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Abstract

This thesis focuses on the biometric traceability of wood logs. Biometric log traceability is at

an early stage and present research treats traceability in the sawmill. State-of-the-art systems

use Radio Frequency Identi�cation (RFID) or plastic batches to reach log traceability from

forest site to further processing companies. This work is a preliminary study on biometric

log traceability using digital log end images. Digital images can be taken at little cost and

at almost every stage in the log processing chain. Similar to a human �ngerprint or iris the

annual ring pattern of a cross-section shows a speci�c texture pattern containing biometric

features.

The study is subdivided into a theoretical and a practical part. In the theoretical part basics of

log traceability and biometric systems are considered. Furthermore, a comprehensive literature

overview on cross-section imaging and biometric systems in other �elds of applications forms

the basis for the practical part of this study.

In the practical part an initial scheme for a biometric log recognition framework (TreeBio)

is introduced. By treating pith estimation and cross-section segmentation in rough log end

images this work contributes to the development of the TreeBio framework. For both tasks,

computational approaches and experiments are presented. The practical part highlights the

di�culties of biometric log recognition. This makes it possible to present considerations on

future work.

keywords image analysis, wood logs, log traceability, pith estimation, cross-section segmen-

tation, cross-section analysis
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Zusammenfassung

Diese Masterarbeit beschäftigt sich mit der Rückverfolgbarkeit von Holzstämmen. Vorhandene

Methoden, die sich mit der biometrischen Rückverfolgbarkeit von Holzstämmen beschäftigen,

be�nden sich noch im Entwicklungsstadium und beschränken sich auf die Rückverfolgbarkeit im

Sägewerk. Diese Arbeit ist eine vorausgehende Studie, die sich mit biometrischer Rückverfol-

gbarkeit anhand digitaler Bilder von Holzstammenden beschäftigt. Bilder von Holzstammenden

können fast überall in der Verarbeitungskette kostengünstig erfasst werden.

Die vorliegende Studie behandelt das Thema theoretisch sowie in praktischer Hinsicht. Im

praktischen Teil wird das Thema "Rückverfolgbarkeit von Baumstämmen" bearbeitet und the-

oretische Grundlagen von biometrischen Systemen werden behandelt. Eine Literaturarbeit über

Bildverarbeitungsmethoden zur Querschnittanalyse von Holzstämmen und Biometrischen Sys-

tem in anderen Anwendungsgebieten bildet die Grundlage für die Überlegungen im praktischen

Teil der Studie.

Im praktischen Teil wird ein biometrischse Framework (TreeBio) schematisch skizziert. Diese

Studie trägt zur Entwicklung des TreeBio Frameworks bei, indem Lösungen und Experimente zu

Mittenerkennung und Querschnittsegmentierung präsentiert werden. Die Experimente zeigen

praktische Probleme auf. Dies macht es möglich Überlegungen bezüglich weiterer Entwick-

lungsschritte zu präsentieren.
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Chapter 1

Introduction

The timber-industry is among the top 10 industries measured by its industrial output in Austria.

Consequently high amounts of wood have to be felled each year. Forests cover about 50 % of

Austria's landscape and the Austrian forest law (�1 Sustainability - www.ris.bka.gv.at) guaran-

tees that the annual growth of wood has to be higher than the annual felling amount. Despite

this precondition of sustainable forest management, it is prodigious that in 2010 - 17,82 mil-

lion cubic-meter wood were felled. Alone the Austrian Forestry Service (www.bundesforste.at)

(OBF) felled about 1,82 million cubic meter. Symbolically the annual felling amount of 2010

2005 2006 2007 2008 2009 2010

total 16.5 19.1 21.3 21.8 16.7 17.8

softwood 85 % 85 % 87 % 87 % 84 % 86 %

hardwood 15 % 15 % 13 % 13 % 16 % 14 %

Table 1.1: Annual felling amounts in million cubic - metre

would equal 7,9 million wood stems where each stem would have a diameter of 30 cm and a

length of 8 metre. 28% of the total felling were destructed or damaged wood and the soft-

wood proportion on the total felling was 86%. On average 50% were processed by sawmills

and further 17,5% were processed by other wood processing industries. Every year 2/3 of the

annual felling are exported and about 7 million cubic-metre wood are imported additionally.

This import-export activity leads to a high logistical e�ort. Round wood cubic-metre prices are

between 35 and 90 Euro. Consequently, the traceability of each cubic-metre wood becomes

very important for the involved companies. Also social aspects of traceability have become

more important in the last twenty years. In times of rain-wood clearings, illegal loggings and

1

http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10010371
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the ecological rethinking environmental sustainability increased in importance. So-called wood

certi�cates are a must have for all end-sellers. Customers are very sensitive and sustainability

certi�cates like Pan European Forest Certi�cation (www.pefc.at) (PEFC) and Forest Stew-

ardship Council (www.fsc.org) (FSC) can be found on nearly all timber products. Especially

in East Asia and the Paci�c region, the prevention of illegal logging combines social and

economical aspects as nowhere else (Dykstra et al., 2003).

With respect to the above stated certi�cates the term Chain of Custody (CoC) has to be

mentioned. CoC is the process that provides traceability through the complete wood supply

chain (Dykstra et al., 2003). In di�erence to the whole CoC this thesis deals with traceability

at the beginning of the wood supply chain and is restricted to the Log Supply Chain (LSC)

(see section 2.2).

(a) Pan european forest certi�cate (PEFC) (b) Forest stewardship council (FSC)

Figure 1.1: Sustainability certi�cates

Currently used traceability systems make it necessary to use traceability methods where each

log is physically marked. Dykstra et al. (2003) described traceability methods that are quali�ed

to enable wood tracking. Current used traceability methods can be classi�ed into three groups.

The �rst group incorporates the set of Manual labels where identi�cation labels are applied

manually. Here spray-cans, knives, hammers or chalk are used to apply a marking. Depending

on the kind of freehand label it is possible to assign additional data in form of digital information

or paper documents to each log. Due to the simpleness Manual Labels are commonly used

by forest smallholders and for traceability systems that are not highly industrialised. The

second group of methods involves all kinds of plastic, paper and metal labels and is called

Badge labels. Predominantly badges are made of plastic and can be printed with bar-codes,

numbers and logos. Unlike Manual Labels, scanners can read Badge Labels and guarantee

automation and industrial usage. Transponders belong to the third group and involve all

kinds of transponders than can be applied on a wood log. Nowadays industrial LSC traceability

systems making use of RFID transponders are state-of-the-art. RFID transponders can be

scanned without visual contact to the transponder and they are much more secure against
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counterfeits in comparison to the other methods.

The Indisputable Key project (2006 - 2010 Uusijärvi (2010b)) searched for possibilities to

provide traceability through the CoC. Therefore the research group enhanced the RFID method

to ful�l the requirements of the LSC. In order to close the traceability gap that arises in the

sawmill when the logs are cut, a second traceability method allowing to print 2D codes on

wood surfaces has been developed. At the same time, the Fraunhofer Institute presented new

transponders that mainly consist of lignin (Fraunhofer, 2010). Lignin is an integral part of

the wood structure. Commonly transponders have to be removed before the logs are further

processed in the sawmill. Lignin transponders include a minimal metal concentration that is

not problematic for further processing.

Dykstra et al. (2003) already mentioned chemical and genetic �ngerprint methods to examine

the genetic and chemical composition of a material. The authors expected that these methods

could be available within 3 - 10 years. From 2003 to 2008 the Lulea University of Technology

presented several biometric approaches which relied on the assumption that logs have separate

identities with unique biometric features (see Section 2.5). In these works traceability for wood

logs within the sawmill were presented. Therefore 2D and 3D scanners were used to extract

geometric wood properties. Another approach used Computer Tomography (CT) scanners to

enable traceability between wood logs and the cut boards. Here knots were used as biometric

features. Beside insu�cient recognition rates these methods also require 2D and 3D scanning

devices. The usage of Laser, CT, or Multi Resolution Imaging (MRI) scanners at forest sites

and other wood processing industries is too complicated and entails high costs. Biometric

�ngerprint or iris and retina recognition systems are using sensors which are quite cheaper

and also smaller. For example Iris images can be simply captured with digital cameras using

infra-red light to enhance the texture quality. Thinking of a human �ngerprint, the annual ring

pattern of a log shows similar features and can also be captured with digital cameras. Perhaps

it is possible to use annual ring patterns to develop a biometric log recognition system and

further to reach traceability in the LSC.

1.1 Research gap

The biometric approaches (see Section 2.5) for traceability use existing equipment, e.g. 2D

or 3D scanners, in order to reach traceability in the sawmill. These approaches show too low

recognition rates for log traceability and require expensive capturing devices. For traceability in
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the LSC a connection between the forest based industries and wood processing industries has to

be established. Conventional methods implement marking/reading methods (see Section 2.3)

to establish this connection. In order to realize a biometric approach, a biometric characteristic

that can be recorded at the forest site as well as in processing companies is required.

Similar as for human recognition using �ngerprints, it is assumed that annual ring patterns

of wood logs can be used to identify/ recognize wood logs. Images of the log end face can

be captured by digital cameras at forest sites and processing companies. Digital cameras are

not expensive and do not in�uence existing process steps. For our research we assume that

captured annual ring patterns can be used to extract biometric biometric features of logs.

Recognition of wood logs with digital images could then be implemented nearly everywhere in

the LSC.

1.1.1 Contributions

This master thesis is a preliminary study on biometric log traceability using log end images.

The study contributes to the development of a biometric log recognition approach by treating

theoretical and practical aspects. The theoretical part of this work creates a solid basis for

the considerations on a biometric log recognition framework using log end images. After

introducing the components and processes of this framework two required image analysis tasks

are considered in detail. For this purpose methods for estimating the pith position and cross-

section segmentation in images of rough log ends are presented and examined. Computation

of the pith position and the cross-section boundary are required to perform image registration.

Image registration is a major task which has to be performed prior to feature extraction.

Additionally, the relation between the pith position the cross-section boundary is a biometric

feature of a cross-section. By treating pith estimation and cross-section segmentation this

study contributes to the development of the biometric framework. To my knowledge, so far

no work on cross-section segmentation in rough log end images has been published. Finally,

this study presents considerations on future work to promote the further development of the

biometric framework.



PART I

Theoretical Background

The �rst part of this thesis contains a theoretical work-up which points out several aspects of

traceability using biometric characteristics of rough log ends. In Chapter 2 a possible de�ni-

tion for log traceability (Section 2.1) is introduced �rst and second an overview on common

and state-of-the-art traceability methods 2.3) is presented. The chapter concludes with an

introduction into biometric systems (Section 2.4) and presents applications and research in

other �elds of applications (Section 2.4.3) as well as for recognition of logs and sawn boards

(Section 2.5). Finally, Chapter 3 �rst presents an overview on wood basics (Section 3.1) before

a literature review on cross-section analysis (Section 3.2) is given.

5



Chapter 2

Traceability of wood logs

2.1 Traceability de�nition

There are various de�nitions for traceability. Some of these de�nitions originate from research

and are therefore more or less related to a research topic. Others are de�ned by ISO quality

standards and are adapted to the scope of an application. Most of the literature available

focuses on part productions and on single companies (Kvarnström and Oghazi, 2008).

Like (Kvarnström and Oghazi, 2008, p.5) we use the de�nition from Töyrylä (1999) which

suits the continuous processes: "Traceability is the ability to preserve and access the identity

and attributes of a physical supply chain's objects." Kvarnström and Oghazi (2008) introduce

the terms "traceability system" and "traceability methods". Thereby the ability of traceability

is built up on a traceability system, which uses traceability methods to link process and object

data.

2.2 Log supply chain - LSC

The above presented de�nition restricts traceability to the supply chain for prede�ned objects.

Consequently it is necessary to de�ne the process or time span in which traceability of wood

logs as objects should be enabled. Päivinen and Lindner (2006) use the term Forest Wood

Chain (FWC) to collect processes in which forest resources are converted into services and

products. The author's focus is on the assessment of sustainability in Forest-Wood Chains.

So Päivinen and Lindner (2006) are aware of the fact, that there are a lot of di�erent FWCs.

6
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In each of these FWCs logs are required as raw material. Logs have to be cut in the forest

and transported to a sawmill, pulp mill or another processing company. This sub-chain can

easily de�ned as a supply chain called LSC. In general the LSC is restricted to the lifetime of a

log. This lifetime starts when a single tree is felled and length cut into a number of logs. The

lifetime ends when a log is further processed e.g. by cutting and therefore stops existing to be

a single object. The term "LSC" indicates the objects and the time span for which we want

to enable traceability. It mainly involves forest based and processing industries like sawmills or

pulp mills.

2.3 Traceability methods

The introduction classi�es three groups of traceability methods: Manual Labels, Badge Labels,

Transponders. These groups represent current methods used for traceability systems in the

LSC. Industry and many small sized companies make use of these methods. It depends on

the application of each method if it`s possible to identify each object in the supply chain. For

sustainability issues it would be su�cient to know the origin of each object. All methods rely

on a marking/reading principle and require additional equipment.

2.3.1 Manual labels

The simplest and oldest methods are conventional paint (Fig. 2.1b), hammer and chisel labels.

While chisel labels are markings that are engraved with knives, conventional paint labels are

simply applied with spray cans or chalk. Another method is the use hammers with special

stamps to create brands at the log end faces. Although these practices are very old and

simple, forest smallholders prefer them. The major advantage of these methods is that they

are very cheap and resistant to abrasion and damaging. Normally these methods are used to

verify the origin of a log and not to identify it. Depending on the application these methods

allow identi�cation of each individual log. There are good solutions which show that these basic

methods can be improved for industrial usage. The company Otmetka (www.otmetka.com)

has developed a method where the harvester punches a set of hammer brands on the cross

section. This unique punching label is then used as an identity code and can be scanned

automatically (Fig. 2.1a). Otmetka enhanced hammer brands to ful�l the requirement of

identi�cation of each log.

www.otmetka.com
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(a) Punching Label by Otmetka.

(Image source: www.otmetka.com)

(b) Marking with spray.

(Photo by Schraml)

Figure 2.1: Manual labels

2.3.2 Badge labels

The second group of methods uses badge labels, consisting of paper, plastic or metal. These

labels can be printed with di�erent varieties of bar-codes, numbers or logos and provide the

possibility to integrate additional information. Badges can be applied manually or automatically

and are readable via scanning devices. Depending on how these labels are applied on the wood

logs, major disadvantages are damages, fall o�s and high prices compared to manual labels. In

sawmills or pulp-mills metal badges and plastic labels can lead to problems in some processing

steps. Therefore plastic badges consisting of a special plastic material are used. These are not

detected by metal sensors and dissolve when they come in contact with paper base.

Figure 2.2: Plastic badges from Latschbacher. (Image source:www.signumat.com)

2.3.3 Transponders

This group of labels contains all kind of transponders which can be applied on wood logs.

A major advantage is the fact, that transponders transponders can be scanned automatically

without having visual contact. Disturbances (e.g. snow or dirtiness) do not in�uence the scan-

ning quality and additional processing data can be transferred on the transponder. Therefore

RFID is used as technology. Data readers can access data stored on a transponder. When a

transponder enters the electromagnetic �eld of a data reader, data can be exchanged by radio

www.otmetka.com)
www.signumat.com
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waves. RFID transponders can be active or passive and can be further distinguished by the fre-

quency range they use. Active RFID transponders need a power supply like a battery. Passive

ones are non-volatile and do not need any power supply to store data. Passive transponders

receive the required submission energy from radio waves via the antenna of the transponder.

Depending on the frequency range di�erent reading ranges result. While Low Frequency (LF)

transponders have a reading range of a few centimetres, High Frequency (HF) transponders

have a reading range up to 1.5 metres. Ultra High Frequency (UHF) transponder reach reading

ranges of several metres. Consequently, higher frequencies reach a better reading range and

enable bulk reading, but they are more sensitive to dielectric material like metals or liquids

(Kvarnström and Oja, 2008).

a b

d
c

Figure 2.3: Di�erent transponders:

a) Nail and Chip LF RFID Transponder. (Image source: Korten and Kaul (2008))

b) UHF RFID Transponder presented by Uusijärvi (2010a)

c) RFID Transponder in batch format by Latschbacher. (Image Source: www.signumat.

com )

d) Lignin RFID Transponder by Fraunhofer (2010)

The two EU-projects Lineset and Indisputable Key propose RFID transponders in the LSC

as traceability method. In the Lineset project the use of LF RFID transponders has been

studied and pilot-tested. The image in Fig.2.3 a) shows typical LF RFID tags . Because of

higher reading ranges, the Indisputable Key project studied the use of UHF RFID transponders

in which a special UHF RFID tag has been designed. These transponders promise higher

reading ranges and rates as well as lower costs compared to LF RFID transponders. The

most promising transponder with a reading range of 2 meter is shown in Fig. 2.3 b). This

www.signumat.com
www.signumat.com
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transponder is applied at the cross section. In doing so mechanical damaging is low. Another

UHF RFID transponder is shown in Fig. 2.3 c) and is presented as preview by the company

Latschbacher in Austria. It promises reading ranges up to 4 metres. It depends on the

transponder material and the costs whether it is necessary to remove a transponder before

a log is further processed. The Fraunhofer Institute presented a RFID Transponder which

mainly consists of lignin. Lignin transponders have a low metal concentration and provide the

possibility to save a single number (Fraunhofer, 2010). Bulk reading ability and no disruption

of further processing steps make these transponders very interesting for future applications.

2.4 Biometric systems

With the signi�cant changes in society and economy human recognition became a major

task in our life. Related to human recognition the term Biometrics stands for the study

of behavioural or physiological characteristics to identify living people. Biometric systems

are almost always computer aided systems for biometric recognition of humans. Currently

used biometric systems use characteristics like �ngerprints, iris, retina, handwriting, face, gait

and many more to extract biometric features of living persons. Beneath biometric systems for

human recognition - approaches treating recognition of vegetables, plants, animals or products

were presented.(Wayman et al., 2005)

These approaches are based on the theoretical background and concepts from human recogni-

tion to explore biometric systems for new �elds of applications. Subsequently, an introduction

to biometric system characteristics (Section 2.4.1) and the performance evaluation of biometric

systems (Section 2.4.2) is given. In section (Section 2.4.3) an outline of biometric approaches

in other �elds of applications is presented.

2.4.1 System characteristics and classi�cation categories

In this section characteristics and classi�cation categories of biometric systems are considered

in detail. For this purpose categories and modes of biometric systems as described in Maltoni

et al. (2009) are presented.

Veri�cation vs. Identi�cation mode Commonly, biometric systems are either classi�ed

as identi�cation or as veri�cation systems, whereat recognition is used as universal term
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regardless of the operation mode. Both modes require that humans become enrolled into

the system (see Fig. 2.4). Depending on the used biometric characteristics speci�c sensors

are used to capture/ digitize the related characteristics. Next, the biometric system extracts

features from the captured characteristics. Out of these features a compact and comparable

representation, called template is generated. Commonly, biometric applications store the

template together with personal information (e.g. an ID or name) into a database or data

carrier.

capture

characteristics

feature 

extractor
template

DB

personal 

information

Figure 2.4: Biometric system - enrolment schemata

The two operation modes can be distinguished regarding the recognition procedure of the

system:

� Veri�cation systems are based on one-to-one comparison. A person requesting au-

thentication by the system has to announce the claimed identity to the system using

personal information (e.g. ID, PIN, magnetic cards, ...). The system then compares

the biometric characteristics of the person to those from the pre-stored template of the

claimed person in the system database. Consequently, the system can accept or reject

the claimed identity. The term authentication is likely used as synonym for veri�cation,

as veri�cation con�rms or negates the claimed identity of a person.

� Identi�cation systems perform one-to-many comparisons. For each request of a person

the system compares all pre-stored templates in the system database to the template

generated from the biometric characteristics of the person. The system has to make

a decision if the person is enrolled in the system. Consequently, a single template in

the database has to be selected as the person's template. If there is no corresponding

template available, the system fails and rejects the claim for identi�cation.

Beside the basic classi�cation into veri�cation or identi�cation systems a biometric system can

operate in further modes:
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� online vs. o�ine

Recognition can be performed immediately or with a long delay response. Online systems

are almost always fully automatic, while o�-line systems are likely to be supervised semi-

automatic systems.

� positve vs. negative recognition

A system that operates in positive recognition mode tests if a person is already enrolled.

Thereby the system checks if the claimed (explicit or implicit) identity is correct or

not. Consequently, it prevents di�erent users from using the same identity. In the

negative recognition mode the system checks if the person is not enrolled in the system.

It prevents a single user from using multiple identities. Positive recognition can be

performed in identi�cation or veri�cation systems. Due to the fact that all templates

have to be checked, negative recognition can only be established in an identi�cation

system.

Application taxonomy: Additionally to these basic classi�cations biometric systems can

be described using application-dependent categories (Wayman et al., 2005):

� overt vs. covert

� habituated vs. non-habituated

� attended vs. non-attended

� standard vs. non-standard environment

� public vs. non-public

� open vs. closed

Biometric characteristics quality: The development of a biometric system relies on the

quality of the selected biometric characteristics. The quality of a biometric characteristic can

be assessed considering a set of criteria (Maltoni et al., 2009):

� universality - is the characteristic available for each person?

� distinctiveness - is it possible to receive a strong variation between a set of individuals?

� permanence - is it invariant against change over time?

� collectability - can it be captured or digitized with sensors?

� performance - di�erent measures that describe the accuracy, robustness and speed of

the system using the characteristic (see Section2.4.2)
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� acceptability - is it tolerated by the individual to capture or digitize the characteristic?

� circumvention - is it possible to defraud the biometric system?

Compared to the other criteria, performance, acceptability and circumvention are criteria used

to evaluate and describe the biometric system. The other criteria describe the quality of the

biometric characteristic itself.

2.4.2 System performance

This section describes (error) measures that are used to assess the performance of biometric

systems as described in Maltoni et al. (2009). Each time a biometric system compares two

templates, a matching algorithm computes a matching score (s) ranging between 0 and 1.

The closer to 1 the higher is the certainty that the templates are from the same person. The

decision if two templates are said to be from the same person depends on a threshold (t).

If the matching score between two templates is lower than the system's threshold, the two

templates form a non-matching pair, otherwise they form a matching pair. Out of this, two

biometric system errors are derived:

� False match or false acceptance

denotes a matching pair where the com-

pared templates are not from the same

person

� False non-match or false rejection

denotes a non-matching pair where the

compared templates are from the same

person

It has to be noted that the terms "false acceptance" and "false rejection" have di�erent

meanings in positive or negative recognition mode. Instead, false match and false non-match

have the same mode-independent meaning. Nevertheless, in practical use the terms "false

match" and "false non-match" are preferably used. The performance evaluation of a biometric

system is based on the computation of the false match rate (FMR) and the false non-match

rate (FNMR). These rates can be determined considering the impostor and genuine distribution

of the system:

� Impostor Distribution

of the matching scores of each enrolled

template of a single person to all tem-

plates of the other enrolled persons - can

also be denoted as interclass variance.

� Genuine Distribution

of the matching scores between several

templates generated from the biometric

characteristics of a single person - can

also be denoted as intraclass variance.
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Figure 2.5 illustrates how the FMR and FNMR are determined for a certain threshold and given

impostor and genuine distributions of a biometric system. For a positive recognition system the

FMR describes the percentage of comparisons that would be accepted by the system although

the templates are from di�erent persons. The FMNR gives the percentage of comparisons

that would be rejected although the templates are from the same person. Consequently, the

Threshold (t)

Matching score (s) 10

P
ro

b
a
b

ili
ty

 (
p

)

FMR

FNMR

Genuine distribution

Impostor distribution

Figure 2.5: Biometric errors: FMR and FNMR for given impostor and genuine distribu-

tions at a certain threshold (t). (Template: Maltoni et al. (2009))

selection of the threshold in�uences the performance of the biometric system. For example,

a high security application will choose a high threshold, taking into account that the system

denies access for a higher percentage of actually authorized persons - increasing FNMR and

decreasing FMR. Alternatively, tolerant systems use lower thresholds to ensure that a high

amount of authorized persons are accepted and so decreasing the FNMR. A further important

measure, denoted as equal error rate (EER), is the error rate at the threshold value where

FMR and FNMR are equal. EER is likely used as measure for the comparison of di�erent

biometric systems. Because FMR and FNMR are depending on the threshold value they can

be described as functions FMR(t) and FNMR(t) as illustrated in the plot in Fig.2.6a. This

plot o�ers further points of interests like the zero false match rate (ZFMR) and the zero false

non-match rate (ZFMNR).

Another possibility to get an overview on the performance of a biometric system is to analyse

its receiver operating characteristic (ROC). This curve visualizes the dependency of the FMR

on the FNMR for changing system thresholds. Figure 2.6b depicts a sample illustration for a

ROC curve and the resulting use cases using di�erent thresholds. It is shown that low security

applications (e.g. forensic applications) require a low FNMR and therefore take a higher FMR

into account. High security applications have to ensure that they can only be accessed by
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authorized people and so they require a low FMR. On the other hand a lower FMR implies a

higher FNMR and so the amount of actually authorized people that are not recognized by the

system increases.
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FNMR (t)

FMR (t)

ZFNMR
ZFMR

(a) Equal error rate estimation - Illustration of the FMR(t)

and FMNR(t) curves and the corresponding points of inter-

est.
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(b) Illustration of a receiver operating char-

acteristic and the corresponding use cases

(ROC).

Figure 2.6: Biometric performance curves. (Templates: Maltoni et al. (2009))

2.4.3 Biometric systems in other �elds of applications

The idea of using biometric characteristics for human recognition has been carried to the

recognition of plants, vegetables, animals and industrial products. Subsequently, an overview

on biometric approaches divided into three categories is provided.

2.4.3.1 Recognition of animals

Like humans, animals show biometric characteristics that can be used to enable biometric

recognition. Some of the biometric characteristics like iris, retina or the face used for human

recognition can also be found at animals. In the past several manual biometric approaches

for livestock identi�cation have been presented. For some of these approaches like muzzle

recognition in cattle, automated solutions were proposed and new automated biometric ap-

proaches came up. In the current section, a selection of current literature is pointed out to

get an insight on used biometric characteristics and the performance of automated animal

recognition. The Bioresources Research Centre from the University of Dublin contributed to
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the biometric recognition of farm animals (compendium of recent publications - Ward et al.

(2009) ). Investigations on biometric recognition in sheep treating retinal recognition and

face recognition are presented in Gonzales-Barron et al. (2008), Gonzales Barron et al. (2008)

and Gonzales-Barron et al. (2007a), respectively. An innovative biometric approach using the

avian comb of poultry is introduced in Corkery et al. (2009).

For the purpose of face recognition the authors of Gonzales-Barron et al. (2007a) used in-

dependent component analysis (ICA) and the cosine distance transform as matching score

between two sheep faces. The authors captured four face images from 50 sheep over a period

of �ve weeks (see Fig.2.7a). The best results outperformed the results from the same method

applied to human faces by reaching a recognition rate of 96% compared to 88%. The higher

recognition rates can be explained due to the more constant face expression of a sheep. The

genuine and impostor distributions in Fig.2.7b show that face recognition is a potential method

for sheep recognition (threshold c*=1.06, FMR=7.74%, FNMR=0.80% ).

(a) Sheep face images (b) Sheep face recognition - Impostor and genuine distribu-

tion based on cosine distances

Figure 2.7: Investigation on face recognition in sheep (images source: Gonzales-Barron

et al. (2007a))

The investigations for retina recognition in sheep were performed using the Optireader device

(www.optibrand.com). This device can be used to capture retina images and provides a built

in matcher. The matcher compares two retina images and returns a matching score between

0 and 100.

In Gonzales-Barron et al. (2008) two experiments evaluating the impact of ageing are pre-

sented. One experiment deals with retina images from lambs captured in the �rst 22 weeks

after birth. This resulted in 13 di�erent data sets, where the last three ones were used as

www.optibrand.com


CHAPTER 2. TRACEABILITY OF WOOD LOGS 17

basis sets. The matching scores between the early age data sets and the basis data sets

indicated structural changes of the retina at the beginning of a lamb's life. With increasing

age the matching scores increase up to an age of 8 weeks until they reach an upper bound

for the matching score (approximately 94 to 96). However, the overall impostor and genuine

distribution can be separated from each other and so retinal recognition in sheep is robust and

accurate beginning from the birth of a lamb. The second experiment evaluated the match-

ing scores of 2 to 3 year old sheep in a time span of 5 months. Their results showed that

the matching scores are not in�uenced by ageing. Finally, in Gonzales Barron et al. (2008)

experiments with changing capturing parameters (di�erent operators and lighting conditions

- indoor and outdoor) showed that there is nearly no impact on the matching performance.

Additionally, the authors suggested to use both retina of sheep and to combine the matching

results to a �nal matching score. For this case the FMR and FNMR became zero for the

evaluated test set.

Poultry recognition using the avian combs of chicken is introduced by Corkery et al. (2009).

For this purpose fourty 45-week old hens were side captured. For each chicken four images

were taken. The stages for the extraction of a chicken comb pro�le are illustrated in Fig.2.8a.

Avian comb extraction is done using colour indexing and is based on the assumption that the

comb is red coloured. The line bounding the comb area (see Fig.2.8a - top right) was selected

manually. Finally, the avian comb is extracted and aligned using binarization, morphological

image processing and the preselected line. Fourier descriptors are used to extract shape features

from the avian comb outlines. For the matching procedure linear discriminant analysis using

the extracted harmonics of each comb and additional template matching were performed.

With a recognition rate of 84% for 40 chicken it can be concluded that recognition using avian

combs is a meaningful approach. The genuine and impostor distributions of the experiments

are illustrated in Fig.2.8b .

Another interesting biometric characteristic of animals are nose-prints, the pattern of which is

entitled as muzzle pattern. Nose-prints are similar to human �ngerprints and are commonly

used for the sale and exhibition of sheep and cattle. For this purpose, the muzzle pattern is

taken using ink prints and recognized by visual inspection. A feasibility study on automated

muzzle pattern recognition for cattle using digital images is proposed in Gonzales-Barron et al.

(2007b). First, the digital muzzle patterns are preprocessed which results in skeletonized

muzzle patterns containing the central area of the pattern. The used feature extraction

algorithm is based on eigenfaces as used in human face recognition. Twenty-nine cattle were

video imaged, once a week over a period of three weeks. The resulting 87 images were used

for the veri�cation stage. For the training stage 10 muzzle images for each of a total of
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(a) Avian comb - shape extraction (b) Avian comb recognition - Impostor and genuine distribu-

tion

Figure 2.8: Investigations on poultry recognition using the avian comb (Images source:

Corkery et al. (2009)).

29 cattle were captured in the �rst two weeks. Using 230 (of total of 290) eigenvectors a

recognition rate of 98.85% could be achieved. Fewer eigenvectors and training images reduce

the recognition accuracy remarkably.

Finally, one approach using the coat of animals as biometric characteristic is mentioned. In

the work of Lahiri et al. (2011) the typical zebra stripes are used for biometric recognition of

zebras using digital images.

2.4.3.2 Recognition/ classi�cation of plants, fruits or vegetables

In case of plants, fruits or vegetables the task of recognition mostly refers to species classi-

�cation. For example, tree leaves identi�cation requires to determine the corresponding tree

species using the biometric characteristics of a single leaf. A review on plant recognition

and classi�cation of plants using leaf images is presented in Bhardwaj and Kaur (2013). All

described approaches use the leaf shape as biometric characteristic. Consequently, most ap-

proaches extract shape features. Biometric classi�cation requires a training set for each plant

species. The extracted features of a leaf are then compared to the features of each training set.

Another approach for the classi�cation of fruit images presented by Arivazhagan et al. (2010)

uses colour and texture features. This approach may �nds an application in supermarkets, to

automatically recognize a fruit when it is weighted by the consumer.



CHAPTER 2. TRACEABILITY OF WOOD LOGS 19

2.4.3.3 Recognition of industrial products and goods

Nowadays, there exist two major requirements for recognition of industrial products and goods.

One requirement results from the high losses in sale because of counterfeiting products. Prod-

uct recognition increases the safety of counterfeiting products. The second requirement is to

solve a set of security issues. Identi�cation or authentication of persons using security keys

(stored on physical objects - e.g. key cards, RFID tags, ...) or the identi�cation/ veri�cation of

hardware components or physical objects ( e.g. internet security, genuineness of documents,

...) are very important to increase security in di�erent �elds of applications. Commonly,

security issues require cryptographic solutions to ensure protection against fraud. A possibil-

ity which implicates solutions for both requirements is to establish recognition of industrial

products using physical characteristics. Physical characteristics are similar to biometric char-

acteristics. In case of products or physical objects biometric methods are often denoted as

"�ngerprint" approaches.

Subsequently, an overview on research and applications for recognition of industrial objects

using physical characteristics is given. This overview is based on the concept of physically

unclonable functions and their applications in object recognition.

Physically unclonable functions (PUF) The concept of physical one-way functions was

introduced in Pappu (2001) and Pappu et al. (2002). Over the past years di�erent works

contributed to the further development of this concept into di�erent directions. Today the ex-

pression Physically Uncloneable Function (PUF) incorporates a set of cryptographic functions.

The idea behind this concept and its various applications gives a good overview on measurable

physical characteristics, that can be used to recognize industrial objects or goods.

In Maes and Verbauwhede (2010) a comprehensive study on PUFs is presented. Generally, a

PUF is a procedure that produces a measurable output for a certain input and is not a mathe-

matical function. Simpli�ed, a PUF is a challenge - response function. The mapping between

challenge and response depends on the physical nature of the object. Because the function

depends on the complex, various physical characteristics of an object it cannot be expressed

as mathematical function. Consequently, PUFs are said to be unclonable and unpredictable.

PUFs are for example used in the following applications (VirginiaTech - SES Lab, 2013):

� Cryptographic key generation

� Memoryless key storage

� Device authentication

� PUF-based RFID for anti-counterfeiting
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� Intellectual Property (IP) protection � Anit-Counterfeiting

According to the study of Maes and Verbauwhede (2010), PUFs can be broadly classi�ed

into two categories referring to the nature of the considered physical characteristic: Non-

electronic and electronic PUFs. Further considerations on di�erent classi�cation categories

and concepts are listed in the phd thesis of Maes (2012a). Subsequently, both categories and

selected approaches (which are of interest for object recognition) are introduced using Maes

and Verbauwhede (2010), Maes (2012a) and Maes (2012b) as sources.

Non-electronic PUFs measure non-electronic properties of objects and are further classi-

�ed regarding their constructions. For the purpose of object recognition two di�erent con-

structions are of interest:

(a) Optical PUF (b) Paper PUF

Both PUF constructions demonstrate that surfaces of industrial objects are physical character-

istics, eligible to establish �ngerprint recognition. Non-Electric PUFs require external devices

for the measurement of a physical property. The challenge-response mechanism is not part of

the PUF. Consequently, they are labelled as non-intrinsic PUF constructions.

(a) Optical PUFs are intended for the generation of cryptographic keys. Although optical PUVs

�nd no application in object recognition they show an interesting approach to extract biometric

�ngerprints of a physical object structure. For this purpose tokens that contain a transparent

micro-structure are used. This micro-structure is constructed by mixing refractive glass spheres.

When these tokens are hit by a coherent beam of light (laser) a unique and unpredictable

speckle pattern arises that can be captured by a digital camera. Fig.2.9a illustrates the

challenge - response function of an optical PUV. As challenge the laser is directed on the

token and as response the speckle pattern arises. The hash value of a token is computed

applying a Gabor hash to the speckle pattern. Optical PUF systems are very sensitive because

the speckle pattern will vary already with minimal changes in the capturing procedure.

(b) Paper PUFs utilize the �ber structure of a material as physical characteristic. Selected

�ngerprint approaches for paper documents or packaging materials are presented in Metois

et al. (2002), Buchanon et al. (2005),Clarkson et al. (2009).

The FiberFingerprint presented by Metois et al. (2002) extracts �ngerprints from small marked

sections (< 25m2) of �bre-structured materials. Figure 2.9b shows a captured section of paper.
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(a) Optical PUF for cryptographic key generation: Pro-

ducing a unpredictable, unreproducable speckle pattern of

a transparent token.

(Image source: Maes (2012b))

(b) Paper PUF for document authentication

- FiberFingerprint extraction from a marked

paper patch.

(Image source: Metois et al. (2002))

Figure 2.9: Two optical PUF examples

The black dots are the markings of the section. A one dimensional signal (FiberSignal) is

extracted along a path de�ned by the marking dots (blue line). The sampling frequency of

the FiberSignal is de�ned by the signal path (red lines). Finally, the FiberSignal is quantized

and used as FiberFingerprint template. For the experiments 30 marked sections on di�erent

pieces of paper were captured using a consumer grade camera. It turned out that there is no

intersection between the genuine and impostor distribution for the test-set.

The paper PUF approach by Buchanon et al. (2005) uses a laser scanner that scans �bre-

structured material across a length of 40mm at a certain position. The intensity variances from

di�erent angles are recorded using four photo-detectors which are further used as templates.

The authors describe that the recognition performance is excellent even after the paper was

roughly handed: screwing, baking, submerging in cold water for example (EER for paper 10−72).

For smoother surfaces like plastic cards or coated paper boards the recognition performance

decreases remarkably (EER for plastic cards 10−20).

A paper PUF that used the three dimensional surface of a document is presented by Clarkson

et al. (2009). Regardless of being printed or not, the surface texture of the document is

computed by scanning it in four directions with a commodity scanner. Finally, the feature

vector is extracted from regions de�ned by a Voronoi distribution. This distribution is stored

in the �ngerprint which complicates the veri�cation process. Under the best conditions an

EER of 10−148 could be achieved. Even after the document had been soaked and dried, the

EER decreased only slightly.

A commercial solution for document authentication, entitled "Laser Surface Authentication"

(LSA) is provided by the company Ingenia (http://www.ingeniatechnology.com). The

http://www.ingeniatechnology.com
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description on their website promotes a technology that can be used with a set of materials:

paper, cardboard, plastics, metals, ceramics and textiles.

Electronic PUFs are based on the manufacturing variabilities of integrated circuits placed

on chips. Even when two integrated circuits are manufactured in the exact same way they are

not identical. Electronic PUF constructions measure electronic characteristics from integrated

circuits. For the overview in this thesis silicon PUFs are introduced, which are a major subclass

of electronic PUFs. Silicon PUFs are referred to as intrinsic PUFs because the measurements/

�ngerprint extraction can be directly performed by the embedding device of the silicon chip.

Fingerprints of silicon chips can be used for device recognition or cryptographic issues. Silicon

PUFs can be classi�ed based on their working principles. The main two working principles are

(a) delay-based silicon PUFs and (b) memory-based silicon PUFs.

(a) Delay-based PUFs measure the random delay of a digital circuit on a silicon device. An

example for a delay-based PUF is an arbiter PUF. In Fig. 2.10 the challenge - response function

of an arbiter PUF is illustrated. For the delay measurement two symmetrical delay lines are

used. These lines are concatenations of switch elements. Each switch transfers two inputs

straight or crosses them, depending on a one bit parameter. For n - switches there exist 2n

di�erent path con�gurations. Both delay lines are triggered at the same moment. It depends

on the delay of each switch and the corresponding bit parameters of a certain con�guration

which line is the fastest. The arbiter detects the fastest line and returns a one-bit result. Each

con�guration produces a di�erent delay. Using n di�erent challenge vectors results in a n -

bit code.

Figure 2.10: Arbiter PUF - Challenge Response Illustration. (Image source: Maes

(2012b))

(b) Memory-based PUFs utilize variabilities of memory cells. For example Static Random

Access Memory (SRAM) PUFs use random variabilities of SRAM cells to produce a �ngerprint.

A SRAM cell is a circuit constructed by two cross-coupled logic inverters that resides in one

of two possible states. SRAM cells require a certain voltage to remain in a stable state.

SRAM PUFs use the state of a cell when it powers up. In case of equal inverters a set of
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SRAM cells would have the same power-up state. Again, manufacturing variabilities cause a

mismatch between two inverters of a single SRAM cell. The mismatch between two inverters

of a single cell determines the power-up state of a cell. By addressing n cells on a chip

(challenge) their power-up state (response) produces a n-bit �ngerprint of the chip.

2.5 Research on biometric recognition of logs

In the last section of this chapter an overview on research in the �eld of biometric log recogni-

tion is given. As described in Section 2.3.3 state-of-the-art log traceability approaches propose

the usage of RFID technology. Nonetheless, the works of Chiorescu and Grönlund (2003),

Chiorescu and Grönlund (2004), Flodin et al. (2007), Flodin et al. (2008a) and Flodin et al.

(2008b), Peterson (2009) focus on biometric recognition of wood logs and sawn boards. By

analogy to human recognition, these works are based on the assumption that wood logs are

unique entities which can be recognized using biometric log characteristics.

The approaches introduced in Chiorescu and Grönlund (2003) and Chiorescu and Grönlund

(2004) utilize measurement data from the outer shapes of logs as biometric characteristics.

Therefore, the log shapes were captured with a two-axis log scanner and a three-dimensional

log scanner, respectively.

With the intention to use existing environment to enable log traceability Chiorescu and Grön-

lund (2003) presented preliminary investigations on biometric recognition for wood logs. For

this purpose, the on-bark shape of 879.571 logs (spruce and pine) was scanned using a 2-

axis scanner. Out of this data seven biometric features (length, diameter, bumpiness, taper,

butt, bow and ovality) were computed and stored into a database. In a �rst step the whole

dataset was used to �nd the most discriminative feature set, considering di�erent combina-

tions of features. Results show that the best feature combination consists of four features:

diameter, length, taper and bumpiness. Using these features approximately 98% of the logs

are recognized as unique individuals. The second step investigates the measurement accuracy

of the utilized 2D-axis scanner. Hundred logs were measured �ve times at random rotational

positions. The standard deviations for each feature are used to assess the measurement robust-

ness. Based on the insights of the previous investigations a tree-based searching algorithm

is introduced. The recognition rate for the proposed matching algorithm is evaluated by a

simulation. Therefore a second test-set is created. This test-set is derived from the measured

log features and incorporates measurement deviations caused by the scanner. The simulation
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indicates that the utilized 2-axis scanner is too inaccurate to accomplish a recognition rate

over 34%. The authors assessed that the scanner measurement accuracy and the recognition

algorithm have a major impact onto the recognition rate.

As a consequence of the previous insights Chiorescu and Grönlund (2004) used a three-

dimensional scanner. This scanner is normally used for optimal positioning of the logs into the

headrig and is able to create a complete three-dimensional shape model of a log. Out of this

model 27 parameter for optimal sawing are calculated. Nine of them were selected as biomet-

ric features. They were chosen with regard to their measurement robustness (volume, length,

area minimum diameter, middle diameter, log taper, top taper, bumpiness, relative taper and

bow). As test set 772 debarked logs were divided into three diameter classes and each log was

scanned three times. The �rst scan was performed after the log was debarked. Further two

scans were performed after storing periods of two weeks and two months. For the recognition

procedure two di�erent algorithms were proposed and tested. The �rst algorithm is a further

development of the search algorithm in Chiorescu and Grönlund (2003). It is an one-variable

procedural search based on a robustness ranking of the features. The robustness was esti-

mated regarding the measurement accuracy of the scanner during the repeated scanning of a

set of logs. Compared to this, the second algorithm uses all features concurrently based on

multivariate principal component analysis and a nearest neighbour search. Recognition rates

ranged between 80% and 95% depending on the diameter, matching algorithm and the time

span between the scan cycles. Chiorescu and Grönlund (2004) advise that future work has

to pay attention of the in�uence of bark on the recognition rate. In most Swedish sawmills,

logs get debarked/ butt end reduced and scanned before they are processed by the headrig. It

follows that the �rst scan at the log sorting station is done with bark and the second scan is

done debarked and possibly butt-end reduced.

In the work of Flodin et al. (2008a) the authors take up the suggestion for future work in

Chiorescu and Grönlund (2004). The authors present investigations on traceability from the

log sorting station to the saw intake. Therefore, a special three dimensional scanner is used at

the log sorting station. In bark suppression mode, the scanner is able to di�erentiate between

clear wood and bark using the so-called tracheid e�ect of wood. For the experiments the logs

were scanned at the log sorting station and before the saw intake. The test-set is divided

into two diameter speci�c groups, each consisting of 50 logs. At the log sorting station, each

log was scanned three times with bark suppression and once without bark suppression. The

scan at the saw intake (each log got debarked and butt-end reduced) was done a month later.

For each scanned log 11 biometric outer shape features were extracted. Further, the features

were used to compute intra-measurement di�erences between the three bark-suppression log
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scans and the inter-di�erences between scans from the log sorting station and the saw intake.

By analogy to the previous works the measurement di�erences are used to rank the features

regarding to their robustness and reliability for a �ngerprint approach. Like in Chiorescu and

Grönlund (2004), the matching is based on multivariate principal components analysis. The

recognition rate was computed comparing each log from the saw intake to all logs from the log

sorting station of the respective diameter group. For small sized logs and bark suppression a

recognition rate of 91.8% and without bark suppression 77.6% could be achieved. Large-sized

logs were hardly in�uenced by the butt-end reducer and consequently a recognition rate of

63.6% - bark suppression and 54% - no suppression could be reached. The authors concluded

that the achieved recognition rates are not applicable for a traceability system.

Further two publications from Jens Flodin (Flodin et al. (2007), Flodin et al. (2008b)) focus

on traceability between logs and cut boards. Each log was scanned with an x-ray and an

optical log scanner. The log length as well as the knot positions and lengths were extracted as

biometric features. After sawing, a surface scanner was used to determine the board lengths

and knot positions plus lengths of each board. These biometric features were used to match

each board to all logs of the test-set. Results show that this approach reaches a correct

matching for approximately 90% of all boards.

Finally, the master thesis Peterson (2009) presents a feasibility study on using end-grain char-

acteristics to enable traceability between sawn wood and their parent log. Sixty Douglas �r

trees were cross cut at both ends which led to 120 cross section slices. Each slice was captured

in a studio - three times over a period of three days. On each cross section reference points

were used to capture three equally aligned cross section images from each cross section. The

cross section images were then manually cropped and subdivided into cants and boards simu-

lating end grain images of sawn wood. As a matching score the ratio of the correlated pixels

between two images is used. No features were extracted and no image processing was per-

formed. In the experiments board images were matched against cant images and cant images

against cross section images. The matching was performed between images from di�erent

days. All matching con�gurations reached recognition rates between 83% to 98%. Although

the presented work is thematically closely related to this work, the detailed results are less

meaningful due to the oversimpli�ed approach and experimental settings.



Chapter 3

Log image processing

The increasing industrialization of sawmills in the 1990's presented new challenges to existing

processes. Requirements such as higher process speeds, better yields and lower costs con-

tributed signi�cantly to the development of new methods. Until today log grading and the

decision, how to best process each single log, is still predominantly done by humans. Opti-

cal scanners and the improvement of x-ray technology o�er new possibilities. While optical

scanners enable optimal measurement of logs and detection of external wood properties, x-ray

or nuclear magnet resonance scanners additionally allow detecting internal wood properties in

an non-invasive way. The exact measurement and knowledge of external and internal wood

properties o�er many possibilities to improve log processing. Log scanners support or auto-

mate processes. Automation is mainly based on the development of image processing systems

making use of captured data. There are two common approaches how to implement image pro-

cessing systems: New scanning or capturing devices implicate new solutions and applications;

or there is an idea or problem which should be realized or solved. In the past 15 years several

log image processing systems and research approaches were successful. Regarding the sawmill

industry, the use of automatic measurement and grading devices increased signi�cantly. Al-

though measurement systems have been developed for the forest based industries, mechanical

and manual measuring methods are mainly used. Log scanning devices cause high costs and

are subjected to large companies rather than small wood owners and small sawmills.

The next section presents wood basics and available scanning devices. Subsequently, relevant

cross-section image processing methods are considered.

26
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3.1 Wood basics

This section presents facts on wood as raw material. An introduction into the anatomy of

wood provides an overview and describes special material features. Although European and

Austrian tree species share some basic anatomic features, their cross section surfaces can look

completely di�erent. The development of an image analysis approach, using cross section

images, has to be aware of these di�erences. It would be a drawback to specialize on a single

tree species or a group of tree species with the same features. This part also focuses on wood

measurement/ grading and the related properties. Measurement/ grading of logs is based on

wood properties. Consequently, general wood properties are summarized before the basics of

measurement/ grading of wood logs are introduced. Wood properties are biometric features of

wood logs and can be used to enable biometric log traceability (see Section2.5). Furthermore

these properties are of interest with respect to a multi-biometric approach using cross section

images as well as conventional measurement data.

3.1.1 Wood anatomy

Worldwide more than thousand tree species are known. In Austria, about twenty-�ve tree

species are of economic interest. Generally, Austrian and European tree species are subdivided

into softwood and hardwood tree species. Macroscopic and microscopic features identify each

tree species. Microscopically there are major di�erences between the anatomy of hardwood

and softwood. Following, some macroscopic features and related basic information will be

presented.

Standing trees can be easily classi�ed according to their leaves. Hardwood trees typical wear

broad leaves and softwood trees scale-like leaves also known as needles. These leaves are

essential for the tree to grow, as they collect sunlight and carbon dioxide which are necessary

for photosynthesis.

Annual Rings/ Growth Rings Each year a tree, independent of its species, produces new

sap conducting tissue in shape of an annual ring. These annual rings record the age of a tree.

Due to our climate and the seasons, an annual ring consists of two ring-like bands. Earlywood/

springwood is produced at the beginning of the growing season and is mostly light-coloured,-

weight and soft tissue. The dark coloured, stronger and harder tissue is formed in the period

from summer to the end of the growing season and is called latewood/ summerwood. In
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most tree species annual rings and the two di�erent tissue bands are clearly visible. In regions

without major climatic changes and seasons there are less di�erences between earlywood and

latewood. Especially in subtropical/ tropical regions trees form several rings each year, which

are called growing rings. The number of growing rings depends on wet and dry periods.

The growing of annual rings and growing rings depends on weather and other environmental

conditions. Dendrochronology uses annual ring patterns for tree dating (Crossdating) in order

to draw conclusions about ecological conditions in the past (ProHolz, 2007).

Pith The pith represents the innermost point of of a tree stem. As a tree starts growing or

grows higher the �rst annual ring is formed around the pith. The thickness of a single annual

ring varies within itself due to di�erent in�uences, like wind or pressure. As a result the annual

ring pattern is not a real circular concentric pattern. So the pith is not the geometric center

(gc) of a tree stem. A pith which is located wide outside of the geometric center acts as an

indicator for reaction wood.

gc

(a) The pith is located slightly outside due

to compression wood in the bottom left of

the cross section. (Image source: http:

//commons.wikimedia.org/wiki/File:

Reaction_Wood_of_Picea_Abies.jpg)

gc

(b) The pith is located near to the geomet-

ric center (gc). (Image source: RLE-IS see

Section 5.3.1)

Figure 3.1: Examples for di�erent pith locations

Heartwood/Sapwood As a tree grows and becomes older only the outer zones transport

water and nutrients (sap) stem-upwards. This causes the inner zone dying and it gets em-

balmed in tannins and resins. The resulting heartwood is commonly darker than sapwood and

has di�erent mechanical properties.

http://commons.wikimedia.org/wiki/File:Reaction_Wood_of_Picea_Abies.jpg
http://commons.wikimedia.org/wiki/File:Reaction_Wood_of_Picea_Abies.jpg
http://commons.wikimedia.org/wiki/File:Reaction_Wood_of_Picea_Abies.jpg
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Tracheids/ Pores and Vessels Sap transport di�ers in soft- and hardwood. In softwood

tracheids are responsible to transport sap upwards and can only be seen microscopically. Hard-

wood is often referred to as porous wood. Huge vessels appearing as holes or pores conduct

sap upwards. Depending on the hardwood species, these pores are distributed di�erently and

can be recognized macroscopically on sanded log end faces or cross-sections. The distribution

of the pores is used to subdivide hardwood species into three di�erent categories (further

reading - Fellner et al. (2006)).

Vascular/ Medular Rays To transport sap in horizontal direction so-called vascular or

medular rays are formed. For some tree species these rays are very distinctive and visible.

Maple is well known for its distinct texture caused by these rays leading to a mirror e�ect at

the tangential surface.

Bark Bark is the outermost layer of a tree stem. At the inner side of the bark there is a

special layer called xylem. Xylem is supported by vascular rays with sap and produces fresh

wood cells. Phloem is the outer side of the bark and protects the tree stem from environmental

damages.

Knots Each tree develops branches laterally from the tree trunk. Branches accommodate

leaves and needles which collect sunlight. In the wood stem and on the wood surface branches

can be seen as knots. Generally it can be distinguished between inter-grown and encased

or loosed knots. Inter-grown knots are formed by healthy branches and get encased when

branches die and fresh wood is surrounding them. Encased knots are not disturbing the wood

texture/ grain as much as inter-grown knots (Wiedenhoeft, 2010).

Reaction Wood When a tree is physically (eg. by wind, snow, slate subsoil) stressed he

tends to form reaction wood to counteract these in�uences. Softwood tree species react by

producing compression wood on the inner side of the load while hardwood species produce

tension wood on the rear side of the load. Macroscopically reaction wood can be identi�ed

by narrower and darker annual rings in contrast to their surrounding. Branches always cause

mechanical stress at the tree trunk and so lead to the production of reaction wood. Unfortu-

nately, reaction wood has a strong negative impact on the mechanical and physical properties

of wood. Consequently reaction wood is evaluated very negatively and mostly restricted by

grading rules.
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Diseases and Vulnerabilities Trees can be a�ected by diseases or attacked/ injured by

animals and micro-organisms. Some of them cause colour changes or wood structure damages.

A list of common diseases and vulnerabilities is involved in the presentation of the log properties

(see Section3.1.2.2).

3.1.2 Wood - measurement and grading

Measurement of an object is always based on the object's properties. Measurement of wood

properties is further used for wood grading. Depending on the �eld of wood industry di�erent

properties are measured for description and grading. Measurement and grading determines

the quality and applicability of a piece of wood for a de�ned usage. Generally wood and

wood-product properties can be subdivided into three groups: Geometric Properties, Object

Properties and Physical Properties. The following description is very general due to the

diversity of measurement and grading in wood industry.

3.1.2.1 Wood properties

Geometric properties are used to describe the outer shape of a piece of wood.

Object properties These properties involve most of the wood features which were described

in Section 3.1.1. The appearance, quantity and the size of these features are essential for wood

grading and sorting. It depends on the usage of the piece of wood which features are essential.

While some features have an impact on mechanical properties of wood, others are wanted or

unwanted due to their visual appearance.

Physical properties Density, moisture content and shrinking/swelling are very important

physical properties of wood. The moisture content a�ects density and causes shrinking and

swelling of wood. For speci�c density values, normal-density and oven-dry density are com-

monly used. Normal-density is determined in an atmospheric climate of 20 degrees and 65

percent humidity. Wood with a moisture content of zero percent is de�ned as oven-dry. Like

density, shrinking and swelling values are also di�erent among the wood species and products.

Mechanical properties Hardness, durability and strength-properties are of high interest.

Mechanical properties indicate which wood species or wood products are convenient, in terms



CHAPTER 3. LOG IMAGE PROCESSING 31

of solidity, for di�erent �elds of applications.

3.1.2.2 Log measurement and grading

Measurement and grading are very important tasks for trading and processing of round timber.

The forest based industries allocate round wood to di�erent wood processing industries by

de�ning sorts and classes. This allocation is based on measurement and grading of round

timber by using its speci�c properties. The wood processing industries use measurement and

grading to optimize round wood/log processing and to increase the economic output and

yield. Moreover, prede�ned measurement and grading rules ensure fair trading of round wood

and logs for all parties involved. The speci�c properties of round wood/logs used for various

measurement and grading purposes are listed on the basis of the general wood properties (see

Section 3.1.2.1).

Geometric properties describe the dimension and shape of round wood or a log like di�er-

ent diameters (butt-end diameter, middle diameter), taper, stem curvature, log length, average

ring width, pith position, etc.

Object properties most of them are de�ned as wood defects: branches, compression- and

tension wood, spiral grain, fungal attack, resin-pockets, insect infestation, cracks, diseases

(blight bark disease, rot disease,...), decay, ring shake and much more.

Physical properties: density, moisture-content

In Austria the trading of round and sawn timber is regulated by the Oesterreichische Holzhan-

delsussancen - Austrian Wood Trading Rules (OHHU). The OHHU regulate how wood/ log

properties are measured and which properties are applicable to allocate round wood/ logs to

several sorts. The major round wood/ log sorts are sawmill round wood, industry- or pulp-

wood, energy wood and veneer wood. Furthermore sorts like instrumental wood and some

others are de�ned. The highest demand is for sawmill round wood followed by industry wood.

Some wood sorts are further divided into sub-sorts and quality classes. It depends on the sort

of round wood which properties are essential for trading and for determining the economic

value. Compared to sawmill wood (which is sold piecewise calculating the cubic metre of each

log) industry wood is traded by the weight of a delivery.
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Devices As already mentioned measuring/grading is used for trading for optimizing round

wood processing. Therefore it depends on the grade of industrialization which devices are

used. At forest site manual as well as automatic methods are used in practice. State of the art

measuring devices at forest site are placed on harvesters or implemented on mobile measuring

stations. These systems are used to collect geometric properties. Devices which are placed on

harvesters mostly use contact-methods collecting the dimension of each tree while processed by

the harvester head (Deere, 2011). The company Woodtech o�ers mobile gates which use laser

scanners and promise measurement of complete truck loads (Nylinder et al., 2008). Another

interesting system is o�ered by the Swedish company Dralle. A mobile unit which is placed

on a car uses cameras to capture the end faces of a log stack. In combination with the log

lengths a 3D model of the log stack is calculated. In these sawmills mainly 3D laser scanners

are used to create a 3D pro�le of the log shape. 3D pro�les enable automatic measurement

of log dimensions and can be used to improve log sawing. Additionally video cameras are

used for visual inspection by an operator. In future scanners the use of computer tomography

and magnet resonance imaging will be state of the art. These scanners capture cross section

images from a log in prede�ned resolutions and enable to create 3D models of logs. Other

wood processing industries like pulpmills do not require 3D scanners for log processing.

3.2 Cross-section analysis

Current research de�nes this section as log end face analysis. This caption does not �t with

the further presented methods because some of them make use of CT or MRI technology

which captures cross-section images along the length axis of a log. These images have speci�c

features but the wood properties are quite the same as from log end images. Compared

to conventional log end face images, CT or MRI cross section images are prevented from

disturbances due to cutting or dirt. Since the middle of the 19th century cross section analysis

is used in the �eld of dendrochronology for tree dating (ProHolz, 2007). The �rst known

approach which uses computers for cross section analysis was presented by McMillin (1982).

The author presented a semi-automatic image analysis system which requires an operator

who mainly performs image or camera enhancement. A scanner unit was used to produce an

analogue video signal from sanded pine samples. This signal was then displayed to the operator

who adjusted the region of interest, gray levels and threshold values before the signal could

be binarized and processed. 13 basic measurements including annual ring measurements like

growth rate per inch or late and early wood measurements have been implemented. Therefore,

the current feature that should be measured had to be emphasized by setting the threshold
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adequately. He also presented measurements of microscopic features like the �bre length or

some cell measurements of specially prepared pine samples. Finally geometric measurements

of a CT cross section slice were shown. McMillin (1982) already proposed the advantages of

internal log scanning regarding the sawing of a log.

In the next three subsections an overview on present research until 2012 is provided. The

present literature on cross-section analysis can be subdivided depending on the analysed

macroscopic feature. Pith estimation and annual ring analysis tasks are the most common

cross-section analysis tasks. For both tasks a literature overview and selected state-of-the-art

algorithms will be presented in detail in the two subsequent sections (see Section 3.2.1 and

Section 3.2.2). In the last subsection an overview on literature treating further cross-section

analysis tasks is presented.

3.2.1 Pith estimation

Pith detection/ estimation is very important for cross section imaging. Anatomically the pith

is the growth centre of a tree stem. At the cross section of the tree stem the pith is the

innermost point surrounded by annual rings. Annual rings and the pith are the only features

that are always present. Thus, the pith is a unique point on a cross section. In determining the

wood quality the pith position has two main functions: First, it is an indicator for the presence

of other wood properties like compression or reaction wood. Second, it represents a reference

point for further analysis like annual ring measurements. Pith estimation is fundamental for

cross section analysis.

In some cases it can be impossible to determine a ground truth for the pith location, whether

by visual inspection or an image analysis application. In combination with the fact that all

pith detection/ estimation approaches rely on a probability match it is appropriate to speak of

pith estimation rather than pith detection.

3.2.1.1 Literature Overview

The existing literature can be subdivided into approaches based on annual ring analysis or local

orientation estimation. Both rely on the assumption that annual rings are concentric circles

the center point of which is the pith position. Annual ring analysis focuses on �nding and

identifying annual rings or arcs. The detected annual rings or arcs are then used to compute

orthogonal vectors pointing towards to the pith or to compute annual ring/ arc centre points
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representing votes for the pith position. Local Orientation estimation utilizes the fact that

small annual ring sections represent an oriented texture. Equal as orthogonal vectors from

annual rings/arcs local orientation estimates from annual sections point towards the pith.

With intersection of the local orientations the pith position can be determined.

Regarding the capturing device, the most approaches were developed for images from pol-

ished/sanded cross sections or ct-images. The main advantage of these images is that they

are free of distortions caused by sawing or dust and that annual ring borders are slightly em-

phasized. Pith estimation approaches treating ct-images are presented in Bhandarkar et al.

(1996), Andreu and Rinnhofer (2001), Longuetaud et al. (2004), Entacher et al. (2008).

In Bhandarkar et al. (1996) a system to detect internal log defects using ct-image slices of

a log is presented. Sobel edge detection and a subsequent threshold are used to extract

the annual rings and their gradients. For each detected annual ring point the values inside

of an accumulator array are raised in a certain range of the corresponding gradient vector.

It is assumed that the maxima in the accumulator array is the location of the pith. The

computational demand was reduced by only considering a sub-area around the geometric

center of the image.

For enhancing the annual ring pattern in ct-images Andreu et al. (2002) used contextual Gabor

�lters. The proposed pith estimation algorithm utilizes the assumption that the orthogonal

line of an annual ring cord through its bisect passes the pith. After preprocessing the annual

rings are expressed as pixel chains. Each pair of pixels from a pixel chain de�nes a chord. An

accumulator array sums up the intersections of the orthogonal vectors and the maximum is

assumed to hold the pith position.

Longuetaud et al. (2004) presented an algorithm to detect the pith in a set of ct-slices from

a scanned log. Like Bhandarkar et al. (1996) gradients and an intersection image are used

to determine the pith position for a single slice. Additional information of the pith location

in the previous slice is used to speed up and to improve the accuracy of the algorithm. The

algorithm in Boukadida et al. (2012) is a successor of this work and shows improved results

by applying adaptive thresholds and an optional reversion of the ct-slice order to improve the

accuracy in case of branch forks. The authors performed experiments on 125 logs from 17

di�erent tree species. It is shown that the proposed algorithm performs very accurate with an

overall mean error of 1.69 mm.

Entacher et al. (2008) made a comparison between 6 di�erent pith estimation methods. The

main focus was on keeping the computational e�ort low. In addition to the pith estimation



CHAPTER 3. LOG IMAGE PROCESSING 35

methods the in�uence of di�erent preprocessing methods was evaluated. Except one method

( Poincare (Poi) - well known from �ngerprint recognition - see Maltoni et al. (2009)) all

methods are annual ring analysis methods. The other methods use the circle equation (CE)

or gradient estimation methods (GM). For CE and GM two di�erent variations are presented

respectively. The �rst variation for the circle equation - CEeg (equal gradients) uses the Kirsch

operator to compute gradients for all pixels. Sets of adjacent pixels are used to determine

annual ring arcs. For the second variation CErt (ring tracing) the entire image or a sliding

window is cut at di�erent positions and ring tracing is performed along the cut edge (indicated

by white pixels). For both variations each pair of points (xi, xy), (xj, xy) on an annual ring arc
is used to determine the coordinates of the circle centre (x0, y0). The centre points are used as
votes for an accumulator array, where the maximum is assumed to represent the pith position.

The two GM variations use a sliding window and ring tracing to detect annual ring arcs. One

variation - GMi (intersection) determines the bisects of the previously localised annual ring

arcs. The second variation - GMrl (radial length) additionally uses the radial lengths of the

bisects and �nally the centre point candidates are used to calculate a pith estimate. For pith

estimation GMi intersects all gathered bisects and GMrl uses the point candidate as votes in

an accumulator array. The �fth method - Curvature(Cur) uses the fact that the annual ring

arc curvature increases towards the pith. Therefore CErl and two thresholds are used to choose

annual ring arcs that are close to the pith. The estimated pith position is used to perform a

local circle HT. The experiments show that CErt, GMi and especially CEeg are very accurate.

Poi and Curv are not suitable for pith estimation.

(a) Intersection using the radial length of

detected arcs. (Image source: (Entacher

et al., 2008))

(b) Intersection using local orientations

gathered by Fourier Spectrum analysis. (Im-

age source: Pith Estimation see Chapter 5)

Figure 3.2: Intersection images

Pith estimation approaches for digital images are presented in Wu and Liew (2000), Hanning

et al. (2003), Österberg et al. (2004) and Norell and Borgefors (2008).
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While Wu and Liew (2000) basically applied the approach presented by Bhandarkar et al.

(1996), in Hanning et al. (2003) two methods with the intent to ful�l the requirements of EN

1310 were presented. This European norm de�nes rules for visual ring width measurements

on cut wood, where the pith position is a required feature. The main focus was on unpolished

board end images because polishing or sanding of end faces would be too expensive in an

industrial usage. One approach is based on �nding annual ring structures from which gradients

through their barycentre are computed. This is done by local quantization and clustering

of neighboured pixels. In this case local connectivity components are de�ned as local long

structures of adjacent pixels, similar to annual rings. In Fig. 3.3 a) the result of the local

connectivity step is shown. The second approach uses the peak of the local Fourier spectrum

as local orientation estimate of an annual ring section. The entire picture is subdivided into

32x32 or 34x34 windows. For each window or window position the local orientation of the

annual ring section is determined by local Fourier Spectrum analysis. This is established by

searching the peak in the corresponding Fourier Spectrum. For both methods the �nal pith

estimate is computed by intersecting the gradients or local orientation estimates. This work

was probably the �rst which uses local orientation estimation instead of annual ring analysis

for pith estimation.

(a) Computed local connectivity components

(b) Local Orientations pointing to the pith

Figure 3.3: Pith estimation in images of rough log end boards. (Image source: Hanning

et al. (2003))

Österberg (2009) presented experiments using Fourier Spectrum analysis for well prepared and

under perfect light conditions captured cross section discs. Instead of moving a window over
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the entire image an interesting algorithm for pith estimation was introduced. The principle

of this technique is that �rst two points around a reference point are chosen. Initially, the

geometric center of the image is used as �rst reference point. Two further points are chosen,

so that an angle of 90 degrees is formed. The distance from the starting point to the two other

points is equal to the half-distance between the image border and the starting point. Then,

two local orientation estimates are calculated for the annual ring sections around these points.

The intersection of the two local orientations is used as next guess for the pith position. This

one represents the new starting point for the next iteration. At each iteration the distance

between the pith estimate and the other two points is reduced by a factor <1. The procedure

stops after a certain number of iterations or if the new reference point is close to the old

one. The concept of this technique is based on the assumption that annual rings close to the

pith are more circular. Optimally the pith estimate accuracy increases after performing several

iterations.

The authors of Hanning et al. (2003) and Österberg (2009) conclude that pith estimation

using local Fourier Spectrum analysis could also be applied on images from rough log ends. So

far the only work focusing on the treatment of images of rough log ends has been presented

by Norell and Borgefors (2008). The authors use two local Fourier spectrum analysis methods

suggested in Knutsson and Granlund (1983) and Bigun (1992). Both methods determine local

orientations by convolution of �lter kernels in the spatial domain. Log end images from a

sawmill yard, including several disturbances, were used for the experiments. Both methods

use a sliding window. The �rst method uses quadrature �lter whereby 3 �lters ( tuned to a

certain frequency range in di�erent directions) are applied in the spatial domain. By combining

the �lter outputs a local orientation estimate and certainty value are computed (see Knutsson

and Granlund (1983)). Norell and Borgefors (2008) computed a local orientation estimate for

each pixel. Subsequently for 8 x 8 pixel blocks one estimate is chosen to represent the block

orientation. With these orientations an intersection image is created. The intersection image

is smoothed and the maximum is assumed to hold the preliminary pith position. A second

iteration in a smaller section around the �rst estimate and a rotation �ltering step is used to

improve accuracy. The second method uses the concept of linear symmetry and Laplacian

pyramids, presented in Bigun (1992). This approach uses the fact that frequencies with equal

orientations are distributed over a straight line in the Fourier Spectrum. The more the image

deviates from being a simple image, the more the Fourier Spectrum deviates from being a

straight line. Orientation estimation is then a typical line �tting or Principal Component

Analysis (PCA) problem. In the Fourier Spectrum line �tting is established by calculating

the Inertia matrix. The eigenvectors and eigenvalues of the matrix are utilized to extract a
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dominant orientation and its certainty. In Bigun and Granlund (1987) it is shown that line

�tting can be established in the spatial domain. For pith estimation Norell and Borgefors

(2008) computed a Laplacian pyramid with two levels. With each level the high frequencies

are reduced. As in the case of the �rst method local orientation estimates are computed

for each pixel and the intersection step is performed similarly. First, the intersection image

is computed with the results of pyramid level 2. If the standard deviation is too high the

intersection image is computed for level 1 as well. Subsequently the intersection image with

the lower standard deviation is used to compute the pith position. Finally the validity of the

pith estimation is computed using a smoothed intersection image by analysing the standard

deviation and the mean.

Along with the described methods, a few other approaches are presented in Som et al. (1993),

Som et al. (1995), Chalifour et al. (2001), Sliwa et al. (2003) and Flood et al. (2003). These

methods are not examined in detail because these papers are not available to us. A structured

review about these methods is presented in Longuetaud et al. (2004).

3.2.2 Annual ring analysis

Beneath the pith as the growth centre annual rings are the only constant features that are

present in each cross section. As described in Section 3.1.1, each year a tree produces a new

annual ring around the existing annual rings of a tree stem. Depending on climatological

and physical conditions the annual ring widths di�er each year. Small annual ring widths

indicate a low growth rate and high strength. Consequently, annual ring width measurement

and annual ring counting are tasks to determine the strength of a log. Furthermore, these

measures are used for log grading in several European countries (see Section 3.1.2.2). The

vast majority of literature contributes to the �eld of dendrochronology. In dendrochronology,

the early-/ latewood proportion as well as the annual ring width are of interest (see Fig. 3.4).

Compared to industrial annual ring width measurements, high resolution images are necessary

to determine the exact early-/ latewood proportion as well as the exact singular annual ring

widths.

3.2.2.1 Literature Overview

The focus in this thesis is on literature treating unprepared log end images and images from

unprepared cross section discs. For the sake of completion, the literature overview approaches
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Figure 3.4: Microscopic view of an annual ring from a picea abies (spruce). The image

depicts the smooth intra transition between early- and late-wood and the sharp transition

between two annual rings from late- to early-wood. (Image adapted from: http://

commons.wikimedia.org/wiki/File:Earlywood-latewood_PCAB.jpg)

treating ct-images or images from well prepared log end faces/ cross section discs are described

�rst.

Tree Ring Analysis in Dendrochronology A big part of literature focuses on image

analysis to support dendrochronological tree ring analysis tasks. High resolution images of

cross section slices are analysed and almost always sanded and probably polished before they

are captured. A major task in dendrochronology is to generate tree ring pro�les for tree

ring dating which is denoted as crossdating. For crossdating tree ring pro�les are matched

with other pro�les. Another aspect is to analyse the climatological circumstances over the

tree life time using its tree ring pro�le sometimes depicted as dendroecology. Consequently,

dendrochronological tree ring analysis approaches analyse radial vectors from the pith outwards

to the border and generate 1-dimensional tree ring pro�les. All known approaches are semi-

automatic and require that the pith is moved to the geometric image center or marked by an

operator.

The �rst approach on tree ring analysis by McMillin (1982) is described in Section 3.2. Further

approaches for annual ring detection and annual ring width measurement are presented in

Rauschkolb (1994), Smith (1995a),Conner (1999), Vaz et al. (2004),Laggoune et al. (2005).

In the master thesis of Rauschkolb (1994) approaches to identify and measure annual rings

in high resolution images (400 dpi) of sanded log ends are introduced. The thesis focuses on

detecting annual ring boundaries which arise between early- and late-wood. Basically, there

http://commons.wikimedia.org/wiki/File:Earlywood-latewood_PCAB.jpg
http://commons.wikimedia.org/wiki/File:Earlywood-latewood_PCAB.jpg
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are two boundaries that belong to a single annual ring. A slight border arises at the intra

ring transition between early- and late-wood. After winter, the annual ring growth starts with

fresh early wood and forms the real annual ring border. Then a strong and sharp crossover

between dark coloured late-wood and light coloured early-wood is produced (see Fig.3.4). As

�nal algorithm the author introduced the "Hybrid Edge Detection from Center". For this

algorithm the pith position has to be moved to the geometric image center. For each radius

on a radial vector a set of 30 pixels is analysed. 15 pixels are taken from the left and right

side respectively. The 30 pixel values of each radius along the radial vector are stored in a

matrix. Each column represents a neighbour radial vector. Subsequently, the radial vectors in

the columns of the matrix are analysed. For edge detection central di�erences between two

pixels on a radial vector are computed. Only pixel with a positive slope (transitions from dark

to light) are marked as edge pixels. Finally, the average slope is computed and marked edge

pixels smaller than the average are disregarded. Now the matrix is analysed and the edge

pixels of each row are summed up. Finally a histogram is produced. The peaks are de�ned as

being ring boundaries. This procedure is repeated four times for initially de�ned radial vectors

with π/2 angular distance to each other.

Smith (1995b) described an algorithm which requires perfect annual ring patterns without

disturbances or interruptions. The algorithm starts from the outside towards the pith and

detects ring boundaries by contour tracing. Subsequently, the area between two boundaries

is calculated and assumed to be the annual ring area. As termination condition a �ood �ll

procedure was introduced. This procedure relies on the fact that the innermost area is the

smallest.

At the University of Arizona master theses regarding "TREES: computer assisted dendrochronol-

ogy" are presented by Conner (1999), Giribalan (2000) and Engle (2000) (http://www.ltrr.

arizona.edu/pub/trees/). The developed semi-automated system for dendrochronology of

Conner is also addressed in Conner et al. (1998) and Conner et al. (2000). The system analyses

an assembled set of images that are captured under a microscope from the pith outwards to the

bark (see Fig. 3.5). For annual ring border detection, the Canny edge detector (Canny, 1986)

was utilized. Non maxima suppression was performed by comparing the gradient magnitudes

of the neighbours into the gradient direction. This ensures that edge borders are only one pixel

wide. Additionally, the system uses the knowledge of the orientation of the captured annual

ring section. Edges where the gradient is orthogonal to the annual ring section orientation are

disregarded. At last, only transitions from late to early-wood (dark to light) are considered for

the �nal edge image, so intra-ring transitions are disregarded as well. After linking the found

edges, the ring widths are measured by counting and averaging pixel distances among them.

http://www.ltrr.arizona.edu/pub/trees/
http://www.ltrr.arizona.edu/pub/trees/
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Figure 3.5: GUI of the TREES software for dendrochronology. (Image source: Conner

(1999))

Several approaches to overcome problems with narrow ring widths are introduced in Vaz et al.

(2004). As a solution, the image scale (represented by the annual ring width) is determined

prior to annual ring detection. For this purpose, it is assumed that the gray value pro�le of an

annual ring in radial direction can be modelled by a Gaussian pro�le. Gaussian kernels with

di�erent scales are applied to radial vectors. The extrema for each scale are used to determine

annual ring centres of all annual rings lying on a radial vector. As intermediate step the signal

of the radial vector is analysed and false maxima and minima are removed. Finally, transitions

between early and late-wood are determined. First, the original signal of the radial vector is

reconstructed with cubic polynomials and a cross-entropy similarity measure between both is

used to map the gray levels of a single annual ring into two classes. The border of the two

classes de�nes the intra ring transition and the annual ring borders (see Fig. 3.6).

Laggoune et al. (2005) paid attention to the image quality and proposed an edge detection

�lter adopted to noisy images. The test images were captured with a grayscale �at bed scanner

(600 dpi). After edge detection thinning and thresholding is performed. Now the annual ring

contours are searched analysing the neighbours into the gradient direction. Contours whose
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Figure 3.6: Estimation of intra- and annual ring borders. (Image source: Vaz et al.

(2004))

length are below a certain threshold are eliminated. At last, the found annual ring contours

are used to reconstruct a 3D model.

Industrial Annual Ring Analysis Approaches Annual ring analysis approaches for images

from rough log end ends/ cross section discs are presented in Hanning et al. (2003), Cerda

et al. (2007) and Norell and Lindblad (2008), Norell and Borgefors (2008).

In the work of Hanning et al. (2003) an approach to determine the average annual ring width

of rough log end boards is presented. With the intention to ful�l the requirements of DIN

4074 the pith position is required to determine the average annual ring width from the pith

position to one of the border corners. The pith estimation approach is described in Section

3.2.1. Determining the annual ring width is performed by computing the main frequency of

windows positioned along the line between the pith and the border edge. Some unacceptable

outliers indicate that the method requires further investigation for an industrial usage.

An algorithm to approximate annual rings on a cross section with closed polygons is described

in Cerda et al. (2007). The pith position and the outer shape as polygon are required as input.

First, the Canny edge detector is applied to the input image. Using the pith position and the

intensity of each detected edge point, dark-to-light edges are determined for further processing.

Now polygons of di�erent scales (k) (each polygon can be represented as a function of the

outer shape and the pith position) are computed (see Fig. 3.7). Each detected edge point is

assigned to the closest polygon of a given scale. This results in an accumulator array where

each assigned edge point represents a vote for a certain polygon with scale k. The polygons

with local maxima in the accumulator array are assumed to represent an annual ring (see Fig.

3.7).

The �rst approach for a full automated ring width measurement system on images from rough

log ends was proposed by Norell (2009a). The system utilizes the pith estimation presented in

Norell and Borgefors (2008). The log end images were captured in a Swedish sawmill and 20
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Figure 3.7: Polygons with di�erent scale based on the outer shape and the pith position

(left). Based on the accumulator array local maxima are chosen to represent annual rings

(right). (Image source: Cerda et al. (2007))

images with clearly visible annual rings were used for the experiments. Additionally, a synthetic

set of log end images was produced for evaluation (Synthetic Log End Images - Norell (2009b)).

After preprocessing and pith estimation the algorithm determines a proper region for annual

ring counting. For this purpose, the image is divided into N circle sectors using the estimated

pith position as center point. For all pixels at the cross section, a local orientation estimate is

computed. In each sector, the sum of errors between the computed local orientation and the

pixel orientation relative to the pith is computed. Next, the contrast of the sector with the

lowest error is enhanced. In this sector, annual rings are detected in a radial range between 1

and 9 centimetres from the pith using the grey weighted polar distance transform (GWPDT)

presented in Norell et al. (2007) (see Fig. 3.8). Grey weighted polar distance transform can be

Figure 3.8: Illustration of the gray weighted polar distance transform. The left image

shows the distance image computed with GWPDT. The image in the middle illustrates

computed paths from the angular to the horizontal line. Finally in the right image the

shortest paths between the two lines are selected. (image source: (Norell et al., 2007))

used to compute circular and approximately circular paths in grayscale images. For the chosen

sector two distance images are computed using the two sector borders as starting lines. Finally,

the two distance images are analysed along a radial vector placed at the mean sector direction,

which results in two one-dimensional vectors. Local minima in these vectors correspond to

annual rings. Before counting the annual rings, elastic registration is used to best match

the signals of the two one-dimensional vectors. After registration, the local minima of the

registered signals are utilized to count the annual rings. The experiments on the synthetic
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images show that eccentric annual rings, small ring widths as well as disturbances result in

considerable errors. The experiment on the real log end images are less meaningful because

the test set was very small. One conclusion is that the proposed algorithm tends to count less

rings than counted by visual inspection. Results for counting annual rings on 75 Scots pine

logs are presented in Norell (2010). The approach is identical as the one proposed in Norell

(2009a), except that marks from un-even sawing were removed by Fourier Spectrum �ltering.

The results showed that the proposed approach performs acceptable in a range from 12 to 20

rings. The author concluded that counting annual rings in a sawmill environment is a very

di�cult task mainly in�uenced by sawing disturbances.

Similar to Hanning et al. (2003), in Österberg (2009) local Fourier Spectrum analysis is used

for pith estimation and several other algorithms (e.g. thickness �elds, annual ring counting)

are applied to images from well prepared cross section discs. The pith estimation algorithm

is described in Section 3.2.1. For annual ring counting, a sliding window is moved along a

prede�ned radial vector where the rings are to be counted. For each pixel on the line the local

Fourier Spectrum is calculated using an appropriate window size. The dominating frequencies

of the Fourier Spectrum of each pixel are determined and in combination with the line length

the amount of annual rings is determined.

3.2.3 Further literature on cross section analysis

Further literature on cross section analysis mainly focuses on ct-cross-section images. A stack

of ct-cross-section slices from an entire wood log enables the non-invasive analysis of the

internal log structure. The analysis of the internal log structure is required for two reasons.

First, automated internal log defect detection systems promote the development and the

standardisation of automated log grading systems. Second, internal log defects in�uence the

physical properties and the visual appearance of the �nal wood products. The knowledge

about internal log defects is used to improve the saw intake which increases the yield and the

value.

Several wood properties and features visible on ct-cross-section images are labelled as wood

defects. In case of analysing the internal log structure such defects are entitled as internal

log defects (e.g. knots, resin pockets, cracks, spiral grain and compression or reaction wood).

Beside the detection of internal log defects approaches for the detection of further wood

properties not labelled as defects have been presented.
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Subsequently, an overview on the most common literature treating log defect detection and

the detection of further wood properties (bark detection and the detection of the hard- and

sapwood boundary) is presented.

Log defect detection and analysis Except spiral grain all defects are detectable due to

their speci�c gray values, geometric shapes and their location/orientation in ct-cross-section

images. The majority of the related literature �rst determines defect regions in each ct-cross-

section slice using di�erent segmentation and clustering techniques. In case of ct-cross-section

images it is assumed that di�erent wood defects are represented by grayvalues in a certain

grayscale range. By combining the information of all ct-cross-section slices a 3D model of

each detected defect is generated. Eventually, each 3D model is assigned to a certain wood

defect using di�erent approaches and techniques. The present literature mostly di�ers in the

procedure how the detected objects are assigned to a certain wood defect.

Spiral grain detection works in a di�erent way. The detection of spiral grain can only be

established by comparing a set of longitudinal neighboured annual ring structures extracted

from the ct-cross-section stack.

The �rst algorithm for defect detection in ct-cross-section slices is described in Funt (1985)

and Funt and Bryant (1987). This algorithm aims to segment and cluster similar gray-scale

coloured regions and to classify the kind of defect based on 2D features of the previously

segmented regions. Segmentation is based on histogram multi-thresholding. Each pixel is

assigned to a certain class representing a set of possible defects. For example, knots are

considered to be represented by the darkest pixels. In a further step the pixels of each class are

clustered. Eventually, 2D information like size and orientation criterion's are used to validate

if a cluster represents a certain defect. For example, knots have an elliptical shape and are

longitudinal aligned into the direction of the pith position.

At the beginning of the 1990s di�erent groups of researchers presented various approaches for

internal log defect detection. Australian researchers presented ct-cross-section defect detection

approaches in Wells et al. (1991), Som et al. (1993), Som et al. (1995). As noted in the

literature overview on pith estimation (see Section 3.2.1.1), these publications are not available

to us and cannot be examined. Further information on these works can be found in the

literature review on knot detection by Longuetaud et al. (2012).

Many publications on log defect detection are published by researchers from the Virginia

Polytechnic Institute and State University. For example, in Zhu et al. (1996) a prototype for
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analysing ct-slices of hardwood logs is presented. This prototype is the �nal result of a set

of earlier published works (see literature review in Longuetaud et al. (2012)). It consists of a

segmentation module and a scene analysis module. The segmentation module �rst applies the

Unser �lter to remove annual rings from the ct-cross-section image. In the next step, similar

as in Funt and Bryant (1987) adaptive histogram mulit-thresholding is utilized. According

to the Ph.D.-thesis of Zhu (1993), the pixels are assigned to three di�erent classes. For

example, knot and bark pixels are in the same class and are separated by the scene analysis

module. Morphological operations are applied to determine 2D regions representing wood

defects. Finally, a 3D model is generated by clustering of the 2D areas of all slices together.

For each detected object, geometric features and color features are computed. Finally, the

Dempster-Schafer theory of evidential reasoning is used to classify the kind of wood defect

of each object. For this, basic knowledge about the shape, color and location/ orientation of

each wood defect is utilized.

Further publications published by researchers from the Virginia Polytechnic Institute and State

University focus on arti�cial neuronal networks (ANNs) used to classify internal log defects

(see Li et al. (1996), Schmoldt et al. (1997), Schmoldt et al. (1998) and Schmoldt et al.

(2000)). A prototype system based on the noted previous works on ANNs is presented in

Sarigul et al. (2003a) and Sarigul et al. (2003b). These publication provide a good overview

on log defect detection using ANNs.

Further research on log defect detection has been published by researches from the University

of Georgia. In Bhandarkar et al. (1996) and Bhandarkar et al. (1999) the system CATALOG

(Computer Axial Tomography for Analysis of LOGs) is described. The system uses 3D shape

parameters to classify and 3D render internal log defects. In recent two publications, Bhan-

darkar et al. (2006) and Bhandarkar et al. (2008) presented a new approach based on Kalman

�lter tracking algorithms.

Further recent approaches are presented by Rojas et al. (2006), Wei et al. (2009), Baumgartner

et al. (2010), Breinig et al. (2012), Longuetaud et al. (2012) and Cristhian A. Aguilera (2012).

In Rojas et al. (2006) two supervised classi�cation algorithms (minimum distance classi�er and

maximum likelihood classi�er) for wood defect detection are introduced and evaluated. The

work of Wei et al. (2009) evaluates the applicability of a back propagation arti�cial network and

the maximum likelihood classi�er for wood defect detection in sugar maple and black spruce.

In Baumgartner et al. (2010) the main focus lies on knot detection just in the heartwood

region. For this purpose, the sapwood�hardwood boundary was detected in polar transformed

cross sections using the pith as pole.
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A knot-detection (3DKnotDM) software package and exhaustive experiments and tests on the

accuracy and timing performance are presented by Longuetaud et al. (2012). Additionally,

this work includes a well-structured literature review on knot-detection in ct-images. Finally,

in Cristhian A. Aguilera (2012) the idea of using active contours to detect internal log defects

using a-priori information is introduced and evaluated.

So far, the listed literature treats the general task of internal log defect detection or specialises

on knot detection and analysis. Furthermore, a few other publications focused on the detection

or analysis of a particular log defect. Approaches for crack detection in ct-cross-section images

are published by Bhandarkar et al. (2005), Li and Qi (2007) and Wehrhausen et al. (2012). In

Bhandarkar et al. (2005) Sobel-like �lters are used to detect annual rings and cracks which are

aligned orthogonal to the annual ring structure. A recent approach presented by Wehrhausen

et al. (2012) also uses directional �lters and focuses on the evaluation of the approach. A

novel approach based on fractal dimension is presented by Li and Qi (2007).

Another wood defect is compression wood or reaction wood. The only found work treating

automated compression wood detection in ct-images or digital images is presented by Nystrom

and Hagman (1999). It seems that there is no further literature on compression/ reaction wood

detection.

Literature on spiral grain detection using ct-image slices of logs are presented in Sepúlveda

(2001), Sepúlveda et al. (2002), Ekevad (2004) and Entacher et al. (2007). The approach

presented by Sepúlveda (2001) manually analyses streaks in surfaces that are generated by

cutting the ct-cross-section image stack concentrically around the pith. The streak inclination

relative to the longitudinal axis corresponds to the spiral grain. In Sepúlveda et al. (2002)

the authors tried to predict spiral grain based on variables extracted from cross-section images

(e.g. knot volume and heart/sapwood relation). The results indicated that prediction of spiral

grain should be possible.

Another algorithm to determine spiral grain is presented by Ekevad (2004). Principal directions

of inertia of spheres that are distributed along the longitudinal axis of a log or wood board

can be used to compute local �bre-directions which represent the local spiral grain angle.

Eventually, the applicability of motion estimation algorithms for spiral grain detection is evalu-

ated in Entacher et al. (2007). For this purpose, the ct-cross-section image stack is interpreted

as video data and three di�erent motion estimation techniques are assessed. The results are

too irregular and it is not clear if the detected movements are correlated to spiral grain in

wood.
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3.2.3.0.1 Further wood properties: detection and analysis The group of wood

properties that are not labelled as defects and which are relevant for cross-section analysis

tasks is formed by the pith, annual rings, heart- and sapwood and the bark. Annual ring

analysis and pith estimation were treated in Section 3.2.1.1 and Section 3.2.2, respectively.

Subsequently, the most common literature treating detection and analysis of bark and heart-

/sapwood is quoted.

For heart- and sapwood detection, approaches based on heat sensitive infra-red images (Gjer-

drum and Høibø (2004)) and ct-images (Longuetaud et al. (2007)) were published. In Gjer-

drum and Høibø (2004) an approach to detect heartwood in Scots pine using heat infra-red

images of log ends is introduced. Due to the di�erent physical structure of heart- and sapwood

their moisture contents di�er which results in di�erent temperatures. Consequently, heart- and

sapwood can be clearly identi�ed in heat infra-red images of log ends.

The heart-/sapwood boundary detection algorithm proposed by Longuetaud et al. (2007) uses

the pith position and analyses the gray values of 360 radii. For each radii the �rst pixel

exceeding a certain threshold is chosen as boundary point.

At last, bark detection is considered. Automated bark detection enables to determine the

exact volume of a wood log without debarking it. For some wood species it is critical to

remove the bark for longer periods - e.g when storing it on the sawmill yard. Basically, no

research focuses on the particular task of bark detection. However, most of the approaches

in the literature on log defect detection are able to detect and analyse the bark in ct-cross-

section images. An industrial solution for bark detection is provided by the company Microtec

(http://www.microtec.eu/de). A scanner entitled TOMOLOG automatically creates a 3D

pro�le of the log with and without bark. In Baumgartner et al. (2007) results for automatic

bark measurements using the TOMOLOG scanner are presented.

http://www.microtec.eu/de


PART II

Implementation

The second Part of this thesis addresses two practical issues of the development of a biometric

log recognition framework, named as TreeBio framework. This part is subdivided into four

chapters. In the �rst Chapter, (Chapter 4) the TreeBio framework is introduced and the

main issues of a biometric log recognition system using log end images are pointed out.

Subsequently, in Chapters 5 and 6, approaches and experiments for pith estimation and cross-

section segmentation are presented. Eventually, this part concludes with a discussion and an

outlook on future work for the further development of the TreeBio framework.
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Chapter 4

TreeBio framework

This chapter presents considerations for a biometric recognition framework for wood logs

using digital log end images. For this purpose, schemes of the enrolment and the recognition

procedures are presented and discussed. As integral parts of the TreeBio framework, the

importance of pith estimation and cross-section segmentation is emphasized.

Analogous to biometric systems using �ngerprints or iris images as biometric characteristics,

di�erent tasks have to be performed to generate a biometric template of a single log. A

biometric templates is a compact and fast comparable representation of the features extracted

from the biometric characteristic which is stored into the database of the biometric system.

Figure 4.1 illustrates an exemplary enrolment scheme for tree logs.

As described in Section 2.2, a tree log is a sub-part of a tree. For an industrial application,

harvesters could be used to capture both ends of a single log after the log end is cut by the

harvester head. Due to the growth of a tree, it can be assumed that the two ends of a single

log are di�erent and so their biometric templates will di�er. To establish traceability in the

LSC, it is required to recognize each log independent of the captured log end.

In the enrolment stage, additional data is added to the template of each log. For example,

the harvester operator can assign data like source, owner, date of cutting and other relevant

information for log processing to each log template. Another possibility is to assign data

captured by the harvester head. Only in combination with additional data a single log gets an

identity.

Before generating biometric templates, two basic steps have to be performed. In a �rst step,

di�erent image analysis/ processing tasks are performed. With respect to this thesis pith
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Figure 4.1: Exemplary illustration of an enrolment scheme for the TreeBio framework

estimation and cross-section segmentation are listed as image analysis tasks in the schematic

enrolment illustration (Fig. 4.1). Second, appropriate feature extraction methods are required.

The theoretical part of this work shows that the pith is a unique reference point and its

location represents a unique feature of a log end. Consequently, pith estimation is an integral

component of the TreeBio framework. The estimation of the relative pith location with respect

to the cross-section requires to determine the cross-section boundary. These considerations

show that cross-section segmentation is a further integral part of the framework. Additionally,

the cross-section shape is a further feature of the log end.

Before continuing with feature extraction, image registration techniques have to be applied to

the segmented log end face. Image registration enables a system which is invariant against

rotation, scaling and di�erent angles of the captured cross-sections. Again, the pith position

and the cross-section boundary are required to solve image registration issues. Finally, methods

for feature extraction on cross-sections are required. As noticed, the pith position and cross-

section boundary of the log end can be used as features. Furthermore, methods from �ngerprint

and iris recognition can be applied to log end images to extract a set of features. Finally, the

extracted features have to be transformed to a compact and fast comparable representation �

the biometric template. Together with the collected log information it is then stored into the

database of the TreeBio system. The tree log is now enrolled in the system.

A scheme for log recognition is shown in Fig. 4.2. Industrial applications for log traceability

require a system that operates in identi�cation mode. In some cases the template space can

be reduced by using additional information, like the source of a bulk of trees or shape features.

Log recognition starts by capturing a log end anywhere in the LSC. In Fig. 4.2 two examples

for possible capturing places are depicted. However, the log end image is passed to the image



CHAPTER 4. TREEBIO FRAMEWORK 52

feature extractor log template

DB

Image Analysis

pith estimation

segmentation

LOG RECOGNITION 

additional 
information

log information

Matcher
log identity +

information

Figure 4.2: Exemplary Illustration of the log recognition scheme for the TreeBio frame-

work

analysis module. As mentioned, additional information simpli�es the recognition procedure.

Like in the enrolment, a biometric template is generated. The template is passed to a matching

module which is crucial for log recognition. The matcher compares the received template with

all or a subset of templates in the database. Finally, the matcher has to decide whether or not

a corresponding template in the database exists. In the positive case the matcher returns the

identity information of the log which was added in the enrolment stage.



Chapter 5

Pith estimation

The considerations in the previous chapter outlined the requirements for pith estimation in

the TreeBio framework. In this chapter a comprehensive study on pith estimation in rough log

end images is presented. Parts of this chapter have been published in Schraml and Uhl (2013)

before this thesis has been �nished.

As introduced in Section 3.2.1 pith estimation is fundamental for cross section analysis. Previ-

ous approaches for analysing cross section images mostly rely on images from polished/sanded

cross sections or ct-images. Ct-images are free of distortions caused by sawing or dust and the

annual ring borders are slightly emphasized. Approaches treating ct-images rely on annual ring

analysis. Due to the distortions annual ring analysis approaches are not applicable to images

of rough log ends.

Local orientation estimation approaches for pith estimation are shown in Hanning et al. (2003),

Österberg et al. (2004) and Norell and Borgefors (2008). The former two use local Fourier

Spectrum analysis for pith estimation on rough log end boards and on well prepared cross

section discs, respectively. The authors use the peak of the local Fourier spectrum as local

orientation estimate of an annual ring section. Pith estimation approaches rely on the assump-

tion that annual rings are concentric circles. Consequently, local orientation estimates point

towards the pith. With intersection of the local orientations the pith position is determined.

The experiments of Hanning et al. (2003) indicate that pith estimation using local Fourier

Spectrum analysis could also be applied on images from rough log ends. So far the only work

focusing on the treatment of images of rough log ends was presented by Norell and Borge-

fors (2008) utilizing two local Fourier Spectrum analysis methods suggested in Knutsson and

Granlund (1983) and Bigun (1992). Both methods determine local orientations by convolution

53
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of �lter kernels in the spatial domain. Results of Norell and Borgefors (2008) show that the

second method ( Laplacian pyramids and linear symmetry) is more robust to disturbances.

Even though Norell and Borgefors (2008) provides �rst important insights into pith estimation

of rough log ends, the authors of Norell and Borgefors (2008) noticed that the used image

test set is not appropriate to draw conclusions about the performance of pith estimation for

rough log ends of a sawmill yard.

This work contributes to pith estimation by treating images from rough log ends of a sawmill

yard. By treating images of rough log ends, this work presents �rst insights on di�erent

pith estimation methods applicable in the TreeBio framework. For this purpose the Peak

Analysis Method ( Hanning et al. (2003) and Österberg et al. (2004)) and further three Fourier

Spectrum Analysis methods are used to compute local orientations of small sections from cross

section images, denoted as annual ring sections. Contrary to Norell and Borgefors (2008) it

is shown that local orientation estimation in the Fourier domain is applicable for annual ring

sections from rough log ends. For estimating the pith position two di�erent algorithms for

selecting annual ring sections and intersecting the gathered local orientations are assessed.

One of these methods is based on the pith estimation algorithm presented in Österberg et al.

(2004). To the author's knowledge, no study so far has focused on the in�uence of the annual

ring section size and selection on the pith estimation accuracy and timing. Thus, this work

additionally contributes to existing literature by showing that the size, the amount and the

selection of annual ring sections in�uence the accuracy and timing of the proposed methods

for pith estimation.

The empirical study compares two di�erent sets of cross section images. One image set consists

of 109 images of rough spruce log ends from a sawmill yard. The other set is equal to the

ct-image set used in the experiments of Entacher et al. (2008). The results of the experiments

of the ct-image set are compared to the results for pith estimation using annual ring analysis

methods presented in Entacher et al. (2008). The results of the proposed methods on the

rough log end images are compared to those from Norell and Borgefors (2008).

Section 5.1 introduces the basics of local orientation estimation (subsection 5.1.1) and presents

considerations about Fourier Spectra of annual ring sections (subsection 5.1.2). Subsequently

three Fourier spectrum analysis methods for local orientation estimation of annual ring sections

are introduced (subsection 5.1.3). Two pith estimation algorithms for selecting annual ring

sections and computing a pith estimate are presented in Section 5.2. Finally, Section 5.3

describes and assesses the experiments on the two image sets.
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5.1 Local Fourier Spectra analysis of annual ring blocks

All pith estimation approaches using annual ring analysis or local orientation estimation meth-

ods rely on the assumption that annual rings are concentric circles the center point of which

is the pith position. Annual ring analysis focuses on �nding and identifying annual rings. The

detected annual rings or arcs are then used to compute orthogonal vectors pointing towards

the pith or to compute annual ring/ arc centre points representing votes for the pith position.

Regardless of using gradient operators, edge detectors or other methods to extract annual rings

or arcs, it becomes impossible to extract valid data with increasing disturbances (see Section

5.1.2). Local orientation estimation methods show higher reliability in case of disturbances.

5.1.1 Local orientation estimation

Local orientation estimation is a widely used technique in image processing systems and espe-

cially in texture analysis. In Bigun and Granlund (1987) and Granlund and Knutsson (1995)

the terms "linear symmetry" and "simple neighbourhood" are introduced, respectively. These

terms are based on images where the grey values are equal along lines and only change in one

direction. Such images are called simple images. The direction in which the grey values vary

is de�ned as the image orientation, denoted as a unit vector n̂. A simple neighbourhood can

be represented by a 1-dimensional function f(x, y) = g(x) = g(xT n̂) where xT n̂ denotes the

scalar product Jähne (2005). Images that are not simple can be divided into image sections,

which (approximately) ful�l the property of simple images. Image orientations of such simple

image sections are referred to as local orientation. The Fourier Spectrum of a simple image

is represented by a single line that is equally oriented as the simple image orientation. If the

simple image can be described as a sinusoidal function it is represented by two points in the

Fourier spectrum. The more the simple image deviates from being simple the more the Fourier

Spectrum spreads.

5.1.2 Fourier Spectra of annual ring sections

The energy distribution of annual ring sections in the Fourier Spectrum is in�uenced by the

capturing device (ct-scanner, digital or infra-red camera, ...), the wood species (di�erent wood

species show di�erent annual ring structures), wood properties visible at the cross section

(e.g. knots), the wood surface (sanded or rough - chainsaw or circular saw), and several other
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disturbances (light conditions, soiling and dirt, cracks, ...).

Annual ring sections of ct-cross section images are nearly free from distortions and have similar

properties as images from sanded/ polished log ends. Compared to images from rough log

ends they show less cracks and no cutting distortions (compare the annual ring sections in Fig.

5.2 and Fig. 5.3).

(a) consistent ring width (b) varying ring width

Figure 5.1: Annual ring sections from a ct-cross section image and their Fourier Spectra

Fig. 5.1 shows two annual ring sections from a ct-cross section image. The annual rings in

Fig. 5.1a are consistent in width and are slightly curved. As a result the Fourier spectrum is

concentrated around two points that re�ect the main annual ring width and the annual ring

orientation. In Fig. 5.1b the annual ring widths vary more strongly and the Fourier spectrum

spreads from a point to a straight line. The annual ring sections in Fig. 5.2 are from a sanded

(a) section with low curvature (b) section close to the pith with high

curvature

Figure 5.2: Annual ring sections from a sanded cross section and their Fourier Spectra

log end face, captured under perfect light conditions. Apart from the inverted colour (late

wood is bright and early wood is dark) these annual ring sections are similar to those from

ct-cross section images. Fig. 5.2a and Fig. 5.2b demonstrate the in�uence of the annual ring

curvature on the Fourier Spectrum. The stronger the curvature, the more the line spreads

and forms two circle sectors. The annual ring sections in Fig. 5.3 are from a rough log end

image. It is obvious that the noise increases in the spatial domain as well as in the Fourier

domain. While in Fig. 5.3a the dominant annual ring orientation is clearly visible, in Fig. 5.3b

two di�erent orientations are present. This typically occurs when the cutting pattern, cracks,

knots or light shadows disturb the annual ring section. Commonly, many annual ring sections
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(a) slightly disturbed due to cutting (b) strongly disturbed due to cutting

Figure 5.3: Annual ring sections from a rough log end image and their Fourier Spectra

from a rough log end image are disturbed in such a way, so that no annual ring orientation

can be determined.

Subsequently, di�erent approaches for local annual ring orientation estimation using Fourier

Spectrum analysis are presented. All presented methods utilize the Fourier Spectrum of a given

annual ring section as input. As results, all methods deliver an estimate of the orientation

and if possible a certainty value of the estimate. For this purpose the size of the annual ring

section in conjunction with the image resolution has to be chosen carefully. Basically, a higher

image resolution provides more detailed information about the cross section, but on the other

hand it su�ers from additional noise in the Fourier Spectra of the annual ring sections. The

size of the annual ring section determines the amount of included annual rings. The bigger

the annual ring section, the higher the probability of a stronger annual ring curvature and a

variation in width. These observations also a�ect the performance of the following methods

to some extent.

5.1.3 Fourier Spectrum analysis methods

In this subsection the Peak Analysis method (c.f. Hanning et al. (2003) and Österberg et al.

(2004)) and additionally three methods for local orientation estimation using Fourier Spectrum

analysis are described. First, two approaches for Fourier Spectrum preprocessing of annual ring

sections are described.

5.1.3.1 Fourier Spectrum Preprocessing

Two circumstances require a �ltering of the Fourier Spectrum. First, it can be expected that

the annual ring texture of an annual ring section is assigned to a certain bandpass in the

Fourier Spectrum. Consequently, a bandpass �lter, �ltering low and high frequencies, is used

to �lter out insigni�cant frequencies. Second, annual ring sections from images of rough log
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ends cause a very noisy Fourier Spectrum. A simple threshold is used to determine frequencies

with a high magnitude. The threshold is calculated by determining two peaks of the Fourier

Spectrum. If the ratio between them exceeds a certain value (e.g. 0.6) the threshold is set to

T = max. peak ⋅ λ, where λ is chosen in a range between 0.6 - 0.9. Otherwise it is assumed

that the annual ring pattern is represented by the max. peak and just the maximum peak is

further processed.

5.1.3.2 Peak Analysis - PA

PA is a very simple technique to gather a local orientation estimate. Linear symmetry assumes

that the Fourier Spectrum of a simple image is aligned along a straight line. Disregarding the

DC coe�cient the maximum frequency should also lie on this line. Especially in the case of

annual rings and appropriate section sizes, it can be assumed that the annual ring growth is

approximately regular. The more uniform the local annual ring pattern is, the more the Fourier

Spectrum converges to a single point. PA for pith estimation was introduced by Hanning et al.

(2003) with the intention to count existing annual rings on rough log end boards from the two

top end board edges into the direction of the pith. For this purpose, the presence of the pith

on the board is not required. In this work the scope is to determine the exact pith position in

images of rough log ends. For implementation a simple maximum search in one half-plane of

the Fourier Spectrum has to be performed. The line through the Fourier Spectrum origin and

the maximum coe�cient of the preprocessed Fourier Spectrum is used as the local orientation

estimate.

5.1.3.3 Least Squares Regression - LSR

Regarding the concept of linear symmetry, linear regression analysis is most quali�ed for ori-

entation estimation. Linear regression methods enable the �tting of a line into a point cloud.

Regardless if one or more explanatory variables describe one independent variable, simple or

multivariate linear regression models are utilized. For linear symmetry analysis in the Fourier

Spectrum the X and Y coordinates can be used alternatively as explanatory or independent

variable.

The method of least squares regression is the best known method for �tting a regression line

into a point cloud. Since LSR reduces the summed squared error (SSE) of the dependent

variable it is necessary to determine the correlation coe�cients of the X and Y values. If one



CHAPTER 5. PITH ESTIMATION 59

axis shows a dominant correlation coe�cient it is used as independent variable for the LSR. As

certainty value the absolute coe�cient of determination ∣R2∣ is computed and ranges between

0 and 1. For similar correlation coe�cients (ratio > 0.8) LSR is computed with both axes as

independent variables. Subsequently, the results are combined and the certainty value is set

to 1. Finally the slope of the regression line, representing the local orientation estimate and

the certainty value, are received as results.

5.1.3.4 Weighted Least Squares Regression - WLSR

Due to the quadratic error weighting, LSR is very sensitive to outliers. A simple method to

overcome the problem, that outliers from less signi�cant frequencies in�uence the accuracy of

LSR, is to utilize the magnitudes of the frequencies as weights. Due to the weighting - the

frequencies with a high magnitude have more impact on linear regression than those with a

low magnitude.

β = ∑(Xi ⋅ Yi ⋅Wi)
∑(X2

i ⋅Wi)
(5.1)

As weight (Wi) for a given point in the Fourier Spectrum (Xi, Yi) the square root of the

related frequency magnitude (Mi) is used Wi =
√
Mi. Except from using weights, WLSR is

performed in the same way as LSR to compute a local orientation estimate and the related

certainty value.

5.1.3.5 Principal Component Analysis - PCA

PCA for texture orientation analysis using local Fourier Spectrum analysis was presented by

Josso et al. (2005). In addition to determining a local orientation estimate PCA, can be used

to make an assertion about the isotropy/ anisotropy of the analysed texture. Computationally

PCA, is based on the Eigendecomposition of the covariance matrix for the XY coordinates.

Eigendecomposition of the covariance matrix leads to two eigenvectors that represent the

given points of the Fourier Spectrum. These two vectors are perpendicular to each other.

The eigenvalues of the eigenvectors provide the information about the isotropy/ anisotropy.

Anisotropy is used as a measure of the certainty of the orientation estimate. The more one

eigenvector dominates, the more anisotropic is the distribution of the frequencies in the Fourier

Spectrum. This means that an anisotropic distribution is an indicator of a simple image. For

local orientation estimation the dominating eigenvector is utilized as the local orientation



CHAPTER 5. PITH ESTIMATION 60

estimate. The ratio

λ = l1 − l2
l1

(5.2)

between the eigenvalue l1 of the dominating eigenvector and the eigenvalue l2 of the second

eigenvector can be utilized as a certainty value

5.2 Pith estimation algorithms

This section describes two di�erent algorithms for selecting annual ring sections/ image blocks

and computing a pith estimate. The objective of both algorithms is to select image blocks

and to compute local orientation estimates for each block. Finally, each algorithm uses the

gathered local orientation estimates to perform an intersection step and to compute a pith

estimate.

5.2.1 Block area selection - BAS

In Norell and Borgefors (2008), a rectangular area around the geometric image center is used

to compute local orientation estimates for a subsequent intersection procedure. Knowledge

about the cross section size and its location in the image is a precondition. Prede�ning an area,

in which blocks are selected, is the simplest method to gather local orientation estimates for a

subsequent intersection procedure. After specifying an area it is subdivided into image blocks.

Overlapping image blocks or a sliding window have the advantage that more annual ring

orientations can be determined. The size of the blocks depends on the image resolution and

on the cross section image type. Appropriate block sizes vary between 8x8 and 128x128 pixels.

The experiments indicate that a lower resolution provides some advantages. High resolution

images require a large blocksize and small structures and disturbances become visible.

In Fig. 5.4, subdivided rectangular and circular areas of two rough log end images are shown.

The rectangle and circle dimensions were determined using the geometric image properties of

the pre-cut images of rough log ends. For all selected blocks, a local orientation estimate is

computed using one of the Fourier Spectrum analysis methods. Expect for the PA method, a

certainty value is additionally determined. Finally, local orientation estimates with a certainty

value exceeding a certain threshold are further processed, (in the case of the PA method

all local orientation estimates are further processed). Similar to Hanning et al. (2003) and

Norell and Borgefors (2008) an accumulator array is used to sum up the intersections of all
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GC

(a) Rectangular area and non-overlapping

blocks (32x32 pixels)

GC

(b) Circular area and non-overlapping

blocks (32x32 pixels)

Figure 5.4: Two cross section images from the rough log end image set (RLE-IS) with

two di�erent prede�ned areas for BAS

valid local orientation estimates. Finally, the accumulator array is �ltered with a Gaussian

smoothing kernel and the maximum accumulator value is assumed to hold the pith position.

The Gaussian �lter �attens local peaks and summarizes peak groups to a single peak. Fig. 5.5a

shows an intersection image where a rectangular area and non-overlapping blocks with 32x32

pixels were used. It is clearly visible that the line intersections concentrate around the pith

periphery. BAS can be performed with many variations. For example, Norell and Borgefors

(2008) performed a second BAS choosing a rectangular section around the �rst estimated pith

position.

5.2.2 Pointwise block selection - PBS

In Österberg et al. (2004), another technique that uses the geometric image center (GC) as

initial reference point is presented. The principle of this technique is that �rst, two points

around a reference point are chosen. Then, two local orientation estimates are calculated for

the annual ring sections around these points. The intersection of these orientations is used

as a new reference point. The procedure stops after a certain number of iterations or if the

new reference point is close to the old one. The concept of this technique is based on the

assumption that annual rings close to the pith are more circular. Optimally, the pith estimate

accuracy increases after performing several iterations.

For the experiments Österberg et al. (2004) used images from well prepared log end images.

Preliminary experiments showed that pith estimation using only two local orientation estimates

(in each iteration) becomes more inaccurate the more disturbed the cross section image. In
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the present work an extension of the suggested technique is introduced to overcome problems

caused by inaccurate local orientation estimates. The GC is used as the initial reference point.

In contrast to Österberg et al. (2004), the number of points can be chosen individually. These

points are equally distributed on a circle described by a prede�ned radius around the reference

point. Each point is used as a center point of an image block cluster. A cluster consists of an

(a) BAS Intersection on a rough log end image

GC

(b) PBS/ ct-cross section image where 5 points

with a cluster size of 3x3 blocks were chosen

Figure 5.5: Intersection Images

arbitrary number of blocks. For each block of a cluster, the local orientations and certainty

values are calculated. The information of all blocks of a cluster are then used to determine

whether a valid cluster orientation estimate can be calculated. If not, a new point on a reduced

radius, closer to the reference point is chosen and the cluster orientation estimation procedure

repeats. After a certain number of unsuccessful iterations the procedure is cancelled and it is

continued with the next initially chosen point. The cluster orientation estimation procedure

is performed for all initially chosen points. At least two valid cluster orientation estimates are

necessary to perform an intersection procedure. Finally, the barycentre of the intersections of

all valid cluster orientations is chosen as the intermediate pith position. This one is utilized

as new reference point and the whole procedure is repeated with a decreased radius. The

algorithm terminates if the distance between the old and new pith position is under a certain

limit or if a certain number of iterations were performed. In Fig. 5.5b a ct-cross section image

is depicted where one iteration of the described algorithm has been performed. Five points in

a radius of 120 pixels around the GC were chosen. For all clusters a valid cluster orientation

estimate could be computed. Each cluster consists of 9 - 16x16 pixel blocks. The barycentre,

which is assumed to hold the pith position, is not marked. PBS has the advantage that only

a few blocks have to be analysed, keeping the computational e�ort low. In case of images

from rough log ends it is very di�cult to decide if a single cluster provides a valid orientation.

Although for nearly all of the 20 points a second cluster position was computed - Fig. 5.6b)
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shows that for only 8 points a valid cluster could be determined.

GC

(a) ct-cross section image where 5 points with a

cluster size of 3x3 blocks were chosen.

GC

(b) rough log end image where 20 points with a

cluster size of 2x2 blocks were chosen

Figure 5.6: Two cross section images where the �rst iteration of PBS has been performed

5.3 Experiments

The experiments provide information about the pith estimation performance of the two pith

estimation algorithms (BAS, PBS) utilizing Fourier Spectrum analysis methods for local orien-

tation estimation. The focus is to evaluate the performance and applicability of the particular

Fourier Spectrum analysis methods for analysing annual ring sections from rough log end im-

ages. Results for a ct-cross section image set (CT-IS), using the same images as in Entacher

et al. (2008), show how the proposed methods perform on less disturbed images. The accuracy

of the proposed methods on the rough log end image set (RLE-IS) is compared to the results

presented in Norell and Borgefors (2008).

The pith estimation performance is evaluated by computing several statistical values. The

mean (Mean) describes the deviation from all epp (estimated pith positions) to the corre-

sponding mpp (measured pith positions). StDev is the standard deviation from the Mean. R

is de�ned as the span between the maximum and minimum pith estimation deviation. #Blocks

(#B) gives the number of valid blocks that exceed the certainty threshold and are �nally used

for the intersection step. Finally, the computation time in milliseconds [ms] speci�es the

demand for the whole pith estimation process, except �le IO.

Subsequently, for each of the two image sets the accuracy and the timing performance for pith

estimation using the two pith estimation algorithms and di�erent Fourier Spectrum analysis
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methods are presented. As a next step, the results are summarized and general conclusions

about the accuracy and the timing performance of the particular con�gurations are drawn.

All experiments were performed on an Intel Core i7-2620M processor with 2.7 GHZ and 8GB

RAM, JRE 1.6.

5.3.1 Image test sets

For the experiments on pith estimation two di�erent image test sets were used. One image set

(CT-IS) was captured with a ct-scanner. It consists of 36 (512x512 pixels) cross section images

taken from a single log. This image set was also used for the pith estimation experiments in

Entacher et al. (2008). The second image set (Rough Log End Image Set / RLE-IS) consists

of 109 (1024x768 pixesl) spruce log end images captured with a digital camera (Samsung

WB2000). Examples of both images sets are illustrated in Fig. 5.10 and Fig. 5.8. These

images were taken on a saw mill yard in Austria without �ash and at approximately the

same distance from the log end surface to the camera (see Fig.5.7). Consequently, one pixel

Figure 5.7: Illustration of the capturing procedure for the RLE - image set using adjusting

pliers. All images were captured at approximately the same distance and as normal as

possible to the cross section surface. (Photo: Schraml)

corresponds to approximately 1.7 mm. The captured images represent log ends and their

features found on a saw mill yard processing spruce logs. Log ends without any visible annual

rings have been excluded. At the sorting station all log ends were cut by a circular saw. The

ground truth (measured pith position - mpp) for both image sets was determined by visual

inspection. Due to the approximately equal cross section size in all images of the CT-IS no

localization of the cross section is necessary. The diameters of the log ends in the RLE-IS vary
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between 25 and 50 cm. For simpli�cation the images were pre-cut to the size of the log end

sizes.

5.3.2 CT-IS experiments

For pith estimation on the CT-IS the two pith estimation algorithms (BAS, PBS) are tested

with each of the four Fourier spectrum analysis methods.

(a) CT-IS slice #1 (b) CT-IS slice #16 (c) CT-IS slice #28

Figure 5.8: Computer tomography image set examples (CT-IS)

For this purpose three con�gurations are selected and evaluated in detail. The �rst con�g-

uration (CT-BAS-C1) uses non-overlapping 16x16 pixels blocks and a rectangular BAS. The

second con�guration (CT-BAS-C2) �rst applies CT-BAS-C1. Based on the assumption that

annual rings close to the pith are more circular, an 80x80 pixels rectangular area around the

�rst pith estimate is de�ned. Local orientation estimates closer to the pith should point more

precisely to the pith position. Subsequently, a second BAS with non-overlapping 8x8 pixel

blocks is performed with the newly de�ned area. The second pith estimate is used as the �nal

pith estimate. For both con�gurations the accumulator array is smoothed with a Gaussian

�lter with σ = 1, before the maximum value is determined.

The third con�guration (CT-PBS-C3) uses the PBS algorithm. Five clusters with 16x16 pixel

blocks are selected at each iteration. Each cluster consists of 4 blocks and at maximum 5

iterations are performed for estimating the �nal pith estimate. The radius for the �rst iteration

was set to 100 pixel and decreases by a factor of 0.6 for each iteration. As termination criteria

between the results of two iterations a value of 2 pixel is used.

The particular con�gurations and Fourier Spectrum analysis methods are tested with di�erent

certainty thresholds in a range between 0.3 and 0.9. For each con�guration and Fourier
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Spectrum analysis method the most accurate result gathered with a particular certainty value

is selected for the statistical analysis illustrated in Table 5.1. For PA no certainty value is

computed and so #Blocks in the PA results using BAS gives the total number of selected

blocks in the rectangular area. Comparing the results from CT-BAS-C1 and CT-BAS-C2, the

Con�g. Method C Mean StDev #B R [ms]

CT-BAS-C1

PA - 4.65 1.12 249 6 211

LSR 0.9 4.86 1.3 234 7 196

WLSR 0.9 4.78 1.25 243 7 202

PCA 0.9 4.78 1.19 230 7 199

CT-BAS-C2

PA - 3.08 1.68 346 7 303

LSR 0.5 2.27 1.0 330 4 307

WLSR 0.9 2.41 1.1 339 5 304

PCA 0.7 2.46 1.35 335 6 303

CT-PBS-C3

PA - 6.54 8.55 117 45 21

LSR 0.9 2.16 1.75 118 8 22

WLSR 0.9 1.86 1.3 114 5 21

PCA 0.7 1.49 1.06 111 4 21

Table 5.1: CT-IS Pith Estimation - statistical analysis of three con�gurations. Mean,

StDev and R are given as pixel values.

accuracy of all methods in the latter con�guration increases remarkably. On the other hand

the timing performance decreases due to the higher amount of blocks. Although the certainty

thresholds are very restrictive, a high amount of blocks (compared to the total amount of

blocks in the PA results) are used for the intersection procedure. This shows that in ct-

images only a few blocks are too disturbed to compute a local orientation estimate with a

high certainty.

Surprisingly, the best results are reached with CT-PBS-C3 using the three introduced Fourier

Spectrum analysis methods. Compared to the two other con�gurations this method is ten

times faster and uses least blocks. The PA method shows a bad performance for CT-PBS-C3.

This behaviour can be explained with the missing of a certainty value. Thus, wrong orientation

estimates are not sorted out and a�ect the pith estimation accuracy. In Fig. 5.9 the results of

the most accurate method for each con�guration are depicted. In the experiments of Entacher

et al. (2008) the best results were reached with the method that used sets of equal gradients

and the circle equation: Mean - 2.8 pixels and Timing - 16.64 seconds without preprocessing.

Except the results using PA in CT-BAS-C2 and CT-PBS-C3 all methods outperform this
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CT-PBS-C3 (PCA)CT-BAS-C2 (LSR)CT-BAS-C1 (PA)

Figure 5.9: CT-IS | Best methods of each con�guration

mean value. Considering the timing performance it is shown that the proposed methods are

very fast compared to the annual ring analysis methods evaluated in Entacher et al. (2008).

Additionally, no image preprocessing is required for the Fourier Spectrum analysis methods.

The experiments on the CT-IS demonstrate that all proposed methods are well-suited for pith

estimation on less disturbed cross section images.

5.3.3 RLE-IS experiments

As in the CT-IS experiments, seven con�gurations are selected and evaluated in detail. These

con�gurations are divided into four groups (see Table 5.2). The �rst three groups present

results for rectangular and circular BAS using non- and half-overlapping 16x16 pixels blocks.

Circular BAS considers a larger area from the log end than rectangular BAS, which leads

to a higher amount of blocks. While in the �rst two groups it is tried to cover a large

area from the log end face (see Fig. 5.4), the third group uses a smaller 300x300 pixels

rectangular area around the GC. Equal to the CT-BAS-C2 con�guration the third group uses

the assumption that annual rings close to the pith are more circular. Compared to the CT-IS

Experiments a larger Gaussian �lter with σ = 3 was applied to the accumulator array of the

BAS con�gurations. Finally, the fourth group presents results for pith estimation using the PBS

algorithm. For this purpose 20 clusters, each cluster consisting of four - 16x16 pixel blocks, are

selected at each iteration. No more than six iterations are performed with a termination limit

set to a value of 4 pixels. In Table 5.2 a statistical analysis for the most accurate con�gurations

is presented. Because all con�gurations achieve at least one exact pith estimate - R also gives
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the most deviating pith estimate. For the con�gurations using BAS it can be summarized that

Con�g Method C Mean StDev #B R [ms]

R
ec
ta
n
gu
la
r
B
A
S
-1

non

over-

lap-

ping

PA - 5.56 4.43 710 25 1048

LSR 0.9 6.45 5.08 643 27 1008

WLSR 0.9 6.49 5.09 689 31 1032

PCA 0.5 5.75 4.3 660 25 1036

half

over-

lap-

ping

PA - 3.49 2.53 2789 13 2453

LSR 0.9 4.36 4.01 2528 24 2306

WLSR 0.9 4.2 3.81 2709 25 2357

PCA 0.9 4.03 3.23 1697 15 2003

C
ir
cu
la
r
B
A
S

non

over-

lap-

ping

PA - 6.57 4.55 798 22 1053

LSR 0.9 6.0 4.7 720 27 960

WLSR 0.9 6.43 5.56 481 34 858

PCA 0.9 6.02 5.25 310 33 818

half

over-

lap-

ping

PA - 3.73 3.15 2118 20 1969

LSR 0.9 4.43 4.39 1923 30 1888

WLSR 0.5 4.19 4.25 2097 30 1962

PCA 0.9 4.39 3.77 1296 25 1650

R
ec
ta
n
gu
la
r
B
A
S
-2

non

over-

lap-

ping

PA - 4.67 3.05 321 17 768

LSR 0.9 5.91 5.1 295 33 761

WLSR 0.5 6.46 6.7 319 45 771

PCA 0.7 5.45 4.2 262 21 749

half

over-

lap-

ping

PA - 3.04 2.43 1284 13 1393

LSR 0.9 3.38 3.37 1178 19 1355

WLSR 0.3 3.01 2.49 1279 15 1396

PCA 0.9 3.1 2.34 785 11 1193

P
B
S

20 -

Clus-

ter

PA 0.9 6.87 7.38 417 65 150

LSR 0.7 8.19 9.1 390 50 178

WLSR 0.7 8.37 9.53 402 48 184

PCA 0.9 6.23 7.22 299 54 229

Table 5.2: RLE-IS Pith Estimation - statistical analysis of nine con�gurations. Mean,

StDev and R are given as mm values.

con�gurations using PA and half-overlapping blocks entail very accurate estimates. The visual

inspection of the pith estimates showed that non-overlapping blocks cause inaccuracies due to

the large distances between the orientation estimates. For 16x16 pixels blocks half-overlapping

blocks reduce this e�ect signi�cantly (see Fig. 5.11). Additionally, it turned out that a higher
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(a) RLE-IS #2 (b) RLE-IS #21

\ref{sec:imagesets}

(c) RLE-IS #7

Figure 5.10: Rough Log End image set examples (RLE-IS)

amount of blocks, on the same area, almost always increases the accuracy and on the other

hand it worsens the timing performance. For the circular BAS it was assumed that due to

the optimal covering of the log end face the accuracy increases signi�cantly. Results from

Rectangular BAS-2, considering a smaller rectangular area around the GC, indicate that it is

more essential to consider the area around the pith position in detail.

Overall con�gurations Rectangular BAS-2 using half-overlapping blocks reaches the best per-

formance regarding the accuracy and timing performance for all methods. The best accuracy

was reached with PCA (mean: 3.1 and StDev: 2.34) where all pith estimates are located

within 11mm to the mpp (see Fig. 5.11).

RECTANGULAR BAS-2 (PEAK / non-overlapping)

RECTANGULAR BAS-2 (PCA - 0.9/ half-overlapping)

Figure 5.11: RLE-IS Pith Estimation accuracy - Rectangular BAS-2 with non-overlapping

and half-overlapping blocks

Compared to the CT-IS Experiments the Fourier Spectrum threshold and the orientation cer-
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tainty values have a major impact on the accuracy. Although the PA method assesses all

blocks as valid, it is remarkable that the PA results are very accurate and robust regarding

the StDev and R values. Because all blocks are valid - all blocks are used for the intersec-

tion procedure and thus slow down the pith estimation algorithm. Compared to the CT-IS

experiments it can be recognised that higher certainty thresholds (C) reduce the amount of

#Blocks to a higher degree. Since Fourier Spectrum preprocessing in the CT-IS and RLE-IS

experiments was performed with the same parameters, the decreasing amount of #Blocks

con�rms that annual ring sections from rough log ends and their related preprocessed Fourier

Spectra contain more disturbances. Thus, a huge amount of local orientation estimates have

lower certainty values. In contrast to the PA method the introduced methods require that

Fourier Spectrum thresholding �lters out insigni�cant frequencies. Too low a threshold may

have the a�ect that the introduced methods compute incorrect local orientation estimates and

certainty values.

Comparing the PA and PCA results (Rectantgular BAS-2) it can be recognised that the

PCA method assessed 500 blocks as not valid and is thus faster and additionally achieves a

slightly better accuracy regarding the StDev and R values. It can be concluded that the PCA

method provides reliable certainty values for all con�gurations using BAS and thus improves

the timing performance neglecting disturbed blocks. LSR and WLSR also improve the timing

performance, but they are almost always less robust regarding the StDev and R values.

Results from the fourth group show that the PBS algorithm is less suitable for rough log

end images. Although the mean values are in a range between 6.23 and 8.37 pixels some

unacceptable outliers are included. The best accuracy for PBS is reached with PCA (mean:

6.23 StDev: 7.22). Although the PCA method used fewest of all blocks for determining the

�nal pith estimate it was slower than the other methods. Similar to the BAS con�gurations

the PCA methods assess a huge amount of blocks as not valid and thus more iterations to �nd

valid clusters are required. As for the PBS results in the CT-IS experiments the PA method is

very fast since no certainty values are available and thus valid clusters are found faster.

Finally, the accuracy is compared to the results presented in Norell and Borgefors (2008)

using the Ultuna image set. This one consists of 20 log end images captured from 10 logs.

Except for one pith estimate all deviations were smaller than 4 mm for the approach using

Laplacian pyramids and linear symmetry Norell and Borgefors (2008). Compared with the best

con�guration in Table 5.2 (Rectangular BAS-2 - PCA with half-overlapping blocks - mean: 3.1,

stdev: 2.34) the accuracies are somewhat equivalent. Unfortunately in Norell and Borgefors

(2008) no timing measurements are presented.
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However, the experiments show that the proposed methods show an acceptable performance

for spruce log end images of a sawmill yard. Results show that BAS and Fourier Spectrum

analysis methods are well suited for pith estimation on rough log ends.

5.4 Summary

The experiments on the two di�erent cross section image sets (CT-IS and RLE-IS) showed

that local orientation estimation with Fourier Spectrum analysis methods are fast, robust, and

very accurate in estimating the pith position. Results of the two pith estimation algorithms

and the comparison of four Fourier Spectrum analysis methods highlighted the di�culties of

pith estimation on images from rough log ends. The introduced PBS pith estimation algorithm

achieves the best performance in the CT-IS experiments, but results show that the algorithm

is inappropriate for pith estimation on images from rough log ends.

Although the PA method uses the least information of the Fourier Spectrum and provides

no certainty value it reaches very accurate results for pith estimation using BAS. PCA shows

a good reliability for determining valid orientation certainty values and improves the timing

performance for BAS pith estimation signi�cantly. Eventually, it was shown that it is more

essential to consider sections close to the pith than to consider as much area as possible from

the cross section.

Generally, it can be summarized that the block size, the distribution and amount of the blocks

as well as Fourier Spectrum preprocessing are very important for pith estimation on images from

rough log ends. Future research should develop more sophisticated block selection techniques.



Chapter 6

Cross-section segmentation

Generally, image segmentation is a fundamental image analysis task. Segmentation enables

the detection of constituent regions or objects in an image. Algorithms for image segmentation

can be subdivided into two categories: approaches based on discontinuity or approaches based

on similarity of the pixel intensity values. Discontinuity approaches rely on boundary detection

of an object or a region. Abrupt intensity value changes between neighbouring pixels indicate

borders of objects or regions (e.g. edges or lines). Similarity approaches partition an image

into regions based on similarity criteria (Gonzalez and Woods, 2001).

Most of the cross section analysis approaches described in Chapter 3.2 require the location of

the cross-section in the image. It is thus astonishing that none of the described pith estimation

approaches ( see Section 3.2.1.1) performs cross-section segmentation. Commonly, most

approaches assume that the cross section is in the center area of the image. The described

approaches in the literature overview on annual ring analysis (see Section 3.2.2) are either

based on the same assumption or utilize a given pith position for further computations.

Some of the cross section analysis approaches treating ct-images use thresholding techniques

to extract annual ring structures. Such an approach is not applicable for images of rough log

ends. Examples for applying di�erent thresholding techniques to di�erently captured cross-

sections are illustrated in Section 6.1.

This work is the �rst treating cross-section segmentation of rough log ends. Cross-section

segmentation is a prerequisite for industrial cross-section analysis applications. The TreeBio

framework requires cross-section segmentation for several reasons. First, similar to �nger-

print or iris recognition, segmentation is a preliminary step to determine/detect the biometric

72
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characteristic, out of which the biometric features are extracted. Second, the cross-section

shape/boundary represents a biometric feature. Finally, the cross-section boundary and the

pith position can be utilized for image registration issues (translation, rotation, scaling).

This chapter introduces a similarity approach for cross-section segmentation in images of rough

log ends. Basically, a cross-section is built up of an annual ring texture which varies strongly

locally. The variations are caused by the circular alignment, di�erent widths, colour features

and disturbances of annual rings. Consequently, appropriate texture features of annual ring

sections form the basis for cross-section segmentation. These considerations indicate that

a two-phase procedure is required: First, detect the cross sections in an image and select

representative annual ring sections which describe the texture of the detected cross section.

Second, use the texture features to determine the cross-section area and its boundary for each

detected cross-section or the cross-sections of interest.

The proposed cross-section segmentation approach is based on the work of Chan et al. (2007).

The authors use the Earth Movers Distances as similarity measure between local grayscale his-

tograms to establish a region-based active contours approach. For this thesis, local histogram

distances between grayscale histograms and texture feature histograms are utilized.

This chapter contributes to the development of cross-section analysis applications suggesting

a novel approach for cross-section segmentation. By treating images of rough log ends this

segmentation approach can be utilized as preliminary component for further cross-section

surface analysis. In considering the di�erences between ct-cross-section and rough log end

segmentation, this work highlights the di�culties of the latter.

At �rst, Section 6.1 highlights the di�culties of segmentation in case of rough log end im-

ages as opposed to ct-cross-section images. Section 6.2 introduces the paradigms of texture

analysis (Section 6.2.1) and further presents considerations about the texture of cross-sections

(Sections 6.2.2). Theoretical background on the texture analysis methods used in the proposed

cross-section segmentation algorithm is presented in Section 6.3. The proposed cross-section

segmentation algorithm is outlined in Section 6.4. Section 6.5 describes the experimental

setup and presents results for the experiments. Finally, Section 6.6 concludes the segmenta-

tion chapter and presents some considerations for future work on cross-section segmentation.
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6.1 Histogram thresholding of cross-section images

As described in the literature overview on detection of log defects, ct-cross-section images (see

Section 3.2.3) can be segmented using histogram thresholding techniques. Subsequently, an

exemplary comparison on segmentation using histogram thresholding techniques is presented.

For this comparison, di�erently captured cross-sections are used. The results give information

about the di�erences of cross-section segmentation in ct-images compared to images from

rough log ends. The applicability of histogram thresholding to segment cross-section images

is assessed considering two segmentation purposes. First, segmentation is required to separate

the cross-section in an image from the background. Second, annual rings are the main wood

property of a cross section. Consequently, the extraction and preservation of annual rings and

structures are very important for further annual ring analysis tasks.

Figure 6.1: Two di�erent threshholding techniques (p-tile and adaptive) applied to a

ct-cross-section image

Thresholding methods are well suited for segmenting cross-sections in ct-images. In ct-images,

annual rings are represented as white pixel chains and the background is dark coloured. Conse-

quently, thresholding can be utilized for segmentation and to extract or emphasize annual ring

structures and other wood features. In other words, the cross sections features are separated

as foreground pixels from the background pixels. The three pictures in Fig. 6.1 illustrate the

results for two di�erent thresholding techniques applied to a ct-cross-section image. One tech-

nique is a global thresholding technique and the second one is based on adaptive thresholding.

The �rst picture in Fig. 6.1 depicts the original ct-cross-section image. The second picture

shows the result for global p-tile thresholding with an assumed foreground amount of 50 %. In

the third picture, the result for adaptive thresholding is shown. For adaptive thresholding, the

mean values of 15x15 pixels blocks are used as local thresholds. Both thresholding methods

indicate that thresholding is an appropriate technique for ct-cross-section segmentation.
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Figure 6.2: Two di�erent threshholding techniques (p-tile and adaptive) applied to an

image of a sanded cross-section

The same thresholding techniques using the same parameters are applied to the image of a

sanded cross-section shown in the �rst picture of Fig. 6.2. The result for adaptive thresholding

shows that this method is very sensitive to noise in the black background. However, both

methods indicate that the cross-section can be separated from the background and annual

ring structures can be extracted in studio-captured images of sanded cross-sections.

Figure 6.3: Two di�erent threshholding techniques (p-tile and adaptive) applied to an

image of the RLE-IS.

Finally, the thresholding results in Fig. 6.3 illustrate the arising di�culties using real-world

images of rough log ends. In contrast to ct-cross-section images and studio captured cross-

section images, the background of real world images is very heterogeneous and strongly varying

in each image. Additionally, cross-section images of rough log ends are disturbed due to

cutting. The results in Fig. 6.3 show that histogram thresholding is no appropriate technique to

separate cross-sections from the background and to extract or separate annual ring structures

in real world images of rough log ends. These simple considerations on segmentation using

histogram thresholding, indicate that the segmentation of real-world images of rough log ends

requires a more sophisticated approach.
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6.2 Texture analysis of cross-sections

6.2.1 Texture analysis

Basically, texture analysis techniques are categorised into statistical and structural methods.

Statistical methods interpret textures as statistical distributions which can be described using

statistical features of the intensities and positions of the pixels. For this purpose each pixel in an

image or image section is analysed. For each pixel a feature is computed to extract knowledge

from the statistical distribution of the features. Statistical methods are classi�ed as �rst-order

(1 pixel), second order (2 pixels) and higher order statistics (>3 pixels), depending on the

amount of pixels which are analysed to compute the features. First-order statistics like the

average and variance of the pixel intensities contain no spatial information. In second-order

and higher-order statistics two ore more pixels are used to compute the features, which includes

spatial relationships between pixels at speci�c positions (Ojala and Pietikäinen, 2012)-

Structural methods use the assumption that the analysed texture is formed by micro-components,

called texels. Texels can be placed regularly, randomly, with di�erent directions, and sizes and

may overlap. Structural methods create a description of the relationship between a set of

texels. In case of natural textures structural methods mostly fail due to the variability and the

randomness of the textures (Materka and Strzelecki, 1998).

6.2.2 Cross-section texture

According to Davis (2008), synthetisation is a way to recognize a texture. An approach to

synthesise cross-section textures (synthetic log end faces) is presented in Norell (2009b). The

considerations of Norell (2009b) are subsequently used to describe typical cross-section texture

features and their properties.

The proposed synthetisation procedure consists of �ve parts: wood, sawing, storage, light and

camera position and imaging. Typical wood features are the annual ring pattern, heartwood

and knots (wood features, see Section 3.1.1). As opposed to the wood features the sawing

pattern, storage and imaging disturbances are externally caused features. The texture of a

sanded and perfectly captured cross-section only shows wood features.

Synthetisation of wood features requires the simulation of knots, heartwood, bark, colour and

annual rings. The amount and the growth of the annual ring pattern causes di�erent cross-
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section shapes and sizes. The modelling of the annual ring pattern is considered in detail.

As described in Section 3.1.1, each year a new annual ring is formed. The thickness of a

single annual ring is not consistent and can vary strongly. In Norell (2009b), annual rings are

modelled by a circular sinusoidal pattern. This pattern is created by applying a sine function to

a distance map (D). To simulate di�erent characteristics, the distance map is perturbed. In

Fig. 6.4a the distance map function (D) and the resulting pattern for di�erent perturbations

are illustrated. While in Fig. 6.4a-(a) a perfect circular pattern (D = DE) is illustrated

in Fig.6.4a-(b) the uneven tree growth is simulated and added using a 2D linear function

(Dl). In Fig.6.4a-(c) a sigmoid function (Df ) is added to vary the ring thickness. Finally,

noise (Dn) is added to simulate random perturbations (see Fig. 6.4a-(d)). The suggested

noise function can be tuned to simulate early-wood with a stronger thickness than late-wood.

Fig.6.4a-(e) and (f) illustrate the e�ect of using di�erent parameters (2,4). This approach for

annual ring modelling illustrates that it is possible to synthesise the basic texture of a cross-

section. Furthermore, Norell (2009b) introduces methods to simulate other wood features

(a) Annual ring modelling using a sine func-

tion and perturbed distance maps (D).

(b) Two examples for synthetic log end im-

ages. The upper cross-section includes saw-

ing disturbances and the bottom one in-

cludes heartwood.

Figure 6.4: Cross section texture synthetisation (Images source: Norell (2009b)).

and externally caused disturbances. Referring to the introduction on texture analysis, Norell

(2009b) demonstrates that the annual ring texture is basically built up on rotated, distorted
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and perturbed sinusoidal texels, which are stringed together. The considerations about the

Fourier Spectra of annual ring sections (see Section 5.1) indicate that local orientations can

be used as texture features for cross-section segmentation. In the experiments it is shown that

local orientations are less useful due to the disturbances on rough log ends.

6.3 Theoretical Background

The proposed region-based cross-section segmentation algorithm in this this thesis (see Section

6.4) uses two di�erent texture analysis methods. Both methods compute texture features of

annual ring sections. The �rst method is a statistical �rst-order method and simply computes

local grayscale intensity histograms of annual ring sections. The second method computes

feature histograms using local binary patterns. For both methods histogram distances are used

as similarity measures between the intensity or LBP feature histograms of adjacent annual ring

sections. Subsequently, for both methods and histogram distance some basics are presented.

6.3.1 Intensity Histograms

Intensity histograms are statistical �rst-order methods and do not extract information about

the topology of the pixels. In the context of images they are simply denoted as histograms.

Generally, histograms of images or image sections are probability distributions describing the

frequency of each color or gray value. For example, let's consider an 8-bit grayscale image or

image section. Each of the 256 gray values is represented by a single bin in the histogram.

The value or height of each bin is determined by the frequency of the corresponding gray value

in the image or image section. Histograms of color images or sections are mostly created

computing an individual 256 bin histogram for each channel. Another possibility is to create

3D color histograms with the three axes representing the red, green and blue channel.

6.3.2 Local Binary Patterns (LBPs)

The concept of local binary patterns (LBPs) was �rst introduced in Ojala et al. (1996). In

counting the frequency of micro texels in an image or image section, LBPs unify statistical

and structural principles of texture analysis. Another strength of LBPs is that the detection of

the micro structures is invariant to monotonic intensity variations. In the past decade several
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improvements (e.g. multiscale-, multiresolution-, rotation invariant- and gradient operators)

have been suggested.

Generic LBP operator A generic form of the original operator is shown in Ojala et al.

(2002). This operator is de�ned by two parameters (N,R). For each pixel in an image or

image section the local binary pattern is computed by analysing N neighbours in a circular

neighbourhood. These neighbours are equally distributed on a circle of radius R with the

current pixel as center point. The illustrations in Fig. 6.5 show di�erent examples for the

circular neighbourhood of a pixel using di�erent parameters. While in Fig. 6.5a the 8 adjacent

pixels are selected, in Fig.6.5b and Fig.6.5c some interpolation is required to determine the

pixels de�ned by R and N. The LBP with given parameters N and R of a pixel at location

(a) N=8,R=1 (b) N=12, R=2.5 (c) N=16, R=4

Figure 6.5: Selection of pixels in a circular neighbourhood based on the two

parameters: N,R (Image source:http://commons.wikimedia.org/wiki/File:Lbp_

neighbors.svg)

(x,y) and gray value nc is then computed as:

LBPN,R(x, y) =
N−1

∑
i=0

s(ni − nc) ⋅ 2i, s(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 z ≥ 0

0 otherwise
(6.1)

where ni denotes the gray value of the currently considered neighbour pixel and s(z) is a sign
function. The value of the sign function is 1 if the neighbour pixel has a higher gray value

than the center pixel, otherwise the value is 0. The computation of the LBP as de�ned in

Equation 6.1 results in an N-bit binary number given in decimal representation. Depending on

the number of neighbours N , 2N local binary patterns are available.

For texture analysis of an image or image section the LBP pattern is computed for each pixel.

The occurrence of each of the 2N possible patterns is stored into a feature histogram, where

each bin represents a single pattern and its frequency. Throughout this thesis this feature

histogram will be denoted as LBP histogram.

http://commons.wikimedia.org/wiki/File:Lbp_neighbors.svg
http://commons.wikimedia.org/wiki/File:Lbp_neighbors.svg
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Additionally to the generic formulation of the LBP operator, the authors of Ojala et al. (2002)

and Mäenpää (2003) introduced three extensions for the LBP operator:

Uniform LBPs Uniform patterns rely on frequency observations of LBPs in natural images.

The authors concluded that 90% of the LBPs in natural images are so-called uniform patterns.

Uniform patterns Un are de�ned by the amount of bitwise transitions from 0 to 1 or 1 to 0 in

the binary LBP code. n denotes the maximum count of transitions allowed in the LBP codes of

uniform patterns. In Ojala et al. (2002) uniform patterns contain maximal two transitions (U2).

For example, the patterns 11111111 (0 transitions), 01111111 (1 transitions) and 00001100

(2 transitions) are uniform, whereas 11010100 (5 transitions) is non-uniform. In contrast to

the generic formulation just the uniform patterns are used as features for LBP histograms and

non-uniform patterns are neglected. Considering 8 bit LBP codes, 58 out of 256 are uniform

patterns. Most of the uniform patterns correspond to features like edges, line ends, corners

and spots (see (Mäenpää, 2003, p.36)).

Uniform patterns are more robust against noise, rotation and tiling. Furthermore, they enable

a remarkable reduction of the number of bins in the LBP histograms. In several applications

this leads to better recognition rates and timing improvements.

Rotation Invariant LBPs The idea of rotation invariant LBPs uses the fact that some

patterns are rotated versions of a single pattern. Consequently, rotated versions are rotated

back to the reference position of one reference pattern. In Ojala et al. (2002) rotation invariant

codes are produced by rotating the original code until its minimum value is reached (Mäenpää,

2003). Due to this quantization, rotational information is lost and rotational invariance is

established. The e�ectiveness of this approach depends on the amount of neighbours. In case

of a 8-neighbourhood only 45○ and in a 16-neighbourhood 22.5○ rotations are compensated.

Multi-scale LBPs An approach to enlarge the spatial-support is introduced in Mäenpää

and Pietikäinen (2003). The proposed mulit-scale LBP extension uses Gaussian low-pass

�lters. For an optimal covering at each scale an appropriate radii R is chosen and the number

of neighbours N is constant. At each scale and radii the low pass �lter collects intensity

information of a larger area and the LBPs are computed equally as in a 3x3 neighbourhood.

Finally, the feature histograms of each scale are concatenated to the �nal LBP histogram.
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6.3.3 Histogram Distances

Histogram matching or comparison is a common technique in various pattern recognition and

image retrieval applications. In this thesis histogram distances are used as similarity measures

between intensity histograms or LBP histograms of neighboured image sections.

For two images or image sections, the corresponding intensity or LBP histograms H1 and

H2 are represented by two feature vectors P = (x1, ..., xn) and Q = (y1, ..., yn), where xi, yi
denotes the bin of the corresponding color or gray value or texture feature.

The distance between these vectors is computed using a distance function d(P,Q). P̄ and Q̄

are the mean values of the histogram vectors (P̄ = 1
N ∑

n
i=0P (i), Q̄ = 1

N ∑
n
i=0Q(i)) .

One possibility to classify di�erent histograms distances is to subdivide them into bin-by-bin

and cross-bin approaches. In the work of Pele and Werman (2010), the di�erence between

both is described. The main advantage of bin-by-bin distances is that they can be computed

very fast. Generally, the robustness of bin-by-bin comparison depends on the robustness of

the represented features. In case of intensity histograms, bin-by-bin comparison is less robust

because already little image variations (e.g. light changes) can strongly in�uence the distance.

Furthermore, the robustness of bin-by-bin comparison depends on the number of bins. If the

number of bins is low, the distance is robust but less discriminative. If the number of bins

is high, the distance is discriminative and becomes less robust. The advantage of cross-bin

comparison is that it can be robust and discriminative at the same time.

A well-known cross-bin distance is the Earth Mover's Distance (EMD) proposed by Rubner

et al. (1998). For the purpose of cross-section segmentation using intensity histograms and

LBP histograms, the applicability of di�erent histogram distance have to be evaluated. In case

of intensity histograms the main focus is to assess the performance of the EMD compared to

common bin-by-bin distances. For this purpose and for the comparison of the LBP histograms,

six bin-by-bin distances are additionally introduced. The use of the EMD for LBP histogram

requires an appropriate ordering of the histogram bins which is not treated in this thesis.

Before introducing the EMD, the six bin-by-bin distances are described.

Bin-to-bin distances A subset of the bin-by-bin distances are Lp metrics, commonly de-

noted as Minkowski distances. The class of Lp distances are heuristic measures which deter-

mine the di�erence between two vectors (Cha and Srihari, 2002).
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1. L1 - City Block distance

dCB(P,Q) = ∣∣P −Q∣∣ =
n

∑
i=0

∣P (i) −Q(i)∣ (6.2)

2. L2 - Euclidean distance

dEuc(P,Q) =
¿
ÁÁÀ n

∑
i=0

(P (i) −Q(i))2 (6.3)

The L1 and L2 norms are likely used in image retrieval and pattern recognition. Another well

known distance is the Chi-Square (X2) distance. Compared to the Minkowski metrics the Chi-

Square distance is a probabilistic measure which describes the probability that the probability

distribution of one histogram is based on the other (Cha and Srihari, 2002). Further two well-

known distances are the Hellinger distance and the Battacharyya distance (Cha and Srihari,

2002).

3. X2 - Chi Quadrat Distance:

dX2(P,Q) =
n

∑
i=0

(P (i) −Q(i))2
Q(i) (6.4)

4. H - Hellinger Distance:

dH(P,Q) =
1√
2
⋅
¿
ÁÁÀ n

∑
i=0

(
√
P (i) −

√
Q(i))

2
(6.5)

5. B - Battacharyya:

dB(P,Q) = −ln
n

∑
i=0

√
P (i) ⋅Q(i) (6.6)

Cross-bin distance - Earth Movers Distance (EMD) The EMD is a well-known dis-

tance used in many di�erent �elds of applications. It was introduced in Rubner et al. (1998)

as metric with applications to image databases. Basically, the EMD computes the minimal

cost required to transform one histogram (P) into another (Q) (Pele and Werman, 2010).

In case of two one-dimensional probability distribution functions P and Q the EMD is sim-

ply given by the L1 norm between the cumulative distribution functions Pc(n) = ∑n
i=0P (i),

Qc(n) = ∑i
i=0Q(i) .

5. EMD - Earth Mover's Distance:

dEMD(Pc,Qc) = ∣∣Pc −Qc∣∣ =
n

∑
i=0

∣Pc(i) −Qc(i)∣ (6.7)
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6.4 Cross-section segmentation algorithm

This section presents a region-growing-based cross-section segmentation algorithm. Further-

more, some interesting insights gathered during the development are noted. This approach

is based on similarity of adjacent pixels. In the case of cross-sections, similarity refers to

the relation between adjacent annual ring sections. The assessment of the similarity between

adjacent annual ring sections requires analysing of texture features. For this purpose, two dif-

ferent approaches are evaluated. First and as suggested in Chan et al. (2007), local histogram

distances and particularly the EMD distance are used as main similarity measures between

intensity histograms. Additionally, other distances are used to assess the performance of the

EMD distance. Second, LPBs are used to assess the performance of a more sophisticated

texture analysis method.

As opposed to Chan and Vese (2001) and Chan et al. (2007), no level set approach is used.

Instead of using level sets, the algorithm uses a simple region growing procedure. The approach

suggested in Chan and Vese (2001) uses mean gray values as criteria for the region-based level

set. In preliminary tests the applicability of this approach for cross-section segmentation was

assessed using the tool OFELI (http://code.google.com/p/ofeli/). Results showed that

this approach is not applicable due to the varying annual ring texture of cross-sections. The

proposed cross-section segmentation approach in this thesis is inspired by the EMD-region-

based level set formulation in Chan et al. (2007) and is adopted to a region growing procedure.

As for the pith estimation algorithms (Section 5.2), the image is subdivided into blocks. The

block size and the overlapping factor between the blocks are crucial parameters which strongly

in�uence the segmentation accuracy and timing performance.The cross-section segmentation

algorithm is subdivided into three consecutive stages:

1. Seed block selection (Subsection 6.4.1)

2. Cluster growing algorithm (Subsection 6.4.2)

3. Shape estimation (Subsection 6.4.3)

In the �rst stage seed points/blocks are selected. Next, each seed block is used as initial block

to further initialise a cluster containing expected texture features of the cross-section. For each

cluster, a region growing procedure is performed and the clusters are merged. Finally, in the

third stage, the clustered region is used to determine the cross-section boundary. Subsequently,

http://code.google.com/p/ofeli/
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the used approaches and methods for each stage are introduced and exemplarily illustrated

using image #1 from the rough log end image set (RLE-IS / see subsection 5.3.1).

6.4.1 Seed block selection

For the selection of seed blocks, two di�erent approaches are suggested. Both methods utilize

the estimated pith position which is determined using the algorithms described in Section 5.

In combination with a Hough transform which detects circular shapes, pith estimation can be

used to detect seed blocks for several cross-sections in an image. For this work, we assume

that the image consists of an entire cross-section and the background (which may contain

parts of other cross-sections).

Pith position-based selection The �rst approach selects a prede�ned number of blocks

(e.g. 4) which are distributed equally close around the pith position.

Local orientation-based selection The second approach uses the pith position and selects

blocks depending on their local orientations. Local orientations are computed using the peak

analysis method introduced in Section 5.1.3.2. The basic idea is to select blocks whose local

orientations point close to the pith position. For this purpose, for each block the normal

distance between its local orientation and the pith position is computed. Blocks where the

normal distances are lower than a certain orientation threshold value To are selected as seed

blocks. In Fig. 6.6 examples for local orientation-based selection using di�erent thresholds To

are illustrated.

(a) Seed blocks (To = 20) (b) Seed blocks (To = 60) (c) Seed blocks - (To = 100)

Figure 6.6: Local orientation based seed block selection. Three examples using di�erent

orientation thresholds To.
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The selected blocks are used for the cluster growing procedure which is introduced in the next

section.

6.4.2 Cluster growing algorithm

An important step prior to the cluster growing procedure is to initialise the clusters in a proper

way. In the next section di�erent ways for cluster initialisation are described. Subsequently, in

Section 6.4.2.2 the growing procedure is introduced.

6.4.2.1 Cluster initialisation

After selecting seed blocks, the clusters are initialised in two di�erent ways, depending on the

seed point selection approach. For simplicity, the two possibilities are denoted as orientation-

based and pith-based cluster initialisation approaches.

Orientation-based cluster initialisation In the case of orientation-based cluster initiali-

sation, the neighboured seed blocks are merged together �rst. For each single seed block and

each set of merged seed points, a single cluster is initialised. Next, adjacent blocks of the

cluster are added, if their local orientations ful�l a similarity criterion. Therefore, a recursive

neighbourhood search is performed. If the deviation between the orientation of the considered

cluster block and its neighbour is below a certain deviation limit, the neighbour block is added

to the cluster. Examples for this procedure are illustrated in Fig. 6.7. The three illustrations

(a) Orientation based cluster ini-

tialisation (To = 20)

(b) Orientation based cluster ini-

tialisation (To = 60)

(c) Orientation based cluster ini-

tialisation (To = 100)

Figure 6.7: Orientation based cluster initialisation based on the seed blocks from Fig. 6.6

and a value of 0.3 radians as orientation deviation limit for the recursive neighbourhood

search.
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use the respective seed blocks shown in Fig. 6.6 as basis for the recursive neighbourhood

search. For all three examples a deviation limit of 0.3 radians was used. The three examples

of Fig. 6.7 and Fig. 6.6 depict that with an increasing orientation threshold (To) the amount

of incorrect seed points increases and the cluster initialization covers a larger share of the

background.

Yet again, these examples illustrate that the orientation �eld of the cross-section is strongly

varying due to cutting disturbances. Consequently, a segmentation approach based on the

orientation �eld makes no sense. However, by using a low orientation threshold (To) and a

small orientation deviation limit, this approach is useful to initialise representative clusters

which are distributed over the entire cross-section.

Pith-based cluster initialisation The cluster initialisation using pith-based seed block

selection is very simple. For each single seed block the adjacent neighbours in a four-

neighbourhood are added and then initialised as a single cluster.

The �nal initialisation step is performed for both approaches. Therefore, for each cluster three

features describing the contained texture are computed:

� mean gray value and variance

� mean entropy and variance

� mean intensity histogram or LBP histogram distances between the blocks of the cluster

and the corresponding variance

6.4.2.2 Growing procedure

Before the cluster growing procedure starts, the clusters are ordered according to the minimum

distance of the cluster blocks to the pith. The cluster growing procedure starts with the

innermost cluster.

Then the four-neighbourhood of each border block is analysed. Only neighbours which are not

allocated to a cluster are used as candidate blocks. Each candidate block is compared to the

cluster which leads to a decision whether or not the block is allocated to the cluster. In Fig.

6.8 the blocks of a cluster and the decision making procedure are illustrated. For the block

labelled B3 three candidate blocks (nb1, nb2, nb3) are available. The �nal decision whether
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B3

nb1

nb3

B1 B3

B4

B5

B2

nb2nb2

B6

B7 B8

B9
Cluster features:

→ mean gray value / var

→ mean entropy / var

→ mean histogram distances / var

→  nb2 mean gray value 

→  nb2 entropy

→  Histogram distance B3 to nb2

Decision

Figure 6.8: Illustration of the cluster growing procedure

one of the candidates (e.g. nb2) is allocated requires that each of the three comparisons

satis�es prede�ned conditions. For example, the mean gray value of the block has to be equal

to the cluster mean gray value +/- its variance. The feature-variances are used to regulate the

restrictiveness of the decision making procedure. For this purpose, the variance is multiplied

by a factor ranging from [-2,2]. If the block is allocated to the cluster, the cluster features are

updated. The procedure continues with the next border block until no border block has further

candidate blocks that �t to the cluster. Then the algorithm continues with the next cluster.

The cluster-growing algorithm �nishes after all clusters are processed. Finally, the clusters are

merged and it is assumed that the merged cluster represents the area of the cross-section.

In Fig. 6.9a, an example for the cluster initialisation result is illustrated. This example uses

(a) Seed block � orientation-

based cluster initialisation (To =

5)

(b) Result of the cluster growing

and merging procedure using the

initialised clusters of Fig. 6.9a

Figure 6.9: Cluster initialisation and cluster growing/merging result
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16x16 and half-overlapping blocks and orientation-based seed point selection as well as cluster

initialisation. The corresponding cluster growing and merging result is illustrated in Fig. 6.9b.

It is clearly visible that the resulting cluster covers the entire cross section. Unfortunately,

similar textured cross-sections in the background are di�cult to distinguish from the main

cross-section. This problem is visible in the bottom right of Fig. 6.9b .

6.4.3 Shape estimation

The blocks of the merged clusters are further used to compute an estimate of the cross-section

boundary. The boundary is computed in four steps:

1. Select border blocks (see Fig. 6.10a).

2. Fit circle � remove all blocks within the �tted circle (see Fig. 6.10b).

3. Fit ellipse � cut o� outliers (see Fig. 6.10b).

4. Fit alpha shape (see Fig. 6.10c).

(a) Step 1: Select border blocks (b) Step 2/3: Fit circle - Fit

ellipse and cut o� outliers from

wrong segmented blocks.

(c) Step 4: Cross-section bound-

ary estimation building an alpha

shape with α =50.

Figure 6.10: Illustration of the four steps to estimate the cross-section boundary

The �rst three steps are not mandatory and are intended to increase the accuracy and speed

of the alpha shape �tting step. Subsequently, �rst the basic ideas of the �rst three steps are

introduced and second the alpha shape �tting step is outlined.

The main goal of the �rst step is to reduce the amount of blocks for the alpha shape �tting

step. For this reason, all blocks which have at least one neighbour that is not in the cluster
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are selected. As illustrated in Fig. 6.10a this approach signi�cantly reduces the amount of

blocks and all of the blocks representing parts of the cross-section boundary still remain. The

reduction of the amount of blocks leads to a signi�cant speed up of the alpha shape �tting

step.

The intention of the steps 2 and 3 is to remove blocks from wrong segmented parts and to

cut o� outliers. For that, it is assumed that cross-sections are approximately elliptical. In Step

2 a circle is �tted into the point cloud of the remaining blocks. Blocks within the circle are

removed. This step is just performed to improve the accuracy of the ellipse �tting step. In

Step 3 an ellipse is �tted into the point cloud. After ellipse �tting all blocks located outside

of the ellipse are removed (see Fig. 6.10b). In the best case and especially for elliptical cross-

sections this procedure decreases the probability of including wrongly segmented blocks (e.g.

caused by neighboured cross-sections in the background). In the worst case the cross-section

is not elliptical and parts of the cross-section boundary are cut-o� and probably Step 4 fails

due to this.

Step 4 is the only mandatory step which �nally computes an estimate of the cross-section

boundary. For this purpose, the alpha shape of all cluster blocks or the remaining blocks of

the �rst three steps is computed. Alpha shapes were introduced by Edelsbrunner et al. (1983).

Alpha shapes are an approach to compute concave hulls and are a generalisation of convex

hulls. As opposed to convex hulls, the formation of a concave hull is not well de�ned. The

computation of an alpha shape is based on the Delaunay triangulation. The exterior face of

the Delaunay triangulation of a set of points is the convex hull of the points. The advantage

of alpha shapes is that they can be tuned by the α parameter which controls the level of detail.

A disc with α as radius is used to determine the outer and inner alpha shape de�ned by point

pairs that can be touched by the disc. We are only interested on the outer alpha shape. The

higher the α value is, the better the alpha shape approximates the convex hull and details of

the boundary are neglected. The lower the value of α is, the more details are considered. In

contrast, a lower value makes the alpha shape computation vulnerable to large gaps between

the outermost blocks.

Finally, the result of Step 4 (see Fig. 6.10c) is used as a �nal estimate of the cross-section

boundary and �nishes the cross-section segmentation algorithm.
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6.5 Experiments

Di�erent experiments provide information about the performance of the proposed cross-section

segmentation algorithm. For this purpose, the two introduced approaches are tested using

di�erent con�gurations. The two approaches only di�er by the seed point selection and

cluster initialisation approach. The �rst approach, named pith based approach (PBA) uses

the pith-based seed block selection and the pith-based cluster initialisation procedure. For this

purpose, four clusters close to the pith are initialised.

Approach two, the orientation-based approach (OBA) uses the orientation based seed block

selection and the orientation-based cluster initialisation. For seed block selection To = 5 is

used as orientation threshold. As orientation deviation limit for the orientation-based cluster

initialisation, a value of 0.05 radians is used. The values have been determined in preliminary

investigations. They are very low and restrictive to avoid cluster initialisation in background

regions.

Apart from the goal to assess the performance of OBA and PBA, experiments with di�erent

con�gurations are used to assess the impact of:

1. di�erent block sizes and half-overlapping/ non-overlapping blocks,

2. using intensity or LBP histograms as texture features, di�erent local histogram distances

and di�erent variance factors (Vf ),

3. di�erent weighting factors for the gray scale conversions of the original color image,

4. Step 2/3 � circle and ellipse �tting.

For the experiments, the RLE-IS from the pith estimation experiments (see Section 5.3.1)

is used. The accuracy for a particular approach (PBA, OBA) and a certain con�guration is

evaluated computing the mean segmentation accuracy (Mean) and the deviation (StDev) over

all of the 108 images. R gives the span between the minimum and maximum segmentation

error. Additionally, the computation time in milliseconds [ms] provides information on the

timing performance.

The computation of the segmentation accuracy requires a segmentation ground truth. For this

purpose, a cross-section mask was created manually for each image of the test set. The images

in Fig. 6.11 show the ground-truth mask and the computed cross-section mask for image #1
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of the RLE-IS. The percentage of di�erence between the pixels of the ground-truth mask

(Fig. 6.11b) and the computed cross-section mask (Fig. 6.11c) is de�ned as the segmentation

accuracy. All steps of the cross-section segmentation algorithm have been implemented in

(a) RLE-IS #1 (b) Ground truth - Cross-section

mask (RLE-IS #1)

(c) Cross-section segmentation

result (RLE-IS #1)

Figure 6.11: Illustration of the original image and the cross-section masks used to de-

termine the segmentation accuracy

Java and all experiments have been performed on an Intel Core i7-2620M processor with 2.7

GHZ and 8 GB RAM, JRE 1.7.

To answer the questions noticed above, �ve experiments have been performed. The experi-

mental settings and results are presented one after the other.

Experiment #1 - Evaluation of intensity histograms as texture features The �rst

experiment evaluates the applicability of intensity histograms as texture features for the pro-

posed cross-section segmentation algorithm. Furthermore, the impact of di�erent local his-

togram distances, di�erent block sizes and half-/ non-overlapping blocks is tested. All settings

are tested for PBA and OBA. The experiments have been performed on grayscale images which

have been converted using equal weighting factors for the RGB channels (R=0.33, G=0.33,

B=0.33). Block sizes of 16x16 and 32x32 pixels are evaluated half- and non-overlapping.

The set of evaluated histogram distances is described in Section 6.3.3. For the cluster growing

procedure each histogram distance is tested with variance factors (Vf ) in a range between

[-2.0,2.0]. For the entropy and mean gray value comparisons a constant Vf = 1 is used. The

best result for a particular con�guration is presented in Table 6.1.

First, the performance of the used histogram distances regarding their segmentation accuracies

(Mean, StDev) for the di�erent con�gurations are considered in detail. Results show, that for

both con�gurations and half-/non-overlapping blocks the EMD achieves a good segmentation
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Con�g. Hd Vf Mean StDev R [ms]
P
B
A
-
B
lo
ck
si
ze

1
6
x1
6

non

over-

lap-

ping

L1 0.9 7.29 3.74 17.0 312

L2 1.0 7.97 3.4 15.0 310

H 0.9 7.72 4.16 17.0 312

X2 0.6 8.55 4.27 17.0 310

EMD 0.5 6.45 3.41 17.0 304

half

over-

lap-

ping

L1 −0.5 10.04 5.64 20.0 2135

L2 −0.4 10.52 4.68 20 2175

H −0.3 11.11 5.99 21.0 2278

X2
−0.9 6.71 4.14 19.0 2000

EMD −0.1 5.53 3.3 14.0 1867

P
B
A
-
B
lo
ck
si
ze

3
2
x3
2

non

over-

lap-

ping

L1 1.3 10.05 3.46 18.0 258

L2 1.7 11.13 3.87 17.0 261

H 1.0 9.45 3.81 18.0 267

X2 0.6 10.88 4.11 19.0 260

EMD 1.2 9.34 3.49 16.0 262

half

over-

lap-

ping

L1 −0.3 8.03 3.03 14.0 1103

L2 −0.2 8.44 3.12 15.0 1090

H −0.3 7.13 3.16 14.0 1078

X2
−0.6 8.12 3.05 15.0 1064

EMD 0.4 8.35 3.57 17.0 1043

Con�g. Hd Vf Mean StDev R [ms]

O
B
A
-
B
lo
ck
si
ze

3
2
x3
2

non

over-

lap-

ping

L1 0.9 7.97 4.14 16.0 386

L2 1.3 9.1 3.84 17.0 372

H 1.0 8.06 4.31 17.0 377

X2 0.9 10.24 4.6 17.0 371

EMD 0.7 7.06 3.38 15.0 360

half

over-

lap-

ping

L1 −0.7 7.88 4.85 19.0 3622

L2 −1.0 7.15 3.53 15.0 3484

H −0.3 9.21 5.15 20.0 3502

X2
−0.8 7.21 4.42 18.0 3529

EMD 0.1 6.19 3.74 18.0 3657

O
B
A
-
B
lo
ck
si
ze

3
2
x3
2

non

over-

lap-

ping

L1 1.3 11.6 5.04 31.0 265

L2 1.4 12.2 5.15 34.0 267

H 1.8 12.19 4.9 33.0 270

X2 0.5 13.79 7.68 37.0 278

EMD 1.6 11.53 5.72 31.0 260

half

over-

lap-

ping

L1 −0.3 8.47 2.94 13.0 1187

L2 0.1 9.71 3.47 18.0 1274

H 0.0 8.37 3.29 15.0 1122

X2
−0.5 8.83 3.11 13.0 1100

EMD 0.7 9.5 3.94 17.0 1111

Table 6.1: Experiment #1: RLE-IS cross-section segmentation using intensity histograms

as texture features � statistical analysis of the pith-based (PBA) and the orientation-

based (OBA) segmentation approach using di�erent con�gurations. The left table shows

results for PBA using di�erent block sizes, half- and non-overlapping blocks and di�erent

histogram distances Hd. The same is illustrated for OBA in the right table.

accuracy. In the case of 16x16 pixels blocks (half-/non-overlapping), the most accurate results

for PBA and OBA are reached with the EMD (best result 16x16 blocks = PBA/EMD/half-

overlapping � Mean: 5.55, StDev: 3.3). For 32x32 blocks the results using EMD are somewhat

equal to the results of the other distances (best result 32x32 blocks = PBA/half-overlapping

� Mean: 7.13, StDev: 3.16). Although the EMD is not the most accurate distance in all of

the tested con�gurations, it reaches the most consistent results. This con�rms that the EMD

is a robust and appropriate histogram distance for all tested segmentation con�gurations.

Second, the impact of the block size and half-/non-overlapping blocks is analysed. For the

EMD results, the accuracies of PBA and OBA are better for 16x16 blocks, as well as for

half-overlapping blocks. As opposed to the EMD, for L1, L2 and H the accuracies are not

increasing for PBA/16x16 blocks using half-overlapping blocks. Generally, it can be concluded

that smaller block sizes and overlapping blocks increase the segmentation accuracy. Especially
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for shape estimation, a smaller distance between the block-center points leads to a re�nement

and increases the accuracy of the cross-section shape estimation.

On the other hand, the block size and the overlapping-factor determine the amount of blocks

which are involved in the region growing procedure. The timing measurements of the con-

�gurations using 16x16 blocks and/or half-overlapping blocks shows that the performance

decreases. For example, PBA/EMD using 16x16 non-overlapping blocks requires 304 ms and

with half-overlapping blocks 1867 ms for each image on average. For the di�erent histogram

distances no impact on the timing performance is recognizable. Furthermore, the results show

that for non-overlapping blocks lower variance factors (Vf ) and for half-overlapping blocks

higher variance factors are required. Overlapping and smaller blocks are more similar than

larger sized ones which are not overlapping. Thus, the variance factors for larger sized blocks

need to be higher and consequently less restrictive. Smaller block sizes and overlapping blocks

require lower variance factors and enable a more accurate segmentation.

Finally, the di�erences between the results for PBA and OBA are considered. Results show,

that the timing performance of all OBA con�gurations compared to the PBA con�gurations

decreases slightly. This behaviour is caused by the more sophisticated cluster initialisation pro-

cedure. Comparing all Mean and StDev results between PBA and OBA it can be recognized

that the sophisticated orientation-based cluster initialisation procedure also decreases the ac-

curacy performance. This con�rms the assumption that orientation-based cluster initialisation

initialises clusters in background regions. PBA using pith-based cluster initialisation is not

a�ected by clusters initialised in the background.

Experiment #2 - Evaluation of LBP histograms as texture features The second

experiment evaluates the performance of the cross-section segmentation algorithm using LBP

histograms as texture features. By analogy to the �rst experiment, the impact of di�erent local

histogram distances, di�erent blocksizes and half-/non-overlapping blocks is assessed. Due to

the lower performance of OBA in the �rst experiment, only the PBA is tested. As opposed to

the �rst experiment, the EMD is not evaluated because the bins of the LBP histograms are not

ordered in a proper way. For the computation of the LBP histograms four di�erent variations

are evaluated. The �rst variation uses the basic LBP operator and a 3x3 neighbourhood. In

the second variation only uniform LBPs are considered for the LBP histograms. As a third

variation multiscale LBPs for the LBP histograms are computed. The LBPs are computed for

three scales. In the last variation multiscale LBPs are computed and the uniform LBPs are

used for the LBP histograms.
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The other tested settings and parameters are equal to those from the �rst experiment. The

best results for each con�guration, local histogram distance and LBP variation are presented

in Table 6.2 .

First, the performance of the di�erent histogram distances regarding their segmentation accu-

racies (Mean, StDev) is examined. For many con�gurations no results are presented. In the

implementation of the experiments the computation for a certain con�guration terminates if

the mean accuracy cannot achieve a value lower than 15%. As opposed to the �rst experiment,

not all con�gurations achieve a mean value lower than 15% and no values are available. The

most accurate results for each con�guration and LBP variation in Table 6.2 are highlighted in

bold.

For most of the con�gurations and LBP variations the L1 or L2 histogram distance achieved

good results. Except for one con�guration, all of the most accurate results for each con�gura-

tion are computed using the L2 norm as local histogram distance. Generally, it seems that the

Hellinger and Chiquadrat distance (H and X2) are less suitable for the proposed cross-section

segmentation algorithm using LBP histograms.

A closer examination of the segmentation accuracies for di�erent blocksizes and half-/non-

overlapping blocks is less meaningful. Contrary to the �rst experiment using intensity his-

tograms, the use of smaller blocksizes and overlapping blocks does not increase the segmen-

tation accuracy. Additionally, the accuracies are strongly varying and it is not possible to

draw speci�c conclusions about the impact of the blocksize and half-/ non-overlapping blocks

on the accuracy. To the same extent as in the �rst experiment, a smaller blocksize and

half-overlapping blocks deteriorate the timing performance.

Next, the di�erences between the LBP variations are considered in detail. The most accurate

results are achieved using the L1 norm and multiscale or multiscale & uniform LBPs (best

result 16x16 blocks = PBA/L1/half-overlapping � Mean: 7.5, StDev: 3.41). It is di�cult to

conclude that using multiscale LBPs or uniform LBPs instead of normal 3x3 LBPs improves

the segmentation accuracy. However, the two most accurate results are reached with the LBP

extensions. At least, it can be stated that the two LBP extensions in�uence the timing perfor-

mance di�erently. While for uniform LBPs the number of bins in the LBP histogram decreases,

for multiscale LBPs the number of bins increases with each scale. Consequently, uniform LBPs

increase the timing performance and multiscale LBPs cause a signi�cant deterioration of the

timing performance.
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3x3 LBPs

Con�g. Hd Vf Mean StDev R [ms]

P
B
A
-
B
lo
ck
si
ze

1
6
x1
6

non

over-

lap-

ping

L1 0.9 12.33 4.31 19.0 782

L2 0.9 9.85 4.75 20.0 772

H − − − − −

X2 0.5 12.94 3.9 18.0 800

half

over-

lap-

ping

L1 0.0 16.83 4.53 45.0 7617

L2 0.0 11.75 7.57 74.0 6887

H − − − − −

X2
− − − − −

P
B
A
-
B
lo
ck
si
ze

3
2
x3
2

non

over-

lap-

ping

L1 0.7 10.96 3.65 19.0 712

L2 0.7 10.15 4.06 19.0 713

H 1.5 14.98 2.72 14.0 721

X2 0.5 14.13 2.71 12.0 728

half

over-

lap-

ping

L1 − − − − −

L2 −0.2 8.88 3.83 25.0 3273

H 0.0 14.36 2.82 22.0 3431

X2
−0.4 11.52 2.89 13.0 7155

3x3 uniform LBPs

Con�g. Hd Vf Mean StDev R [ms]

P
B
A
-
B
lo
ck
si
ze

1
6
x1
6

non

over-

lap-

ping

L1 0.9 9.63 4.79 20.0 767

L2 1.1 11.41 4.42 20.0 781

H 0.9 11.94 4.41 18.0 783

X2 0.3 9.33 4.31 19.0 799

half

over-

lap-

ping

L1 −0.2 10.24 3.57 16.0 7017

L2 0.0 10.86 4.6 32.0 6943

H − − − − −

X2
−0.4 8.57 2.91 14.0 6636

P
B
A
-
B
lo
ck
si
ze

3
2
x3
2

non

over-

lap-

ping

L1 0.7 9.7 3.64 16.0 707

L2 0.5 9.66 3.64 14.0 711

H 0.7 10.61 3.95 17.0 714

X2 0.1 10.55 3.13 17.0 719

half

over-

lap-

ping

L1 −0.1 13.44 4.07 18.0 2862

L2 0.0 8.67 4.05 25.0 3332

H −0.2 10.12 3.8 29.0 3321

X2
− − − − −

3x3 multiscale LBP

Con�g. Hd Vf Mean StDev R [ms]

P
B
A
-
B
lo
ck
si
ze

1
6
x1
6

non

over-

lap-

ping

L1 1.1 12.32 4.32 19.0 1267

L2 1.3 11.43 4.26 19.0 1294

H − − − − −

X2
− − − − −

half

over-

lap-

ping

L1 − − − − −

L2 0.0 9.37 7.31 73.0 9545

H − − − − −

X2 0.0 14.48 9.16 71.0 8504

P
B
A
-
B
lo
ck
si
ze

3
2
x3
2

non

over-

lap-

ping

L1 1.1 9.85 3.57 20.0 1271

L2 1.5 10.05 6.98 53.0 1218

H 1.3 12.05 3.35 15.0 1308

X2 0.1 12.68 4.34 39.0 1335

half

over-

lap-

ping

L1 − − − − −

L2 0.3 7.53 3.45 14.0 5084

H − − − − −

X2
− − − − −

3x3 multiscale & uniform LBPs

Con�g. Hd Vf Mean StDev R [ms]

P
B
A
-
B
lo
ck
si
ze

1
6
x1
6

non

over-

lap-

ping

L1 0.9 8.89 4.29 16.0 1250

L2 0.9 12.33 4.57 21.0 1312

H 1.1 13.29 4.04 18.0 1245

X2 0.5 12.57 4.25 17.0 1263

half

over-

lap-

ping

L1 − − − − −

L2 0.0 12.31 3.18 14.0 9976

H − − − − −

X2 0.0 11.53 3.18 14.0 8284

P
B
A
-
B
lo
ck
si
ze

3
2
x3
2

non

over-

lap-

ping

L1 0.9 9.21 4.93 32.0 1262

L2 1.5 9.32 4.02 34.0 1250

H 1.5 11.18 3.35 16.0 1287

X2 0.3 11.6 3.4 22.0 1314

half

over-

lap-

ping

L1 −0.1 11.67 9.41 72.0 5154

L2 0.1 7.5 3.41 15.0 5206

H 0.3 14.15 3.29 16.0 5383

X2
− − − − −

Table 6.2: Experiment #2: RLE-IS cross-section segmentation using LBP histograms

as texture features � statistical analysis of the pith-based (PBA) using di�erent con�g-

urations. The table shows results for PBA using di�erent block sizes, half- and non-

overlapping blocks, di�erent histogram distances Hd and di�erent LBP variations.
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Finally, the results are compared to the results of the �rst experiment. Some results of the LBP

con�gurations are somewhat equivalent to the results from the �rst experiment. Nevertheless,

the results of the �rst experiment are more robust over all con�gurations and histogram

distances. Furthermore, it is shown that the best results of the �rst experiment using intensity

histograms remarkable outperform the segmentation accuracies and timing measurements of

the second experiment using LBP histograms.

Experiment #3 - Grayscale conversion The third experiment is based on the insights

from the �rst experiment and evaluates the impact of the di�erent RGB weighting factors for

the grayscale conversion on the segmentation accuracy. As in the �rst experiment intensity

histograms are used as texture features. LBP histograms as texture features are not evaluated

because it is assumed that they are less a�ected by the grayscale conversion. This assumption

is based on the fact that LBPs are invariant to monotonic intensity changes.

In the experiment di�erent gray scale conversions are tested using the pith based approach

and the EMD as local histogram distance for cross-section segmentation. As blocks 16x16

blocks, half- and non-overlapping are tested.

Four di�erent grayscale conversions are evaluated. Like in the previous experiments, the �rst

conversion uses equal weighting factors (R=0.33, G=0.33, B=0.33) for each color channel.

The second grayscale conversion uses the weighting factors suggested by Norell and Borgefors

(2008) - (R=0.2989, G=0.5870, B=0.1140). Further two tested grayscale conversions are

Lightness ( = 1
2 ⋅ (max(R,G,B) + min(R,G,B)) and Luminosity (R=0.21, G=0.72, B=0.07)

which are used in GIMP (http://docs.gimp.org/en/gimp-tool-desaturate.html).

By analogy to the �rst experiment each con�guration is tested with histogram distance variance

factors (Vf ) in a range between [-2.0,2.0]. The most accurate results for each con�guration and

grayscale conversion are presented in Table 6.3. Generally, it seems that the di�erent grayscale

conversion methods have a low impact on the segmentation accuracy. The di�erences between

the results are minimal and no grayscale conversion method can be highlighted.

Experiment #4 In this experiment the impact of circle and ellipse �tting (Step 2/3 - see

Subsection 6.4.3) is evaluated. Circle and ellipse �tting are non-mandatory intermediate steps

used in the shape estimation procedure. Furthermore, background corner segmentation is

introduced and evaluated. Background corner segmentation is based on the knowledge of the

present image structure. With the use of background corner segmentation, the applicability of

http://docs.gimp.org/en/gimp-tool-desaturate.html
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Con�guration Conversion Vf Mean StDev R [ms]

PBA/ EMD

Blocksize

16x16

non over-

lapping

Equal Weights 0.5 6.45 3.41 17.0 304

Norell 0.8 7.1 3.75 15.0 303

Luminosity 0.5 6.66 3.45 17.0 332

Lightness 0.4 6.25 3.15 14.0 316

half over-

lapping

Equal Weights −0.1 5.53 3.3 14.0 1867

Norell −0.2 5.33 3.03 14.0 1856

Luminosity −0.1 5.55 3.41 14.0 1942

Lightness −0.1 5.51 3.53 17.0 1991

Table 6.3: Experiment #3 - Grayscale conversion: RLE-IS cross-section segmentation

using intensity histograms � statistical analysis of the pith based segmentation approach

(PBA) using EMD and 16x16 pixels blocks. The two con�gurations are tested using

di�erent grayscale conversions.

the cross-section segmentation approach is limited to a particular image structure. Background

corner segmentation and circle-/ellipse �tting are assessed for PBA cross section segmentation

using intensity histograms. Analogous to the third experiment, PBA with EMD as local

histogram distance is used and 16x16 pixels blocks half-/ and non-overlapping are evaluated.

The grayscale conversion uses equal weights.

For background corner segmentation, in each image edge a single cluster is initialized for which

the region growing procedure is performed. Background edge segmentation is performed as

preceding step to PBA or OBA. The background region growing procedure is performed with

a restrictive histogram distance variance factor which is half of the value of the variance factor

(Vf ) used for the subsequent PBA. Blocks which are assigned to one of the background corner

clusters are not considered for the subsequent cross-section segmentation approach. Back-

ground corner segmentation is suitable for images where the entire cross-section of interest

is in the image center. Due to the circular shape, it can be assumed that the image corners

contain background information. Prior background corner segmentation can be used to pre-

vent the algorithm from assigning blocks of background cross-sections to the cross-section of

interest.

The results for experiment #4 are summarized in Table 6.4. The �rst row of each con�guration

shows the reference results (PBA/EMD/Equal Weights). The other results are achieved by us-

ing one ore both improvement approaches. Result show that background corner segmentation

as well as the circle/ellipse �t step are increasing the segmentation accuracy. The most accu-

rate results are reached when both improvements are applied. As opposed to the background

corner segmentation approach, the circle-/ellipse �t approach is very time consuming.
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Con�guration Improvement Vf Mean StDev R [ms]

PBA/ EMD

Blocksize

16x16

non over-

lapping

(1) Equal Weights 0.5 6.45 3.41 17.0 304

(1) + (2)Corner segmentation 0.5 5.32 2.3 10.0 317

(1) + (3)Circle-/Ellipse Fit 0.4 5.99 2.83 12.0 610

(1) + (2) + (3) 0.6 5.14 2.22 10.0 562

half over-

lapping

(1) Equal Weights −0.1 5.53 3.3 14.0 1867

(1) + (2)Corner segmentation −0.2 4.53 2.38 12.0 1880

(1) + (3)Circle-/Ellipse Fit −0.1 5.1 2.85 13.0 2597

(1) + (2) + (3) −0.1 4.31 2.19 12.0 2582

Table 6.4: Experiment #4: RLE-IS cross-section segmentation � statistical analysis

of two improvement approaches using intensity histograms as texture features. Both

improvement approaches are tested using the pith based segmentation approach (PBA)

with EMD and 16x16 blocks. As reference con�guration the results from the previous

experiment (#2) using equal weights are presented.

The segmentation accuracies for the most accurate con�guration using both improvements

(half-overlapping blocks: Mean=4.31, StDev=2.19) are illustrated in Fig.6.12. Both improve-

ments are well suitable for cross-section segmentation in images where the rough log end is

the main motive.

Figure 6.12: Segmentation accuracies for the pith based segmentation approach (PBA)

using EMD/16x16 half-overlapping blocks and both improvement methods

Experiment #5 Finally, this experiment evaluates the impact of the improvement steps

(background corner segmentation and circle-/ellipse �tting) on cross section segmentation

using LBP histograms as texture features. For this purpose, results for PBA using di�erent

LBP variations, 16x16 and 32x32 pixels blocks, half-/non-overlapping blocks and L1 and L2

as histograms distances were computed. Results from experiment #4 showed that the best
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results are achieved using both improvements. Therefore, this experiment just evaluates the

combination of both improvements.

For each LBP variation, the con�guration with the most accurate results for L1 and L2 are

presented in Table 6.5.

Con�guration LBP variation Vf Mean StDev R [ms]

PBA & L1

16x16 non overlapping 8x8 LBP 0.9 8.14 3.13 12.0 1194

16x16 non overlapping uniform LBP 0.9 6.54 2.66 11.0 1178

16x16 non overlapping multiscale LBP 1.1 7.41 2.47 10.0 1703

16x16 non overlapping uniform & multiscale LBP 0.9 6.29 2.34 11.0 1708

PBA & L2

16x16 non overlapping 8x8 LBP 0.9 6.97 2.91 11.0 1203

16x16 non overlapping uniform LBP 1.1 7.89 3.06 13.0 1195

16x16 non overlapping multiscale LBP 1.3 8.33 3.17 18.0 2025

16x16 non overlapping uniform & multiscale LBP 1.3 11.46 3.2 16.0 2003

Table 6.5: Experiment #5: RLE-IS cross-section segmentation � statistical analysis of

two improvement approaches. Both improvement approaches are tested using the pith

based segmentation approach (PBA) and LBP histograms as texture features.

Except for the L2 � multiscale and multiscale&uniform LBP con�gurations, all accuracies in-

creased signi�cantly compared to the corresponding results from experiment #2 (see Table

6.3). Results again con�rm that background corner segmentation and circle-/ellipse �tting

are valuable approaches to increase the segmentation accuracy and on the other hand de-

crease the timing performance. As in experiment #4 the most accurate results are achieved

using 16x16 pixels blocks. Based on all results using intensity histograms it seems that half-

overlapping blocks are not crucial to improve the accuracy. All of the best results are achieved

using con�gurations with non-overlapping blocks. Eventually, the most accurate result for all

evaluated con�gurations using LBP histograms is achieved using both improvements, 16x16

non-overlapping pixels blocks, the L1 norm as histogram distance and the uniform LBP aproach

(Mean=6.51, StDev=2.66).

6.6 Summary

The experiments showed that the pith based segmentation approach (PBA) using intensity

histograms is well-suited to segment cross-sections in images of rough log ends. The �rst

experiment highlighted that the EMD is the most robust histogram distance over all evaluated

con�gurations using intensity histograms. The results from the second experiment using LBP
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histograms as texture features are very irregular and it is not possible to make statements about

appropriate settings and con�gurations to improve the segmentation. In any case, results from

experiment #1 and #2 show that intensity histograms and especially the EMD achieve more

accurate results and are faster than the results from the experiments with LBP histograms and

bin-by-bin distances. Additionally, the comparison between the results from experiment #1

and #2 leads to an interesting conclusion. For particular segmentation applications, simple

texture features and a more sophisticated similarity measure can outperform matured texture

features and a simple similarity measure.

Subsequently, some insights from cross-section segmentation using intensity histograms are

summarized: Like in the pith estimation experiments, the most accurate segmentation results

are reached with a blocks size of 16x16 pixels and half-overlapping blocks. This con�rms that

the block size and the overlapping between the blocks are very important for cross-section

segmentation. Cross-section segmentation using intensity histograms is very fast and the

timing performance mainly depends on the block parameters.

Against all expectations, experiment #3 indicates that di�erent weighting factors for the

grayscale conversion have less impact on the segmentation accuracy. In the fourth and �fth

experiment it is shown that in case of a certain image structure, background corner segmen-

tation and the circle- /ellipse �t approach are helpful extensions to increase the segmentation

accuracy.

Future research should use color information for cross-section segmentation. The EMD can

be used to compare local color histograms. First investigations indicated that local color

histograms can improve the proposed segmentation approach. Further research is required to

present results on cross-section segmentation using local color histograms. Furthermore, more

investigations on using LBPs and further texture analysis methods are required.



Chapter 7

Discussion

This thesis provides a basis for the further development of the TreeBio framework. The

theoretical part serves as introduction into the topic and forms a solid basis for the theoret-

ical considerations to the TreeBio framework. The idea of using log end faces as biometric

characteristic to enable log traceability is appealing at �rst. Biometric recognition has many

advantages and the log-processing industries would take a working system with open arms.

Unfortunately, there still remain open issues. Future e�orts should address these issues to

promote the development of a TreeBio framework.

It soon became obvious that it will not be possible to edit and implement all the components

which are required for the TreeBio framework. The main issues when using log end faces are

caused by disturbances due to cutting or dirt. The TreeBio framework has to be capable of

processing images of rough log ends. In the past, only a few works have contributed to the

development of cross-section analysis methods treating real world images of log ends.

For several reasons, the practical part of this work focuses on the development and evaluation

of approaches for pith estimation. These tasks are required as initial image analysis prior to

feature extraction. Segmented cross-sections and their pith positions serve as basis for the

evaluation of di�erent feature extraction methods used in �ngerprint and iris recognition.

Such methods require an alignment/registration of the cross-section surface. For example, iris

feature extraction techniques require a polar transformed representation of the cross-section.

The pith position and the cross-section boundary are required to polar-transform the cross-

section. Figure 7.1a illustrates the sampling (black lines) of the cross-section using the esti-

mated pith position and cross-section boundary. Figure 7.1b illustrates the polar transformed

101
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cross-section. By transforming all cross-sections into equally sized polar images, the system

becomes scale-invariant. Further, solutions to handle di�erent cross-section rotations and cap-

turing angles are required. In case of rotation invariance in Fig. 7.1b and Fig. 7.1c, a possible

solution is depicted. For this purpose, the maximum and minimum pith-to-boundary distances

can be used to align the cross-section or the polar transformed cross-section.

(a) Rough log end image � the

black lines illustrate the sampling

for the polar transformation

(b) Polar transformed cross-section of Fig.7.1a. The two red ar-

rows depict the min. and max. boundary distances.

(c) The min. and max. boundary distances can be used

to align the image. Such a procedure may be used to

enable a rotation invariant system.

Figure 7.1: Polar transformation and image alignment

Besides the requirement for image registration, the evaluation of di�erent feature extraction

methods requires appropriate image test sets. One promising approach is the generation

of synthetic log end images. The work of Norell (2009b) provides a solution for this. The

proposed approach enables creating di�erent images of a certain synthetic cross-section. These

images can be simulated with camera positions/lighting conditions and di�erent disturbances.

Synthetic images could be used to draw basic conclusions about the applicability of di�erent

feature extraction methods to cross-section images.

Conversely, real world image sets captured at di�erent places in the processing chain are
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required. Real world image sets exhibit more problems which are relevant for industrial use.

In other words, methods and techniques to overcome problems caused by disturbances are

necessary.

Until now, only computational and image processing issues have been discussed. Finally,

questions regarding the biometric characteristic quality (see Section 2.4.1) of cross-sections

are still open. An important question concerns the stability/change of the cross-section and

its biometric features along the longitudinal axis of the log. In an industrial application, logs

are cross-cut at both log ends before they are sorted in the sawmill. Usually, thin slices are

cut o�. Consequently, a biometric system requires a certain stability of the biometric features

in a small range along the longitudinal axis. It can be assumed that the biometric features at

the two ends of a log are completely di�erent.

This discussion showed up several issues and ideas for future work on biometric log traceability

of wood logs using log end images. Although the realization of an biometric log recognition

approach is very ambitious and many questions remain open, it will be worthwhile to keep on

working on it.
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