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Abstract. This paper describes a generic fusion technique for iris recog-
nition at bit-level we refer to as Selective Bits Fusion. Instead of storing
multiple biometric templates for each algorithm, the proposed approach
extracts most discriminative bits from multiple algorithms into a new
template being even smaller than templates for individual algorithms.
Experiments for three individual iris recognition algorithms on the open
CASIA-V3-Interval iris database illustrate the ability of this technique to
improve accuracy and processing time simultaneously. In all tested con-
figurations Selective Bits Fusion turned out to be more accurate than
fusion using the Sum Rule while being about twice as fast. The design of
the new template allows explicit control of processing time requirements
and introduces a tradeoff between time and accuracy of biometric fusion,
which is highlighted in this work.

1 Introduction

The demand for secure access control has caused a widespread use of biometrics.
Iris recognition [1] has emerged as one of the most reliable biometric technolo-
gies. Pioneered by the work of Daugman [2] generic iris recognition involves the
extraction of binary iris-codes out of unwrapped iris textures. Similarity between
iris-codes is estimated by calculating the Hamming distance. Numerous different
iris recognition algorithms have been proposed, see [1] for an overview. While
a combination of different biometric traits leads to generally higher accuracy
(e.g., combining face and iris [16] or iris and fingerprints [6]), solutions typically
require additional sensors leading to lower throughput and higher setup cost.
Single-sensor biometric fusion, comparing multiple representations of a single
biometric, does not significantly raise cost and has been shown to be still capable
of improving recognition accuracy [11]. In both scenarios however, generic fu-
sion strategies at score level [7] require the storage of several biometric templates
per user according to the number of combined algorithms [13]. Iris recognition
has been proven to provide reliable authentication on large-scale databases [3].
Particularly because it is employed in such scenarios, fusion of iris recognition
algorithms may cause a drastic increase of both, required amount of storage and
comparison time (which itself depends on the number of bits to be compared).
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The human iris has been combined with different biometric modalities, how-
ever due to reasons outlined before, we concentrate on single-sensor iris biometric
fusion in this work. While the combination of iris and face data is a prospective
application, see [18], still the successful extraction of high-quality iris images
from surveillance data in less constrained environments is a challenging issue. In
case of combining multiple iris algorithms operating on the same input instance,
a couple of approaches have been published. Sun et al. [14] cascade two feature
types employing global features in addition to a Daugman-like approach only
if the result of the latter is in a questionable range. Zhang et al. [17] apply a
similar strategy interchanging the role of global and local features. Vatsa et al.
[15] compute the Euler number of connected components as global feature, while
again using an iris-code as local texture feature. Park and Lee [11] decompose
the iris data with a directional filterbank and extract two different feature types
from this domain. Combining both results leads to an improvement compared
to the single technique. All these techniques have in common, that they aim
at gaining recognition performance in biometric fusion scenarios at the cost of
larger templates or more time-consuming comparison. In contrast, the following
approaches try to improve both, resource requirements (storage and/or time)
and fusion recognition accuracy. Konrad et al. [9] combine a rotation invariant
pre-selection algorithm and a traditional rotation compensating iris-code. The
authors report improvements in recognition accuracy as well as computational
effort. In previous work [12], we have recently presented an incremental approach
to iris recognition using early rejection of unlikely matches during comparison to
incrementally determine best-matching candidates in identification mode oper-
ating on reordered iris templates according to bit reliability (see [5]) of a single
algorithm. Following a similar idea, Gentile et al. [4] suggested a two-stage iris
recognition system, where so-called short length iris-codes (SLICs) preestimate
a shortlist of candidates which are further processed. While SLICs exhibit only
8% of the original size of iris-codes the reduction of bits was limiting the true
positive rate to about 93% for the overall system.

In this work we propose a fusion strategy for iris recognition algorithms,
which combines the most reliable parts of different iris biometric templates in
a common template. While most fusion techniques aiming to provide improve-
ments in comparison time and accuracy operate in identification mode (e.g., [12]
or [4]), our technique achieves these benefits in verification mode. In contrast to
[12] our approach yields a constant number of bit tests per comparison and may
more easily be integrated into existing solutions, since modules for comparison
do not have to be changed. However, we adopt the analysis of bit-error occur-
rences in [12] for a training set of iris-codes. Thereby we can estimate a global
ranking of bit positions for each applied algorithm following the observation
by Hollingsworth et al. [5], that distinct parts of iris biometric templates (bits
in iris-codes) exhibit more discriminative information than others. They found,
that regions very close to the pupil and sclera contribute least to discrimina-
tion, i.e. the middle bands of the iris contain the most reliable information, and
that masking fragile bits at the time of comparison increases accuracy. Based
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on obtained rankings we rearrange enrollment samples and merge them by dis-
carding least reliable bits of extracted iris-codes. Furthermore, by introducing
a ranking of bits, we can avoid keeping track of iris masks, since masked bits
in typically distorted regions are most likely to be excluded from comparison
by our technique. In experimental studies, we elaborate trade-offs between the
accuracy and required storage by combining different iris recognition algorithms.
Obtained results illustrate the worthiness of the proposed approach.

The remainder of this work is organized as follows: Section 2 introduces the
architecture of the proposed system and presents necessary components for Selec-
tive Bits Fusion. Section 3 gives an overview of the experimental setup, outlines
results and discusses observations. Finally, Section 4 concludes this paper.

2 Selective Bits Fusion

Selective Bits Fusion is a generic fusion technique and integrates in iris recogni-
tion systems as illustrated in Figs. 1 and 2. The following modules are involved:

– Training Stage and Enrollment: A training stage estimates a global
ranking of bit positions, based on which given templates are rearranged.

– Template Fusion Process: The proposed fusion process simply extracts
the most reliable parts of iris-codes from different feature extraction algo-
rithms and concatenates relevant information, while discarding the least con-
sistent bits.

– Verification: At the time of verification Selective Bits Fusion is performed
at several shifting positions prior to comparison.

2.1 Training Stage and Enrollment

Following the idea in [12], we compute a global reliability mask R based on bit
reliability [5] in the training stage for each feature extraction method. By as-
sessing inter-class and intra-class comparisons, we calculate the probability of a
bit-pair (for a given position) being either 0-0 or 1-1 denoted by PIntra(i) and
PInter (i) for each bit position i. The reliability at each bit position defined as
R(i) = PIntra(i)+(1−PInter (i))/2 now reflects the stability of a bit with respect
to genuine and imposter comparisons for a given algorithm. However, in order
to account for inaccurate alignment, iris codes are shifted (with a maximum
offset of 8) prior to evaluating PIntra(i) and PInter (i). Reliability measures of
all bit positions over all pairings define a global (user-independent) reliability
distribution per algorithm, which is used to rearrange given iris-codes. Based
on the reliability mask an ideal permutation of bit positions is derived for each
feature extraction method and applied to reorder given samples such that the
first bits represent the most reliable ones and the last bits represent the least
reliable ones, respectively. At the time of enrollment preprocessing and feature
extraction methods are applied to a given sample image. Subsequently, permuta-
tions derived from the previously calculated reliability masks are used to reorder
iris-codes.
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Fig. 1. Training stage and enrollment procedure of the proposed system

2.2 Template Fusion Process

The key idea of Selective Bits Fusion is to concatenate and store the most im-
portant bits only. Furthermore, since bits in typically distorted regions (close to
eyelids or eyelashes) are moved backwards in the iris-code, this approach makes
a storage of noise masks obsolete, i.e. their effect is less pronounced because
the least reliable bits are discarded. The result of the fusion process is a new
biometric template composed of the most reliable bits produced by diverse fea-
ture extraction algorithms. Focusing on recognition performance, a meaningful
composition of reliable bits has to be established. In experiments this issue is dis-
cussed in more detail. Furthermore, we will show that resulting templates are at
most as long as the average code size generated by the applied algorithms while
recognition accuracy of traditional biometric fusion techniques is maintained or
even increased.

2.3 Verification

In order to recognize subjects who have been registered with the system, in
a first step feature extraction is executed for each algorithm in the combined
template. Instead of comparing templates of all algorithms individually, Selective
Bits Fusion combines iris-codes of different feature extraction techniques based
on the global ranking of bit reliability calculated in the training stage. However,
since bits are reordered, local neighborhoods of bits are obscured resulting in
a loss of the property tolerating angular displacement by simple circular shifts.
Instead, in order to achieve template alignment, we suggest to apply feature
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extraction methods at different shifting positions of the extracted iris texture.
Subsequently, all reordered iris-codes are compared with the stored template.
The minimal Hamming distance which corresponds to an optimal alignment
of iris textures is returned as final comparison score (note that without loss
of generality there is one optimal alignment which exhibits the best comparison
scores for all feature extraction algorithms). The verification process is illustrated
in Fig. 2.

3 Experimental Studies

For evaluation purposes of the proposed fusion algorithms, we employ the CASIA-
V3-Interval1 iris database. This set comprises 2639 good quality NIR illuminated
indoor images of 320×280 pixel resolution from 396 different classes (eyes). Some
typical input images and a resulting iris texture are given as part of the system
architecture in Fig. 1. For experimental studies we evaluate all left-eye images
(1332 instances) only, since the distribution of reliable bits within iris-codes will
be highly influenced by natural distortions like eyelids or eyelashes and thus
global reliability masks are expected to vary between left and right eyes. For
training purposes of reliability masks, images of the first 20 classes are used for
parameter estimation purposes.

3.1 Basic System

Selective Bits Fusion may be applied to any iris-code based biometric verifi-
cation system. The tested basic system comprises the following preprocessing
and feature extraction steps: At preprocessing, the pupil and the iris of an ac-
quired image are detected by applying Canny edge detection and Hough circle
detection. Once the inner and outer boundaries of the iris have been detected,
the area between them is transformed to a normalized rectangular texture of

1 The Center of Biometrics and Security Research, CASIA Iris Image Database,
http://www.sinobiometrics.com
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512 × 64 pixel, according to the “rubbersheet” approach by Daugman. Finally,
a blockwise brightness estimation is applied to obtain a normalized illumination
across the texture.

In the feature extraction stage, we employ custom implementations of three
different algorithms, which extract binary iris-codes. The first one resembles
Daugman’s feature extraction method and follows an implementation by Masek2

using Log-Gabor filters on rows of the iris texture (as opposed to the 2D filters
used by Daugman). Within this approach the texture is divided into stripes
to obtain 10 one-dimensional signals, each one averaged from the pixels of 5
adjacent rows (the upper 512 × 50 are analyzed). Here, a row-wise convolution
with a complex Log-Gabor filter is performed on the texture pixels. The phase
angle of the resulting complex value for each pixel is discretized into 2 bits. Again,
row-averaging is applied to obtain 10 signals of length 512, where 2 bits of phase
information are used to generate a binary code, consisting of 512 × 20 = 10240
bits.

The second feature to be computed is an iris-code version by Ma et al. [10]
extracting 10 one-dimensional horizontal signals averaged from pixels of 5 adja-
cent rows of the upper 50 pixel rows. Each of the 10 signals is analyzed using
dyadic wavelet transform, and from a total of 20 subbands (2 fixed bands per
signal), local minima and maxima above a threshold define alternation points
where the bitcode changes between successions of 0 and 1 bits. Finally, all 1024
bits per signal are concatenated yielding a total number of 1024 × 10 = 10240
bits.

The third algorithm has been proposed by Ko et al. [8]. Here feature ex-
traction is performed by applying cumulative-sum-based change analysis. It is
suggested to discard parts of the iris texture, from the right side [45o to 315o]
and the left side [135o to 225o], since the top and bottom of the iris are often
hidden by eyelashes or eyelids. Subsequently, the resulting texture is divided
into basic cell regions (these cell regions are of size 8 × 3 pixels). For each basic
cell region an average gray scale value is calculated. Then basic cell regions are
grouped horizontally and vertically. It is recommended that one group should
consist of five basic cell regions. Finally, cumulative sums over each group are
calculated to generate an iris-code. If cumulative sums are on an upward slope or
on a downward slope these are encoded with 1s and 2s, respectively, otherwise 0s
are assigned to the code. In order to obtain a binary feature vector we rearrange
the resulting iris-code such that the first half contains all upward slopes and the
second half contains all downward slopes. With respect to the above settings the
final iris-code consits of 2400 bits.

It is important to mention that the algorithms by Ma et al. and Masek are
fundamentally different to the iris-code version by Ko et al. as they process
texture regions of different size, extract different features and produce iris-codes
of different length. Therefore, we paired up each of the two algorithms with the
latter one.

2 L. Masek: Recognition of Human Iris Patterns for Biometric Identification, Master’s
thesis, University of Western Australia, 2003
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3.2 Reliability Concentration in Early Bits

In order to be able to identify reliable bits, we assessed for each algorithm and for
each bit position the probability of a bit switch. For this parameter estimation we
used the inter- and intra-class comparisons of the training set. Results in form
of reliability measures for each bit induced a permutation for each algorithm
with the goal of moving reliable bits to the front of the iris-code while more
unstable bits should be moved to the end of the iris-code. This approach is
more generic than area-based exclusion of typically distorted regions as executed
by many feature extraction algorithms including the applied version by Masek
(e.g. by ignoring outer iris bands or sectors containing eyelids). The ability to
concentrate reliable information in early bits on unseen data has been assessed
for each of the applied algorithms and is illustrated in Figs. 3, 4 and 5. We found,
that EER performance of Ma and Masek already tendencially increases in the
original (unsorted) iris-code. This behaviour is not too surprising, since early
iris-code bits correspond to the inner iris texture bands, which typically contain
rich and discriminative information. However, it is clearly visible, that the second
1024-Bits block exhibits a better (lower) EER than the first block, which can
be explained by segmentation inaccuracies due to varying pupil dilation. EERs
for different 480-Bits blocks in the Ko algorithm do not seem to follow a specific
pattern (due to the code layout grouping upward and downward slopes). As a
first major result of experiments, we could verify the ability of reliability masks
to really identify most reliable bits. While for Masek and Ma (see Figs. 3, 4)
EERs stay low at approximately 2% for two thirds of the total number of blocks
and then increase quickly, Ko’s EERs (see Fig. 5) increased almost linearly for
the new block order.

3.3 Selection of Bits

We use reliability masks to restrict the size of the combined template. By reject-
ing unstable bits we can (1) avoid degradation of results (see Figs. 6, 7 and 8) (2)
accelerate comparison time and (3) reduce storage requirements. But how many
bits should be used for the combination and which mixing proportion should
be employed for the combined features? At this point we clearly state, that an
exhaustive search for optimal parameters is avoided in order not to run into over-
fitting problems. Instead, we prefer an evaluation of two reasonable heuristics.
Again, with this approach we alleviate a fast and almost parameterless (except
for the computation and evaluation of reliability masks) integration into existing
iris-code based solutions. Emphasizing the usability of Selective Bits Fusion we
will show that even this simple approach will outerform traditional score-based
fusion using the sum-rule. We select bits from single algorithms according to the
following two strategies:

– Zero-cost: this heuristic simply assumes, that all algorithms provide a simi-
lar information rate per bit, thus the relative proportion in bit size is retained
for the combined template. The maximum feature vector bit size is adopted
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blocks
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Fig. 4. EER’s for Ma’s on 1024-Bits
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Fig. 5. EERs for Ko on 480-Bits blocks
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Fig. 6. EER-Bits tradeoff for Masek
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Table 1. EERs of presented comparison techniques

Original Sum Rule Fusion Selective Bits Fusion
Masek Ko Ma Masek+Ko Ko+Ma Masek+Ma Masek+Ko Ko+Ma

Bits 10240 2400 10240 12640 12640 20480 6336 6336

EER 1.41% 4.36% 1.83% 1.38% 1.72% 1.54% 1.15% 1.52%

as the new template size and filled according to the relative size of the al-
gorithm’s template compared to the total sum of bits, i.e. for combining the
total 10240 Masek bits and 2400 Ko bits, we extract the most reliable 8296
Masek and 1944 Ko bits and build a new template of size 10240 bits.

– Half-sized: when assessing the tradeoff between EER and bit count in Figs.
6, 7 and 8 we see, that for the reordered versions already very few bits
suffice to obtain low EERs with a global optimum at approximately half
of iris-code bits for all tested algorithms. Interestingly, even for the original
(unordered) case 50% of bits seems to be a good amount to get almost the
same performance like for a full-length iris-code. The new template consists
of concatenating the best half-sized iris-codes of each algorithm rounded to
the next 32 bits (in order to be able to use fast integer-arithmetics for the
computation of the Hamming distance). This yields, e.g., 6336 bits for the
combination of Masek and Ko.

3.4 Selective Bits vs. Sum Rule Fusion

Finally, we assessed the accuracy of Selective Bits Fusion in both zero-cost
and half-sized configurations and compared their performance with sum rule
fusion. The latter technique simply calculates the sum (or average) of indi-
vidual comparison scores of each classifier Ci for two biometric samples a, b:
S(a, b) = 1

n

∑n
i=1 Ci(a, b). Results of tested combinations are outlined briefly in

Table 1 (Selective Bits Fusion lists results by the better half-sized variant).
First, we evaluated all single algorithms on the test set. Highest accuracy

with respect to EER was provided by Masek’s algorithm (1.41%) closely fol-
lowed by Ma (1.83%). The almost five times shorter iris-code by Ko provided
the least accurate EER results (4.36%). In experiments we tested pairwise combi-
nations of these algorithms. It is worth noticing, that improvement in score-level
biometric fusion is not self-evident but depends on whether algorithms assess
complementary information. Indeed, if we combine the similar algorithms of Ma
and Masek, we achieve an EER value (1.54%) right in between values for both
single algorithms and at the cost of the iris-code being twice as long as for a
single algorithm. For this reason we considered the combinations between the
complementary algorithm pairs Masek and Ko as well as Ko and Ma only.

For the combination of Masek and Ko, sum rule yields only slightly superior
EER (1.38%) than for the better single algorithm, but still despite the worse
single performance of Ko, information could still be exploited and the ROC
curve lies above both algorithms over almost the entire range, see Fig. 9. If we
employ Selective Bits Fusion, we get a much better improvement than for the
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traditional combination with EERs as low as 1.15% for the half-sized version
(and 1.21% for the zero-cost variant). Indeed it is even better to discard more
bits, which is most likely to be caused by the fact that there is a significant
amount of unstable bits present in each of the codes degrading the total result.
Especially for high-security applications with requested low False Match Rates,
Selective Bits Fusion performed reasonably well.

When employing fusion for Ko and Ma results indicate a similar picture.
Again sum rule yields slightly better EER results than the best individual classi-
fier (1.72%) which is beaten by Selective Bits Fusion (1.52%), see Fig. 10. Again,
the zero-cost Selective Bits Fusion variant was slightly worse (1.59% EER).
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4 Conclusion

Focusing on iris biometric fusion a reasonable combination of diverse feature
extraction algorithms tends to improve recognition accuracy. However, a com-
bination of algorithms implies the application of multiple biometric templates.
That is, in conventional biometric fusion scenarios improved accuracy comes at
the cost of additional template storage as well as comparison time.

In contrast, the proposed system, which is refered to as Selective Bits Fusion,
presents a generic approach to iris biometric fusion which does not require the
storage of a concatenation of applied biometric templates. By combining the
most reliable features only (extracted by different algorithms) storage is saved
while the accuracy of the biometric fusion is even improved. Experimental results
confirm the worthiness of the proposed technique.
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