LTP

0.93 +−4.3
LiLBP

0.88 +−6.0
LTP

0.88 +−7.6
MFS

0.88 +−9.1
LTP

0.85 +−8.2
LTP

0.91 +−4.2
LiLBP

0.85 +−9.2
LiLBP

0.83 +−8.5
LTP

0.89 +−8.7
LiLBP

0.84 +−10.1

TABLE I: Classification performances: For each configuration the mean F-Measure (CLASS=45 & PACKAGE=8 target drugs) and the StDev for the best
feature are presented. BEST CLASS/ PACKAGE configurations for each modality are layered green.

the outer loop. Finally, the SVM approach is trained with Ti,j
(for ONE-CLASS only the positive data Pi is utilized) and
the selected hyper parameters from the inner CV loop. The
trained model is evaluated using the evaluation data Ei,j and
probability threshold in case of binary SVMs.

For PACKAGE, a nested leave-one-package-out (LOPO)
CV procedure is applied. Thereby, PCC is split into k-folds
in a package-wise manner, where k is given by the number of
packages in PCC , i.e. the number of available packages from
the target drug. KNCC is reduced to contain a fixed number
of feature vectors from each class which are sampled package-
wise. Furthermore, for KNCC the features of each drug are
split into two folds KN1,KN2 package-wise. Same as for
CLASS, in the outer CV loop we iterate over the i positive and
the j = 2 known negative training folds Ti, j and evaluate it
with Ei,j , as done in the CLASS scenario. For ONE-CLASS
in the inner CV loop the same procedure as for the outer
loop is applied. However, for binary SVMs the inner CV loop
has been adopted to better match the open set recognition
problem. Therefore, the known negative training data in Ti, j
is split classwise into two folds TKN1 and TKN2. One
fold simulates known negatives and the other one unknown
negatives in the inner loop. While the known negatives are
further used for training and validation, the unknown negatives
are just used for validation. This strategy adapts the inner CV
loop and the parameter grid search to the open set recognition
problem and is supposed to minimize the difference between
the inner CV validation- and the outer CV evaluation-error.

V. EXPERIMENTS

A. Experimental setup

All classification approaches (Section IV-B) were utilized
to cross-validate all CC combinations (Eq.2) using the CS-

TPR F TNR

CB-LTP BT-LiLBP BB-LTP
4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

(a) CLASS - 128×128
CB-LTP BT-LTP

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

BB-LTP

(b) PACKAGE - 256×256

Fig. 5: CLASS vs. PACKAGE (Binary C-SVC): TPR = TP
TP+FN

, TNR =
TN

TN+FP
[Y-Axis: Mean accuracies, min, max and variance in %]

specific CV strategies (Section IV-C). For both, PACKAGE
and CLASS a patch number k of 500 is set. For CLASS the
outer and inner CV loops are iterated twice and the data is split
into 2-folds. In case of PACKAGE LOPO is performed for all
package instances of drugs with at least 5 instances. For each
LOPO CV the positive data is split into 2-folds, in the inner
and outer CV loop. For both CSs, 5 drugs are selected for the
known negative training data KNCC . In order to enable a fair
evaluation, all data splits for CLASS & PACKAGE are stored
and reused for different features and classification approaches.

B. Results and discussion
Table I provides an overview of the results for each classi-

fication scenario, different patch sizes, modalities and SVMs.
For CLASS the averaged results over all 45 drugs are shown.
In case of PACKAGE, mean values for drugs with at least 5
instances are shown.

Considering positional invariance, the results for the best
(green layered) CLASS configurations show high mean F-
Measures over 0.9. This indicates that the textures from
all three modalities show constant but highly discriminative
features which enable to recognize the same drug class and
to distinguish it from other classes. Regarding the question of
instance invariance, the F-Measures for the best PACKAGE
configurations provide an evidence on the feasibility of a drug
package authentication system. The PACKAGE results show
that the textural features are constant across different instances
for all three modalities. This is a basic requirement for a
classification-based authentication system. Although only low-
level features have been utilized, the achieved F-Measures are
very promising. Most of the best results for both scenarios
and the different modalities were achieved with the BINARY
C-SVC Y SVM. Fig. 5 provides a more detailed view on
the BINARY C-SVC CLASS and PACKAGE results for the
best features from each modality. Thereby, it is clearly visible
that the performance decreases in case of the more difficult
PACKAGE scenario. Furthermore, the comparison between
the class accuracy (=true positive rate - TPR) and the others
accuracy (=true negative rate - TNR) shows that for all results
a higher class accuracy is achieved.

Finally, Fig. 6 shows accuracies and errors for PACK-
AGE,CB and all SVMs for the best features. For each tested
drug (=8) and all SVMs, results show that the error for
known data (KN=seen in training) is lower than the error
for unknown data (UN=open set). Considering the different



Error UN F TPR TNR Error KN

A 1 A 2 G 1 I 1 I 2 K 1 N 1 T 1
0

2 0

4 0

6 0

8 0

1 0 0

(a) ONE-CLASS
A 1 A 2 G 1 I 1 I 2 K 1 N 1 T 1

0

2 0

4 0

6 0

8 0

1 0 0

(b) BINARY C-SVC
A 1 A 2 G 1 I 1 I 2 K 1 N 1 T 1

0

2 0

4 0

6 0

8 0

1 0 0

(c) WSVM

Fig. 6: PACKAGE (256×256) – SVM
performance comparison for CB and all
target drugs with more than 5 instances
(=8 drugs): Accuracies (TPR,TNR) and
recognition errors for the unseen data
(Error UN) and seen training data (KN)
are shown [X-Axis: Target drug (d) ids:
e.g. A1 = manufacturer A+drug num-
ber].

SVMs, the accuracies and errors for ONE-CLASS and WSVM
vary more compared to the per-drug results of the BINARY
C-SVC. Furthermore, the WSVM does not outperform the
classical BINARY C-SVC in terms of achieving a lower error
for recognizing unknown data (UN ).

VI. CONCLUSION

Results showed that textural features of drug packaging ma-
terial are constant and highly discriminative. Very important,
the experiments indicate that a classifier can be trained with
a set of known instances and is able to authenticate unseen
instances.

In future work, we will use high-level features, feature
encoding and fusion techniques and it is planned to employ
deep learning techniques. Furthermore, causes for classifica-
tion errors need to be investigated in detail, e.g. in case of
a high false positive rate it can be that other drugs from the
same manufacturer have the same packaging material.
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