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ABSTRACT
In this work two practical issues of biometric log recognition
using log end images are investigated: Temporal and lon-
gitudinal variances of log cross-sections (CSs). These vari-
ances are related to the requirement of robustness for biomet-
ric characteristics. A texture feature-based fingerprint match-
ing technique is used to compute matching scores between
CS images. Our experimental evaluation is based on the tem-
poral and longitudinal variances of 35 slices of a single tree
log which where captured at four time delayed sessions. Re-
sults indicate, that biometric log recognition using log end im-
ages is robust and is able to overcome both issues. This work
contributes to the development of a biometric log recogni-
tion system by showing that a texture feature-based matching
technique is applicable to log CSs.

Index Terms— Biometric log traceability, Cross-section
analysis, Texture feature-based matching technique

1. INTRODUCTION

Traceability of wood logs is a basic requirement to manage
economical and social issues. In economic terms, traceabil-
ity of wood logs is required to map the ownership structure
of each log. Due to the ecological rethinking social aspects
like sustainability have become more important. So-called
wood certificates like the Pan European Forest Certification
(PEFC) are based on traceability and are a must have for all
end-sellers.

Currently, log traceability is established by physically
marking each log (see [1]). State-of-the-art systems propose
the usage of Radio Frequency Identification (RFID) to reach
traceability from forest site to further processing companies
(see [2],[3]). Another idea relies on biometric recognition of
wood logs. In the works of [4],[5],[6],[7],[8] approaches to
establish biometric log traceability within the sawmill were
presented. The approaches presented in [4],[5],[7] utilized
2D and 3D scanners to extract geometric wood properties. In
[6],[8] a computer tomography scanner was used to extract
knot positions to enable traceability between logs and the cut
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boards. Due to low recognition rates, these approaches are
not applicable for industrial usage within the sawmill and are
even less suitable to deal with the increasing variety of trees
at forest site. Furthermore, the utilized capturing devices are
expensive and not applicable in the forest based industries.

Similar as for human fingerprint recognition, we assume
that annual ring patterns of log ends can be used to recog-
nize wood logs. Log end images can be captured by digital
cameras at forest site and processing companies. This work
contributes to the development of a biometric log recognition
approach using log end images by investigating two practical
issues: Temporal and longitudinal variances of cross-sections
(CSs) in wood logs. For human biometrics, robustness of
the utilized biometric characteristic is a basic requirement.
In case of CSs robustness is related to the temporal changes
caused by environmental conditions and the longitudinal vari-
ations of the CS pattern within a tree log. Temporal changes
are caused by light and humidity and result in deformations
like cracks and discolourations. Longitudinal variations result
from log end cutting or from capturing different log ends.

For our investigations the FingerCode approach by [9],
[10] is adopted to CS images. Additionally, a Log-Gabor ex-
tension of the fingerprint enhancement approach by [11] is
utilized to enhance the annual ring pattern. Thus, our work
additionally sheds light on the general applicability of texture
features for CS matching. For the experimental evaluation 35
slices of a single log are utilized. Each slice was captured four
times at time-delayed sessions. This testset enables the com-
putation of the temporal variances between time-delayed ses-
sions from each cross-section slice. Longitudinal variances
are computed among the CS images of the 35 slices of the
testset.

At, first Section 2 introduces the computation and match-
ing of Gabor-based features from CS images. The experimen-
tal setup and results are presented in Section 3 followed by the
conclusion in Section 4.

2. CROSS-SECTION CODES (CS-CODES)

The CS-Code computation is based on the FingerCode ap-
proach proposed in [9] and [10]. This technique utilizes
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Fig. 1: CS-Code computation and matching scheme

a Gabor-based descriptor which extracts local ridge orien-
tations of a fingerprint. In the next section the CS image
registration & enhancement procedure is considered in detail.
Subsequently, in Section 2.2 the CS-Code computation and
the matching procedure between CS-Codes extracted from
different CS images is outlined.

2.1. Cross-section registration & enhancement

Due to cutting disturbances annual ring enhancement is a cru-
cial task for any subsequent feature extraction procedure. As
opposed to human fingerprints, the frequency of the annual
ring pattern is strongly varying. Our enhancement procedure
is based on the fingerprint enhancement approach presented
in [11]. CS registration is performed in three steps. The left
image in Fig. 1 shows an example for an input CS image.
The CS border and the pith position have to be determined in
advance (see [12],[13]). For image registration the image is
rotated around the pith position, cropped to the CS bounding
box and finally scaled to 512 pixels in width. Rotation can
be performed to generate rotated versions of each CS image
or to align the CS to a unique position (eg. according to the
center of mass). For CS image enhancement the CS is sub-
divided in half/ non-overlapping blocks (eg. 16x16 pixels).
Enhancement is performed in three consecutive stages: Local
orientation estimation, local frequency estimation and adap-
tive filtering.

At first, for each block principal component analysis of
the local Fourier Spectrum is performed to determine its lo-
cal orientation (see [12]). Commonly, CSs are disturbed due
to cutting. Thus, wrong orientations are slightly corrected
by low-pass filtering the local orientation field with a Gaus-
sian filter. Next, for each block and its local orientation the
dominant frequency is determined. For this purpose, the local
Fourier Spectrum of each block is subdivided into subbands
and sectors. The dominating frequency of a block is deter-
mined by summing up all frequency magnitudes in each sec-
tor subband. It is assumed that the maximum sector-subband
represents the dominating frequency. If the maximum sector
does not correspond to the block orientation the result is ne-
glected. In a further step for each neglected value the local
frequency is interpolated using a Gaussian filter.

In the filtering stage the Fourier Spectrum of each block
is filtered with a Log-Gabor (introduced by [14]) which is
tuned to its local orientation and frequency. Furthermore, ex-

periments showed that a bandwidth of three times the vari-
ance of the Fourier Spectrum and as spread value the block-
size/4 are well suited for filtering. By using the fast inverse
Fourier transform the filtered Fourier Spectra are utilized as
new block values. Boundary effects are reduced by using
half-overlapping blocks. An exemplary result of the regis-
tration & enhancement procedure is depicted in Fig. 1.

2.2. Cross-section code computation & matching

As suggested in [9] a Gabor filterbank is used to extract an-
nual ring pattern features. Because of the constant ridge fre-
quencies in human fingerprints a single Gabor filter and its
rotated versions are sufficient. The frequencies of annual ring
patterns are strongly varying and thus different Gabor filters
are required to capture additional information from the an-
nual ring frequencies in different orientations. For a CS image
width of 512 pixels six different Gabor filters are suggested.
For each Gabor filter eight rotated versions are created. Con-
sequently, the Gabor filterbank consists of 48 filters.

The CS-Code computation is performed in three stages.
In the first stage the enhanced input image is filtered with
each filter in the filterbank. Each filtered image is subdivided
into blocks (e.g. 32x32 pixels). For all blocks the absolute
deviations of the gray values are computed. The absolute de-
viations of each image are stored into a matrix, which can be
denoted as Standard Deviation Map (Stdev Map). In the mid-
dle of Fig. 1, the filtering and Stdev map computation proce-
dure is illustrated. Altogether 48 Stdev Maps are computed
and stored as one-dimensional vectors in a CSV file.

Rotational variances are compensated by repeatedly com-
puting features for rotated versions of the input image. Com-
pared to fingerprints, the rotational misalignment range of a
CS image is not restricted to a certain range. One strategy
to solve this issue, is to perform rotational pre-alignment
in the registration & enhancement stage to restrict the mis-
alignment range. For the utilized testset in our experiments
the misalignment range lies between −15◦ to 15◦ . As
shown in Fig. 1 for each input image a set of CS-Codes
(rot−15, ..., rot0, ..., rot15) is computed.

Matching is performed by computing the minimum
matching score between all CS-Codes from two CS images.
The matching score between to CS-Codes can be computed
with a set of distance metrics. Two bin-by-bin distances (L1-
Norm - L1, L2-Norm - L2), one cross-bin distance (EMD -



see [15]) and a simple 2D-matching distance are examined.
The 2D-matching distance computes for each block the aver-
age L1 distance between its Stdev value and the Stdev values
of all adjacent blocks.

3. EXPERIMENTS AND RESULTS

In the experimental evaluation temporal and longitudinal vari-
ances are analysed using a testset of 35 CS slices from a single
tree log. The first experiment assesses the temporal variances
between time-delayed captured images from equal CSs. In
the second experiment longitudinal variances between differ-
ent CSs along the longitudinal axis of tree logs are assessed.

Testset: The 35 CS slices are from two sections which
were cut from one spruce tree log with a spacing of approxi-
mately three centimetres. 18 slices were cut from the first and
17 slices from the second section. The slices were cut with a
bandsaw and the thickness of the slices is approximately two
centimetres. Each slice was captured four times (Canon EOS
5D Mark II) with different time spans between each captur-
ing session. For the last session, the slices were stored in a
balanced climate of 21◦ and 60% humidity. All images were
captured under equal light conditions in a photo studio. For a
constant rotational alignment between different sessions pins
were utilized as position markers. The distance between the
CS slice and the camera was fixated using a tripod. In Fig. 2
the four images of Slice #10 are illustrated. Additionally, for
all images the CS borders and pith positions were manually
marked and are available as xy-coordinates.

Fig. 2: Testset example: Slice #10 - Section 2 / Sessions 1-4

Computational details: For each of the four images from
each CS slice 31 CS-Codes (rot−15, ..., rot0, ..., rot15) are
computed. In the registration & enhancement stage the ro-
tated CSs are scaled to 512 pixels in width and for enhance-
ment 32x32 half-overlapping pixels blocks are utilized. The
CS-Codes are computed using 16x16 non-overlapping blocks
for the Stdev maps. The utilized Gabor filterbank is build up
on six different Gabor filters tuned to 8 directions:

G(λ, θ, σ, γ) = G(λ, σ) =

((2.5, 2), (2.5, 2), (3.5, 3), (4.5, 3), (5.5, 3), (6.5, 3)),

θ = {0, 22.5, ..., 135, 157.5}, γ = 0.7

In addition to the 31 CS-Codes of each CS slice, further seven
CS-Codes (rot45, rot90, ..., rot270, rot315) were computed.
These rotations are not in the expected misalignment range
considered in the matching procedure. Thus, these CS-Codes
are utilized to simulate a set of CS-Codes descending from
different tree logs, i.e. used to simulate interclass variances.

Subsequently, three different variances are computed.
Temporal variances are the matching scores among the CS-
Codes of the four different session images from one CS slice.
Longitudinal variances are computed among the CS-Codes
of the images from each session. Finally, interclass variances
are computed among the CS-Codes as described above. The
CS-Code framework and the experiments are implemented in
JAVA.

3.1. Results

The results are assessed in two stages. For each distance met-
ric and the different variances, the corresponding matching
score distributions (SDs) are computed. Note that these cor-
respond to genuine and impostor distributions in biometrics
[16]. First, the intersections between the SDs of the tem-
poral, longitudinal and interclass variances for the different
distances metric are evaluated. Subsequently, we analyse the
temporal and longitudinal variances of the best distance met-
ric.

SD intersection analysis: According to the percent of in-
tersection between the temporal, longitudinal and interclass
SDs the best distance metric is determined. Thereby, the in-
tersections between the temporal/ longitudinal SDs and the
interclass-SD are used as main evaluation criteria. The lower
the overlap between those SDs, the more suitable is the dis-
tance metric to distinguish between CS-Codes from different
tree logs. In case of a real world application a high percentage
of intersection between the temporal and longitudinal SDs is
very important. Only then a biometric system is robust to tem-
poral and longitudinal variances. In Table 1 the percentages

Distance Metric Temp-Long Temp-Inter Long-Inter
EMD 82.25% 24.66% 33.00%
L1 68.51% 1.31% 6.00%
L2 72.10% 3.77% 14.00%

2D-matching 67.53% 2.86% 13.00%

Table 1: Intersections of the score distributions (SDs)

of intersections between the SDs for all evaluated distance
metrics are listed. The lowest overlaps between the tempo-
ral/ longitudinal SDs and the interclass SD are reached using
the L1 norm (see Fig. 3a). Using the L1 norm, there is an
overlap of 1.31% between the temporal and the interclass SD.
Furthermore, the overlap between the longitudinal and inter-
class SD is very low and accounts 6%. Although, the inter-
class variances are generated using the the same testset the
low overlaps between the temporal/longitudinal SDs and the
interclass SD indicate that it is possible to separate CS-Codes
computed from different tree logs. Considering the temporal
and longitudinal SDs, it is a bit surprising that the overlaps
are very high. In this regard, a detailed analysis of the tempo-
ral and longitudinal SDs brings some interesting insights as
follows.
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Fig. 3: Temporal/longitudinal and interclass score distribution (SD) analysis

Temporal variances: In Fig. 3b the subset structure of
the temporal SD (L1 norm) is illustrated. The labelled subset
areas in the chart illustrate the proportions of the matching
scores between different sessions and are stacked one above
the other. The labels specify the indexes of the sessions used
to compute the matching scores. Overall, the highest CS-
Code distances arise in subsets where one session is compared
to Session #4. This results from storing the CSs in a balanced
climate between Sessions #3 and #4. This caused remark-
able visual changes. Due to the decreasing moisture content,
the contrast and intensity of the annual ring pattern changes
and cracks as well as discolourations arise. As expected, the
lowest CS-Code distances are computed between Sessions 1-
2 and 2-3. All in all, the results indicate that an increasing
time span between two images of the same CS deteriorates
the CS-Code distance.

Longitudinal variances: Finally, the longitudinal vari-
ances (L1 norm) are assessed. It can be assumed that with
an increasing longitudinal distance between two CS slices the
CS-Code distance increases too. The chart in Fig. 4 illus-
trates the mean matching scores for different slice distances
grouped session-wise. For each session the mean CS-Code
distances increase with an increasing slice distance. Lastly,
the chart in Fig. 3c illustrates different subsets of the longi-
tudinal SD. The largest subset labelled "Section 1-2" contains
all matching scores between all slices from the first tree sec-
tion to all slices from the second section. In this particular
case, the slice distances range between 1 to 35 slices. The
second subset "Section 1,2" contains all matching scores be-
tween the slices of the two sections. As in Fig. 4, this subset
is further subdivided into subsets according to the slice dis-
tance of the compared slices. The bottom subset area con-
tains all matching scores with slice distance 1. From bottom
up the slice distance increases. Considering the subset peaks,
the chart illustrates that with an increasing slice distance the
CS-Code distances shift remarkable to higher values.
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Fig. 4: Longitudinal variances - matching score analysis

4. CONCLUSION

In conclusion it can be stated that preliminary expectations
about longitudinal and temporal variances of CSs of tree logs
are confirmed by the results of our experiments. In this work
Gabor-features of CS slice images of a tree log are computed
and compared with respect to the temporal and longitudinal
variances. These variances are related to the robustness of
biometric log traceability using log end images. Results show
that with an increasing time span between two images of the
same CS the CS-Code distance increase too. Furthermore, it
is shown that adjacent CS slices show low CS-Code distances
and with an increasing slice distance the CS-Code distances
increase. Finally, our results indicate that biometric systems
using log end images are able to overcome issues caused by
environmental influences and log length cutting or capturing
different log ends.

In future work more matured features should be extracted
and the performance of a biometric log recognition frame-
work using a real world testset should be assessed.
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