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Abstract

Log traceability in the timber based industries is a basic requirement to fulfill economical, social and legal requirements. This
work introduces into biometric log recognition using digital log end images and investigates the robustness to real world log
end cross-section (CS) variations. In order to investigate longitudinal and surface CS variations three tree logs were sliced and
captured in different sessions. Equal as in our initial study [19] a technique closely related to feature-based fingerprint matching is
used to compute biometric templates and in addition three matching procedures are utilized to compute matching scores between
CS images. On this basis, our experiments enable to present first fundamental insights and constraints on the robustness and
general applicability of biometric log recognition using log end images to identify logs in an industrial application. Our results for
different identification performance scenarios indicate that the matching procedure which is based on annual ring pattern and shape
information is robust to log length cutting using different cutting tools. By showing up the potentials and basic requirements this
study is of major importance and contributes to the further development of a biometric log recognition system.

Keywords: Biometric log traceability, Log tracking, Cross-section analysis, Log end face analysis, European Timber Regulation,

Chain of Custody, Forest sustainability assessment

1. Introduction

Many efforts had been made in the past in order to assess il-
legal logging, its associated causes and how such actions could
be effectively disabled in future. Besides corruption on differ-
ent governmental authority levels and land reclamation for re-
quirements such as mining, plantations or agriculture, illegal
logging is known to be one of the main driving forces promot-
ing deforestation [18, 21, 15]. It is a phenomenon comprising
timber harvesting, timber trade and disposal occurring around
the world and affects biodiversity, hydrological cycles and con-
tributes considerably soil erosion.

These problems were officially addressed at the UN Confer-
ence on Environment and Development (UNICED) held in Rio
de Janeiro in 1992 and consequently a document called Agenda
21 was concluded, providing voluntary commitments on sus-
tainable forest management and development and offering a ba-
sis for non-governmental, independent forest certification [23].
According to a report supported by the World Bank, illegal log-
ging is considered ten years later still as a major threat to envi-
ronment being closely linked to political, social and economi-
cal conditions and therefore emphasizing the need for effective
traceability methods within the wood supply chain [3].
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Efforts in fighting illegal logging on the EU level led to
the Forest Law Enforcement Governance and Trade Action
Plan (FLEGT) defined in 2003 and the EU Timber Regula-
tion (EUTR) prohibiting the placement of illegally harvested
timber and wood products derived there from. This regula-
tion, initially proposed by the Commission in 2008, is legally
binding on all EU member states, each being responsible for
national implementation and has come into force since march
2013. This regulation claims traceability of timber and timber
products throughout the supply chain providing information on
operators, traders and, if possible, of retailers [4].

Traceability of timber and wood products is generally ex-
pected to restrict illegal logging and is supposed to be to the
beneficial of companies and consumers [22]. In fact empirical
information on quantities and linkages of internationally traded
wood are indispensable in order to assess causal relationships
for illegal logging and to take effective steps preventing de-
forestation in future [13]. Admittedly landsat data on forest
resources may considerably vary from official data collection,
there-from an improved monitoring is highly required in order
to gain reliable information [15]. A contemporary managed
database in conjunction with wood labelling would certainly
provide such a basis and thus impede illegal logging, fraud and
misuse in future.

A wide range of log traceability systems are applied in or-
der to identify and track logs in the past, each method showing
limitations due to costs, practical implementation or weather
conditions. The applications range from punching, coloring or
barcoding log ends to more recently developed techniques as
DNA fingerprinting and usage of RFID transponders [22].
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Another approach comes down to track logs using biometric
log characteristics. Investigations on the hypothesis that logs
are separate entities on the basis of biometric log characteristics
were presented in the works of [1, 2, 5, 6, 7], which show up
the high potential of biometric log recognition. The approaches
presented in [1, 2, 6] utilized 2D and 3D scanners to extract
geometric wood properties. In [5, 7] a computer tomography
scanner was used to extract knot positions to enable traceability
between logs and the cut boards. Because of low recognition
rates, these approaches are not applicable for industrial usage
and are less suitable to deal with the increasing variety of trees
at forest site. Additionally, the utilized capturing devices are
expensive and not applicable in the forest based industries.

On account of the fact, that timber offers characteristics on
log end faces in terms of annual rings, pith position, shape
and dimension it is assumed that cross-section images of log
ends can be used as biometric characteristic for log identifica-
tion. Images containing a cross-section (CS) of a wood log are
denoted as cross-section images (CS-Images) throughout this
work.

This study introduces the concept of biometric log recogni-
tion using log end images and elaborates the robustness to prac-
tical issues of an industrial application. In case of CS-Images of
log ends, CS variations are pretty unpredictable and the biomet-
ric system must be able to identify a single wood log based on
two different CS-Images in which the CSs of the same log show
up strong variations. Consequently, the applicability of biomet-
ric log recognition using log end images depends significantly
on the robustness to CS variations which arise in an industrial
application. Basically, the biometric system must discriminate
between CS-Images of the same log and CS-Images of differ-
ent logs. Thereby, a high variability between CS-Images of the
same log end deteriorates the discriminative power of the bio-
metric system.

Two types of variations which arise in an industrial appli-
cation are: Temporal and Longitudinal variations of cross-
sections (CSs). Temporal variations are caused by light, hu-
midity and other environmental influences and result in defor-
mations like cracks and discolorations. Longitudinal variations
result from log end cutting in the sawmill or from capturing dif-
ferent log ends. In [19] first investigations on temporal and lon-
gitudinal variations based on time-delay captured CS-Images of
35 Slices of a single log were presented.

Equal as in [19] the FingerCode approach [11, 9] is adopted
to CS-Images. By introducing three matching procedures this
study additionally elaborates the strength of the annual ring pat-
tern and the CS shape as biometric feature. In addition to the
single log used in [19], further two logs are used for the exper-
imental evaluation of this study. From each log 16 Slices were
cut down and the rough and sanded CS surfaces of each slice
were captured with a digital camera. Consequently, the cap-
tured CS-Images enable to consider a third group of CS varia-
tions which we denote as surface variations. Additionally, in-
terclass matching scores (MSs) between the CS-Images of three
different tree logs are computed.

Based on CS-Images of three logs, this work contributes to
the development of biometric log recognition in assessing two

main objectives in the experiments. The first objective is to
investigate the separability between intra- and interclass MSs.
For this purpose, the verification performance of the biomet-
ric system is evaluated. Furthermore, detailed investigations on
the impact of surface and longitudinal variations to the intra-
class variability and the separability of the interclass MSs are
presented. Thereby it is assessed if the CS surface has an im-
pact on the longitudinal variations of each log. For this purpose,
the longitudinal MSs of the rough and sanded slices from both
logs are evaluated and the results are compared to the longitu-
dinal MSs computed in [19]. In comparing the interclass MSs
of three logs to the surface and longitudinal MSs it is possible
to draw fundamental conclusions on the robustness and appli-
cability of biometric log recognition using log end images.

Second, first investigations on the identification performance
of biometric log recognition using log end images are pre-
sented. Introductory, general assertions about the impact of
surface and longitudinal variations on the identification per-
formance are presented. Subsequently, identification rates for
different scenarios are presented. For these scenarios, it is as-
sumed that the log is length cut in the sawmill. Thereby, the
first cut in the forest and the second cut in the sawmill can be
performed with different cutting tools. This results in a mix-
ture of surface and longitudinal variations. Furthermore, it is
assessed to which extent the identification rates are influenced
by the width of the piece which is cut-off from the log end.

At, first Section 2 introduces the computation and matching
of biometric templates from CS-Images using Gabor-based fea-
tures. The experimental setup and results are presented in Sec-
tion 2.4 followed by the conclusion in Section 4.

2. Materials and Methods

By superficially comparing the patterns of human finger-
prints to annual ring patterns of wood log ends one finds that
these are closely resembling to each other. Human fingerprint
recognition is well-investigated and there exist three mainly
used groups of approaches: Minutiae-based, Correlation-based
and Feature-based approaches [16]. Apart from the presence
of the pith as detectable feature, CS patterns do not exhibit
further constant features like minutia’s in fingerprints. Hence,
minutiae-based approaches are not qualified for log CSs.

Basically, the scheme of a biometric recognition system is set
up on five components: Data acquisition, Preprocessing, Fea-
ture Extraction, Template Generation and Template Matching.
In case of biometric log recognition using log end images, data
acquisition is the capturing of digital CS-Images of log ends.
In the preprocessing stage the CS in the CS-Image is separated
from the background, aligned and subsequently the CS is en-
hanced. Due to the ability of feature-based methods to capture
information of the fingerprint ridge pattern they can be extended
to work with CS patterns. For this purpose, we have adopted the
texture feature-based FingerCode approach by [11], [9] to ex-
tract features from CS-Images. The extracted features of a CS-
Image are stored in a vector which is denoted as cross-section
code (CS-Code). A template of a CS-Image incorporates a set



of CS-Codes which are computed for differently rotated ver-
sions of the CS-Image.

Finally, template matching is the task of verification or iden-
tification of an individual or subject. For this purpose, the in-
dividual/ subject must be enrolled in the biometric system. In
case of log recognition, the enrolment procedure could be per-
formed during the harvesting procedure in the forest. An ex-
emplary enrolment scheme for wood logs is depicted in Fig. 2.
For enrolment the end of a fresh cut log is captured using a
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Figure 1: Exemplary enrolment and identifaction schemes for a biometric log
recognition system. The enrolment can be done in the forest using a digital
camera mounted on a harvester.

digital camera mounted on a harvester. Subsequently, the first
four steps of the biometric system chain are completed and the
computed log template is stored to a database. Additionally, the
harvester operator can assign further informational meta data to
each log template in the database.

In case of wood logs, recognition is related to the identifi-
cation of each log. An exemplary identification scheme in the
sawmill environment is shown in 2. Basically, images of log
ends can be captured at each stage of the log processing chain.
In the sawmill the ends of a log are conveniently cut again.
This leads to a clean CS surface and aids the quality assessment
of each log. CS-Images for identification could be captured
at the sorting station, at the sawmill yard or at any conveyor
belt equipped with a capturing device. Subsequently, the CS-
Image is processed by the biometric system and a log template
is computed. This log template is matched to all available log
templates in the database. Commonly, the best match is used to
determine the identity of the log. Furthermore, additional meta
data can be retrieved or appended from/ to the log record in the
database.

In the next three sections a detailed introduction on pre-
processing (Section 2.1), CS-Code computation (Section 2.2)
and three matching procedures (Section 2.3) between two CS-
Codes is given. Finally, in the last Section 2.4 basics for the
experimental evaluation are introduced.

2.1. Cross-section registration & enhancement

Due to the cutting pattern annual ring enhancement is a cru-
cial task for any subsequent feature extraction procedure. As
opposed to human fingerprints, the frequency of the annual
ring pattern is strongly varying. Our enhancement procedure

is based on the fingerprint enhancement approach presented in
[8]. CS registration is performed in three steps. The left im-
age in Fig. 2 shows an example for an input CS-Image. The
CS border and the pith position have to be determined in ad-
vance (see [20],[17]). For image registration the image is ro-
tated around the pith position, cropped to the CS bounding box
and finally scaled to 512 pixels in width. Rotation can be per-
formed to generate rotated versions of each CS-Image or to
align the CS to a unique position (e.g. according to the center
of mass). For CS-Image enhancement the CS is subdivided in
half/ non-overlapping blocks (eg. 16x16 pixels). Enhancement
is performed in three consecutive stages: Local orientation es-
timation, local frequency estimation and adaptive filtering.

At first, for each block principal component analysis of the
local Fourier Spectrum is performed to determine its local ori-
entation (see [20]). Commonly, CSs are disturbed due to cut-
ting. Thus, wrong orientations are slightly corrected by low-
pass filtering the local orientation field with a Gaussian filter.
Next, for each block and its local orientation the dominant fre-
quency is determined. For this purpose, the local Fourier Spec-
trum of each block is subdivided into subbands and sectors.
The dominating frequency of a block is determined by sum-
ming up all frequency magnitudes in each sector subband. It is
assumed that the maximum sector-subband represents the dom-
inating frequency. If the maximum sector does not correspond
to the block orientation the result is neglected. In a further step
for each neglected value the local frequency is interpolated us-
ing a Gaussian filter.

In the filtering stage the Fourier Spectrum of each block is fil-
tered with a Log-Gabor (introduced by [14]) which is tuned to
its local orientation and frequency. Furthermore, experiments
showed that a bandwidth of three times the variance of the
Fourier Spectrum and as spread value the blocksize/4 are well
suited for filtering. By using the fast inverse Fourier transform
the filtered Fourier Spectra are utilized as new block values.
Boundary effects are reduced by using half-overlapping blocks.
An exemplary result of the registration & enhancement proce-
dure is depicted in Fig. 2.

2.2. Cross-section code computation

The CS-Code computation is based on the FingerCode ap-
proach proposed in [11] and [9]. This technique utilizes a
Gabor-based descriptor which extracts local ridge orientations
of a fingerprint. Because of the constant ridge frequencies in
human fingerprints a single Gabor filter and its rotated ver-
sions are sufficient. The frequencies of annual ring patterns are
strongly varying and thus different Gabor filters are required to
capture additional information from the annual ring frequencies
in different orientations. For a CS image width of 512 pixels six
different Gabor filters are suggested. For each Gabor filter eight
rotated versions are created. Consequently, the Gabor filterbank
consists of 48 filters.

The CS-Code computation is performed in three stages. In
the first stage the enhanced input image is filtered with each
filter in the filterbank. Each filtered image is subdivided into
blocks (e.g. 32x32 pixels). For all blocks the absolute devi-
ations of the gray values are computed. The absolute devia-
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Figure 2: CS-Code computation and matching scheme

tions of each image are stored into a matrix, which can be de-
noted as Standard Deviation Map (Stdev Map). In the middle
of Fig. 2, the filtering and Stdev map computation procedure is
illustrated. Altogether 48 Stdev Maps are computed and stored
as one-dimensional vectors in a CSV file. For each value of a
single Stdev map which is not within the CS border a marker
value (e.g. -1) is stored into the CSV file which is relevant
for the matching procedure. Rotational variances are compen-
sated by repeatedly computing features for rotated versions of
the input CS-Image. Compared to fingerprints, the rotational
misalignment range of a CS-Image is not restricted to a certain
range. One strategy to solve this issue, is to perform rotational
pre-alignment in the registration and enhancement stage to re-
strict the misalignment range.

2.3. Cross-section code matching

The matching between two different CS-Images is performed
by computing the minimum matching score between all CS-
Codes from both CS-Images. The score between the feature
values of two CS-Codes (CS,CS») can be computed with a
set of distance metrics (D). In this work the Manhattan distance
is utilized. Basically, the MS between two CS-Codes is defined
as:

1 N
MS(CS51,CS2) = 37 ZD(CSl(i)»CSZ(i)) M
i=0

where CS |, CS, are two feature vectors of the CS-Codes which
are compared, i specifies the index of the feature value in both
vectors.

As noted in Section 2.2, background feature values are spec-
ified by a certain marker. These markers specify the shape
of the CS and the matching procedure can utilize or ignore
this information. We define MCS; and MCS, as two masks
which allow to differentiate between background and CS. In
contrast to fingerprints where the shapes are commonly not
utilized, the CS shape is obviously a biometric feature itself.
By investigating three different matching procedures the im-
pact of incorporating shape information on the biometric sys-
tem performance is evaluated. The first procedure is analogous
to the Fingercode matching procedure in [11]. Just the CS-
Code feature value pairs which are in the intersection of both
CSs are utilized for computing the MS. The computed MS is
normalized by the amount of considered feature value pairs:
M = |MCS NMCS,|. Consequently, this procedure just makes
use of the annual ring texture as biometric feature and the MS
shows up the discriminative power of the annual ring pattern.
For simplicity this procedure is denoted as annual ring pattern

MS (MS 4p) and the utilized distance function is given by:

Dap = {ICSl(i) —CS,@)| ifie MCSI NMCS, P
0 otherwise

The second procedure (MS apgs) uses a distance function
(Dapgs) where a penalty value (Papgs) is added to all
((CS (D), CS»(i)) feature value pairs which are in the symmet-
ric difference of the CS masks (see Eq. 3). For normalization
M = |MCS1U MCS,|+|MCS; A MCS,|is used. In doing
this, the MS additionally increases for differently shaped CSs.
For the selection of P4pgs the mean value of the feature value
distributions of both CS-Codes is utilized. Consequently, the
increase of the distance does not overemphasize small shape
differences or small misalignments.

|CS1(i)—CSz(i)|+PAp&S if i e MCS|{ A MCS,
Dapgs = {1CS (i) — CS ()l if ie MCS; N MCS» 3)
0 otherwise

The third procedure (MS 4pr) is based on score level fusion [12,
p-225] of two independently computed scores. As first score the
MS 4p score is utilized. Second the False Negative Rate (F) is
computed for the shapes of the compared CSs (MCS |, MCS»).
F= .MCS1AMCS2 @

min(|MCS 1|,|MCS»|)

Finally, both scores are combined with different scaling fac-
tors (see Eq. 5). The factors are determined by considering the
value ranges of both features. For this work the scaling o-4p and
o are chosen so that the scores of both features are weighted
equally.

MS spr = MSsp-oap+F-0F Q)

2.4. Experimental setup

2.4.1. Testset

The experimental evaluation is based on cross-section slices
(CS-Slices) from three different European spruce logs (Log 1
- L1, Log 2 - L2, Log 3 - L3). For L1 and L2, a section of
40 centimetres was cut into 16 CS-Slices. The CS-Slices were
cut with a bandsaw and the thickness of each CS-Slice is ap-
proximately 2.5 centimetres. Thereby, the sections of L1 and
L2 were showing a diameter of around 230 mm and 290 mm
respectively.

Subsequently, just one surface of each CS-Slice was captured
two times (Nikon D90). The first CS-Image was taken from the
fresh cut CS-Slices. For the second CS-Image, the surfaces of
the CS-Slices were polished using a sandpaper (P 150). In the
first row of Fig. 3 the two captured CS-Images of one CS-Slice
of L1 and L2 are depicted.



Additionally, 35 CS-Slices from L3 are utilized in the exper-
iments to increase the amount of MSs computed between CS-
Slices from different tree logs. These CS-Slices were already
used for the experiments presented in [19]. These CS-Slices
were also cut with a bandsaw and their thickness accounts ap-
proximately two centimetres. From each CS-Slice four CS-
Images were captured (Canon EOS 5D Mark II) with differ-
ent time spans between each capturing session. Additionally,

Log # CS-Slices | # CS-Images Tllustration
Log1-L1 16 2 (Rough&Sanded) Fig. 3a
Log2-L2 16 2 (Rough&Sanded) Fig. 3b
Log3-L13 35 4 (Time delay) Fig. 4

Table 1: Testset overview

for each CS-Image the pith position and the border of the CS
(CS-Border) were determined manually and are utilized for CS
registration and computing the F-Measure in the experiments.
The CS-Images in Fig. 3 illustrate the preprocessing steps for
the CS-Images of CS-Slice L1 #2, L2 #10. In the first row the
original images are depicted. The second and third row show
the registered and enhanced versions of the CS-Images, respec-
tively. The four time-delay captured CS-Images of CS-Slice
#10 of L3 are depicted in Fig. 4.

CS-Code computation. Due to the fact, that the CS-Slices were
not equally aligned in rotation for each CS-Image of a CS-
Slice 360 CS-Codes (rot_;sg, ..., roty, ..., rot79) are computed.
Although the expected misalignment range is much smaller,
CS-Codes for all rotations are computed and used for match-
ing. Hence, it can be evaluated if there exist rotated ver-
sions of two CS-Slice images from different tree logs which
are incidentally similar to each other. For registration and en-
hancement the rotated CSs are scaled to 512 pixels in width.
The enhancement procedure is performed using 32x32 half-
overlapping pixel blocks. The CS-Codes are computed using
16x16 non-overlapping blocks for the Stdev maps. The utilized
Gabor filterbank is build up on six different Gabor filters tuned
to 8 directions:

G(A,0,0,7) = G(A,0) =

((2.5,2),(2.5,2),(3.5,3),(4.5,3), (5.5,3), (6.5, 3)),

6 =1{0,22.5,...,135,157.5},y = 0.7

2.4.2. Evaluation background

Before presenting the results, relevant basics for the experi-
mental evaluation are introduced. First, a short introduction on
biometric performance evaluation is presented. Subsequently,
three types of wood log CS variations are defined and the con-
struction of the intra- and interclass score distributions (SDs)
used in the evaluation is described.

Biometric performance evaluation. Commonly, a biometric
system operates either in verification or identification mode and
the term recognition is used universally.

For verification the system compares a query template to just
one template of the biometric system database which is spec-
ified by the claimed identity of the query template. Conse-
quently, the system accepts or rejects the claimed identity of

the individual/ object which results in 1:1 comparison. In case
of identification a query template is compared to all templates
in the database (1:N comparison). The system has to decide if
the query template corresponds to an individual/ object which
is enrolled in the system and furthermore it has to select a single
template in the database that specifies the identity of the query
template.

Generally, a biometric system is assessed based on the errors
it produces [16]. Two major verification system errors (False
Match Rate (FMR) and False Non Match Rate (FNMR)) re-
sult from the calculation of the intra- and interclass SDs which
are commonly denoted as genuine and impostor SD, respec-
tively. The intraclass SD contains all MSs computed between
a set of templates of the same individual. The interclass SD
contains the MSs between templates of different individuals.
Consequently, the FMR includes all MSs between different in-
dividuals which are incorrectly accepted by the system. On the
other hand the FMNR gives the proportion of MSs which were
rejected although the score is computed between templates of
the same individual. In the Receiver Operating Characteristic
(ROC) curve the FMR/FMNR are plotted with respect to the
system threshold. The ROC is typically used to measure the
verification performance of a biometric system. Thereby, the
equal error rate (EER) denotes the threshold where FMR and
FNMR are equal. The EER is a general benchmark for the eval-
uation of biometric systems.

The performance of an identification system is evaluated by
matching a set of probe templates to all templates enrolled in the
database [10]. We refer to closed-set identification where it is
assumed that all individuals/objects of the probe templates are
enrolled in the system. The MSs between each probe template
and all database templates are ordered according to the MS.
The ordered MSs of each probe template are used to compute
the probability that the correct template is ranked within the top
k-ranked MSs. The probabilities for each rank are illustrated in
a curve which is denoted as Cumulative Match Characteristic
(CMO).

Wood log cross-section variability. Two basic requirements for
biometric recognition are uniqueness and permanence of the
utilized biometric characteristic. Uniqueness expresses that the
biometric characteristic and the computed templates of differ-
ent individuals are strongly varying and permanence is the re-
quirement that they do not change over time. Related to those
requirements there are two basic issues which a biometric sys-
tem must handle: Intraclass variability and Interclass similar-
ity. Interclass similarity is the problem that different individu-
als eventually show up similar biometric characteristics. Intra-
class variability is an issue due to internal and external caused
variations between a set of templates of the same individual.
External variations occur due to irregularities in the template
generation procedure, e.g. different sensors or capturing envi-
ronments. Furthermore, the visual appearance of the biometric
characteristic is affected or modificated by external influences,
e.g. abrasion of fingerprints. Internal variations are eventually
caused by an intrinsic modification or change of the biomet-
ric characteristic itself, e.g. temporal variations caused by the



(a) L1 #2 rough (b) L1 #2 sanded

(c) L2 #8 rough (d) L2 #8 sanded

Figure 3: Testset examples: Slices #2 and #8 from L1 and L2, respectively. The CS-Images in the first row depict the original CS-Images and in row two and three
the registered and enhanced CS-Images used for CS-Code computation are illustrated.

ageing process. In case of human biometrics, it is attempted to
overcome external and internal changes/ modifications by up-
dating the stored templates in the database.

In case of wood logs, several external and internal caused
variations/ modifications of CSs of a single log have an im-
pact on the intraclass variability. So far, three different variation
types emerged from our research:

e Temporal variations correspond to the issue of ageing in
human biometrics. In case of wood log ends, the visual
appearance of a CS changes rapidly. Due to the rapidly
changing moisture content at the front log side and the
sun exposure the CS shows up discolourations or defor-
mations (e.g. cracks). In Fig. 4 four time-delay captured
CS-Images of a CS-Slice from L3 illustrate temporal vari-
ations.

Figure 4: Temporal variations of CS-Slices: Slice #10 - Section 2 / Sessions 1-
4119]

¢ Longitudinal variations are caused by the changing CS
pattern along the longitudinal axis of a single tree log.
Consequently, they address the issue of length-cutting a
log in the sawmill. An illustration for longitudinal varia-
tions of the CSs from a single log is presented in Fig. 5.

Figure 5: Longitudinal variations: L2 - Slices #1, 4, 8, 16

e Surface variations result from differently finished or cut
surfaces of a particular CS. In this work surface variations
between saw cut CS surfaces and the sanded CS surface
counterparts are assessed (e.g. see Fig.3). Another sce-
nario which is closely related to industrial biometric log
recognition involves CS surface variations caused by dif-
ferent cutting tools (e.g. chain-, band- or circular saw).
Probably the first cut in the forest and the cleansing cut
in the sawmill are performed with different devices. This
results in a mixture of longitudinal and surface variations.

For the testset CS-Images of the CS-Slices from L1,1.2 and L3
we tried to avoid external variations which are caused by the
capturing procedure.

Intra-/Interclass score distributions (SDs). For the evaluation,
the MSs between all CS-Images of L1,L.2 and L3 are computed
using the proposed matching procedures. The inter-/interclass
SDs for a single matching procedure are constructed by group-
ing the MSs into the respective SD. Hence, the interclass SD
contains all MSs computed between the CS-Images of L1,L.2
and L3. The intraclass SD is build up on the MSs between CS-
Images of the same log and is further subdivided into two SD



groups corresponding to the variation type (see Table 2). Tem-
poral variations which are represented by the MSs between the
four time-delay captured CS-Images of each CS-Slice from L3
were investigated in [19] and are not treated in this work. The
longitudinal SD describes the similarity between CS-Images
which were captured at different longitudinal positions of the
same log. In this work we consider the longitudinal variations
of L1 and L2. For this purpose, the longitudinal SD is built
up on the MSs between the CS-Images of rough or sanded CS-
Slices from L1 and L2. The surface SD includes all MSs be-
tween the saw cut CS surfaces and the sanded CS surface coun-
terparts of each CS-Slice from L1 and L2.

Intraclass SD
CS Variation | SD group details

Longitudinal SD | L1&L2: MSs between the rough or sanded
CS-Images of their CS-Slices

L1&L2: MSs between the rough and sanded
CS-Image of each CS-Slice

Surface SD

Table 2: Intraclass SD groups

3. Results and Discussion

The results of the experiments are subdivided into two sec-
tions. Section 3.1 presents investigations on the separability of
the intra- and interclass SDs. For this purpose, the verification
performance of the biometric system for different matching pro-
cedures is assessed and the EERs are considered. Because of
the manifold structure of the intraclass SD an exhaustive analy-
sis of the longitudinal and surface SD group is presented. Based
on the results, fundamental conclusions on the intraclass vari-
ability and the impact on the separability between intra- and
interclass SDs are drawn.

Section 3.3 treats the identification performance for differ-
ent real world scenarios. Introductory, the gathered insights of
Section 3.1 are summarized and the cumulative matching score
ranks of the intraclass SD groups and the interclass SD are anal-
ysed.

3.1. Intra-/Interclass SD separability
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Figure 6: Equal Error Rates (EER) for different matching procedures

Of course, the interclass SD is just built-up on three individu-
als, but the results give first important and fundamental insights

on the applicability of biometric log recognition using log end
images. As described in Section 2.3 three different matching
procedures are assessed. In Fig.7 the intra-/intraclass SDs for
each particular matching procedure are illustrated. Due to the
unequal cardinality of the intra-/interclass SDs they are nor-
malized according to their cardinalities. Most important, the
three charts indicate that the shape of a CS is a valuable bio-
metric feature. Compared to the MS 4p intra-/interclass SD, the
SD overlap decreases remarkably for the MS spgs and MS spr
matching procedures. The results for MS 4p which just rely on
the discriminative power of the annual ring pattern show a high
overlap between the intra-/interclass SDs.

In Fig. 6 the receiver operator curve (ROC) illustrates the
FMR/FNMR ratios with respect to the system threshold. The
EER for MS 4p, which accounts ~21% is insufficient for any
biometric system. By including shape information in the
matching procedure (MS 4pgs) the EER can be pushed down to
~T%. The lowest EER is achieved using the score level fusion
matching procedure (MS 4pr) with an EER of approximately
~2%. Our experiments in [19] showed that the similarity be-
tween different CS-Slices of a log deteriorates with an increas-
ing distance between the considered CS-Slices. Hence, an EER
of ~2% is astonishing because the intraclass SD includes all
longitudinal MSs for all slice distances. A detailed analysis of
the considered intraclass SD groups (Longitudinal and Surface
SD) allows to draw more detailed conclusions.

3.2. Intraclass SD analysis

In this section the longitudinal SD and surface SD groups of
which the intraclass SD is build up are assessed in detail.

3.2.1. Longitudinal SD

The longitudinal SD contains the MSs between the rough
or sanded CS-Images of the CS-Slices from L1 and L2. In
the evaluation four subsets of the longitudinal SD are assessed:
Rough & Sanded longitudinal MSs of L1 and L2. Furthermore,
the MSs of each subset are grouped according to their neigh-
bourhood distance of the compared CS-Slices. In case of 16
CS-Slices for each log the distances range from 1 to 15 and
consequently 15 slice distance groups (SDGs) are considered.
For example, SDG 1 contains all MSs of each CS-Slice to its
adjacent neighbour CS-Slices. In Fig. 8 for all matching proce-
dures the mean values of each subset and SDG are depicted.

Independent of the subset and matching procedure it is ex-
pected that the longitudinal MSs increase the higher the slice
distance between two CS-Slices is. Previously, in [19] our ex-
periments based on CS-Slices from L3 confirmed this expecta-
tion. At a glance, the results for all matching procedures shown
in Fig. 8 raise doubt on the correctness of the previous results
and the basic assumption.

Considering the longitudinal MSs of the first log (Sanded#1,
Rough#1) the expected increase is interrupted for both subsets
and matching procedures. This interrupt is also shown for the
second log (Sanded#2, Rough#2) for the SDGs 14,15. A closer
examination of the CS-Slices of L1,L.2 and L3 provides an an-
swer for the differing results. For L3 just the CS-Slices at the
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Figure 7: Intra-/Interclass score distributions (SD) for different matching procedures

log ends show up knots. Hence, for larger distances the lon-
gitudinal MSs increase additionally and the expected trend be-
comes strengthened. In contrast to this, L1 and L2 show up
knotty CS-Slices situated in the middle of each log. For L1
one (#9 see Fig. 3d) and for L2 two CS-Slices (#10,#11) show
up 4 knots. By omitting MSs from those knotty CS-Slices the
results in Fig. 9 approximately show the expected behaviour.
This leads to two major conclusions. Less surprising, the results
demonstrate that MSs between non-knotty (NK) and knotty CS-
Slices are remarkably worse. Second, the results indicate that
knots do not introduce any propagative effects to the annual ring
pattern.

In comparing the results from L1 to L2 it is clearly visible
that the MS ranges of the longitudinal MSs of different logs
vary. Particularly for higher slice distances, this effect is shown
in Fig. 9 and Fig. 8 where the gaps between the subsets of both
logs tear up significantly. However, it can be stated the longi-
tudinal MSs of each log are increasing with the slice distance.

3.2.2. Longitudinal SD/ Interclass fractions
The longitudinal increase of the MSs leads to the conjecture
that for higher slice distances it is not possible to separate be-

tween longitudinal MSs and interclass MSs. This conjecture is
validated by considering the interclass fraction of the longitudi-
nal MS-SDGs. The interclass fraction of a SDG is specified as
the percentage the SDG MSs which intersect with the interclass
SD. In considering the interclass fractions of the SDGs of dif-
ferent longitudinal MSs conclusions about the separability can
be drawn. For this purpose, the interclass fractions of each SDG
and longitudinal SD subset with the interclass SD are computed
and illustrated in Fig. 10. All results for L1 show that by ignor-
ing the knotty CS slices nearly no MSs are in the range of the
interclass SD. Completely different, the longitudinal MSs of L2
computed with MS 4p and MS 4pgs significantly overlap with
the interclass SD. This applies to the knot-slice excluding sub-
sets of L2 too and indicates that the intrinsic features (annual
ring pattern) of L2 change quite rapidly. The smallest overlaps
for L1 and L2 are computed with the MS 4pr matching proce-
dure. The non-knot subsets of L1&L2 and the SDGs 1,2 do
not overlap with the interclass SD. Hence, a more sophisticated
matching procedure which uses shape information is more ro-
bust to a higher intrinsic change of the annual ring pattern of a
log.
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Figure 8: Intraclass SD: Rough and Sanded longitudinal MSs of L1 and L2 grouped by the slice distance.
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Figure 9: Longitudinal variance analysis excluding knotty CS-Slices - L1(#9), L2(#10,#11)

3.2.3. Surface SD

The surface SD is examined in context of the previously anal-
ysed longitudinal SD subsets and the interclass SD. Again, the
main objective is to assess the separability between the surface
SD subsets and the interclass SD. In case of the CS-Images
of L1 and L2 the surface MSs are the only MSs between CS-
Images from equal CS-Slices. The surface MSs between the
rough and sanded CS-Images are considered for L1 and L2,
separately. For all SDs the cumulative distribution functions
(CDF) are computed and illustrated for each matching proce-
dure (see Fig. 11). The CDF for each SD gives the probability
that a certain MS exists that is ranged less or equal to that MS.
Furthermore, the CDF illustrates the mean value (Probability =
0.5) and the variance range of each SD. Hence, the CDFs of
a certain intraclass SD group/subset and the interclass SD can
be used to observe their overlap and to draw conclusions about
their separability.

Generally, it is expected that the CDFs of the surface SD sub-
sets are ranged below the longitudinal SD CDFs. As shown
for the longitudinal SD subsets of L1 & L2, the MS ranges
of the surface SD subsets of L1 and L2 vary too. For L1 and
all matching procedures the CDF of the Surface-RoughSanded-
L1 subset does not overlap with the interclass CDF. In case
of the Longitudinal-L1 CDFs low overlaps are visible which
are caused by the longitudinal increase of the MSs. The

largest overlaps with the interclass CDFs are shown for the
Longitudinal-L2 CDF subsets. Especially, for MS 4p this over-
lap is clearly visible. These overlaps are responsible for the
large overlaps between the intra-/intraclass SDs in Fig. 7 for
the MSp and MS spgs matching procedures. Again, the
Longitudinal-L2 CDF of MS 4pr illustrates that this overlap can
be reduced by utilizing shape information.

Surprisingly, for MS.p and MSspgs the Surface-
RoughSanded-L2 CDFs also overlaps with the interclass
CDFs. By inspecting the enhanced images of the CS-Images
from L2 it was obvious that these overlaps are caused by two
CS-Images for which the utilized enhancement procedure fails
and deteriorates parts of the annual ring pattern.

3.3. Identification performance

So far, all evaluations were related to the verification perfor-
mance biometric log recognition using log end images. Based
on the gathered insights, two investigations on the identification
performance are presented.

First, the MSs for each CS-Slice of L1 and L2 are ordered
and the ranks for different intraclass groups/subsets MSs and
the interclass MSs are analysed. Hence, global statements on
the rank orders can be presented.

Second, the identification rates for four specific identifica-
tion scenarios are presented. All scenarios illustrate the im-
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Figure 10: Relative longitudinal/interclass overlaps for the slice distance groups (SDGs) of each longitudinal SD subset
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Figure 11: Cumulative distribution functions (CDFs) for different longitudinal and surface SD subsets and the interclass SD

pact of cutting the log end on the identification performance.
Thereby, it is elaborated how the width of the piece which is
cut-off influences the performance. Furthermore, the impact of
using different cutting tools is assessed.

3.3.1. Cumulative CS-Slice matching score ranks

Commonly, the CMC depicts how the biometric system ranks
the MSs of a set of probe templates compared to the database
templates. For this investigation the CMC is used to illustrate
the MS ranks of five intraclass SD groups/subsets and the inter-
class SD.

For this purpose, all MSs between the templates of the CS-
Images of each CS-Slice to all other templates in the database
are ordered with respect to the MS. For the CMC, the probabil-
ity of observing a MS belonging to a certain SD in the first k-
ranks is determined and visualized for all matching procedures
in Fig. 12.

The intraclass SD group SURFACE shows the detection rates
for the MSs between rough and sanded CS-Images of each CS-
Slice. For the four longitudinal SD group subsets just MSs for
slice distance group 1 or 2 are considered. The CMC curves
of these longitudinal SD subsets illustrate the robustness of the
biometric system against longitudinal variations of the CS (e.g.
cutting the log end once or twice).

In comparing the CMC curves for the intraclass SD
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groups/subsets to the interclass SD CMC curve we can draw
first conclusions on the identification performance of the bio-
metric system. Most important, for all matching procedures and
CS-Slices each considered intraclass SD group/subset shows up
high detection rates at the best (=lowest) ranks. On the other
hand, the probability of observing a well ranked (j 10) interclass
SD-MS is very low. In case of MS 4pF nearly all intraclass SD-
MSs are ranked in front of the first interclass SD-MS occur-
rence. In comparing the surface SD ranks to the longitudinal
SD subset ranks the results confirm the conclusions of the lon-
gitudinal SD analysis. Surprisingly, the MSs of the rough and
sanded longitudinal SDs of L1 are ranked in front of the surface
SD-MSs. Furthermore, the MSs of the rough and sanded lon-
gitudinal SDs of L2 are ranked in the range of the surface SD-
MS. This leads to the assumption that CS-Images of adjacent
neighboured CS-Slices with equal surfaces show up a higher or
almost equal similarity to each other than the rough and sanded
CS-Images of the CS-Slices. Again, the results depict the high
longitudinal CS variability of L2 which is demonstrated by the
higher ranked MSs for the longitudinal SD subsets of L2.

Most important, the results show that the first occurrence of
an interclass MS is worse ranked (= high ranked). The in-
terclass CMC curves for MS 4p, MS spF illustrate that by in-
cluding shape information the interclass detection rates shift re-
markably to higher ranks.
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Figure 12: Cumulative matching score ranks
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3.3.2. Identification performance - Test scenarios

Finally, the identification performance for different scenar-
ios is assessed. A test scenario requires to specify a probe set
and a gallery set. The gallery specifies the enrolled templates
of the individuals/objects contained in the database. The probe
set is a set of templates of individuals/objects which are used
to query the biometric system. For each probe template the
matches/MSs to all database templates are computed. The com-
puted matches/MSs for each probe template are ordered and the
rank of the correct match/MS is determined. Subsequently, for
each rank the probability that the correct match/MS is equal or
better ranked is computed. For illustration these probabilities
are depicted in a CMC chart. The probability that the correct
match is ranked at the first position is denoted as identification
rate or detection rate. Basically, all scenarios evaluate the im-
pact of cutting the log end in the sawmill.

Scenario #1,#2 - Equal CS-Surfaces. For these scenarios it is
assumed that the first cut in the forest and the second cut in the
sawmill is performed with the same cutting tool. Hence, no sur-
face variations due to different cutting tools are introduced. For
this purpose Scenario #1 (Rough-Rough) is based on rough CS-
Images and Scenario#2 (Sanded-Sanded) is based on sanded
CS-Images of L1 and L2. As probe templates for Scenario#1,#2
the rough or sanded CS-Images of each CS-Slice are utilized,
respectively. For each scenario and probe template it is assumed
that just one equal surfaced CS-Image of the same log which be-
longs to a certain slice distance group (SDG) is enrolled in the
gallery set. For the evaluation SDGs ranged between 1 and 5
are considered. Furthermore, templates of all CS-Images from
L3 and equal surfaced CS-Images of the other log (L1 or L2)
are included in the gallery. For each probe template the rank
of the correct match is computed and in Table 3 the results for
both scenarios are summarized. For each scenario the identi-
fication rates for different SDGs and matching procedures are
illustrated. Because of the high identification rates, a graphical
illustration in a chart is less meaningful.

In comparing the results of Scenario#1 and #2 it is recogniz-
able that the identification rates for all matching procedures are

[ Rough-Rough |

MP/SDG 1 2 3 4 5
MS ap 1.0 | 094 | 0.88 0.81 0.72
MS apgs 1.0 1.0 0.91 0.88 0.81
MS apr 1.0 1.0 0.97 094 | 091
[ Sanded-Sanded ]
MP/SDG 1 2 3 4 5
MS ap 0.97 | 0.97 0.91 0.84 | 0.81
MS apas 1.0 0.97 0.97 0.88 | 0.84
MS spr 1.0 1.0 0.97 0.97 | 0.88

Table 3: Scenario#1,#2 - Identification rates for different slice distance groups
(SDGs) and matching procedures (MPs)

somewhat equal. Consequently, the CS-Surface has no impact
on the identification performance of Scenario#1 and #2. For
MS 4pr and the SDGs 1,2 the identification rates account 100%.
This indicates that the biometric system is robust to cutting the
log end in a range of five centimetres (2 CS-Slices = Scm).
Additionally, the results illustrate that for higher SDGs shape
information is beneficial to increase the identification rate. De-
pending on the matching procedure the rates for higher SDGs
are still in a range between 72% and 97%.

Scenario #3,#4 - Different CS-Surfaces. In difference to the
first two scenarios, Scenario #3 and #4 investigate the impact
of different surfaced CSs. Thus, it is assumed that the first cut
in the forest and the second cut in the sawmill are performed
with different cutting tools. Based on the CS-Images of L1 and
L2 two scenarios are constructed. Scenario #1 (Rough-Sanded)
assumes that the first cut is represented by a rough CS-Image of
a CS-Slice and the second cut is represented by a sanded CS-
Image of a neighboured CS-Slice. Scenario #2 (Sanded-Rough)
assumes that the cuts are performed in the reverse order. Conse-
quently, these scenarios result in a mixture of longitudinal and
surface CS variations. For both scenarios the rank-orders for
the correct matches are computed in the same way as for the
first two scenarios. The CMC curves for each scenario, match-
ing procedure and SDG are illustrated in Fig. 13 and Fig. 14.
The results for Scenario #3 in Fig. 13 illustrate that for all
matching procedures the identification performance decreases
remarkable for higher SDGs. Compared to Scenario#1 and #2,
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Figure 13: Scenario #3: Identification performance for different CS-Surfaces with respect to the width which is cut off from the log end (Enrolled set: Rough

CS-Images, Probe set: Sanded CS-Images from different SDGs)
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Figure 14: Scenario #4: Identification performance for different CS-Surfaces with respect to the width which is cut off from the log end (Enrolled set: Sanded

CS-Images, Probe set: Rough CS-Images from different SDGs)

the identification rates (Rank 1) are considerably worse. Just for
MS 4pr and SDG 1 an identification rate of approximately 97%
is reached. Generally, the results indicate that CS-Surface vari-
ations cause a remarkable decrease of the identification perfor-
mance. Finally in Fig. 14 the results for Scenario#4 are shown.
For almost all depicted CMC curves the identification perfor-
mance is better than for Scenario #3. For MS 4pr and SDG
1,2 the identification rate accounts 100% and is above 93% for
SDG 3 and 4. However, the results for all scenarios indicate
that biometric log recognition using log end images is robust to
longitudinal variations and mixtures of surface and longitudi-
nal variations to a certain degree. Furthermore, all evaluations
showed that shape information are valuable to increase the dis-
criminative power of the biometric system.

4. Conclusions

The findings of this study demonstrate that biometric features
extracted from wood log cross-sections are suited to discrimi-
nate between different tree logs in an industrial application. It
can be concluded that the robustness of the biometric system to
CS variations depends on the template computation approach
and the utilized matching procedure.

In comparing the results for three different matching proce-
dures it is obvious that biometric feature fusion increases the
robustness significantly. Regarding to the verification perfor-
mance, a combination of annual ring pattern and shape features
increases the robustness to longitudinal CS variations. Further-
more, the analysis of the intraclass SD groups illustrates that CS
surface variations are not crucial for the biometric performance.

Based on the identification performance experiments we con-
clude that biometric log recognition is qualified to overcome the
issue of cutting log ends in the sawmill. Results show a success-
ful identification within cutting off slices up to ~7.5 centimeters
in thickness, even if the second cut in the sawmill is performed
with another cutting tool.

The analysis of the longitudinal CS variations for different
slice distances points out that knots are disturbing factors. This
is caused by the fact that the current approach is not dealing
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with knots on CSs. Surprisingly, the results indicate that knots
do not introduce any propagative effects to the annual ring pat-
terns. Thus, future work should investigate the similarity be-
tween non-knotty parts of knotty CSs and their neighbored knot
free CSs.

Although the results of this study are based on slices from
three different tree logs, further experiments on a large set of
tree logs are indispensable to assess the identification perfor-
mance in a real world environment. Furthermore, the applica-
bility of other feature extraction methods should be assessed
and new log template computation approaches and matching
procedures should be developed. Finally, further research
should deal with the impact of automatic pith estimation and CS
segmentation approaches to the biometric system performance.
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