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Abstract

As a result of the growing interest in biometrics a new field of research has emerged, entitled
“biometric cryptosystems”. Within biometric cryptosystems the advantages of biometric
authentication are introduced to generic cryptographic key management systems to enhance
security. Only few work, which tends to be very custom-built according to the range of
application, has been published in this area. Per contra, this work provides a general overview
of fundumentals, according to biometrics as well as cryptography, and literature concerning
this new area of research.

Furthermore, this work gives a detailed practical insight into the construction of biometric
cryptosystems based on iris biometrics. Two different ways of constructing biometric cryp-
tosystems will be examined to build up several schemes. Finally, performance evaluations of
these iris-based biometric cryptosystems will be discussed.





Acknowledgements

First of all, I want to thank Andreas Uhl, the head of the WaveLab group at the Com-
puter Sciences department of the University of Salzburg, for his guidance and constructive
discussions during the development of my diploma thesis.

I want to thank my family, girlfriend and all my friends for emotional backing, especially
Dominik Gruber for the interesting talks during coffee breaks.

I want to thank all my colleagues at the Computer Sciences department of the Univer-
sity of Salzburg and the members of the WaveLab group, particularly Elias Pschernig for
introducing me into the iris recognition software of the WaveLab group.

This work was funded by the Austrian Science Fund (FWF).





Contents

Abstract i

Acknowledgements iii

1 Introduction 1

2 Biometrics 3

2.1 Merging Biometrics and Cryptography . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Biometric Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Fingerprint Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Iris Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Hand Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.5 Speaker Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.6 Signature Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.7 Keystroke Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.8 Hybrid Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.9 Other Biometric Characteristics . . . . . . . . . . . . . . . . . . . . . 10

2.3 Biometric Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Biometric Authentication Systems . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Verification and Identification . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.4 Performance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Biometric Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Biometric Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Biometric Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



vi CONTENTS

2.8 Classification of Biometric Cryptosystems . . . . . . . . . . . . . . . . . . . . 17

2.9 Cancellable Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 Transforms and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.11 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Literature on Biometric Cryptosystems 20

3.1 Biometric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Private Template Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Biometrically Hardened Passwords . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Fuzzy Commitment/Fuzzy Vault Scheme . . . . . . . . . . . . . . . . . . . . . 28

3.5 Secure Sketch/Fuzzy Extractor Scheme . . . . . . . . . . . . . . . . . . . . . 36

3.6 BioHashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Schemes using Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Cancellable Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Iris-based Fuzzy Commitment Schemes 54

4.1 A Fuzzy Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Preconditions for Fuzzy Commitment Schemes . . . . . . . . . . . . . . . . . 56

4.3 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Enrollment in a Fuzzy Commitment Scheme . . . . . . . . . . . . . . . 57

4.3.2 Authentication in a Fuzzy Commitment Scheme . . . . . . . . . . . . 58

4.4 Error Correction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Hadamard Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Reed Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 An Iris Recognition Algorithm using Cumulative-Sum based Change Analysis 63

4.5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 A Fuzzy Commitment Scheme using Block Level Error Correction Codes . . . 69

4.6.1 Iris Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.2 The Enrollment Process . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.3 The Authentication Process . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS vii

4.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 An Iris Recognition Algorithm using Characterization of Key Local Variations 77

4.7.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 A Fuzzy Commitment Scheme using Concatenated Error Correction Codes . 83

4.8.1 Concatenation of Error Correction Codes . . . . . . . . . . . . . . . . 83

4.8.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8.3 The Enrollment Process . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.4 The Authentication Process . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Implementation of an Iris based Key Generation Scheme 90

5.1 Preconditions for Schemes which use Intervals . . . . . . . . . . . . . . . . . . 90

5.2 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Enrollment in an Interval Scheme . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Authentication in an Interval Scheme . . . . . . . . . . . . . . . . . . 92

5.3 Applied Iris Recognition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Image Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . 93

5.3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.3 Enrollment and Identification . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Construction of the Interval Scheme . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 The Enrollment Process . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 The Authentication Process . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Cancellable Interval Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106





Chapter 1

Introduction

Taking into account today’s ever-increasing demand on high security standards, in order to
secure any kind of crucial information, the science of cryptography has become even more
important. However, in generic cryptographic systems user authentication is still possession
based [87]. This means the possession of a cryptographic key suffices to authenticate a user.
In most cryptographic key management systems these keys are released by presenting a
password (or PIN) – chosen by the user – to the system. This implies the cryptographic key
is just as secure as the password which is used to release it and these passwords are often
chosen weakly as is all too well known. Additionally, a physical token such as a smartcard
can be lost or stolen.

The security of such cryptographic systems can be strengthened by introducing biometrics to
replace password-based authentication. Biometrics is the science of measuring and analyzing
human characteristics. There are certain human characteristics which are suitable to be
used in online or offline authentication systems. These comprise fingerprints, eye retinas
and irises, voice patterns, signatures, facial patterns and hand measurements to mention
just a few. Adequate apparatuses are used to acquire each of these human characteristics.
Subsequently, information in terms of features is extracted. These features are then compared
with others, which have previously been stored in a so-called enrollment procedure, and
a user is accepted or denied otherwise. Due to the fact that human characteristics tend
to be very distinct (these cannot be lost or forgotton either) these seem to be suitable
and sufficiently secure for the purpose of user authentication and identification. One could
imagine to withdraw money from an ATM by presenting a fingerprint to an adequate scanner
to provide secure authentication instead of inserting a four-digit PIN presenting. This would
be a prime example for combining biometrics with cryptography in a key management
system.

Although biometric techniques provide promising results with respect to the identification
accuracy, simply replacing password-based authentication through biometric authentication
does not suffice. On the contrary, new issues emerge from the use of biometric authentica-
tion in cryptographic systems. For example, the introduction of biometrics always implies
sharing personal information with a second party which has to be trusted [12]. This second
party could make use of this personal information from which another security leakage
concludes. Furthermore, biometric information has to be stored in databases in a secure
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way which is rarely the case. Using different biometric templates for different applications
is required as well [59]. Considering such critical issues the marriage of biometric and
cryptographic techniques becomes non-trivial.

A new field of research has been established to attend to these issues which goes by the
name of “biometric cryptosystems”. Until now only a fistful of scientific articles attending to
biometric cryptosystems have been published. Approaches of how to generate cryptographic
keys out of biometric measurements have been proposed [6, 20, 81]. Furthermore, techniques
of how to hide and retrieve user specific cryptographic keys in and out of a biometric
information [35, 36] and how to generate several different forms of biometric templates
from a single biometric measurement have been suggested [59, 60]. Although some of these
publications may be aimed at different issues, all publications try to merge cryptographic
and biometric techniques in one way or another.

This work provides an exhaustive overview of literature concerning biometric cryptosystems
which comprises a meaningful classification of existsing systems by abstracting the aim of
these. This turns out to be challenging because over a period of time several notations
have been established to describe biometric cryptosystems, additionally different human
characteristics are used in different approaches. Furthermore, differences and similarities of
proposed techniques are discussed with respect to all relevant parameters of a cryptographic
system.

Subsequently a more practical insight into the area of biometric cryptosystems is given.
Using the iris as one of the most unique human characteristics two different approaches
are pursued to implement several iris-based biometric cryptosystems. Applied iris recogni-
tion algorithms are explained in detail. This includes the preprocessing, feature extraction
and matching process of these algorithms. Additionally, prior generic aspects, preliminaries
and preconditions concerning these approaches are discussed in detail, which is rarely done
in existing literature. Finally, performance evaluations of these systems are analyzed and
compared to each other.



Chapter 2

Biometrics

A biometric is defined as a unique, measurable, biological characteristic or trait for automat-
ically recognizing or verifying the identity of a human being. Statistically analyzing these
biological characteristics has become known as the science of biometrics. These days, bio-
metric technologies are typically used to analyze human characteristics for security purposes.

Security applications (especially cryptographic systems) need certain private information
to authenticate a persons privilege. In the science of biometrics this private information is
replaced by personal information filtered out of human characteristics. These human charac-
teristics are aquired with adequate aparatuses, analysed and distinct features are extracted.
In an so-called enrollment process a user registers with the system by presenting biometric
data to it. The system generates a so-called biometric template for the user and stores it
in a database. At the time of authentication another biometric input is acquired, processed
and compared with the previously stored template in the matching process. This form of
authentication provides considerable advantages over simple password-based authentication.
As a consequence of this, biometrics are combined with cryptography to enhance security.

In the following chapter first the merge of both cryptography and biometrics is pointed out
(Section 2.1). Then several commonly used biometric characteristics are listed and their
properties are examined (Section 2.2). Afterwards potential variations of these biometric
characteristics are explained (Section 2.3). Then the fundamentals of a so-called biometric
authentication system are examined in detail (Section 2.4). Subsequently the terms biometric
key (Section 2.5), biometric template (Section 2.6) and biometric hash (Section 2.7) are
declared. In the end of this chapter entire biometric cryptosystems are classified and it is
shown how performance is measured in such a system (Section 2.8).

2.1 Merging Biometrics and Cryptography

Cryptography is a very important field in the science of computer security. Many crypto-
graphic algorithms are available for securing any kind of information. For all traditional
algorithms the security depends on the secrecy of the secret or private key when a person
deploys a symmetric or a public key system, respectively. The person chooses a password
that is used to encrypt the cryptographic key and this key is then stored in a database
(these keys are long and random and thus hard to remember). In order to retrieve the
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key back, the person enters the password which will then be used to decrypt the key. This
means the authentication (decryption) in such a cryptographic system is possesion-based.
The possesion of the decrypting key ensures that the user is legitimate. This is one security
leakage in generic cryptographic systems which can be avoided by introducing biometric
authentication.

In general cryptographic systems two different types of systems can be distiguished, namely
symmetric systems, where all participants of the secret communication share the same secret
key, and public key systems, where pairs of a private key and a publicly available key are used
to encrypt and decrypt secret information. While systems of the first category are typically
designed for efficient cipher systems, the second type is used mainly in digital signatures or
protocols to securely exchange secret session keys. In either category it is required to protect
the private keys from unauthorized access. As cryptographically strong keys are rather large,
it is certainly not feasible to let users memorize their personal keys. As a consequence of
this digital keys are typically stored on smart cards or in databases and retrieved through
password-based authentication as mentioned previously. Since the password is not directly
tied to a person, the system is unable to differentiate between a legitimate person and
an attacker. Additionally, the security of the cryptographic key is weak due to practical
problems of remembering various passwords or writing them down to avoid losing data and
furthermore, passwords can simply be guessed by attackers (especially those which depend
on social circumstances).

Thus key management systems are the first field where biometrics can be introduced to
enhance security. Several approaches have been made attending to secure password-based
storage of cryptographic keys. The authentication procedure can simply be replaced through
biometric authentication [35, 36]. Depending on the biometric characteristic which is used
to retrieve the key the level of security is increased. Another way of introducing biometrics
would be to strengthen the already existing password by means of biometrics to form a kind
of two-factor authentication system [49, 52] instead of replacing the password. A biometric
input can even be used directly to generate a cryptographic key [6, 20, 81] or a biometric
hash [77, 79, 90] out of it.

In conclusion, key management is the major point in the science of cryptography where
biometrics can be applied to enhance the security of the system. Still there are several ways
in which biometrics can be used to build a cryptographic key management system which
implies there are many different types of biometric cryptosystems and these use different
types of human traits. In the following subchapter most of these will be discussed in order
to give an overview in how to use these different types of human characteristics for security
purposes.

2.2 Biometric Characteristics

There are several biometric characteristics for various applications. However, each of these
biometrics has its strengths and weaknesses and therefore the choice of the biometric depends
on the application [87]. Furthermore, to make use of these biometrics one must figure out
which human characteristics are the most suitable for the required application and how to
use the features these characteristics provide. Each of these biometrics are acquired using
different apperatuses [88]. Therefore the matching process of a biometric authentication has
to be adapted to the biometric characteristic. Additionally, the choice of the biometric input
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Examples of physiological (static) and behavioral (non-static) biometrics: (a) fingerprints (b) keystroke
dynamics (c) voice (d) hand geometry (e) signature (f) iris.

has an influence on several magnitudes such as the performance of the whole system. Over
the years several characteristics have been established, which can be classified as follows:

1. Physiological (static) characteristics: These are characteristics related to the na-
ture of the human body such as fingerprints, face, hand geometry or the iris. In other
words, these are characteristics a person can hardly influence. Furthermore, these char-
acteristics do not change over time. These characteristics only change under special
circumstances, for example injuries could change a person’s hand geometry.

2. Behavioral (non-static) characteristics: These are characteristics related to the
behavior of a person such as signature, voice or keystroke dynamics. These character-
istics do change slightly over time, for example the signature of a person could change
over the years. One can imagine that behavioral characteristics are more easily to
forge, for example, an imposter could learn to imitate a person’s signature.

In the following subsections the properties of some physiological as well as behavioral char-
acteristics are outlined. Most commonly used biometrics are shown in Figure 2.3. Subse-
quently, the way of how these biometric characteristics are acquired, and which features of
these characteristics can be extracted, is explained.

2.2.1 Fingerprint Recognition

To start with physiological characteristics, fingerprints are the oldest traits which have been
used for more than a hundred years. In fingerprint authentication systems mostly friction
minutiae-based features are used while systems are rarely designed to use an entire image of
a fingerprint [48, 58]. Therefore the result of a common fingerprint authentication system’s
data acquisition (scan) would be a set of minutiae points. These so-called minutiae are skin
ridge impressions of fingers which only slightly change over time. These minutiae points
serve as biometric features and are compared to each other in the matching process. This
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means there is a whole set of features which has to be compared to another set of features
while it is not sure if during the capturing of a persons fingerprint the whole set of features
is recorded or just a small subset due to bad quality of the fingerprint (if hash functions are
involved, this circumstance becomes a critical issue which will be pointed out later).

The main difficulty within fingerprint biometrics is the inability to somehow normalize fin-
gerprint data, for example, by finding specific fingerprint orientation and its center. If finger-
print data is not normalized, then all calculations resulting out of minutiae are destined to be
orientation/position-dependent. The way to overcome this difficulty is to have the matching
algorithm deal with transformations of fingerprint data. Much work has been done to solve
the problem of aligning fingerprint images including the use of high curvature points and
orientation lines.

Annother challenge is to deal with low quality images of fingerprints, which in the worst
case do not include distinct features (minutiae points) necessary for the matching process.
Enabling a system to authenticate a person if only a subset of features are captured during
the acquisition of the fingerprint is still a topic of research.

2.2.2 Iris Recognition

Another physiological characteristic is a person’s iris, the sphincter around the pupil of a
person’s eye. Data acquisition is performed with a special camera (iris scanner) which is
able to capture the iris of a person’s eye [7]. Thus one disadvantage of using iris scans
for authentication is that all persons to be authenticated have to fully cooperate with the
system.

Breakthrough work to create iris recognition algorithms required for image acquisition and
matching were developed by J. G. Daugman [18, 19], University of Cambridge Computer
Laboratory. Daugman’s algorithms for which he holds key patents are the basis of all today’s
commercially used iris recognition systems. The algorithm of filtrating information out of
such an image of a person’s eye involves several steps, which can be summarized as follows:
First the iris has to be extracted out of the whole image of the person’s eye. Therefore the
center of the iris and the inner and outer boundaries have to be detected. This detection
has to be performed carefully because of the dynamic dimension of the pupil and dilation of
the person’s eyelid. To solve this problem Daugman proposed a method called “exploding
circles”. The main idea of this concept is that there are strong changes of brightness in the
image at these boundaries which can be detected using cicular integrals. In the beginning
an initial center of the pupil is approximated. Then circular integrals are calculated. The
derivation of such integrals is very high at the boundaries where the brightness changes
drastically. So applying this method for an approximated center, radii to the boundaries
between the pupil and the iris and between the iris and the sclera are calculated. These radii
are then used to compute a new center of the pupil and the whole method is applied again
until convergence is achieved.

In the next step so-called “analysis bands” are defined for the extracted iris (in form of a
ring). These bands are used to position points which are then explored using 2D Gabor filters.
These 2D Gabor filters are designed to denoise the acquired signal. This process must not
be confused with the smoothing of a signal. Then iris ring is unwrapped by mapping polar-
coordinates to cartesian-coordinates which results in a rectangular image. In the rectangular
image the radii of the previously defined analysis bands is fixed and every explored point is
a center of a 2D Gabor wavelet. For this wavelet the coefficients are generated out of which
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Biometric
Inputs

(a) (b) (c) (d)

Biometric
Sensors

Figure 2.2: Examples of biometric sensor and the according biometric inputs for physiological (static) biometrics:
(a) fingerprints (b) iris (c) hand geometry (d) face.

two bits are extraced. This method is applied again until enough bits are extracted. The
rectangular image of the iris mostly includes some part of the eyelid and eyelashes. Eyelashes
are seen as noise which have to be detected during the unwrapping of the iris. This is done
by calculating a bit-mask where one bit represents a region of the iris and is set to 0 if any
noise is detected and otherwise to 1. Other forms of noise could be, for example, camera
pixel noise or specular refletions.

The result of the whole procedure is a so-called iris-code (for example 2048-bit long in J. G.
Daugman’s approach). This iris code serves as a biometric template which can be stored in
a database together with the bit-mask.

After the extraction of the iris-code the matching process can be performed using several
metrices, for example, the Hamming distance. This could be easily done by just bitwise
XORing two iris-codes and comparing the number of mismatching bits to a specific threshold.

2.2.3 Face Recognition

In a face recognition system images of the whole face of a person are captured out of which
unique key features are extracted to identify persons reliably [14, 85]. The acquired set of
key features include relative distances between characteristics such as eyes, the nose, the
mouth cheekbones and the jaw. Using all of this information a unique template is created by
applying dimension reduction. In generic face recognition systems this is done by applying,
for example, Eigenfaces [85]. This template may then be compared to databases of facial
images to identify a person.

While a face-recognition system has high acceptance, its accuracy is low [25]. The problem
arises mainly from three factors: insufficient capability of representing features in the fea-
ture space and within-class and between-class variations. Most face recognition systems are
highly sensitive to variance of a person’s face. Unfortunately there is plenty of variation, for
example small movements of the head or changing haircuts. Thus, dimensionality reduction
is performed to improve the capability to represent features and harmonizing the image
taken.
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Biometric
Inputs

(a) (b) (c)

Biometric
Sensors

Figure 2.3: Examples of biometric sensor and the according biometric inputs for behavioral (non-static) biometrics:
(a) keystroke dynamics (b) voice (c) on-line signatures.

2.2.4 Hand Geometry

Hand geometry is a biometric that identifies users by the shape of their whole hand. For data
acquisition so-called hand geometry readers are used to measure a user’s hand along many
dimensions [62, 63]. These measurements serve as features which are used to authenticate a
user comparing these against previously stored ones.

Since hand geometry is not thought to be as unique and widespread as fingerprints, fin-
gerprinting remains the preferred technology for high-security applications due to various
forgery opportunities such as changing lengths of fingers with caps. Thus it is advisable us-
ing hand geometry combined with fingerprints to form a so-called two-factor authentication
system.

2.2.5 Speaker Recognition

One biometric characteristic which tends to be very difficult to handle is voice. On the one
hand voice biometrics are behavioral characteristics because it depends on the way a person
talks (pronounciations, volume of speech). On the other hand the voice can be seen as a
physiological characteristic of a person as well.

Data acquisition is first performed during the enrollment process where a person utters a
password or passphrase to a device (usually a microphone) when prompted to do so. This
signal is digitalized with an analog to digital converter and subsequently analysed resulting in
a so-called voice model of a person [10]. In the authentication process the repeated utterance
of the same password by the same person should authenticate a legitimate user. If a correct
password is necessary the whole system is called token-based [49, 50]. Uttering an incorrect
password (token) the user will be rejected.

Solving this difficulty voice authentication would offer many facilities, for example a person
could be identified during a phone call. However, a forgery could still attempt to record a per-
son to gain possession of a password. Voice is one human characteristics where the temporal
order of the feature is important which is typical behavioral biometric characteristics.
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2.2.6 Signature Verification

Speaking of signatures as a biometric characteristics of a person one has to distinguish
between so-called “off-line” and “on-line” signatures:

Off-line signatures are for example signatures on documents where nearly only “spatial
information” such as features of curves can be analyzed to identify a specific person, which
is very unsatisfying. This is because off-line signatures refer to the result of a complete writing
process. In other words there is no information but the raw image of the signature. This
image can be modified with the technique of dynamic time warping to correlate the result
with other acquired off-line signatures [26]. Furthermore, shape-matching can be performed.

On-line signatures are signatures which are acquired using a palm or tablets. Therefore
access to signals during the writing process, so-called temporal information, is demanded [9,
32, 54]. This means using on-line signatures the physical activity of signing is mearsured and
analysed. By doing so many additional signals are offered which can be analyzed to identify
a person. These signals include the position of the pen, the time, the angle of the pen and
the pen pressure. Additionally the analog-digital conversion is performed. Some important
features calculated out of these signals are for example the number of pen-ups/downs, the
average of absolute writing acceleration in y-direction, the effective average writing velocity
in x-direction and the time it took the person to sign [88]. Thus there are plenty more
features to analyze with on-line signatures.

2.2.7 Keystroke Dynamics

Keystroke dynamics is another behavioral biometric characteristic which could be addition-
ally used to identify a person [52, 56]. For data acquisition the keyboard serves as biometric
sensor with which two events, the “key down” and “key release” event, are measured. Every
user develops a specific timing pattern when typing a password called keystroke dynamics.
Duration and latencies of a user’s keystroke dynamics are measured by the authetication
system to enhance security. This means the correct password is necessary but does not suf-
fice any more if the keystroke dynamics are measured as well. Very distinctive durations can
be measured out of letters often following behind each other such as the “th” in an English
password for example.

Problems occur within a system which used keystroke dynamics as a biometric characteristic
when keyboards are changed or if a user suffers from a hand injury. The approach of using
keystroke dynamics is a simple example for combining the knowledge of something with a
biometric characteristic.

2.2.8 Hybrid Biometrics

Hybrid biometrics also called multi-factor authentication scheme is an approach to enhance
security by combining two or more biometric characteristics. A weighted set of biometric
characteristics of a person could be used for identification, for example the image of a person’s
face and a spoken password could be combined [57]. By doing so forgery attempts become
nearly impossible.

Merging features of two or more biometric characteristics still seems to be a tough challenge
and even more an intelligent weightage of these characteristics and how a set of authentica-
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Figure 2.4: Variations of biometrics: top: variations of an individual’s face image due to pose and lightning. bottom:
variation of an individual’s iris image due to lightning and diltation of eyelids.

tion processes are combined to form one hybrid system. Furthermore, hybrid biometrics can
be used if one of the biometric characteristics is not available from a person, for example,
due to an accidental injury so that there have to be other ways for authentication.

2.2.9 Other Biometric Characteristics

There are plenty more biometric characteristics such as physiological characteristics like a
person’s retina or DNA or behavioral characteristics like gait or lip movement [87]. However
on these biometric characteristics only little research has taken place in terms of combining
these characteristics with an cryptographic authentication system.

2.3 Biometric Variance

In a password-based authentication system an accurate matching is no problem because the
result is perfectly calculated, therefore the matching process is not difficult to engineer. In a
biometric authentication system two measurements of the same person’s biometrics cannot
be expected to be equal.

Taking a look at the above biometric characteristics one can imagine how all of these bio-
metrics can vary from one measurement to another depending on the biometrics properties.
For instance, a person’s haircut could drastically change the output of a face recognition
system [14]. Variations of several human characteristics are illustrated in Figure 2.4. Thus
the system should be tolerant in a way so that similar but not perfectly equal inputs are
accepted. Therefore the difficulty for an authentication system lies in having to be as tol-
erant as to authorize legitimate users. On the other hand, if the system gets too tolerant
it will perhaps accept unauthorized users as well. Thus a trade-off between the amount of
fuzziness the system is able to handle and the security it provides has to be found.

There are various reasons for signal/representation variations, such as inconsistent presenta-
tion, irreproducible presentation and imperfect signal/representational acquisition pointed
out in [87]. One promising way to deal with these forms of fuzziness is to find the most
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Figure 2.5: The Enrollment process: biometric data is acquired, analog-to-digital conversion is performed, features
are collected and a reference sample is stored

significant biometric features of a person and use these in the authentication process.

2.4 Biometric Authentication Systems

A biometric authentication system is a system which is able to perform automated authen-
tication of users depending on their physical and behavioral characteristics (Section 2.2).
Such an authentication system consists of several basic entities:

• Biometric Sensor: the biometric sensor performs the data acquisition and therefore
the analog to digital conversion. The output of the biometric sensor are the raw bio-
metric data. The sensor is used at the enrollment of a user and every time a user needs
to be authenticated.

• Feature Extraction: in the feature extraction the raw data are processed and ana-
lyzed. The result of the feature extraction should be the most distinctive features for
every user. Feature extraction is performed during the enrollment process as well as
during an authentication.

• Database: in almost all biometric authentication systems a database is required.
This database is used either to store cryptographic keys which are released when an
authorized user represents biometric features to the system or the database could store
raw biometric features or a hash value of these.

• Matcher: the biometric matcher is responsible for the matching process which should
– as mentioned before – in some way be tolerant but should not provide any security
leakage. Matching is performed whenever a user needs to be authenticated.

The two basic processes of a biometric authentication system are the “enrollment” process
and the “authentication” process [88]. In the enrollment phase of a biometric authentication
system, all users are registered with the system, and references are stored in the database of
the system. On the other hand, the authentication process denotes the process of identity
verification or determination. In this phase the authentication system performs a comparison
between the presented biometrics and the stored references of the previous enrollment phase.
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Figure 2.6: Authentication process: collected data is compared to reference data

2.4.1 Enrollment

In the enrollment phase, as shown in Figure 2.5, a user’s biometric data is presented to
the authentication system for the first time. This analog data, depending on the biometric
characteristic, then needs to be digitalized for further use. The result of this analog-digital
conversion are so-called “enrollment samples”. These samples are then preprocessed, features
are extracted and the extracted features are then stored in databases.

In most biometric authentication systems not just one but several data acquisitions are
performed during the enrollment of a single user. With the help of several biometric sample
magnitudes such as standard and mean deviations of biometric features can be calculated
and thus a more representative sample can be calculated or boundaries can be generated
for these features. Furthermore, the acquisition of several samples can be used to filter
out the most stable features where deviation values are small. Thus common biometric
authentication systems demand at least two or three biometric samples of a user during the
enrollment process.

2.4.2 Authentication

After a user has been enrolled the biometric authentication system should be able to au-
thenticate the user as illustrated in Figure 2.6. Once again biometric data is presented to
the system and digitalized. The obtained data, the so-called “verification samples” which
are of the same (raw) data format as the enrollment samples resulting out of the enrollment
phase, are preprocessed and features are extracted.

In the matching process the derived features are then compared to the template resulting
from an earlier enrollment process. If the matching succeeds, then the user is authorized,
otherwise the user is rejected.

2.4.3 Verification and Identification

There are two modes in which a biometric authentication system can operate, namely “ver-
ification” and “identification” [88]. In the first mode a user claims to be someone who needs
to be verified and thus only an one-to-one comparison has to be performed by the biometric
authentication system while in the second mode a user needs to be identified and therefore a
one-to-many comparison has to be performed. Furthermore, the process of identification can
be modeled as sequences of one-to-all verification and therefore the fundamental underlying
mechanism is always verification.
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2.4.4 Performance Measurement

Due to the fuzziness of the matching process of biometric systems several errors occur. In
generic biometric verification systems there are two main types of errors:

• Misrecognizing measurements of two different persons to be of the same person, called
“false acceptance”.

• Misrecognizing measurements of the same person to be of two different persons, called
“false rejection”.

The performance of a biometric system is commonly described by its “false acceptance rate”
(FAR) and “false rejection rate” (FRR). The FAR and FRR are commonly accepted and
quoted in almost all publications concerning biometric authentication systems. These two
measurements can be controlled by adjusting a threshold, but it is not possible to exploit
this threshold by simultaneously reducing FAR and FRR [39]. Both have to be traded-off, as
reducing FAR increases FRR and vice versa. For example, if an authentication scheme tends
to be tolerant with respect to accepting similar biometric data, the FAR of this system will
be very high while the FRR would be satisfying.

Another important performance index of a biometric system is its “equal error rate” (EER)
defined as at the point where FAR and FRR are equal. A perfect system in terms of accuracy
would provide an EER of zero.

Unfortunately, however, over several years of investigation, a perfect biometric verification
system has not been developed. Additionally the FRR/FAR numbers quoted by biometric
vendors are often unreliable. In most cases these values were calculated under unrealistic
circumstances or several preassumptions were taken which do not hold in practise.

Beyond that there are some other commonly used measures for technical evaluation of a
biometric system including the above measurements and furthermore, False Match Rate,
False Non Match Rate, Receiver Operating Characteristic, Failure to acquire Rate and the
Failure to enroll Rate. In Table 5.1 these evaluations are summarized and explained.

2.5 Biometric Keys

In the sense of cryptography a key is a piece of information with which one is able to encrypt
a plaintext into a so-called ciphertext and vice versa during the decryption process.

In biometrics it is aimed at deriving a cryptographic key from one or more biometric samples
during the enrollment phase of the biometric authentication system. This key may later be
regenerated using another biometric sample that is close to the original samples. The basic
idea of biometric-based keys is that the biometric component performs user authentication,
while a generic cryptographic system can still handle the other components of containment
such as secure communication [87].

The result of the data acquisition are raw biometric data which are further processed in
the feature extraction step. The result of the feature extraction is a set of features called
“feature vector”, denoted by Φ. This feature vector Φ, consists of k features φi such that
Φ = {φ1, ..., φk}. Every φi represents the value of a measured feature of a user.

For generating a cryptographic key of a specific length m out of this set of collected features
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Measure Description
Failure to Acquire Rate Ratio between numbers of biometric samples

which could not been correctly acquired due
to some reasons and total number of acqui-
sitions

Failure to Enroll Rate Ratio between numbers of users which could
not been enrolled correctly due to some rea-
son and total number of users

False Acceptance Rate (FAR) Ratio between numbers truly non-matching
samples which are matched by the system
and total number of tests (including to first
two rates as well)

False Rejection Rate (FRR) Ratio of truly matching samples, which are
not matched by the system and total num-
bers of tests (including to first two rates as
well)

Equal Error Rate (EER) The point on the error rate diagrams where
FAR and FRR are equivalent

False Match Rate (FMR) Ratio between numbers truly non-matching
samples which are matched by the system
and total number of tests (The FMR does
not include the first two rates)

False Non Match Rate (FNMR) Ratio of truly matching samples, which are
not matched by the system and total num-
bers of tests (The FNMR does not include
the first two rates)

Receiver Operating Characteristic
(ROC)

The diagram of a verification system where
the FMR and the FNMR specify the x and
the y-axis

Table 2.1: Overview of the most common evaluations in biometric authentication systems

it requires that there be a way of mapping Φ to a so-called “feature descriptor” b of length
m: b = (b1, ..., bm) where bi ∈ {0, 1} and m ≤ k. This is mostly done by applying functions
which match the φis of Φ against some thresholds specified by the system [49, 52].

One very simple way of generating such a feature descriptor would be to obtain the i-th bit
bi of the feature descriptor b by comparing φi to a fixed threshold and assigning bi to be 1
or 0 depending on whether φi was less than or greater than the threshold. Nevertheless, this
simple approach rarely suffices in practice.

Once feature descriptors are derived these should separate persons in the sense that descrip-
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tors produced by the same user are “sufficiently similar” so that there is a small “intra-class”
variation, but ones produced by different users are “sufficiently different” so that there is a
large “inter-class” variation. If this property is satisfied, and the features can be reproduced
reliably, then the feature descriptor could be a candidate for use as a person’s biometric key.
Taking a look at a person’s biometric characteristics (see Section 2.2) one can imagine that
the variations of these characteristics take a huge influence on this procedure and therefore
the challenge in generating such keys lies in finding those features which are highly consistent
from one measurement to another but still tend to be distinctive for the particular person.

Beside the property of separating users there are other important requirements for creating
such a biometric key. The most important requirements can be summarized as follows [2]:

1. Key Randomness: The produced key should appear to be random to any adversary
even if the biometric data which was used to derive the key is available to the adversary.
Furthermore, similar persons whose biometric data is close should not receive similar
keys. Otherwise this would give an adversary the opportunity to filter information out
of several biometric data. The adversary could correlate these to find out which features
are extracted and thus the adversary could learn how the key generating mechanism
works. This requirement is very similar to those of hash functions.

2. Key privacy: An adversary should not learn any useful information about a biometric
given the biometric data used to derive the key. In addition, access to the key should
not help an adversary to receive any information of how the key was generated, altough
this scenario is commonly not considered.

3. Key entropy (strength): Instead of developing longer cryptographic keys to resist
brute force attacks, a more intelligent approach might be to aggregate features and
parameters from an individual in such a way that their correlation generates a key
that is much stronger than the individual size of the actual key.

4. Key uniqueness: The uniqueness of a biometric key will be determined by the unique-
ness of the individual biometric characteristics used for deriving the key. Instead of
trying to find a single unique feature, a biometric key needs to find only a collection
of somewhat unique features or parameters that when assembled collectively create a
unique profile of an individual. The incorporation of a simple passphrase will improve
the accuracy of the biometric key by incorporating “something you are” with “some-
thing you know”. Furthermore, a multibiometric key could be generated by combining
several biometric characteristics. This would increase the security of the generated key
although it is challenging to combine several features extracted out of several biomet-
rics into one biometric key (features have to be weighted and adequate functions have
to be defined).

5. Key stability: A major problem with biometric authentication is that an individual’s
set of features collected during the enrollment phase and the reference features can
vary from session to session. This variation can occur for a number of reasons including
different environments according to lighting, orientation, emotional state or physical
changes like facial hair, glasses or cuts. The goal is to find a set of relatively stable
features for which the amount of variation can be reduced to an acceptable number
of bits. If this is the case a valid user only has to search a very limited key space to
recover an encrypted transmission while making a brute force search by an attacker
remain difficult, if not impossible.
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Often biometric keys get confused with cryptographic keys. While cryptographic keys are
often combined with biometric data, a biometric key is directly derived from the biometric
data. Thus not all biometric authentication systems comprise a biometric key generator. In
such systems cryptography is decoupled from biometrics.

2.6 Biometric Templates

A cryptographic template is any piece of information that is stored on the system for the
purpose of re-generating the cryptographic key or performing comparisons [4].

A biometric template could include several data. It could just consist of the reference sam-
ples acquired during the enrollment process, perhaps encoded in some way. Furthermore, a
biometric template could be seen as the set of features extracted in the feature extraction
process or the further processed features, the feature descriptor. Calculated boundaries for
the deviation of biometric data could also be stored as part of the biometric template or
parameters of feature extracting functions. In general terms when speaking of a biometric
template it is referred to biometric data modified in some way.

For biometric data biometric templates are usually stored unprotected in a central database
[84]. During authentication of a user the comparison of templates is still performed using
decrypted templates even if the stored ones are encrypted. This decryption process can be
compromised as well. If the biometric database is compromised and an intruder obtains
a person’s biometric template, using this biometric will be impossible for the rest of the
person’s life. Thus biometric templates have to be handled carefully.

2.7 Biometric Hash

In cryptography a hash function is a reproducible method of turning some kind of data
into a (relatively) small number that may serve as a digital “fingerprint” of the data. Hash
functions are designed to be fast and to yield few hash collisions in expected input domains.
In hash tables and data processing, collisions inhibit the distinguishing of data, making
records more costly to find. A hash function must be deterministic, which means if two
hashes generated by the same hash function are different, then the two inputs are different
in some way.

Hash functions are usually not injective, thus the computed hash value may be the same for
different input values. This is because it is usually a requirement that the hash value can be
stored in fewer bits than the data being hashed. It is a designated goal of hash functions to
minimize the likelihood of such a hash collision.

A desirable property of a hash function is the mixing property: a small change in the input
should cause a large change in the output. This is called the avalanche effect.

The goal of a biometric hash function is to find a function for mapping biometric features into
a value space of defined dimensionality, adopting three of the key properties of cryptographic
hashes [88]:

• Mapping from a (very) large value domain to a smaller value space.

• Infeasibility to find input that maps pre-specified outputs.
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• Infeasibility to find any two distinct biometric signal inputs originating from any two
different users, which map to the same output.

Biometric templates (see Section 2.6) do not satisfy security requirements because of several
vulnerabilities. According to storing a collection of extracted features of a user’s biometrics,
this set of features could be transformed by a hash function H into a so-called hash value
H(Φ). This transformed version of collected features H(Φ) could be stored as a so-called
“private template” during the enrollment process [11]. When a user wants to authenticate
to the system, again features are collected, hashed and compared to a hashed template of
an earlier enrollment process. Therefore the matching process is performed in another space
and if a user’s template is ever compromised, a new space for the matching process can be
issued by just changing the hash function H.

2.8 Classification of Biometric Cryptosystems

Over the years a commonly accepted classification of biometric cryptosystems has been
established [27, 87]. Two different types of biometric cryptosystems, namely key release
schemes and key generation/binding schemes, can be specified as follows:

1. Key Release Scheme: In a so called key release scheme the biometric authentication
is completely decoupled from the cryptographic part of the system. Thus the user’s
key and the biometric data are independent of each other which is the major benefit
of the key release approach. In the authentication process acquired biometric data is
compared against a reference templated acquired during enrollment. If this comparison
succeeds with respect to some applied metric, the cryptographic key is given to the
user. Therefore this key could easily be modified or updated at any time in case it
is compromised, which means key release schemes provide cancellable biometrics [59],
which will be described later.

This is an easy approach which could be for example realized with fingerprint bio-
metrics. A user could present a fingerprint to the system which matches the acquired
samples against a stored fingerprint template and if the matching succeeds, gives a
key to the user. Nevertheless, key release schemes are not frequently used although it
would be easy to implement a biometric cryptosystem with this approach because of
the following vulnerabilities:

(a) The biometric template which is not secure has to be stored in a database. This
is a very critical subject because biometric templates could be stolen.

(b) Due to the fact that authentication process and the key release are decoupled it
would be possible to manipulate the biometric matching process.

(c) The cryptographic key has to be stored as part of the template.

Therefore a biometric cryptosystem based on the key release scheme is not appropriate
for high security applications.

2. Key Generation/Binding Scheme: In the key generation scheme the user’s key is
directly derived from the user’s biometric data (=biometric key) and therefore does
not have to be stored anywhere. This means a user presents biometric data to the
system which generates a key out of the extracted features. This key is then given to
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the user who could use it to, for example, encrypt private data. The major problem
seems to be that in this approach a key could not be changed if it was compromised
once. To achieve the benefits of a biometric cryptosystem with cancellable keys it is
common to combine the user’s biometric data with the cryptographic key. For example
a reference sample of a user’s biometrics combined with this key could be stored as
biometric template. During the authentication process biometric data is presented
to the system with which the key can be detached from the stored template. A more
secure environment is provided by combining the key and the template together, which
on the other hand makes it a bit more difficult to implement provided that the key is
intelligently mixed with the biometric data. Therefore it is harder for an adversary to
get into the possession of the user’s key or the biometric template because these won’t
appear raw in a database. Additionally the biometric matcher performs authentication
and key release in a single step.

2.9 Cancellable Biometrics

Unlike simple PINs or passwords, biometric characteristics are permanently associated with
a person and cannot be changed. Thus a great disadvantage comes up with biometric cryp-
tosystems based on the classic key generation scheme. Here the cryptographic key is directly
derived from a person’s biometrics, which means, if the biometric data is stolen, for example
by capturing images of a person’s iris or by recording a person’s voice, the biometric data
becomes useless and is lost forever. Furthermore, biometric data becomes useless for all ap-
plications it was used because a person can potentially be tracked from one application to
the next by cross-matching databases [59, 60].

To overcome this disadvantage an intermediate step has to be established, which adds secret
information. A commonly used approach is to apply transform functions to the biometric
data. If a transformed sample of a person’s biometrics is compromised only the transform
function, which is either directly applied to the biometric data in the signal domain or
later when the biometric features have already been extracted, has to be changed. The
most important condition these functions have to fulfill is invertability so that neither the
comparison of transformed data to the raw nor the comparison to another transformed
sample reveals any useful information.

2.10 Transforms and Filters

Signals do not exist without noise and therefore noise has to be reduced to proceed with
further analysis [76]. Denoising of signals must not be confused with smoothing of signals,
while smoothing removes high frequencies and retains low frequencies, denoising attempts
to remove whatever noise is present and retain whatever signal is present.

Biometrics are noisy, which means that two measurements of the same biometric character-
istics, for example, capturing the image of a person’s face, will not result in the identically
same data. So denoising functions are used to denoise biometric signals with respect to, for
example, observing several facial expressions in a face recognition system. These functions,
for example wavelets, work as feature filters and obtain good results in the biometrics [30].
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2.11 Error Correcting Codes

Another way to repress the fuzziness of biometric measurements is to introduce error cor-
recting codes. The goal of an error correcting code is to transmit a message m through
a noisy communication channel so that no information is lost [36]. To achieve that, m is
mapped to a longer string c with the property of correcting single bit errors up to a specific
threshold depending on the length of c. With the ability of error correction the receiver can
reconstruct c out of a received c′ and thus is able to calculate the intact message m.

More formalized an error correction code contains a large set of codewords C ⊆ {0, 1}n. If
an l-bit message m has to be transmitted, where l < n is necessary, a function g : M → C
has to be defined. Here M = {0, 1}l represents the message space while g is a one-to-
one mapping from messages of M to codewords of C. Furthermore, a decoding function
f : {0, 1}n → C

⋃{ø} is needed which maps a codeword of the received message to its
“nearest” codeword in C or if this is not possible, puts out ø to indicate decoding failed.

Error correcting codes can be used to overcome the fuzziness of biometric measures as well:
for example, denote b ∈ {0, 1}n a feature descriptor resulting out of a biometric measurement
and k ∈ {0, 1}l a cryptographic key with which the feature descriptor should be combined.
First the representation of k in C is calculated, k′ = g(k), and afterwards the bitwise XOR of
k′ and the feature descriptor b, b̂ = b⊕k′, is computed. The XORing of these two bitstreams
represents the binding of the cryptographic key with the user’s biometrics. This is first done
during the enrollment process and the combination of the user’s biometrics and the key
(prepared with an error correcting code) is then stored in a database as biometric template.
During the authentication process a person presents biometric data to the system, a feature
descriptor b′ is extracted and b′⊕ b̂ = b′⊕b⊕k′ = k′′ is calculated. In the end the decryption
function f is applied and if f(k′′) = k the authentication succeeds. Thus the error correcting
code is used to overcome some bit errors which were produced due to the variance in the
captured biometrics. This means, it is assumed that if two biometric measurements are from
the same person, these are sufficiently similar so that only some bit errors occur, which can
be corrected with common error correcting codes.

One class of most commonly used error correcting codes are so-called “Reed-Solomon” codes
[33]. Reed Solomon codes are well-established codes based on polynoms, where message of
length l to be encoded is represented as the evaluation of a polynom of degree l−1 (see Section
4.4.2). Another class of error correcting codes are so-called “Hadamard Codes” [3, 47]. These
Codes use special kind of matrices to detect/correct single bit errors (see Section 4.4.1).



Chapter 3

Literature on Biometric
Cryptosystems

This chapter summarizes published achievements with respect to generating cryptographic
keys out of biometric data, secure storage of biometric templates and other related topics.
In the first subsection (Section 3.1) the first and classic algorithm to derive a key from a
person’s biometrics called “Biometric Encryption” is discussed. Subsequently the so-called
“Private Template” scheme (Section 3.2) is presented where the biometric template itself or
a hash value of it is used as a cryptographic key. The combination of “knowing something”
and the behavioral characteristics of a person for authentication purpose is described in the
a technique called “Password Hardening” (Section 3.3). Then one of the most important
milestones namely the “Fuzzy Commitment” scheme and an improvement of it with respect
to the alignment of biometric data called “Fuzzy Vault” are described (Section 3.4) and
afterwards several papers resulting from these schemes, which deal with constructs called
“Fuzzy Extractors” and “Secure Sketches” (Section 3.5) are summarized. Accordingly, an
overview of a very new technique called “BioHashing” (Section 3.6) is given. Furthermore,
biometric cryptosystems which define intervals for the matching process (Section 3.7) and
the approach of Cancellable biometrics (Section 3.8) are summarized. At the end of the
chapter some other related work (Section 3.9) is discussed which does not fit into one of
these schemes and a discussion (Section 3.10) to classify the described approaches is given.

3.1 Biometric Encryption

In the following the first approaches of using biometric together with cryptography, resulting
in an algorithm called Biometric EncryptionTM are described. The goal of this algorithm
is to provide a mechanism for the linking and subsequent retrieval of a digital key using a
biometric such as a fingerprint.

In this algorithm a filter function is generated with the use of correlation which should
consistently produce the same output pattern for a legitimate user. This output pattern
is linked with a cryptographic key during the enrollment process using a so-called linking
algorithm which generates a look-up table. Furthermore out of the key an identification
code is generated and stored together with the filter function and the look-up table. If the



3 Literature on Biometric Cryptosystems 21

...

Biometric
Inputs

Image Pre-
processing

Output
Pattern c(x)

Linking/
Retrieving
Algorithm

Key

Bioscrypt

Hstored(u)
Look-up
Table

Encryption/
Decryption

Identification
Code

Database

Figure 3.1: The basic operating mode of the Biometric EncryptionTM algorithm

user wants to retrieve this key the user’s biometric is captured, another output pattern
is generated and a key is retrieved via a look-up table. Out of the retrieved key another
identification code is generated and matched against the stored one. The whole process of
the Biometric EncryptionTM algorithm is displayed in Figure 3.1.

The prior idea of generating a personal cryptographic key out of a person’s biometrics was
presented in a German patent by Bodo [6]. In Bodo’s approach a key was directly derived
from a person’s biometrics, thus this method would function as a pure key generation
system including the disadvantage of not being able to update the key, in case a person’s
biometric was comprised.

The original concept of the Biometric EncryptionTM algorithm was published by Soutar et
al. [81]. The patent comprises a description of how a whole public key cryptosystem, based
on fingerprint biometrics, should look like. In an enrollment phase a person’s fingerprint and
a unique random number (which is not further described) are combined. This is done by
applying a filterfunction, which is the Fourier transform of the fingerprint (a 2D grayscale
image) and furthermore the unique random number is generated out of the coefficients of
the transform. The goal is to retrieve this unique number each time an authentication takes
places. It is suggested that out of this number a public and a private key are generated to
form a public key cryptosystem. In the end of the enrollment phase information about the
filter function is stored on a smartcard. For the generation of the public and the private key
it is suggested that the enrolled person has to insert the card into some kind of apparatus.
Furthermore, fingerprints are scanned by a fingerprint scanner. The apparatus then generates
an optical Fourier transform of the scanned fingerprint. The Fourier transform signal is
incident on to a spatial light modulator programmed with the filter information from the
card. The inverse transform is generated out of the filtered signal and furthermore, used to
regenerate the unique number. In the end of the key generation phase the person receives a
public and a private key (the generation of these key out of the unique number is not further
explained).

This was the first practical approach of generating updateable cryptographic keys out of a
unique number and a person’s biometrics. Altough in the description of the system many
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things are left open, the elementary idea of applying functions to fuse biometrics with
random numbers and just storing these function parameters to regenerate the numbers is
presented.

In several publications Soutar et al. [12, 69, 70, 71] improved the above mentioned concept
and described the Biometric EncryptionTM algorithm in detail: During data acquisition en-
tire fingerprints are processed instead of using significant features of a fingerprint like in
feature-based biometric systems. The basis of the whole algorithm is the mechanism of cor-
relation which tends to be an effective mechanism for determining the similarity of biometric
data. In the following a two-dimensional image array is denoted by f(x) and its correspond-
ing Fourier transform is denoted by F (u), which serves as filterfunction. At the time of
enrollment a filter function, denoted by H(u), is derived from f0(x) (0 indicates the first mea-
sure). Subsequently, a correlation function c(x) between the initial measurement f0(x) and
any other input f1(x) obtained during verification is defined by c(x) = FT−1{F1(u)F ∗0 (u)},
the inverse Fourier transform of the product of the Fourier transform of a biometric input
and F ∗0 (u), where F ∗0 (u) is typically represented by H(u) (FT−1 is the inverse Fourier trans-
form). The output c(x) is an array of scalar values describing the degree of similarity. To
provide a degree of distortion tolerance, the filter function is calculated using a set of T
training images {f1

0 (x), f2
0 (x), ..., fT0 (x)}. The output pattern of f t0(x) is denoted by ct0(x)

with its Fourier transform F t0(u)H(u). The filter function H(u) represents a part of the
biometric template which is termed Bioscrypt.

To enhance security only a modified version of the filter function H(u) denoted Hstored(u)
is used as part of the biometric template. This is done by just storing the phase component
eiφ(H(u)) of the function. The output pattern c0(x) is then linked with a N -bit cryptographic
key k0 using a linking algorithm. The key k0 is generated using a RNG. Then a part (N
bits) of c0(x) are binarized using some threshold (commonly zero). The linking is performed
as follows: if the n-th bit of k0 is 0 then L locations of the selected part of c0(x) which are
0 are chosen and the indices of the locations are written into the n-th column of a look-up
table. This look-up table is stored as part of the Bioscrypt for the authentication process.
During the linking redundancy is added by applying a repetitive code (an error correcting
code could also be used here). Finally a combination of standard encryption and hashing
algorithms is used to derive an identification code denoted by id0 from the key k0. The
identification code id0, which can be seen as hash of k0, is stored as part of the Bioscrypt
as well.

During the authentication process a set of biometric images is combined with Hstored(u) to
produce an output pattern c1(x). A so-called retrieval algorithm, which represents the inverse
analogon of the linking algorithm, calculates an N -bit key k1 with the use of the previous
created look-up table. This is done by using the look-up table to extract the constituent
bits of the binarized output pattern. For the n-th element of k1 the sum of the L bits of the
binarized output pattern whose indices are specified by the n-th column of the look-up table
is calculated. The n-th element of k1 is set to 1 if the sum of these bits is greater than L/2
otherwise it is set to 0. How to choose the value L and the L locations for each bit of the
key is not explained further. Then the same standard encryption and hashing algorithms as
during the enrollment process are applied to produce id1, which is compared to id0 to check
the validity of k1. If both keys are the same authentication succeeds.

Soutar et al. accomplished their Biometric Encryption algorithm in patent [72], which also
includes explanations of how to use the algorithms for other biometric characteristics such
as the iris. In conclusion, the Biometric EncryptionTM algorithm is an algorithm for the
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linking and retrieval of digital keys in which a cryptographic key is created, independent of
the biometric system. It focuses on three critical issues, namely discrimination capability,
distortion tolerance and security. While the first two requirements are satisfied by the use
of correlation and the number of input images, the last is achieved by the intelligent storing
of the biometric template. Unfortunately in all the publications performance measurements
and test results are renounced.

Adler [2] provided an insight into image reconstruction from biometric templates and
described a potential vulnerability in the above presented scheme which would offer a less
than brute force regeneration of the secret and an estimate of the enrollment image. The
weakness could be utilized during the comparison process to calculate an analogon for the
match score using a so-called “hill-climbing” strategy.

Scheirer and Boult [65] come up with another security analysis of the biometric encryption
approach. Three new classes of attacks are introduced, namely attacks via record multiplicity,
a surreptitious key-inversion attack and new types of substitution attacks. It is concluded
that biometric encryption is impacted by surreptitious key-inversion attacks via improved
hill-climbing and compromised by attacks via record multiplicity and substitution attacks.

3.2 Private Template Scheme

The objective of a so-called “private template” scheme is to provide user authentication by
generating a hash out of user’s biometric data which is then matched against a stored hash
of this user.

With the use of several biometric inputs and a majority decoder a representative feature
vector is generated during enrollment. This vector is then concatenated with an error
correction code to overcome the variance in biometric measurements. Afterwards out of
the resulting vector and personal information of the user a hash is generated and stored.
In the authentication process again several biometric inputs are captured and majority
decoded. Subsequently the error correction code is used to detect errors and finally a hash
is computed and matched against the stored one. The whole process is described in Figure
3.2.

Davida et al. [20, 21] proposed the so-called “private template” scheme in which the biometric
template itself, or a hashed value of it, are used as a cryptographic key which implies that
if a person’s biometric data is compromised, it becomes useless and must not be used for
authentication purpose. In their work they discuss an off-line biometric system based on iris
biometrics.

In the enrollment process M iris scans are performed and M 2048-bit iris codes are acquired.
These M iris codes are then put through a majority decoder. The majority decoder works
as follows:

Let V ec(vi) = (vi,1, vi,2, ..., vi,n) be an n-bit code vector. Given odd M vectors V ec(vi),
the majority decoder computes the vector V ec(V ) = (V1, V2, ..., Vn), where Vj =
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Figure 3.2: The basic operating mode of a Private Temple scheme

(majority(v1,j , v2,j , ...vM,j). The most common metric for Vj will be the majority of 0’s
and 1’s of bit j from each of the M vectors. This process reduces the Hamming distance be-
tween two majority decoded vectors V ec(V1) and V ec(V2) and thus given a sufficient number
of samples the majority decoder reduces the number of expected bit errors in the 2048-bit
iris codes.

After constructing the majority decoded version of a given iris code T , V ec(T ), it is con-
catenated with check digits V ec(C) to form V ec(T )||V ec(C). The check digits are part of
a [n, k, d] code (a code of n-bit codewords, where k denotes the number of information
digits and d is the minimal distance of the code, which is capable of correcting at least
t = (d − 1/2) errors) defined at system setup. At the end of the enrollment process a hash
value Hash(Name, Attr, V ec(T )||V ec(C)) is generated, where Name is the user’s name, Attr
are public attributes such as the user’s access control list and Hash(·) is a partial information
hiding hash function as proposed by Cannetti [11]. Then the authorization officer signs this
hash resulting in Sig(Hash(Name, Attr, V ec(T )||V ec(C))) where Sig(x) is the authorization
officer’s signature of x (the signature is not further explained).

At the time of authentication again M 2048-bit iris codes are captured and majority
decoding is performed resulting in V ec(T ′). With the use of error correction provided by
V ec(C) the corrected template termed V ec(T ′′) is constructed. In the end Hash(Name,
Attr, V ec(T ′′)||V ec(C)) is calculated and Sig(Hash(Name, Attr, V ec(T ′′)||V ec(C))) is
checked. A successful signature implies that the user passed the authentication step.

Wu et al. [92] proposed a novel private template scheme based on iris biometrics where a
256-dimensional feature vector is extracted out of a preprocessed iris image using a set of
2-D Gabor filters. A hash function is applied to this vector to generate a cipher key. At the
same time an error correction code is generated using a Reed Solomon code. It is suggested
to encrypt a secret message with the cipher key. At the time of authentication another
feature vector is extracted from a biometric input. This feature vector is error correction
decoded and the same hash function like in the encryption phase is used to generate a key
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which is used to decoded the encrypted message. Thus the whole scheme aims at reliably
generation cryptographic keys out of preprocessed iris images which are subsequently used
in a symmetrical cryptographic system.

After the acquisition of an iris image the iris texture is localized and normalized like in
generic iris recognition systems. The resulting normalized iris texture is filtered by a set of
2-D Gabor filters with Θ = 0o, 45o, 90o and 135o, where Θ denotes the orientation of the
Gabor filter. Then the filtered iris texture is divided into a total number of 16 × 4 blocks
where for each block the mean gray scale value is calculated. This means, 16× 4× 4 = 256
values are calculated which are furthermore normalized to integers in the range [0, 15] to
remove most of the noise. The normalized vector, called iris feature vector, is defined by
V = (M1,M2, ...,M256).

If the difference between two iris vectors is below a defined threshold T it should be possible
to generate the correct chipher key using the error correction code. Thus, it is suggested
to calculate a RS(N + 2T,N) Reed-Solomon code (where N = 256) because this code is
capable of correcting up to (N+2T −N)/2 = T errors. Then the feature vector is translated
into the cipher key using a Hash function, here MD5 is suggested. For the encryption and
decryption AES is suggested.

At the time of authentication one iris image is preprocessed and again a normalized iris
vector is calculated and error correction decoded. Subsequently the same Hash function, like
in the enrollment procedure, is applied to generate the cipher key which is used to decrypt
a received message. To eliminate variation in the rotation of the iris image the normalized
iris texture is circular shifted in the range of [−6, 6] pixels.

Like in the classic private template scheme the cryptographic key is a hash of the regenerated
feature vector. By setting the threshold to T = 111 for a total number of over 100 persons
a FAR of 0.0% and a FRR of approximately 5.55% was achieved.

3.3 Biometrically Hardened Passwords

In contrast to the above schemes where biometrics are used to create keys or hashes to au-
thenticate legitimate users in a password hardening scheme an existing password is “salted”
with biometric data.

In the original concept of the password hardening scheme out of typed password, durations
of keystrokes and latencies between keystrokes, are measured. During enrolment out of
these measurements the most distinguishable features are extracted and used to generate
an instruction table which provides information to reconstruct a hardend password. This
instruction table is encrypted with the typed password. At the time of authentication the
instruction table is decoded and used to generate the hardened password. Furthermore
a history file is stored which is encrypted with the hardened password. This history file
includes information about a fixed number of the last successful logins and thus the whole
system is capable of adjusting to slight changes of a user’s biometrics. In Figure 3.3 the
basic operating mode of such a system is shown.

Monrose et al. [52] proposed a technique for improving the security of password-based ap-
plications by incorporating biometric information into the password. Typed passwords are a
weak mechanism to authenticate persons and thus it is suggested to harden such a password.
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Figure 3.3: The basic operating mode of a Password Hardening scheme

In their approach the legitmate user’s typing patterns such as durations of keystrokes and
latencies between keystrokes are combined with the user’s password, denoted by pwd result-
ing in a hardened password hpwd. This hardened password can be tested for login purposes
or used as cryptographic key for file encryption.

Assume a computer system with a set A of user accounts where pwda is the correct typed
password for the user account a and hpwda is the corresponding correct hardened password.
Furthermore a single measured biometric feature φ is defined by a function φ : A×N→ R+

where φ(a, l) is the measurement of this feature during the l-th (successful or unsuccessful)
login attempt to the user account a.

At the initialization of the account the value of hpwd is chosen at random from Zq where q
is a fixed, sufficiently large prime number (q is suggested to be at least 160-bit long). Then
2m shares of hpwd denoted by {S0

t , S
1
t }, 1 ≤ t ≤ m are created using Shamir’s secret sharing

scheme [66]. This sharing scheme is a method to share a secret (for example a key) among
several participants. Therefore this secret is divided into several parts. Then a polynomial
of a chosen degree is defined which can be reconstructed if enough shares are available.

For each b ∈ {0, 1} a
m the shares {Sb(t)t }, 1 ≤ t ≤ m, where b(i) is the i-th bit of b, can be

used to reconstruct hpwda. The shares are arranged in an instruction table of dimension
2×m where each element is encrypted with pwda.

During the l-th login pwd′ is used to decrypt the elements of the instruction table resulting
in the previously stored values if pwd′ is correct (the correctness of pwd′ is necessary but not
sufficient). For each feature φi the value of φi(a, l) indicates which of the two values should
be used to reconstruct hpwd. This is done by comparing each φi(a, l) to a threshold ti ∈ R,
which is a fixed parameter of the system. If φi(a, l) ≤ ti then the value of the left column is
used, otherwise the value of the right column.

Central to this scheme is the notion of a distinguishable feature. Let µai be the mean deviation
and σai be the standard deviation of the measurement φi(a, j1)...φi(a, jh) were j1...jh are
the last h successful logins to the account a (again h is a fixed parameter of the system).
Then φi is a distinguishable feature if |µai − ti| > kσai where k ∈ R+ is a parameter of the
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system. If φi is a distinguishing feature for the account a, then either ti > µai+kσai, that is,
the user consistently measures below ti on this feature, or t(i) < µai−kσai , that is, the user
consistently measures above t(i) on this feature. Furthermore, a feature descriptor b which
is a partial function b : {1, ...,m} → {0, 1}, and the feature descriptor ba for account a are
defined as ba(i) = 0 if ti > µai + kσai and 1 if ti < µai − kσai. That is, ba(i) = 1 for every
distinguishing feature φi on which the user is “slow” and ba(i) = 0 for every distinguishing
feature φi on which the user is “fast”. For other features ba is undefined (⊥).

As distinguishing features φi for this account develop over time, the login program perturbs
the value in the second column of row i if µai < ti, and perturbs the value in the first column
of row i otherwise. So, the reconstruction to find hpwda in the future will succeed only
when future measurements of features are consistent with the user’s previous distinguishing
features. Therefore potential attacks are difficult even if the typed password is chosen poorly
which is one main advantage of the proposed scheme. Additionally, if a person’s typing
patterns change slightly, the system will adapt.

For each account a the according instruction table, which is encrypted with pwd is
stored in the system. The instruction table and a constant-size history file form the
biometric template. The history file is encrypted with hpwda and contains the measure-
ments for all features φi over the last h successful logins to the account a. Thus the
stored information is necessarily based on pwda and hpwda , but will not include either of
these values themselves. This is similar to the password storing mechanism UnixTM systems.

Kanak et al. [37] provide a detailed insight into biometric key generation from keystroke
dynamics and summaries the whole process of password hardening in four steps. First
the parameters of a user’s keystrokes (durations and latencies) are collected. Then these
parameters are processed by the validation algorithm (decryption of the instruction
table) and new parameters are generated. In an decision-making step the new values are
transferred to a decision function (calculation of the feature descriptor’s bits). In this step
the user is either accepted or rejected. Finally, the biometric template is updated, which
means the history file is decrypted and a new entry is made and the oldest is erased.

Monrose et al. [49, 50, 51] apply their principle of hardening passwords to voice biometrics,
which was the first approach of generating a cryptographic key out of speech. Typed pass-
words are unambiguous while speech recognition is still a topic of research. Furthermore,
with speech recognition there are plenty more features to focus on than just time. In their
approach the representation of a user’s utterance is utilized to identify suitable features.
This is done by dividing the utterance into a sequence of frames. Each frame is represented
by a twelve dimensional vector of cepstral coefficients characterizing a 30ms window of the
utterance. After capturing the voice, some endpoint detection, silence removal and cepstrum
mean subtraction are applied. Subsequently, a speaker and text-independent acoustic model
is used to segment the sequence of frames into m portions.

Each segment i is associated with a closest centroid ci in the acoustic model. The i-th feature
φi is the position of the segment mean denoted by µi relative to a fixed plane translated
to a coordinate system with ci at the origin. That is x is a twelve dimensional vector of
coefficients specifying the plane α · x = 0, then the i-th feature is the value of α · (µi − ci).
If this value is less than the specified threshold ti, the i-th feature is assigned 0, otherwise
1. The result of this whole process is a feature descriptor which is used like in the above
scheme applied to keystroke dynamics.
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Facing the complex problems of using voice biometrics within a cryptography system a
false negative rate of approximately 6% and a false positive rate below 20% was achieved.

In another work Monrose et al. [4] analyze and formalize two major requirements of biometric
key generators. These two requirements are correctness and security. Correctness is described
as the ability of being able to reliably extract biometric features and combine those features
with a template resulting in the correct output of the key with overwhelming propability.
As this requirement seems to be unambiguous it is not discused any further.

Security is composed of key randomness and biometric privacy while the latter is subdivided
into weak and strong biometric privacy. These three requirements are mathematically
formalized and the impact of public information on these requirements is discussed.

In conclusion, the biometrically hardened password scheme is a simple scheme for improving
the security of password-based authentication systems based on Shamir’s secret sharing
scheme. It tends to be secure due to the fact that neither the typed passwords nor the
hardened passwords are stored as part of the biometric template. The generated hardened
password can be used for login purposes as well as a cryptographic key.

3.4 Fuzzy Commitment/Fuzzy Vault Scheme

The objective of a so-called “fuzzy commitment” scheme is to bind biometric features of a
user with a key, prepared with an error correction code to overcome the fuzziness of biometric
measurements.

At the time of enrollment the extracted features are combined with a codeword of an error
correction code. The resulting bitstream is stored in a database together with a hash of the
codeword. During the enrollment process, again, biometric features are extracted, combined
with the previously stored bitstream and error correction is performed, resulting in another
codeword. If the hash of this codeword matched the stored one authentication succeeds. In
Figure 3.4 this process is illustrated.

Juels and Wattenberg [36] combined well-known techniques from the ares of error correcting
codes and cryptography to achieve a new type of cryptographic primitive that they refer
to as “fuzzy commitment” scheme. Fuzzy commitment is the analogon to “fuzzy logic” in
artificial intelligence.

In their definition a fuzzy commitment scheme consists of a function F , which is used to
commit a codeword c ∈ C and a witness x ∈ {0, 1}n. The set C is a set of error correcting
codewords c of length n and x represents a bitstream of length n termed witness (in a
biometric cryptosystem x would represent the biometric data). To enhance security only
the difference vector of the codeword and the biometric measurement, δ ∈ {0, 1}n where
x = c + δ, and a hash value h(c) are stored as the commitment. The commitment, which
is nothing else then these two values is termed F (c, x) (in a biometric cryptosystem F (c, x)
would represent the biometric template).

To deal with the fuzziness of x it is proposed that every x′, which is sufficiently “close” to
x according to an appropriate metric, for example the Hamming distance, should be able to
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Figure 3.4: The basic operating mode of a Fuzzy Commitment scheme

reconstruct c. If the system is presented with a witness x′ that is near x, the difference vector
δ is used to translate x′ in direction of x. If the correct codeword c is reconstructed with the
use of error correction the hash of c′, h(c′) will match the stored hash value resulting in a
successfull authentication.

Obviously the amount of information contained in the codeword c and thus the amount of
information about the witness x hidden in h(c) depends on k (the number of codewords
in C), where |C| = 2k. The greater the number of codewords the greater is the amount of
information about the witness x hidden in h(x). In contrast, the amount of information in δ
determines the level of resilience in F . Therefore a tradeoff between resilience and security
has to be chosen by varying k and thus the relative distribution of information between δ
and h(c).

The enrollment and authentication process of the a whole system would operate as follows:
during enrollment a user U presents a witness x to the authentication system S. The system
selects a codeword c ∈ C, calculates the fuzzy commitment F (c, x) (the difference vector
δ and the hash value of the codeword c, h(c)) and stores it in a database. At the time of
authentication a user purporting to be U presents a witness x′ to S. The system looks up
the commitment of user U and checks whether x′ yields a successful decommitment, which
would lead to a successful authentication.

Altough the proposed fuzzy commitment scheme is an important milestone, Juels and
Wattenberg only provide a theoretical approach and do not focus on the practical use of
this scheme in biometrics.

Hoa et al. [31] applied the fuzzy commitment scheme to iris codes and thus provide a prac-
tical insight into the use of the fuzzy commitment with biometric data. Their cryptosystem
operates as follows:

During the enrollment the iris of a user is scanned and a 2048-bit iris code prepared with
2D-Gabor wavelets according to Daugman standard algorithms. This 2048-bit iris code is
termed θref (θref corresponds to x is the above scheme). Furthermore, another 2048-bit
pseudo iris code is generated denoted by θps (θps represents a codeword c ∈ C in the above
scheme). This pseudo iris code θps is a 140-bit cryptographic key k prepared with Hadamard
and Reed-Solomon error correcting codes resulting in a 2048-bit bitstream. The length of
140 Bits should suffice, for example, for the use in the AES algorithm (AES operates on
128-bit). Now the commitment of θref and θps has to be calculated. This is done by bitwise
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XORing θref and θps resulting in θlock = θref ⊕ θps (θlock represents the difference vector δ
in the above scheme). Then a hash value of the key k, H(k) is generated using a standard
hash function. The hash value H(k) together with θlock form the biometric template (the
commitment F (c, x) in the above scheme). Furthermore, it is suggested to store θlock on a
smartcard or any other physical token.

In the authentication process an iris code is generated in the same way as in the enrollment
process. This iris code is denoted by θsam (θsam represents the witness x′ in the above
scheme). Additionally, the person presents the smartcard on which θlock is stored. Out of
θsam and θlock another pseudo iris code can be calculated denoted by θ̂ps. This is done
by XORing θsam with θlock, θ̂ps = θsam ⊕ θlock. With the according Hadamard and Reed-
Solomon decoding a 140-bit key k̂ is calculated. This key is then hashed and if h(k̂) = h(x)
the authentication is successful otherwise the key will be deemed false and rejected. The
whole process of generating k̂ out of θsam and θlock and the matching of the hash values
form the decommitment process.

The system was tested with 700 iris images of 70 propands reaching a success rate of
99.5%. Additionally, a FRR of 0.47% and a zero FAR was announced. These are very
impressive results which were not achieved until then, especially with iris scan because of
the complicated engineering process of generating usable iris codes.

Zheng et al. [96] proposed a lattice mapping based fuzzy commitment method for cryp-
tographic key generation. They employed a set of error tolerant lattice functions to map
biometric data from the feature space into lattice spaces. Thus only storing lattice functions
suffice. Lattice mapping works as follows:

Let x = (x1, x2, ..., xp) be a p-dimensional biometric feature vector and xi ∈ R, i = 1, ..., p.
A codeword c is defined as a p-dimensional vector with each element being a random binary
string. Let c = (s1, s2, ..., sp), si ∈R {0, 1}q, i = 1, ..., p, where ∈R means uniform random
selection from a set. Furthermore, the codeword c is treated as the coordinate of x in a
lattice space, L, mapped from its real feature space with δ being the half of the lattice grid
size. This lattice space L can then be defined by its origin O = (o1, o2, ..., op) and the grid
size δ where oi = xi − δ − 2δsi, i = 1, ..., p.

With this arrangement, the decoding function f(·) becomes a simple mapping from x to
c using the lattice system L(O, δ), where, [·] is an operator taking the integer part of the
input. It can be seen that any biometric data x that lies within the hypersphere centered at
x with radius δ will be mapped into the same grid (codeword c). In other words, δ serves
as a parameter of distortion tolerance. In addition, it is impossible to calculate original
biometric data x from the lattice system L(O, δ) and x is not required to decommit c from
x. Therefore, the system only needs to store L(O, δ) and the codeword c and x are secure
even when L(O, δ) is open to an attacker. Due to the fact that this method is generic it is
claimed that it is applicable to all types of biometric data.

Teoh and Kim [80] try to improve the security provided by a generic fuzzy commitment
scheme. A method known as randomized dynamic quantization transformation is proposed to
binarize biometric data which should fulfill the requirement of a uniformly random biometric
template. The proposed method is applied to fingerprints.

The randomized dynamic quantization transformation consists of three steps: non-invertible
random projection, dynamic quantization and condensation. In the first step feature ex-
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traction is performed using a multichannel Gabor filter and the resulting feature vector is
projected onto a random subspace which is constituted by a random matrix R. This matrix
of dimension m× n can be derived by using a user-specific information such as a password
which is stored on a secure device (smartcards are suggested). The random projection is
defined as v =

√
1/m = Rx where v is a set of underdetermined systems of linear equations

and if R and v are given it is possible to find the exact values of all elements in x. In the
second step quantization is applied and the projected feature element i of user j is mapped
into the quantized domain denoted by Qij . To fulfill security concerns of not revealing the
actual quantized values Qij a method called dynamic thresholding is performed. In the final
step a row-wise modulo-two operation which is not addressed further is applied to generate
a bit stream.

For evaluations of the proposed technique binary feature vectors of 375 bits were extracted
from fingerprint images and Reed-Solomon error correction codes were used. As a result of
the randomized dynamic quantization transformation the entropy distribution comprises
a mean of 92% (=345 bits) and a standard deviation of 13% (=49 bits) which means the
empirical bound is in between [296, 375]. These are remarkably good results in terms of
entropy of the binary feature vector. Furthermore a FRR of 0.9% and a FAR of 0.0% are
reported. However, there is one critical issue: the matrix R, which constitutes the random
subspace onto which a users feature vector is projected, is generated using a user-specific
token. It is requested that this token, whether it is a password or a user specific seed, is
stored on a secure device. These are unrealistic precondition because physical tokens can be
stolen, copied, lost of compromised. It is questionable if equal results were achieved using
the same seed for all persons (this would be realistic precondition, for instance, if the whole
database was compromised). Probably this would result in an decreasing entropy of the
binary feature vector as well as in an increasing FAR and FRR.

Maiorana and Ercole [46] proposed a method based on user adaptive error correction codes
to secure biometric templates and achieve cancellability. The proposed technique is applied
either to signature or iris biometrics.

At the time of enrollment I biometric measurements are acquired for a total number of S
users and a intra-class vector µs and a inter-class vector µ are estimated where µs is the
average distance vector of the feature vectors of one user and µ is the average distance vector
of all µss. For signature biometrics statistical features such as the number of strokes or the
average x- and y velocity are mearsured. Using iris biometrics, normalized iris textures are
decomposed into 60 feature vectors, one for each pixel row of the image. Then the extracted
feature vectors of a user s is binarized by using the inter-class mean µ where feature vector
elements are set to 0 if these are less or equal µ and 1 otherwise. Subsequently a majority
feature vector denoted by bs is calculated out of the I binarized feature vectors. Using a
BCH error correction code (a representative of block level error correction codes) a codeword
cs is generated from a randomly selected number Ns. Then the XOR operation between cs

and bs is performed resulting in so-called helper data HD1s, HD1s = cs ⊕ bs,which is
stored together with µ and a hash value of Ns denoted by h(Ns). Thus cancellability of the
template is provided by simply changing Ns.

Furthermore, a second technique is suggested in which the error correction code is adaptively
selected based on the intra-variability of the considered biometrics. Therefore, intra-class
analysis is performed in the enrollment procedure and the length of the BCH error correction
code is chosen with regard to the mean intra-class distance of each user. The selected BCH
code is then stored in HD2s. So none of the stored data, µ, HD1, HD2 and h(N) supply
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any information about the user’s biometrics.

The idea of introducing adaptive error correction code seems to be promising. However,
the proposed results are not satisfying providing a FRR of 13.07% and a FAR of 4.0% for
signature biometrics and a FRR of 50.0% and a FAR of 7.0% for iris biometrics.

The so-called “fuzzy vault” scheme can be seen as extended version of the “fuzzy commit-
ment” scheme. The great advantage of fuzzy vault scheme is the feature of order invariance.

Within a fuzzy vault scheme a polynom, which serves as secret, is used to commit extracted
features by mapping them onto the polynom. If during the authentication process enough
points lying on this polynom can be reconstructed the secret, namely the parameters of the
polynom, is retrieved. The basic operation mode of such a fuzzy vault scheme is shown in
Figure 3.5.

Juels and Sudan [35] improved the work of Juels and Wattenberg by introducing a simple and
novel cryptographic construction to which they refer to as “fuzzy vault”. This fuzzy vault
scheme possesses the useful feature of order invariance. While a simple fuzzy commitment
scheme is just able to handle some bit errors up to a specific threshold it is not capable of
handling any sort of unordering which is often is the case when measuring biometric data.
For example, the ordering of fingerprint minutia could strongly vary form one measure to
another if the fingerprint is slightly rotated.

A fuzzy vault may be thought of as a form of error-tolerant encryption operation where keys
consist of sets. In a fuzzy commitment scheme a codeword c ∈ C is used together with a
witness x to construct a commitment of a cryptographic key k. In the fuzzy vault scheme a
set A and a witness x are used to construct a vault of a cryptographic key k purportedly k
is locked using a set A, yielding a vault denoted by VA. If another set B is presented to the
system and B overlaps largely with A, k can be reconstructed purportedly the vault VA is
unlocked.

During the enrollment phase a polynom p is selected which encodes the key k in some way
(for example taking the information symbols in k to be the coefficients of the polynom).
This conversion is denoted by p← k. Now the elements of A are mapped onto the polynom
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p. The elements of A can be seen as x-coordinates and the mapping of the elements is simply
the projection of all points in A onto p. Finally some so-called chaff points are added which
are just randomly placed points to represent random noise to enhance security. The set of
all points, both those lie on p and the chaff points, called R form the commitment.

To achieve a successful authentication another set B, which is presented to the system,
needs to overlap with A sufficiently to generate the correct polynom. First all points of R
are projected onto the elements of B which, like the elements of A, represent x-coordinates.
For each element bi ∈ B a yi-coordinate has to be found so that (bi, yi) ∈ R. If such a pair is
found, (xi, yi) is denoted (bi, yi), if no such pair is found a so-called null-element is assigned
to the pair (xi, yi). If enough points are lying on p, p can be reconstructed and decoded to
receive k.

The security of the whole scheme lies in the number of chaff points and in the infeasibility
of the polynomial reconstruction, which means if not enough points lying on p are known,
an attacker has hardly any chance to reconstruct p.

Juels and Sudan only provided the theoretical basis for this improved version of the fuzzy
commitment scheme. The main achievement of their work is the feature of order invariance.
This is provided due to the fact that they use sets as witnesses instead of simple bitstreams.
Furthermore, security is enhanced by applying polynoms.

Clancy et al. [16] proposed the first practical use of the fuzzy vault scheme by applying it
to fingerprint minutiae in a “fingerprint vault” system. In their system multiple fingerprints
of a user are acquired during enrollment and the minutiae positions are extracted. A corre-
spondence between the feature points is established by applying a bounded-nearest-neighbor
algorithm. This can be figured as overlaying all captured fingerprints on top of each other
and clustering spatial close points. The distance denoted by d is predefined by the system.
Those points for which a correspondence is found are denoted by G. Thus G represents the
embedded elements of A onto the polynom p. Together with some randomly added chaff
points denoted by N , which are at least d away from these points form the commitment,
denoted by R. Then the ordinates are determined by the polynomial embedding of a key
k to be shared. The calculation of ordinates is the mapping of the minutiae points and the
chaffpoint lying on p onto the y-axis.

During authentication the minutiae points of several presented fingerprints are extracted.
By applying a bounded-nearest-neighbor algorithm new clusters are established of which
the ordinates are calculated. Finally Reed-Solomon codes are applied to reconstruct the
polynom p out of which the key is recreated.

In this work the most apparent way of how to use the fuzzy fault scheme with biometrics
is presented. Especially for fingerprint biometrics the fuzzy vault appears to fit well. The
great vulnerability of their work was the assumption that all the fingerprints are prealigned,
which is rarely the case in practice.

Uludag et al. [86, 87] analyzed and experimented with the above fingerprint vault system.
To overcome the vulnerability of assumed prealignment they propose a “fuzzy fingerprint
vault”, which uses minutiae lines to lock a key. In their system this means a line-based
minutiae representation is used in which the whole fingerprint consists of lines where the
line Kij between minutiae i and j is defined as: Kij := (xi, yi, φi, xj , yj , φj , dij ,Φij , ωi, ωj)
where the first six parameters are the coordinates and angles of the minutiae point dij
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represent the distance between the points, Φij the line direction and ωi and ωj the angles
between the line direction and the minutiae points. Such a representation eases the issue of
aligning fingerprint minutia.

Nandakumar et al. [55] extended the idea of the fuzzy fingerprint vault scheme and presented
an fully automatic implementation of the fuzzy vault scheme based on fingerprint minutiae.
In their work they face the main implementation challenge of a fingerprint authentication
system based fuzzy vault scheme, namely the alignment of a query fingerprint measurement
to the original template. In their system they store high curvature points derived from the
orientation field of the template fingerprint as helper data to assist the process of alignment.
The helper data accurately aligns the template and query minutiae but does not reveal any
information about the minutia points that form the template.

Instead of only using the location of minutia points like in the original fuzzy fingerprint vault
scheme they use minutia location and orientation attributes which increases the number of
chaff points that can be added. Points are used in a 3-tuple (u, v, θ) where u and v indicate
the row and column indices in the image and θ the orientation of the minutiae with respect
to the horizontal axis. More points of which the location is close to a true minutia but with
a different direction can be added and thus the security is improved.

Points of high curvature are extracted from the fingerprint orientation field. Since high
curvature points are global features in the fingerprint pattern high curvature points do not
reveal any information about the minutia attributes which are local characteristics in the
fingerprint.

The generation of the helper data and using it for alignment is the main achievement of
this work and can be summarized in the following steps: First the orientation field of the
fingerprint captured during enrollment is estimated. Then flow curves are extracted from the
orientation field. The points with the maximal curvature are determined and theses points
are clustered.

In the authentication phase a so-called interactive closest point algorithm is used together
with the calculated high curvature points to align the presented fingerprint to the stored
template.

Tulyakov et al. [83, 84] presented a new approach for hashing fingerprints. To overcome the
problem of ordering fingerprint minutiae symmetric complex hash functions are used. This
means, instead of ordering the fingerprint minutiae, they simply apply order invariant hash
functions.

The minutiae points are presented as complex numbers {ci}. The position of such a point can
vary from one measurement to another. This transformation is described by the complex
function f(z) = rz + t. Thus a minutiae point of a new measurement can be written as
c′i = f(ci) = rci + t + ε, where ε represents errors occurred during the capturing of the
fingerprint. For an acquired set of minutiae points C = {c1, c2, ..., cn}, m different hash
functions are calculated where h1(C) = c1 + c2 + ... + cn, h2(C) = c21 + c22 + ... + c2n, ... ,
hm(C) = cm1 + cm2 + ... + cmn , where n is the number of neighboring minutiae points. The
matching between the generated hash values of the fingerprint minutiae during enrollment
and any other set of hash values consists of finding r and t that minimizes the error. In their
work they mention that a hash value could become greater than the biometric data using a
very large number for m. Nevertheless experiments are presented with m ≤ 2.
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In this approach the authentication is performed in another space while only hash values
are transferred between the user and the authentication point and only hashed values are
stored, of course. This approach to solve the problem of aligning order invariant data is a
very simple one but therefore the scheme is restricted to use just these symmetric complex
hash functions.

Yang and Verbauwhede [93] introduced another method for improving the alignment of
minutiae points. To use minutiae coordinates as rotation invariant features all points are
mapped from cartesian to polar coordinates. If the origin of the polar coordinate system
is selected correctly, each feature will be independent of rotation of the input images. The
method of finding this origin is not further described and the case this origin cannot be
found is not discussed. A minutiae feature is defined as a tuple M = (d, θ, ϕ) where d is the
distance to the origin, θ the position angle and ϕ the direction difference to the origin.

This is a method of solving the problem of aligning fingerprint minutiae points in feature
space (in contrast to the above mentioned method where order invariance is achieved in
another space). The rest of their system works like the fuzzy fingerprint vault scheme.

Nagar and Chaudhury [53] presented a modified fuzzy vault scheme, which is used in an
asymmetric cryptographic system focusing on fingerprints. Users can send and receive se-
cure information using just the fingerprints. The process of creating the fuzzy vault can be
described in the following steps:

First a message is encoded using Reed-Solomon codes resulting in an encoded message C of
length n. Then each element of C is placed on a grid of size n× 3 such that i-th row of the
grid contains the i-th element of C placed randomly in one of the three columns. This grid
is denoted by gridC. The biometric template (in this case fingerprint template) of length n
is placed on a similar grid denoted by gridB so that its position and order coincides with
that of C in gridC. The rest of the elements of gridC are filled with random numbers in
the appropriate range while the rest of the elements of gridB are filled in such a way that
each row becomes an arithmetic progression of distance equal to the tolerance value, FVtol.
This means that the two random numbers, which are added to each row of gridB, have the
same difference (FVtol) to the correct value.

To unlock the vault the knowledge of either the correct positions of the legitimate elements
in gridC or gridB suffices. The sequence of numbers of the legitimate points of gridC is
nothing but the Reed-Solomon code for the encrypted message. This code can be easily
decoded using any of the standard algorithms to get back the desired message.

If the receiver has the actual biometric feature, the legitimate-point sieving algorithm is just
to select one point out of three from each row of gridB which is nearest to the corresponding
biometric value.

For a FVtol between 4 and 8 a zero error rate which means that FRR and FAR are both
zero is reported. This would be an optimal system, therefore these results are doubtable.
Nevertheless, in this work a simple and fast method of creating a fuzzy vault for fingerprints
is presented.

Reddy et al. [61] enhance the security of a fuzzy vault scheme based on iris biometrics
by embedding an additional layer of security, namely a password. With this password the
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generated vault as well as the secret key is hardend. The hardening scheme consists of the
following steps: first a random transformation function derived from the user’s password is
applied to the biometric template. Then the transformed template is secured using the fuzzy
vault framework. Finally the vault is encrypted using a key derived from the password.

In the preprocessing step an iris image is acquired and the iris texture is localized. Afterwards
morphological operations are applied on the highlighted iris texture to extract a pseudo
structures from which minutiae (nodes and end points of textures) are calculated. The
resulting set of minutiae coordinates is then divided in four quadrants. The minutiae of each
quadrant are then translated and rotated using a 8-letter password which is divided into
4 × 16 bit password blocks. Each password block is used to transform the points of one
quadrant where the first component Tr of 7 bits is used for radial translation and the second
component TΘ of 9 bits is used for angular translation. The translation values are added
to original values modulo some appropriate range so that the translated minutiae points lie
within the respective quadrant. Furthermore the vault of the resulting points is encrypted
using the password.

At the time of authentication the vault is decrypted and the password-based transformation
is applied again. Then an acquired iris image is used to extract another set of minutiae which
are then used to “unlock” the vault.

In experiments a fuzzy vault scheme which exhibits a FRR of 8% and a FAR of 0.03% is
hardened, where the ratio of chaff points and original points is taken as 10 : 1 and a total
number of 100 templates are used. As result of the hardening scheme the FRR increases
to 9.8% due to misclassification of a few minutiae at the boundaries of the quadrants.
At the same time the FAR decreases to 0.0%. It is claimed that this is due to the fact
that minutiae are distributed more randomly. However, if passwords are compromised the
system’s security decreases to that of an ordinary fuzzy vault scheme which indicates that
the FAR of 0.0% was calculated under unrealistic preconditions.

Scheirer and Boult [65] proposed a theoretical security analysis of the fuzzy vault scheme
focusing on fingerprint biometrics. Three classes of attacks are introduced which could be
exploited to crack fuzzy vault schemes, namely attacks via record multiplicity, a surreptitious
key-inversion attack and new types of substitution attacks. It is concluded that one fuzzy
vault tends to fulfill security requirements because chaff-points are added and it is not
feasible guessing the subset of legitimate minutiae points. However, given two such fuzzy
vault instances generated from the same print, but with different keys and different random
chaff points, minutiae points will be recoverable by matching these two vaults. Probably
some random chaff points will match the second template but still a better part of the
minutiae points will be detected.

Finally requirements for fuzzy vault schemes are constituted such like that no combination
of data from multiple enrollments by the same user should be able to be combined to recover
the biometric template.

3.5 Secure Sketch/Fuzzy Extractor Scheme

The aim of a “secure sketch” and a “fuzzy extractor” is to extract a random bitstream out
of a given biometric data in an error tolerant way and provide some information about this
bitstream so that a user with a biometric data “close” to this is able to reconstruct this
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bitstream. Figure 3.6 shows a basic scheme using a secure sketch or a fuzzy extractor.

Dodis et al. [23] introduced two new primitives, namely a fuzzy extractor and a secure sketch
for which they provided formal definitions. Both of the primitives aim at turning biometric
data into keys for cryptographic applications and reliably securely authenticate biometric
data. The first primitive, the secure sketch, addresses the problem of error tolerance. It
is a probabilistic function outputting a public value v about its biometric input w. While
revealing little about w, v allows the reconstruction of w from any other input w′ that is
sufficiently close to w.

The second primitive, the fuzzy extractor addresses error tolerance and nonuniformity. It
reliably extracts a uniformly random string R from its biometric input w in an error-tolerant
way. To assist the recovery of this random string R from an input w′, sufficiently close to w,
a public string P is outputted (like v in the secure sketch). However R remains uniformly
random.

In the fuzzy extractor scheme the authentication server stores 〈P, f(R)〉 termed fuzzy key
storage, where f is a one way function which is not further described. Given a biometric
input w′ the public information P is used to reconstruct R and f(R) is checked. In the
secure sketch scheme v and f(w) are stored and w is reconstructed with the help of the
public information v.

In their work they defined formal constructions for three metrices, the Hamming distance,
set difference and edit difference. In terms of Hamming distance a secure sketch can be
seen as a fuzzy commitment scheme. The metric of set difference is applied whenever the
biometric input only provides a subset of biometric features. For example, the size of the
symmetric difference of two input sets w and w′ could be calculated as set difference while
the edit difference, for example, is the number of insertions and deletions needed to convert
one string into another.

They do not further address details of how to realize the presented primitives, they only
provide formal definitions. Nevertheless, this is important work, especially due to the
introduction of the set difference metric, which offers new possibilities in the field of hybrid
biometrics which will be described later.

Boyen [8] discovered several security vulnerabilities in the concept of fuzzy extractors
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and secure sketches. With multiple invocations of fuzzy extractors and secure sketches
the exposion of the complete secret is obtained, which implies that the above introduced
primitives can only be applied securely for single uses. To overcome this vulnerability new
formal definitions of the fuzzy extractor and the secure sketch are proposed.

Burnett et al. [9] created an identity-based signature scheme, which uses biometric data to
construct a public and a private key. This is done by combining fuzzy extractors with the
biometric data resulting in a random key string. On this random key string an elliptic curve
point embedding algorithm is applied to generate a public and a private key. The basic units
for this elliptic curve arithmetic are points (x, y) on the elliptic curve, E, over a finite filed,
Fp, denoted by E(Fp) of the form y2 = x3 + ax+ b with x, y, a, b ∈ Fp.
First a fuzzy extractor with respect to the Hamming distance metric is defined, which
outputs a random string U ∈ {0, 1}k, given a user’s signature. Then the random string U is
embedded onto a point P on the elliptic curve E. This is done by hashing U with a hash
function H1 : {0, 1}∗ → G∗1 where G∗1 is a subset of points lying on E. The hashing of U is
divided into two steps. First U is hashed with a standard hash function H : A → {0, 1}∗
(SHA-1 is suggested as standard hash function). Then a deterministic encoding function
g : A→ G∗1 is applied resulting in g(H(U)) = H1(U). Now that U is embedded onto a point
of the elliptic curve, out of this point Pb, Pb = g(H(U)), a private and a public key are
generated. This is done by calculating Ps = xPb where x is a randomly generated key in F ∗p
(the generation of x is not further described). The private key is presented by x while the
public key is represented by Ps.

Voderhobli et al. [91] introduced the idea of using hybrid biometrics together with a secure
sketch to generate cryptographic keys. It is proposed to define a set B of all biometric
characteristics which the system is able to acquire so that B = {Riris, Rfing, Rvoice, Rface,
Rpwd}. Additionally, these characteristics are weighted. During authentication an adequate
subset of B, for example S = {Riris, Rfing, Rpwd} should suffice to authenticate a person,
which entails the challenge of correlating S and B.

At the time of enrollment all biometric measurements are performed, combined using a so-
called consolidate function, hashed and stored in a major template key denoted by tkey.
The secure sketch SS(w) with respect to the set difference metric is defined where w repre-
sents the measurement of one biometric characteristic defined in B. Furthermore, a recover
function Rec is defined which is capable of reconstructing w out of a biometric input w′ if
w−w′ ≤ vl where vl is the variation allowed. The variation allowed vl is a set of scalar values
for each biometric characteristic which is measured while w − w′ is the distance measured
for each characteristic based on the Hamming distance. Thus the recover function Rec and
the major template key tkey form the biometric template.

During the authentication process a set S = {w′1, w′2, ..., w′n} is measured where n ≤ |B|.
Then Rec is allied to this subset . If S is only a subset of B, padding bits are appended. The
the hash function which is not further described, is calculated resulting in an comparator
key ckey which is matched against the template key tkey.

Altough no details of implementation are described, the idea of applying a secure sketch
to hybrid biometrics if only a subset of the required characteristics is available during
authentication appears to fit. Furthermore, the idea of performing the template matching
for each subsystem as part of the overall process is an innovative approach for combining
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weighted biometric measurements.

Li et al. [43, 73] were the first to bring up the problem of entropy loss generating a secure
sketch by the use of error correcting codes. The main difficulty is that many biometric
templates are represented as points in continuous domains with unknown distributions,
whereas known results either work only in discrete domains, or lack rigorous analysis on the
entropy loss. In their work, instead of trying to solve these problems directly, it is proposed to
examine the relative entropy loss of any given scheme, which bounds the number of additional
bits that could be extracted if optimal parameters were used. They analyze general secure
sketch schemes focusing on face biometrics and estimate that the relative entropy loss of
this schemes is at most n log 3 where n is the number of points, and the bound is tight.

In the second work they show how to use secure sketches to protect biometric templates.
They examine an authentication scheme using face biometrics and show how to apply a
known secure sketch scheme on top of it to protect the biometric templates. The min-entropy
of the feature vectors is estimated to be about 108 bits which means the probability of
getting any particular string from the secure sketch is at most 2108. The experiments show
that, the average size of the sketch is about 73 bits, which gives a guarantee of 35 bits in
the left-over entropy. Nevertheless, this is just a lower bound for the left-over entropy, and
the exact security would require further investigation.

Draper et al. [24] introduced a new approach of combining measured biometric fingerprint
data with any sort of error correcting code by applying Slepian-Wolf codes. Thereby they
increase entropy and thus security. In the enrollment phase feature extraction and quanti-
zation function ffeat(·) (this function is not further described) maps a raw biometric input
into an enrollment biometric x. This enrollment biometric x is shared between the legitimate
user and the access control system. A security function fsec maps x into a secure biometric
s, s = fsec(x). The access control point stores s and a hash value of x, fhash(x).

In the authentication phase out of an acquired raw biometric input y another x′, where x′ =
ffeat(y), is generated and fhash(x′) is matched against fhash(x) (stored during enrollment).
If fhash(x′) = fhash(x) the authentication succeeds, otherwise the user is rejected.

The above mentioned security function, applied during enrollment is performed with the use
of a Slepian-Wolf code RSW [67]. This Slepian-Wolf RSW is a random “binding” function,
which according to the Slepian-Wolf theorem, is capable of encoding two correlated sources
at a rate equal to the joint entropy of theses sources. Thus the use of Slepian-Wolf codes is
another approach to overcome the problem of entropy loss when using secure sketches.

Martinian et al. [25] described a scheme how to store biometrics in a fuzzy extractor scheme
via syndromes and Slepian-Wolf codes and present a prototype biometric cryptosystem for
iris recognition. Like the above approaches this work addresses the issue of keeping the
entropy of the modified biometric data as high as possible.

Tong et al. [82] proposed a fuzzy extractor scheme based on fingerprint biometrics to asso-
ciate and further retrieve a committed cryptographic key to be used in security applications.
The proposed method uses a stable and order invariant representation of biometric data
called Fingercode [34]. This technique is texture based which means the variation of the
ordering of minutiae points does not affect the output of the algorithm.
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Using this special fingerprint data representation a cryptographic key is rebuilt using a
public available data which is referred to as FingerKey. The secret key cannot be recovered
either from the FingerCode nor form the FingerKey.

As the result of the applied FingerCode method a 640-component vector of integers that
range from 0 to 7 are extracted. These components are ordered and stable in size. As error
correction code a Reed-Solomon code is applied. The secret key is represented as a word of
d + 1 letters which corresponds to the d + 1 integer coefficients of a polynomial p ∈ Z[X]
of degree d. In the enrollment procedure the public available FingerKey is extracted from
the the pair (F, p), where F is the FingerCode. Furthermore, n randomly chosen points of
p where n > d are bound with n stable subparts of the FingerCode. To retrieve the secret
polynom p Reed-Solomon decoding is applied. If at least d+ 1 points are decommited p can
be reconstructed.

Using the standard FingerCode algorithm a FRR of 78% and a FAR of 0.1% are reported.
These results are not very satisfying and far from being suitable for practical use.

In another work Li et al. [42] study how to build secure sketches for asymmetric representa-
tions based on fingerprint biometrics, in the sense that the biometric template created during
the enrollment procedure contains more data than that which is created during verification.

In the proposed scheme pre-aligned minutiae points serve as biometric features. These minu-
tiae points are transformed using a transformation T . Applying this transformation n com-
ponents are obtained. This is done by drawing n randomly chosen straight lines in 2-D space
and for each line the difference between the number of minutiae points on the “left” and on
the “right” side of the line is calculated. The resulting n components are associated with
weights. In the enrollment procedure m biometric samples are acquired and for the i-th
component the standard deviation si and the mean mi are estimated. The weight wi which
is associated with the i-th component is defined as wi = mi/si. According to these weights
groups are calculated so that the n components are divided into q groups. For the j-th
group, denoted by Gj , g components, denoted by dj,1, dj,2, ..., dj,g, are combined by comput-
ing xj =

∑g
k=1 ckdk, where cj ∈ {−1, 1}. The sign of the cjs are chosen such that the value

of xj is maximized. Finally a bit bi is assigned to each group such that bi = 1 if xi > 0 and
bi = 0 otherwise. As secure sketch the whole grouping information G = (G1, G2, ..., Gq) is
stored where Gj consists of the indices of the components of the j-th group and information
about how these are combined.

During the authentication procedure a single biometric sample is acquired and the grouping
information is used to obtain a bitstream Y of length q and furthermore X is reconstructed
using a error correction code C which is not further described. Depending on the desired
FAR and FRR a threshold t on the number of bit errors to tolerate is defined.

As experimental results a FAR of 1% and a FRR of 20% is reported. Furthermore the
security of the system is analyzed and it is concluded that asymmetric representations can
be employed when the main concern is the key strength but it is not suitable for high security
applications.
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Figure 3.7: The basic operating mode of the BioHashing algorithm

3.6 BioHashing

In the BioHahsing approach a user’s biometrics together with a tokenized random number
are used to generate a hash which is used to authenticate the user. Out of this user-specific
random number several random vectors are generated. These random vectors are mixed
with a feature vector, resulting out of a preprocessing step where denoising and feature
extraction is performed, via an inner-product. The generated values of this whole procedure
are then thresholded resulting so-called BioHash which is stored in a database. The whole
process of BioHashing is shown in Figure 3.7.

Ngo et al. [28, 29, 78, 79] introduced a new technique applied to face biometrics which they
refer to as “BioHashing”. The whole process of BioHashing can be summarized into two
stages while the first stage is subdivided in two substages:

In the first part of the first stage the raw image I ∈ <N , where N specifies the pixelisation
domain, is transformed to an image representation in log-polar frequency domain Γ ∈ <M ,
M < N , where M specifies the log-polar spatial frequency dimension. This is done by first
applying a wavelet transform in order to reduce noise and produce a representation in a lower
frequency domain, which makes the output immune to changing facial expressions and small
occlusion. Then a Fourier–Mellin transform is applied to produce translation, rotation and
scale invariance.

In the second part of the first stage the generated face feature Γ ∈ <M is reduced to a set
of single bits b ∈ {0, 1}lb of length lb. This is done via a uniform distributed secret random
numbers ri ∈ {−1, 1} which are uniquely associated with a token. These tokenized random
numbers, which are created out of a user’s seed, take on a central role in the BioHashing
algorithm. The process of creating b out of tokenized random numbers is subdivided into
four stages:

First the user’s seed, which is distinct for each user, is used for generating a set of
random vectors {ri ∈ <M |i = 1, ..., lb}. Then the Gram-Schmidt process is applied to
the set of random vectors {ri ∈ <M |i = 1, ..., lb} resulting in a set of orthonormal vec-
tors {r⊥i ∈ <M |i = 1, ..., lb}. The third step is to calculate the dot product of the feature
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vector and all orthonormal vectors {〈Γ|r⊥i
〉 ∈ <M |i = 1, ..., lb}. Finally a lb-bit FaceHash

b ∈ {0, 1}lb where bi, the i-th bit of b is 0 if 〈Γ|r⊥i
〉 ≤ τ and 1 otherwise where τ is a

predefined threshold, which can be set to zero. Thus the result of the whole first stage is the
so-called FaceHash.

The second stage of the BioHashing algorithm is the key computation. A cryptographic key
kc, which is an element of the field Zq for a large prime q is generated out of the FaceHash
b. This is done by applying Shamir’s secret sharing scheme [66]. The calculated shares are
stored in a device.

In conclusion the algorithm of BioHashing can be decomposed into two components: firstly
an invariant and discriminative integral transform to extract features from the biometric
data (here face biometrics), with a moderate degree of offset tolerance. This would involve
the use of integrated wavelet and Fourier-Mellin transform. And secondly a discretisation of
the data via an inner-product of tokenized random number and user’s biometric data, for
integral transform functions with enhanced offset tolerance. Additionally, the cryptographic
key is generated with the use of Shamir’s secret sharing scheme [66].

A detailed insight is given into how they perform dimensionality reduction on the captured
face images to improve the capability to represent features in the feature extraction
process. To improve the robustness with respect to the variation in the biometric data error
correcting codes are applied. They provide cancellable templates by applying noninvertible
functions during the generation of the FaceHash. As results a FRR=0.93% and a zero FAR
are reported which are much better than for conventional face recognition systems.

In another work Ngo et al. [68, 77] applied the above algorithm to fingerprint biometrics. The
idea remains the same, thus all the above mentioned steps of the algorithm are performed.
Fingerprint images are captured out of which a FingerHash, b of length lb (the analogon to
the above FaceHash) is generated. They extend this idea and present a whole key release
scheme.

This key release is based on the fuzzy commitment scheme. First a cryptographic key is
prepared with an Reed-Solomon error correction code resulting in the bitstream k of length
lb. To bind a specific bitstream k with the biometric data b both bitstreams are XORed.
The result of this operation is a so-called BioCode β, β = b ⊕ k. At each authentication
a new FingerHash termed t is calculated. This FingerHash is XORed with the BioCode
resulting k′, β ⊕ t = k′. In the end a hash value of k′, H(k′), where H(·) is a discrete hash
function, is compared to a hash value calculated during enrollment and if H(k′) = H(k),
the user is accepted.

Ngo et al. [17] presented another approach for applying the BioHashing algorithm to
palmprints. In this approach they combined palmprints with tokenized random number
resulting in a PalmHash which they suggested to be stored on a smartcard. Furthermore,
like in the above schemes it is required to use different PalmHashes for different type of
services.

Kong et al. [39] gave an overview of the BioHashing algorithm and presented an implemen-
tation of FaceHashing. Furthermore, an explanation for the zero EER reported in the first
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works of BioHashing is given. This result was achieved due to the tokenized random num-
bers, which are assumed to be unique across users. The authors assume that these tokenized
random numbers will not be stolen, lost, shared or duplicated. This means that the intro-
duction of biometrics becomes meaningless since the system could rely on these tokenized
random numbers without risk. Therefore EER was achieved under a hidden and unpractical
assumption.

As a variant of BioHashing, FaceHashing was implemented. In conclusion, following an
example of FaceHashing, this work is exposing the true performance of BioHashing.

Lumini and Nanni [44] established several vulnerabilities of the original concept of Bio-
Hashing and proposed several improvements to make BioHashing more secure. The main
vulnerability they detected is that the performance of BioHashing depends on m, the num-
ber of linear independent random vectors. Furthermore, m is bounded by n, the number of
features that are extracted out of a user’s biometric data.

The second vulnerability they detected is that the performance of BioHashing also depends
on τ , the threshold against which 〈Γ|r⊥i〉, the dot product of the feature vector and all
orthonormal vectors, is matched against. This was not supposed in the original concept.

To overcome these vulnerabilities they suggested three improvements of the original
BioHashing concept: The first is to normalize the biometric vectors by their module before
applying the BioHashing procedure, so that the scalar product is within the range [−1, 1].
In the second improvement instead of using a fixed value for τ , several values for τ are
used and combined. The last improvement suggests more projection spaces to create more
BioHashes for each user. This is suggested because m, the dimension of the projection space
cannot be increased.

Ngo et al. [40, 94] proposed a novel method to generate cancellable keys out of dynamic hand
signatures based on the random mixing step of BioPhasor and user-specific 2N discretisation
for a better recognition rate.

The feature extraction process of their scheme is function-based. It consists of a discrete
wavelet transform for location-sensitive compression and a discrete Fourier transform for
frequency analysis to obtain a compact representation of the biometric feature.

The extracted feature is then randomly mixed with a token T using a BioPhasor mixing
method. The BioPhasor mixing is an inner product based mixing which encrypts the bio-
metric feature in a one-way manner. Like in the original BioHashing algorithm a user specific
token is used to calculate several random vectors which are orthonormalized and combined
with the feature vector by calculating the inner products of all these random vectors and the
feature vector. Additionally an one-to-one arctan transformation is computed which maps
the biometric vector onto a bounded range [−π2 , π2 ]. This transformation is proven to be
non-invertible and thus provides higher security than the original BioHashing algorithm.

Then the real to binary conversion is done with the help of 2N discretisation (and user
specific statistics). In the end Gray coding is applied to decrease the Hamming distance of
“close” signatures. The result of the whole process is a SignatureHash just like a FaceHash
or FingerHash in the above approaches.

By mixing the extracted features with the BioPhasor mixing method they provide cancellable
biometrics. If a SignatureHash is stolen only the basis of the BioPhasor mixing process has
to be changed.
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3.7 Schemes using Intervals

Another group of schemes extracts biometrics features out of several enrollment samples
and defines intervals for each of these features. At the time of authentication again a user’s
biometrics are measured and fit into the previously defined intervals out of which a hash is
generated. Finally the calculated hash is compared against a stored hash in the matching
process. Figure 3.8 illustrates this process.

Feng and Wah [26] use on-line handwritten signatures to authenticate a user for whom after
successful authentication a public and private key are created. Their whole system can be
summarized in three stages, namely shape matching, feature coding and key generation.

In the first stage both x and y-coordinates of the signature are warped through dynamic
time warping. Then the shapes of x, y waveformes of a test sample is aligned with the refer-
ence sample acquired during a previous enrollment. Correlation coefficients can be obtained
between position-warped x, y data and the reference ones. Low correlation coefficients will
result in rejection of the sample. In this stage an average of ∼ 47% of false samples are
rejected.

In the feature-coding stage three boundaries are defined for all features (43 different fea-
tures are used in their approach), the whole boundary, the database boundary and the user
boundary, while the last is specific for each user. The whole bound defines a boundary for
all possible values for a distinct feature (for this boundaries infinity value can be assigned).
The database boundary consists of all values measured by the system. While these two
boundaries are equal for all users the user boundary is different for all. It is defined as
(T − b · stdT , T + b · stdT ) where T is the mean of ten feature values, stdT is the standard
deviation of these values and b is a parameter to be adjusted.

The whole boundary is divided into several segments defined with numbers (starting with
0). The boundaries for all these segments are stored as a template. If a biometric sample
passed the shape-matching stage, all the features are fitted into these segments and a
feature code is returned (for example the segment number).

In the third stage a public and a private key are generated out of the feature codes using
the standard DSA algorithm.
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As the results of this approach a FRR of 28% and a FAR of 1.2% for the generation of
40-bit long keys are reported. The small FAR seems to result from of the breed selection in
the shape matching step. Unfortunately they only list a small set of the features they use
in their system.

Vielhauer et al. [88, 89, 90] proposed a method for generating hash values out of online
signatures. Out of three input signals x(t), y(t) and p0|1(t), where p0|1(t) is a binary pen-
up/pen-down signal, 24 feature parameters are calculated. These parameters include for
example duration of the complete writing process and the average writing velocity in x and
y direction.

During enrollment an interval matrix is generated for each user out of less than five samples.
This interval matrix is of dimension NParameters× 2 where each line consists of 4Ii and Ωi.
The first value of each column, 4Ii is computed, based on two intervals. The first interval,
the initial interval, is defined as [IInitLow..IInitHigh] = [MIN(nij)..MAX(nij)] where nij is
the value of the i-th feature of the j-th sample, j ≤ 5. The second interval, the extended
interval, is defined as [ILow, ..., IHigh] = [IInitLow · (1 − ti)..IInitHigh · (1 + ti)] where ti is
the so-called tolerance factor (deviations greater 20% are discarded). This tolerance factor
is determined by statistical testing of samples against the above intervals. The second value
of each column, Ωi defines the interval offset for the i-th feature.

The hash values are generated by interval mapping of every single feature against the interval
matrix. As performance measurement a FAR of zero and a FRR of 7.05% is reported.
Furthermore, they describe the issue of choosing significant features and introduce three
measures for feature evaluation: intrapersonal feature deviation, interpersonal entropy of
hash value components and the correlation between both.

The proposed scheme is very similar to the above scheme of Feng and Wah. In both schemes
feature parameters of online signatures are defined and fitted into intervals, defined with
the help of enrollment samples, out of which hashes (in the above scheme the hash is called
feature code) are generated, which are then matched to authorized a user.

3.8 Cancellable Biometrics

The basic idea of “cancellable biometrics” is to apply transforms to captured biometric data
and furthermore perform the matching process in the transformed space. If biometric data is
stolen, lost or comprised only the applied transform has to be changed. Furthermore several
different transforms can be used for several applications to prevent imposters from tracking
users by cross-matching databases. Figure 3.9 illustrates the idea of cancellable biometrics.
Ratha et al. [59, 60] introduced the concept of “cancellable biometrics”. Biometric data
can be compromised and therefore can become useless because it can not be modified ex
post. The idea of cancellable biometrics consists of intentional, repeatable distortion of a
biometric signal based on a chosen transform. These distortion transforms are selected to be
non-invertible, that is the inverse transform is one-to-many. Therefore the recovering of the
original biometric data is not possible if an attacker is in possession of the transform function
and the transformed biometric data. Additionally, the correlation of several transformed
biometric measurements does not reveal any information about the original biometrics.

The distortion of the biometric signal can be either performed in signal domain or in feature
domain. Performing distortion in the signal domain means manipulating the raw biometric
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Figure 3.9: The basic idea of cancellable Biometrics

input, which can be achieved by grid morphing where the measured signals are aligned to
a specified grid or block permutation where the ordering of the measured data is modified.
Performing distortion in the feature domain means that after specific features have already
been extracted randomly, repeatable permutations of these features are generated.

They introduce several types of transforms for constructing multiple cancellable biometrics
from pre-aligned fingerprints in the feature domain. The first transform is a so-called carte-
sian transform, which divides a captured image of a fingerprint into cells. These cells are
then permutated using a method they refer to as cell-mapping. This cell-mapping is non-
injective and thus provides the required non-invertibility. The second proposed transform is
called polar transform. This transform operates like a cartesian transform but divides the
image of a captured fingerprint into sectors with respect to polar coordinates. Within this
transform the mapping is done using translations. The advantage of using polar coordinates
is that the permutations do not alter the natural distribution of minutiae points. Neverthe-
less these two transforms hold the disadvantage of yielding unfeasible cancellable biometrics
if in subsequent measurements minutiae points cross the boundaries of cells or sections.

The third type of transforms which are introduced are called functional transforms. These
transforms have parametric forms that are governed by random keys. Functional transforms
are locally smooth but globally not smooth functions of the x and y-coordinates of every
minutiae points.As an example for such a functional transform surface folding transforma-
tions are presented. In a surface folding transformation, both the position and the orientation
of the minutiae are changed by some parametric transfer function. Conceptually, the minu-
tiae are embedded in a sheet which is then crumpled. Such a function is locally smooth but
globally not smooth. Furthermore it is noninvertible because of its foldings.

If the transformed biometric data is compromised just the transform function has to
be changed, that is, the biometric template is updated. It is suggested to use different
transform functions for different services. The transform function could be stored on a
smartcard which is presented during the authentication process. The biometric input is
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transformed with this function and compared to the stored transformed template. This is
the basic idea of cancellable biometrics which is realized in several forms, for example, by
combining biometric data with tokenized random numbers like it is done in the BioHashing
approach.

Savvides et al. [64] showed a way of how to generate cancellable templates from face bio-
metrics using so-called minimum average correlation energy filters.

In their architecture a user presents a personal PIN to the system, which serves as seed for
a random number generator. This random number generator uses the PIN to generate a
random convolution kernel (it is suggested that the generation of this kernel should depend
on the desired operation of the system). During the enrollment process several images of a
person’s face are captured. These images are then convolved with the previous generated
random convolution kernel. These convolved images are then used to produce a biometric
filter.

To generate this filter the before mentioned minimum average correlation energy filters are
used. These type of filters provide the invertibility, necessary for cancellable biometrics, be-
cause the inverse transform of these filters does not reveal any useful information about the
biometrics involved. Furthermore these filters, which are synthesized from several images
(unlike common correlation filters), minimize the average correlation energy of the correla-
tion outputs due to the training images. This means that the resulting correlation planes
yield values close to zero everywhere except at the location of a trained object. Therefore
these filters produce sharp correlation peaks.

This approach is very similar to the BioHashing algorithm which also uses a user specific
seed to generate a random basis for the whole algorithm. Here so-called minimum average
correlation energy filters are used, which are highly discriminative, and thus it becomes
more complicated for imposters to trick the system.

Lee et al. [41] presented a method for generating alignment free cancellable fingerprint
templates. Very similar to Tulyakov et al. [83, 84] and Yang and Verbauwhede [93] orientation
information is used for each minutiae point. Such information could include neighboring
minutiae points as well as specific angles. The goal is to find such an translation and rotation
invariant value mi for each minutiae point. In their scheme the translation and rotation
invariant value mi is extracted by using the orientation information within a neighboring
region around each minutiae point and a user-specific random vector.

If such values are found for each minutiae point these values are fed into two so-called
“changing functions” denoted by LPIN (the distance changing function) and ΘPIN (the
orientation changing function). These changing functions are user specific functions depend-
ing on a user’s PIN. Thus cancellability is provided by the user’s PIN and the user-specific
random vector used to extract translation and rotation invariant values of minutiae points.

3.9 Other Related Work

Sutcu et al. [74] proposed another biometric authentication system in which they create
hash values out of face biometrics. In their work they focused on how to robustly generate
these hashes (feature extraction is not addressed).
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During the enrollment process several samples of a user’s face are captured and features are
extracted resulting in n-dimensional feature vectors Vi = [vi1, vi2, ...vin] where i stands for
the i-th user. With the use of several sample for each value of this feature vector a range is
calculated so that vij − δij ≤ vij ≤ vij + δij where i = 1, ..., N and j = 1, ..., n. Thus 2δij
defines the range of the j-th component of the feature vector of the i-th user.

In the next step a single Gaussian function is fitted to every corresponding range. Addition-
ally, a number of fake Gaussian functions are added. It is suggested that the parameters of
the resulting function are stored on a smartcard. The system only stores a hash value of the
features generated with a standard hash function (SHA-1 is suggested).

During the authentication process the smartcard is presented to the system and a feature
vector is extracted. Then the function of the smartcard is applied to these features and the
result is hash. If this hash matches the stored hash, the user is accepted.

The whole scheme is somehow similar to the above schemes applied to online signatures
because a range is defined for each feature. But in this work this range is defined by a
Gaussian function. Furthermore, noise is added in the form of fake Gaussian functions.

Chang et al. [13] proposed a framework for biometric key generation and give a general
approach for distinguishable feature generation and a stable key generation mechanism ap-
plied to face biometrics. The goal of the distinguishable feature generation is to apply user-
dependent transformations such that each transformed feature is distinguishable to separate
the authentic user from others and thus potential imposters. Furthermore, by applying these
functions the key space is enlarged. Each transformed feature contributes one or more bits to
the cryptographic key. A projection vector is calculated which should maximize the ratio of
the determinant of the between-class scatter matrix of the transformed features to the deter-
minant of the within-class scatter matrix of the transformed features. For a two-class classi-
fication the optimal projection vector is determined as w = S−1

w (ma −mt)/||S−1
w (ma −mt)

where Sw = 0.5 · (Sa+St) and Sa and St are covariance matrices of features of the authentic
user and the mean of all other. The mean of the features for these matrices are ma and mt.
Thus the mean between the authentic features and the imposter’s features is maximized.

The optimal projection is repeated n times resulting in an n-dimensional feature space, where
in each dimension the mean between the authentic samples and the mean of the imposters
samples is maximized. This process provides the greatest distinguishability between the
biometric sample of a single user and all other samples.

Furthermore, a minimal and maximal boundary is defined for each feature (like in the above
techniques). In other words, a so-called authentic region is defined for every feature. These
regions are specified with unique indices onto which the features are mapped resulting in a
biometric key.

This approach is similar to the above mentioned approaches applied to signatures. However,
this technique makes use of the information of all accounts and potential imposters (if this
information is available) to improve the security of one user. To apply this technique with
the use of just a few users could work well, but to apply it to a large number of accounts
seems to be a challenging issue, which is not addressed further.

Freire et al. [27] presented a general biometric hash generation scheme based on the con-
catenation of binary strings extracted from a set of feature vector subsets. In this scheme
they make use of so-called genetic algorithms to select this subset out of a feature set. The
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feature subset concatenation is performed as follows:

Given a feature vector x = [x1, ..., xN ] with xi ∈ R, a biometric hash h = [h1, ..., hL] with
hi ∈ {0, 1} of dimension L is extracted. Let xj with j = 1, ..., D be formed by a subset of
features of x of dimension M (M < N), with possibly overlapping features for different j.
Let Cj be a codebook obtained by vector quantization of xj using xjk = 1, ...,K is a subset
of features called development set. The biometric hash h for an input feature vector xT is
defined as: h(xT ) = concat(f(xjT , C

j)) where j = 1, ..., D and f is a function that assigns the
nearest-neighbor codewords. The concatenation of binary strings is denoted by concat(·).
The codebooks Cj are computed with vector quantization as follows. Let xjk=1,...,K be feature
vector subsets forming a development set. The k -means algorithm is used to compute the
centroids of the underlying clusters, for a given number of clusters Q. Then, centroids are
ranked based on their distance to the mean of all centroids. Finally, binary codewords of size
q = log2Q are defined as the position of each centroid in the ranking, using Gray coding.

Then genetic algorithms, which are non-deterministic methods inspired by natural evolu-
tion, which apply the rules of selection, crossover and mutation to a population of possible
solutions in order to optimize a given fitness function, are applied. In the proposed scheme
the fitness function of the Genetic Algorithm is defined as f = EER−1, where EER is com-
puted for skilled forgeries from a set, different to the training set. In this work, a Genetic
Algorithm with integer coding is implemented in order to obtain the best subsets of M
features.

They apply this scheme to signatures and report an EER of 18.83% for skilled and 8.02%
for random forgeries for a hash length of 75 with 25 subsets chosen out of which the hash is
chosen. In conclusion, this approach demonstrates how an integer-coding genetic algorithm
enables exploiting all information found in large feature sets.

Zhang and Chen [95] presented a generalized optimal thresholding method, which they apply
to face images. The goal is to find the optimal threshold for each feature to minimize FAR
and FRR and maximize the guessing entropy. The guessing entropy is the expected number
of guesses an imposter has to make to receive the authentic key. Since it is not easy to
maximize the guessing entropy directly, they maximize its lower bound in the optimization,
the Shannon entropy.

Given a face image, a set of biometric features are extracted (feature extraction is not
addressed further). The feature extraction is performed several times for the authentic user
and the imposters. As result of all the measurements a threshold Ti for each feature xi in
the feature vector x is calculated. This threshold separates an authentic decision region RAi
from an imposter decision region RIi (like the threshold the decision regions are defined for
each feature).

This approach is very simple but the generation of the thresholds depends on the quality
of the imposter data with which the system is trained but would not function without.

Chen and Chandran [15] proposed another cryptographic key generation system for face
biometrics where they applied two different transforms and Reed-Solomon codes.

The first transform is a so-called Radon transform, which is not further explained. This
Radon transform is used to convert a 2D image into a set of 1D projections. The result, a
1D vector, is fed into a second transform. The second transform is an interactive chaotic
bispectral one way transform that accepts a one-dimensional vector input and outputs a
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magnitude and an angle matrix. During enrollment several sample inputs are captured and
the most desireable bits are selected. This is done by selecting those bits with the lowest
intra-class entropy and the highest extra-class entropy. The inter class entropy is calculated
out of an intra-class set which is a set of matrices generated from images of one user. The
extra-class entropy is calculated out of an extra-class set, which is a set of matrices generated
from images of all users. The detected bits form the feature vector.

The rest of the system operates like a password hardening scheme [52] except that Reed-
Solomon codes are used instead of shares created according to Shamir’s secret sharing
scheme. For the generation of 128-bit keys a FAR of 1.22% and a FRR of 28% are reported.

In this work another way of improving the distinguishability of a feature vector by using
samples of potential imposters and maximizing the “distance” to those is presented. The
presented results are not satisfying, they are able to produce very long keys up to 240-bit.

Delivasilis and Katsikas [22] proposed a novel method of applying side channel attacks to
a biometric key generator for voice. Side channel attacks fall into the category of passive
attacks where physical characteristics of an algorithm’s operation are measured. The result
of such a side channel attack could be (in the best case) additional information about the
cryptographic operations of the algorithm. This additional information is called information
leakage. This model has derived from research studies that have shown that the power
consumption of an algorithm’s operation with various inputs generates power consumption
traces with small but existent variations.

These variations are correlated with the Hamming distance of the input data. At the best
the attacker is able to make several hypotheses about the nature of the plaintext (in this
case the biometric).

As a result a tolerance function was identified. Every time a small fluctuation of the
recorded signal was generated the algorithm used that specific function to test whether the
input is within the acceptable range. This is an interesting pilot work which demonstrates
a way of how an attacker is able to extract accurately parts of a biometric authentication
system’ algorithm and thus about a user’s biometric.

3.10 Discussion

Most of the above schemes fit into the class of key binding systems. In these schemes bio-
metric data is combined with some sort of cryptographic keys during enrollment. At the
time of authentication this key is regenerated. Thus the objective of such schemes is to use
biometrics to realize a cryptographic key out of a template into which this key was binded
during registration.

In the Biometric EncryptionTM algorithm first several images of a person’s biometrics are
combined using correlation. The use of correlation is introduced to deal with the variance
of the biometric inputs. Afterwards a look-up table is generated which binds the person’s
biometrics with a cryptographic key. Within this scheme the key could either be an existing
key or a randomly generated one. It is mentionable that this algorithm processes entire
images of biometrics and does not perform feature extraction.

One very simple approach of binding a cryptographic key with biometric data is presented in
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the fuzzy commitment scheme. In this scheme the binding is performed by simply XORing
biometric data with the key which is prepared with an error correction code. The use of
error correction codes should handle the fuzziness of biometric measurements. Any sort of
preprocessing and feature extraction depends on the measured biometric characteristics.

The fuzzy vault scheme, which in other words is a proper fuzzy commitment scheme, uses
feature sets instead of feature vectors to overcome the problem of order invariance (especially
with the use of fingerprint biometrics). Here the binding of a person’s biometric with a
cryptographic key is performed by embedding extracted features onto a polynom which is
defined by the key. If enough points are found on this polynom it can be reconstructed
and thus the key. The security of this scheme lies in the infeasibility of the polynomial
reconstruction.

The secure sketch as well as the fuzzy extractor aim at extracting a random bitstream out
of a biometric data. Additionally information is provided which can be bound with the
biometric data to reconstruct the secret bitstream.

In the BioHashing algorithm biometric data is denoised and features are extracted which
are then binded with orthonormalized random vectors by computing dot products. These
random vectors are generated out of a user specific random token. Finally a key is generated
by thresholding the results of the dot products. Thus in this algorithm the user specific
token provides the additional information to receive the correct key.

In conclusion all of these key binding schemes store some sort of information generated
during registration which is then used to either generate a cryptographic key or release one.
Furthermore in these schemes cryptographic keys are updateable due to the fact that these
are not generated directly out of a person’s biometric.

The private template scheme represents a classic key generation scheme. Here the user’s
biometrics or a hashed value generated directly out of it serves as biometric key. The key is
suggested to be used to encrypt any form of private information. Thus the biometric data
(raw or hashed) has to be stored as biometric template which leads to the name of the
scheme. This makes the scheme very insecure in case the private template is stolen. In other
words, if this private template is compromised the whole system gets useless. Therefore this
approach has not been proceeded any further.

Schemes which use defined boundaries to generate hashes out of biometric data also fit into
the class of key generation schemes. The hashes, which are obtained by mapping biometric
features into intervals and afterwards stored in a database, do not seem to be updateable if
these are comprised.

Increasing the security of a password-based authentication system has been presented as the
so-called password-hardening scheme. In the first approach a user’s keystrokes dynamics,
out of which features were extracted, have been used to make a password more secure.
The system is designed to detect distinguishable features of a person’s keystroke dynamics
which are used in combination with an instruction table to generate a hardened password.
Thus a password hardening scheme does not aim at generating a cryptographic key but
enhances the security of an allready existing key. Furthermore within this approach the
system is able to adapt to slightly changes in the person’s biometrics. This is achieved by,
instead of using enrollment samples like in the above schemes, using the last few biometric
samples of successful logins.
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Another way to classify biometric cryptosystems is to focus on how these systems deal
with the fuzziness of biometrics. There are several ways to overcome variance. While in
some schemes transforms or filters are applied to denoise biometric measurements in other
schemes deviations may be calculated for each extracted feature.

In the Biometric Encryption approach a filter function is generated for each user with the use
of correlation to denoise the biometric input. Applying this filter function suffices to extract
identical biometric keys for legitimate users while imposters are rejected. The tolerance of
the whole system is adjusted by binding the adequate parameters of these filter functions.

User-specific random numbers are combined with biometric features in the BioHashing
scheme. Subsequently thresholds are applied to generate a biometric hash out of these num-
bers. This means in the BioHashing approach these thresholds define some kind of filter
which should provide a variation tolerant hash generation.

While in the Biometric Encryption scheme as well as in the BioHashing scheme filters are
applied to denoise the entire biometric input in the Biometrically Hardened Password ap-
proach only a subset of the extracted features is used, namely these which are the most
distinct. This means if features tend to vary from one measurement to another these fea-
tures are not used in the authentication process. Thus here occurring variations are detected
and not employed.

Another way to deal with biometric variance is to introduce error correction codes. In the
Fuzzy Commitment scheme as well as in the Fuzzy Vault scheme a secret key is prepared
with error correction codes and bound with the biometric data. Secure Sketches and Fuzzy
Extractors provide information to reconstruct a random bitstream which is extracted from
a biometric input. In the Private Template scheme error correcting information is appended
to the extracted features. At the time of authentication this additional information is used
to correct a distinct amount of variance. In these schemes the amount of error correcting
information which is used defines the tolerance of the whole system.

In so-called Interval schemes deviations of features form the biometric template. This implies
distinct features create tight boundaries while unsteady features stretch boundaries. This
approach is somehow similar to the Biometrically Hardened Password approach because
only distinct features will separate a legitimate user from imposters. Thus to deal with
the variance of the extracted features in interval schemes wider boundaries are defined for
features which tend to underlie variations.

Many publications aim at providing so-called cancellable biometrics. Within this approach
the objective is to transform the measured biometric data either in signal or in feature do-
main. Repeatable distortions of the biometric data are suggested to create these transformed
versions of the biometric data. The applied transformations need to be noninvertible and
random, so that neither a transformed biometric sample and the transformation nor several
samples of transformed biometrics reveal any information about the original measurement.
Furthermore it is suggested to use different transformations for different applications to pre-
vent imposters from crossmatching databases to track users. In case a transformed sample
of a user’s biometric data is stolen the parameters of the transformation used to create
this sample are simply changed, which means the stored sample is updated. Most of the
schemes providing cancellable biometrics make use of pseudo random number generators.
This pseudo random number generators serve as basis of the whole system.

All the above mentioned key binding schemes provide a form of cancellable biometrics though
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not in the classic sense of cancellable biometrics. Within key binding schemes the crypto-
graphic key is updateable. For example in a fuzzy vault scheme there are no transformations
which could be changed but applying different polynoms would suffice to update the scheme
if the biometric template was comprised. Nevertheless the classic key generation systems
like the private template scheme do not provide cancellable biometrics.



Chapter 4

Iris-based Fuzzy Commitment
Schemes

In this chapter two implementations of iris-based fuzzy commitment schemes are proposed.
These implementations use different iris recognition algorithms and error correction codes
are adapted to each algorithm. First of all, the basic working flow of a fuzzy commitment
scheme is described (Section 4.1) and consequential preconditions are defined (Section 4.2).
Then the general way of how to make use of a fuzzy commitment scheme in a biometric
cryptosystem is described (Section 4.3). Subsequently, two forms of error correction codes
are presented (Section 4.4). Then a short summary of the applied iris recognition algorithms
is given (Section 4.5, 4.7). At the end implementations of fuzzy commitment schemes using
these algorithms are discussed and experimental results are presented (Section 4.6, 4.8).

4.1 A Fuzzy Commitment Scheme

A fuzzy commitment scheme is a cryptographic primitive which was introduced by Juels
and Wattenberg [36]. Used in a biometric cryptosystem the objective of a fuzzy commitment
scheme is used to bind a biometric sample (for example, an iris code) of a user with a
cryptographic key. The result of this binding is stored as template (commitment). The
cryptographic key is previously prepared with an error correction code so that another
biometric sample, which is very similar to the first, extracts the cryptographic key from the
template.

To understand the fuzzy commitment approach the operating mode of a simple bit
commitment scheme has to be explained first. Formally, a bit commitment scheme consists
of a function

F : {0, 1} ×X → Y (4.1)

To commit a bit b ∈ {0, 1} the sender chooses a so-called “witness” x ∈ X (this witness is
chosen randomly) and calculates the so-called “blob” y so that

y = F (b, x) (4.2)
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Thus y represents b in a “safe”. To open (decommit) this safe the sender sends b and the
receiver verifies if y is an encryption of b. In other words, the sender passes the safe to the
receiver, which is not able to manipulate the value of b. The receiver can only check if y is
an encrypted version of b. For the receiver it must be infeasible to learn anything about b
out of a given y.

Based on the idea of the bit commitment scheme a fuzzy commitment scheme exhibits
several differences. First of all a fuzzy commitment scheme can be defined by

F : C ×X → Y. (4.3)

Here C is a set of error correcting codewords of length n, X = {0, 1}n and F (c, x) is
the commitment of c where c ∈ C and x ∈ X. Secondly, in a fuzzy commitment scheme
it is possible to extract c out of F (c, x) using a valid x which is not the case in a bit
commitment scheme. Thus any codeword c ∈ C represents a secret which for instance could
be a cryptographic key. Thirdly, the most important property which is required is the
fuzziness. This means that the blob y can be decommited by x′ where x′ is a witness which
is sufficiently close to x according to some metric, for example, the Hamming distance.
These three properties summarize the fuzzy commitment scheme.

A fuzzy commitment scheme can be applied to a biometric system in combination
with error correction codes. This is done to overcome the fuzziness in the biometric
matching process.

With respect to biometric systems, a fuzzy commitment scheme consists of a set of codewords
C ⊆ {0, 1}n where each codeword c ∈ C represents a secret bitstream prepared with error
correcting information. This error correction code C has to be chosen with respect to the
biometrics, which means, the error correction code has to be adapted to the way errors occur
in the general matching process. If mostly single bit errors occur, bit level error correction
codes would suffice. If mostly burst errors occur block level error correction codes would
suffice. If both type of errors occur a combination of both would do.

One of these codewords c ∈ C is then committed using x, where x ∈ {0, 1}n is a biometric
sample, for example an iris code. Here both, the codeword and the biometric sample must be
of the same length. Then the commitment is generated by calculating a so-called difference
vector δ so that

x = c+ δ (4.4)

This means that now δ provides partial information about c. To prove whether the correct c
was extracted additionally a hash of c, h(c) where h is a secure hash function, is calculated
as part of the commitment so that

y = (h(c), δ) (4.5)

The hash value of c, h(c), must not reveal any information about c.

Now to overcome the fuzziness of biometrics it should be possible to transform a biometric
sample x′ which is sufficiently close to x into the direction of x using δ, This is done by first
calculating c′ so that

c′ = x′ − δ (4.6)

If c′ is calculated, the decoding function f of the error correction code C can be applied so
that if the decoding function is able to correct all errors

f(c′) = f(x′ − δ) = c (4.7)
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Figure 4.1: A simplified precondition for a fuzzy commitment scheme: the number of additional error correction
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as a fixed threshold.

The resulting codeword is then tested by applying h to it. If the result is equal to h(c) then
no errors occurred. If the result is not equal to h(c), one or more errors must have occurred.

4.2 Preconditions for Fuzzy Commitment Schemes

Several preconditions evolve from the above description of a fuzzy commitment scheme. For
the construction of an iris based fuzzy commitment scheme the following preconditions must
be fulfilled:

First of all, the iris recognition algorithm which is applied to the biometric input needs to
generate a rotation invariant output. Contrary to a fuzzy vault scheme a fuzzy commitment
scheme, as it is described above, cannot handle order variant outputs.

Another precondition which has to be fullfiled is that the applied iris recognition algorithm
generates a sufficiently large output (=bitstream). A cryptographic key which is prepared
with an error correction code has to be bound with this output. This key has to be prepared
with a sufficiently large number of error correction bits. These additional bits should provide
the information to repair a distinct number of bit errors. This number should approximate
the intra-class distance of the applied algorithm as it is shown in Figure 4.1.

In summary, to create a fuzzy commitment scheme for the use in a biometric cryptosystem
the applied iris recognition algorithm should produce an order invariant output. Further-
more, this output should be as long as the cryptographic key concatenated with error cor-
rection bits where the error correction bits provide the information to correct the estimated
number of errors between iris data of the same person.

4.3 Preface

If the above preconditions are fullfilled, which means that enough bits are extracted form
the biometric input and the right error correction codes are chosen, the generation of the
fuzzy commitment scheme is straight forward.

First of all, the key k ∈ {0, 1}l, which can be chosen at random has to be prepared with
error correction information. The way the key is encoded depends on the error correction
code which is used. Nevertheless, the error correction code adds redundant information to
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Figure 4.2: The basic enrollment procedure in a fuzzy commitment scheme used in a biometric cryptosystem.

the key and thus maps the key to another bitstream. The bit stream is of same length as
the biometric sample x ∈ {0, 1}n so that it is possible to XOR these two bitstreams. The
result is stored as the commitment together with a hash of the key.

To decommit the commitment another biometric sample x′ ∈ {0, 1}n is XORed with the
commitment and the result is decoded with the decoding function of the error correction
code. The result of this decoding procedure is a key k′ ∈ {0, 1}l of length l. Now this key
could be returned by the system, which means rejecting a user would result in returning a
faulty key. Furthermore, a hashed value of the resulting key could be tested against h(k) to
whether return the valid key or reject the presented biometric sample.

In biometric systems a so-called enrollment procedure defines the registration of a person.
Analogical the authentication procedure defines the verification of a person. In the following
subsections these two procedures are defined for a fuzzy commitment scheme:

4.3.1 Enrollment in a Fuzzy Commitment Scheme

At the start of the enrollment procedure in a fuzzy commitment scheme one or more bio-
metric inputs are acquired. The number of biometric input used depends on the applied
algorithm, if the algorithm itself uses several biometric inputs to create the biometric tem-
plate at least the same number of biometric inputs should be used. Once enough biometric
inputs are acquired, feature extraction is performed and all samples are combined to form
an enrollment sample x ∈ {0, 1}n so that

x = f(x1, x2, ..., xn) (4.8)

where f is a function which combines a total number of n biometric samples xi ∈ {0, 1}.
Concurrently a randomly chosen key k ∈ {0, 1}l is provided with error correcting informa-
tion. This is done by applying an error correction code C which is none other than a set of
codewords c ∈ C, so that with the encoding function of C, k is mapped to a bitstream of
length n so that

Cenc : {0, 1}l → {0, 1}n (4.9)

where Cenc is the encoding function of C. The result denoted by kec ∈ {0, 1}n is then
combined with x (both bitstreams are of length n) using a so-called key-binding algorithm.
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One simple and concealing key binding algorithm is XORing both bitstreams to form the
first part of the commitment so that

y = (kec ⊕ x, h(k)) (4.10)

where y is the whole commitment and h(c) is a hash of the original key, created using a
secure hash function. In summary this means the result of the enrollment procedure is a
biometric template resulting out of several biometric inputs combined with a cryptographic
key and a hash value of this key. The whole enrollment procedure is illustrated in Figure 4.2

4.3.2 Authentication in a Fuzzy Commitment Scheme

During the authentication process one biometric input is acquired, feature extraction is
performed resulting in an biometric sample x′ ∈ {0, 1}n of length n. This biometric sample
is then used within a so-called key retrieval algorithm to extract k′ec so that

k′ec = x′ ⊕ (kec ⊕ x) (4.11)

where (kec ⊕ x) is part of the commitment. Once k′ec is calculated and k′ec does not contain
too many errors the decoding function of C denoted by Cdec is used to calculate k′ so that

Cdec : {0, 1}n → {0, 1}l (4.12)

where k′ ∈ {0, 1}l. Now k′ can be returned which implies that a non-valid user would receive
a faulty key, k′ 6= k. To check whether k′ is the correct key h(k′) is calculated and tested
against the hash value of the correct key h(k), which is stored as part of the commitment.
If h(k′) = h(k), the sample is accepted and the cryptographic key k is released, otherwise
the user is rejected. Subsequently the released key is used to encrypt/decrypt any kind of
secret information. The whole authentication procedure is illustrated in Figure 4.3.

4.4 Error Correction Codes

With respect to the construction of a fuzzy commitment scheme two classes of error correc-
tion codes are relevant:
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1. Bit Level Error Correction Codes: These codes are capable of correcting single
bit errors while the error correction information lies within each codeword.

2. Block Level Error Correction Codes: These codes are capable of correcting blocks
of bits in which errors occur. Here the error correction information is provided by other
bit blocks. Thus the information is distributed over a set of bit blocks.

In Figure 4.4 the basic operations of these two classes of error correction codes are illustrated.
In the following subchapters two representative error correction codes of these two classes
are described in detail.

4.4.1 Hadamard Codes

Named after Jacques Hadamard, Hadamard codes are error correction codes which operate
on the bit level [3][31][47]. Hadamard codes are of the type

[
2n, n+ 1, 2n+1

]
, which means

bitstreams of length n+1 are mapped to codewords of length 2n and the whole code consists
of a total number of 2n+1 codewords. Hadamard martices are used to generate a Hadamard
code. A Hadamard matrix of order n is a matrix Hn with elements 1 and −1 such that
HnH

t
n = nIn where Ht

n is the transposed matrix of Hn and In is the identity matrix. This
is the first important property of a Hadamard matrix. For example,

H1 =
[
1
]

, H2 =
[

1 1
1 −1

]
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (4.13)

Hadamard matrices of size n × n, where n > 2 only exist if 4 divides n. Furthermore,
since HnH

t
n = nIn two different rows of Hn are orthogonal. Any matrix obtained from the

permutation of rows or columns of Hn is a Hadamard matrix as well as −Hn.

If Hn is a Hadamard matrix, n can be written as n = 4m. Let v = (v1, v2, ..., vn) be a vector
of length n so that if v is added to an arbitrary row of Hn and u = v+hk has at most m−1
components different from hk where hk denotes the kth row of Hn. Then the kth component
of s = uHt

n is at least 4m− 2(m− 1) = 2m+ 2 and the absolute value of other components
is at most 2(m− 1). This is the second important property of an Hadamard matrix.

To create a Hadamard matrix the Kronecker product of two Hadamard matrices can be
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applied where the Kronecker product of two matrices A and B is defined as,

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 (4.14)

A class of Hadamard matrices are the so-called Sylvester Matrices, which are the Kronecker
product of H2 and an arbitrary Hadamard matrix Hn such that,

H2n = H2 ⊗Hn, and H2 =
[

1 1
1 −1

]
(4.15)

Therefore these Hadamard matrices can be defined recursively so that,

H2n =
[
Hn Hn

Hn −Hn

]
(4.16)

Once a Hadamard matrix H4m is created (for example with the Sylvester method), a code
can be generated out of it. For the code H4m and −H4m are used where first −1 values are
changed to 0. The resulting matrices Ĥ4m and Ĥ ′4m, where

Ĥ4m =
[−H4m + 2J4m

]
mod 3 and Ĥ ′4m =

[
H4m + 2J4m

]
mod 3 (4.17)

where 2J4m is the 4m× 4m matrix in which all values are 1. Then all rows of the matrix C
of size 8m× 4m where,

C =
(
Ĥ4m

Ĥ ′4m

)
(4.18)

defines the codewords of the resulting Hadamard code. Thus a Hadamard matrix H4m

of size 4m × 4m generates a Hadamard code consisting of 8m codewords, each of length
4m. The minimum distance of these codewords is 2m which corrects up to m − 1 errors.
As defined above, n + 1 input bits are then mapped to a codeword of length 2n. For the
construction of a fuzzy commitment scheme this means that for a key K of length k, at
most 2k−1 − k bits are appended to the key bitstream.

The decoding procedure, which just makes use of the above two properties of Hadamard
matrices, for a received Hadamard code can be summarized in five steps:

1. All the bits of a received codeword c, of length 4m, which are 0 are first changed into
−1 resulting in c′ where c′ = 2c− h1 (h1 is the first row of a Hadamard matrix H4m
created with the Sylvester method, thus each value of h1 is 1).

2. Multiply the received codeword with H4m so that s = c′H4m

3. If c′ is a codeword of the Hadamard code without any errors s will be 4m·ek or −4m·ek
where ek is the kth row of the the identity matrix I4m (remember that HnH

t
n = nIn).



4 Iris-based Fuzzy Commitment Schemes 61

4. If errors occurred, s will not be ±4m · ek. But if the number of errors is at most m−1,
then the largest absolute component of s indicates which codeword (row of H4m) is the
received codeword because the largest absolute value may not decrease below 2m+ 4
and the absolute value of all other components may decrease down to 2m− 2.

5. If more than m−1 errors occurred, the codeword cannot be decoded. This means that
the largest absolute value is not unambiguous.

In summary, Hadamard codes are simple error correction codes capable of correcting a large
number of errors, in the best case a quarter of the whole bitstream. Hadamard codes using
Hadamard matrices of size n < 7 have been proved to be optimal.

4.4.2 Reed Solomon Codes

Reed Solomon Codes are error correction codes named after I. Reed and G. Solomon [33]
which are based on the arithmetic of finite fields. These codes are suitable for the correction
of burst errors and are thus often used as a second error correcting layer.

Within Reed Solomon codes the code is defined as the mapping of a vector space of dimension
m over a finite field k denoted by Vm(k) in a vector space of higher dimension n, n > m,
over the same field denoted by Vn(k). Let k = Z2(α) where α is the root of a primitive
irreducible polynomial over Z2. Then the elements of k are represented as 0, β, β2, ..., β2n−1

where β is the generator of the multiplicative cyclic group and β2n−1
= 1. If a code is sent,

the code is represented as (a0, a1, ..., am−1) where ai ∈ Z2. Subsequently P (x) is defined as

P (x) = a0 + a1x+ a2x
2 + ...+ am−1x

m−1 (4.19)

which means the Reed Solomon code maps the code so that

(a0, a1, ...am−1)→ (P (0), P (β), P (β2), ..., P (1)). (4.20)

This result is then sent and afterwards decoded. The decoding of a received Reed Solomon
code can be described as follows: If no error occurred, then 2n equations are received such
that

P (0) = a0

P (β) = a0 + a1β + a2β
2 + ...+ am−1β

m−1

P (β2) = a0 + a1β
2 + a2β

4 + ...+ am−1β
2m−2

...
P (1) = a0 + a1 + a2 + ...+ am−1

(4.21)

where all equations are linearly independent, which means an unique solution exists. In
case errors occurred, one fact is utilized, namely that for s errors, we can get at most
(s+m− 1)−mc determinations for a single wrong m-tuple where mc denotes a chosen m.
This is because, since the equations are independent, anym of them have exactly one solution
vector a. To obtain more than one vote, a must be the solution of more than m equations.
An incorrect a can be the solution of at most s+m− 1 equations, consisting of s incorrect
equations and m − 1 correct equations. Therefore, an incorrect a can be the solution to at
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most (s+m− 1)−mc sets of m equations. Thus, the correct solution a = (a0, a1, ..., am−1)
gets at least 2n − s−mc votes.

An incorrect solution b1, b2, ..., bi where t ≤ s each solution gets at most s + m − 1 − mc

votes. Thus if
2n − s−mc > s+m− 1−mc (4.22)

which means that
s <

2n −m+ 1
2

(4.23)

then by taking the majority vote, the correct m-tuple can be determined resulting in the
original message. Therefore a total number of sn−m+1

2 errors can be corrected.

At the time Reed Solomon codes were invented, computers were not capable of decoding
such a code. Berlekamp [5] was the first to invent an efficient algorithm to decode Reed
Solomon codes.
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4.5 An Iris Recognition Algorithm using Cumulative-
Sum based Change Analysis

The first applied iris recognition algorithm performs simple texture analysis. The algorithm
is proposed by J.-G. Ko, Y.-H. Gil, J.-H. Yoo and K.-I. Chung [38]. It employs a cumulative-
sum-based grey change analysis for the feature extraction.

As in common iris recognition algorithm first the iris texture is extracted. The enhanced
image is then divided into cells out of which mean gray scale values are calculated. Sub-
sequently these mean values are used to form cumulative sums which are encoded to form
the iris code. In the authentication process a distance, which is called the lower Hamming
distance (see 4.5.3), is calculated between a sample iris code and a reference iris code. This
distance is compared against a fixed threshold deciding whether a person is accepted or
rejected. In the following subchapters the preprocessing of the algorithm is summarized:

4.5.1 Preprocessing

First of all one iris image is acquired for each person. Then the inner and outer boundaries
of the iris need to be localized on the acquired image. Like in John G. Daugman’s algorithm
this is done by using an effective integro-differential operator:

max(x0, y0, r)
∣∣∣∣Gσ(r) · ∂

∂r

∮
x0,y0,r

I(x, y)
2πr

ds

∣∣∣∣ (4.24)

where I(x, y) is the original image. The complete operator behaves as a circular edge de-
tector. It searches iteratively over the candidate domain with respect to increasing radius
denoted by r, Gσ(r) is a smoothing function, for example, a Gaussian function of scale σ.

In the next step the detected texture is normalized. This means, the iris ring is mapped from
polar coordinates to cartesian coordinates to form a rectangular image of the iris texture.
The size of the normalized image is 64 × 300. Due to the fact that the top and bottom
of the iris are often hidden by eyelashes or eyelids, the iris image from the right side [45o

to 315o] and the left side [135o to 225o] are transformed into a polar coordinate system.
Furthermore, histogram stretching is applied to improve the contrast of the iris texture. The
whole preprocessing procedure is illustrated in Figure 4.5.

4.5.2 Feature Extraction

Once an iris texture of fixed size is extracted and prepared, feature extraction is performed.
This is done by applying cumulative-sum-based change analysis. The whole feature extrac-
tion can be divided into four steps:

1. The iris texture is divided into so-called basic cell regions (these cell regions are of size
10× 3 pixels). For each basic cell region an average grey scale value is calculated.

2. The basic cell regions are grouped horizontally and vertically. It is recommended that
one group should consist of five basic cell regions.

3. The cumulative sums over each group are calculated.
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Figure 4.5: The preprocessing procedure: a) aquisation of the iris image b) detection of the inner and outer iris
boundaries c) normalization of the iris texture d) enhancement of the iris texture

4. The iris code is generated out of the cumulative sums.

The cumulative sums of five average gray scale values of the basic cell regions of one group
are calculated as follows:

Let X1, X2, ...X5 be five average gray scale values. First calculate X, the mean of these
values so that

X =
X1 +X2 + ...+X5

5
(4.25)

Then the initial cumulative sum S0 is defined by S0 := 0. The other cumulative sums are
then defined recursively so that for i = 1, 2, ..., 5

Si = Si−1 + (Xi −X) (4.26)

This means, cumulative sums are calculated by adding the difference between current
value and the average to the previous sum (note that the calculation of cumulative sums
only requires addition and substraction). The cumulative sums are not the cumulative
sums of the values. Instead they are the cumulative sums of differences between the values
and the average. These differences sum up to zero so the cumulative sum always ends at zero.

The iris code for the cumulative sums is generated as follows:

1. Calculate the minimum and the maximum for the group of cumulative sums so that
MAX := max(S1, S2, ..., S5) and MIN := min(S1, S2, ..., S5).

2. If Si is located between the index of MIN and MAX, check whether Si is on a upward
slope or on a downward slope:

(a) If Si is on upward slope, set the cell’s iris code to 1.

(b) If Si is on downward slope set the cell’s iris code to 2.

3. If Si is located outside the index of MIN and MAX, set the cell’s iris code to 0. An
example of the iris code generation for two sample groups is shown in Figure 4.6.

4. Repeat 1.-3. for each group of cumulative sums.
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Cumulative Sums Iris Codes

MIN MAX

MINMAX

a)

b)

-19 4 21 31 -2

11 31 19 -15 2

1 1 1 1 0

0 02 2 2

Figure 4.6: Iris code generation: a) an example of an iris code including an upward slope b) an example of an iris
code including a downward slope

Analyzing cumulative sums means analyzing the variations in the grey values of iris patterns.
If the cumulative sums of a group are on an upward slope the iris pattern may change from
darkness to brightness. If the cumulative sums of a group are on an downward slope, the
iris pattern may change from brightness to darkness.

In summary, the preprocessing and the feature extraction together form the enrollment
procedure. As a result of the enrollment procedure, an iris code, which is generated out of
the horizontal and vertical groups, is stored as biometric template.

4.5.3 Verification

At the time of authentication the similarity of two iris codes is calculated using a metric
which is referred to as lower Hamming distance. A low distance indicates a high similarity
and vice versa. This lower Hamming distance HD is calculated as

HD =
1

2N

[(
N∑
i=1

Ah(i)⊕Bh(i)

)
+

(
N∑
i=1

Av(i)⊕Bv(i)
)]

only when Ah(i) 6= 0 ∧Bh(i) 6= 0, Av(i) 6= 0 ∧Bv(i) 6= 0,

(4.27)

where Ah(i) and Av(i) denote the enrolled iris code over the vertical and horizontal direction
and Bh(i) and Bv(i) denote the iris code over the vertical and horizontal direction of an
acquired biometric input, N is the total number of basic cell regions.

4.5.4 Experimental Results

The proposed algorithm was evaluated using the a CASIA iris database [1] with data from
108 people (no information is provided about the total number of iris images and the version
of the database). In Table 4.2 the best results give by the authors with respect to the applied
threshold are summarized.

To confirm these results an own implementation of the proposed algorithm was implemented
and tested using a subset of the CASIA v3 database [1], where for each person at least 8
iris images are available, which makes a total number of about 100 persons. Unfortunately
the results of Ko et al. could not be approved with respect to the accuracy of the algorithm,
altough the implementation uses exactly the same algorithm as described above. Still the
proposed algorithm based on the differences in upward and downward slopes of cumulative
sums shows good results in distinguishing authentic from non-authentic users. In Figure
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Lower Hamming Distance False Acceptance Rate (%) False Rejection Rate (%)

0.24 0 1.14
0.25 0.42 1.14
0.26 1.05 0.76
0.27 2.63 0.50
0.28 5.26 0.25

Table 4.1: The best proposed results with respect to the applied threshold. All results are percentaged.
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Figure 4.7: The Hamming distance between iris codes generated based on the above algorithm. By calculating the
Hamming distance inter class distances and intra class distances strongly overlap.

4.8 the inter class distances and the intra class distances of the iris codes is shown. These
distances were achieved by applying the suggested metric (lower Hamming distance) of the
above algorithm. In contrast, Figure 4.7 illustrates the Hamming distances (XOR of tertiary
code) of the same set of iris images where intra class distances strongly overlap with the
inter class distances. This implies, by using cumulative sums for feature extraction, the lower
hamming distance as defined above shows much better results in distinguishing genuine user
from imposters than the Hamming distance. In Figure 4.9 the FNMR and the FMR of the
proposed algorithm is plotted, Figure 4.10 shows the ROC of the algorithm.

In summary the algorithm which is very simple does not approve the proposed results. A
success rate of 90.5% was achieved, which means for a FMR of 0.0% a FNMR of 9.5% was
achieved, and a EER of 4.7%. It is conspicuous that the average lower Hamming distance
of genuine users and imposters is much less than those presented by Ko et al.. None the
less this algorithm can be used to build up a fuzzy commitment scheme, but the suggested
metric of counting differences in upward and downward slopes of cumulative sums cannot be
applied. This is because in a fuzzy commitment scheme the whole iris code is XORed with
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Figure 4.8: The distance of iris codes according to the suggested metric of the above algorithm. The difference
in upward and downward slopes of cumulative sums shown good results for distinguishing authentic from non-
authentic users.

a cryptographic key combined with error correcting information while in the above metric
only distinct parts of the iris codes are used to calculate differences between these.
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Figure 4.9: The FMR and the FNMR of the implementation using the above algorithm. For evaluation about 100
persons of the CASIA v3 iris database were used.
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Figure 4.10: The ROC and the EER of the implementation using the above algorithm. For evaluation about 100
persons of the CASIA v3 iris database were used.
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4.6 A Fuzzy Commitment Scheme using Block Level
Error Correction Codes

The algorithm of J.-G. Ko, Y.-H. Gil, J.-H. Yoo and K.-I. Chung [38] turns out to be well
suited for a fuzzy commitment scheme using block level error correction codes which is
capable of binding and retrieving cryptographic keys with a total length of 128 bits.

4.6.1 Iris Code Generation

First of all, to build up the fuzzy commitment scheme the above preconditions have to be
fulfilled. This means the applied algorithm has to generate a sufficiently large number of
output bits. The general iris code of the algorithm of Ko et al. can be defined as follows,

C = {0, 1, 2}n (4.28)

where n is the length of the iris code. To keep up the semantics of the iris code the mapping
of the code to a binary level implies doubling the length of the iris code so that

C ′ = {0, 1}2n 0→ 00, 1→ 01, 2→ 10 (4.29)

where C ′ is the resulting binary iriscode, which now consists only of 1 and 0 generated
according to the above mappings. Using the above mapping implies a loss of entropy but
handling the original iris code as tertiary code leads to several problems in the matching
process since simple XORing is not possible then. In Figure 4.11 the mapping of a sample
iris code is shown. This mapping decreases the entropy of the iris code by 25% because a
pair of bits cannot consist of two 1s.

In the preprocessing step iris images of dimension 512 × 64 are slitted from the right side
[45o to 315o] and the left side [135o to 225o] to get rid of most distortions resulting in an
iris image of dimension 256× 64. As in the original algorithm, the iris code consists of two
parts, one for cumulative sums of the horizontal and one for the vertical groups of basic cell
regions. As suggested, basic cell regions of dimension 10 × 3 and groups of five basic cell
regions were used to generate the iris code. Thus the center 250 × 60 pixels of the slitted
iris image are used as information. These 250 × 60 pixels lead to 25 × 20 basic cell regions
resulting in a total number of 200 groups out of which 2000 output bits are extracted. In
Figure 4.13 the whole process which leads to 2000 output bits is summarized. Since 2000
bits are enough bits to bind a 128 bit cryptographic key within a fuzzy commitment scheme
the precondition of extracting a sufficiently large number of output bits is fulfilled.

One property of the resulting bitcode is utilized: namely that within a group a cumulative
sums can either contain an upward slope or a downward slope but it cannot contain both
since there is only one minimum and one maximum. This means that the iris code can be
split into two parts where the first part contains all the upward slopes and the second part
contains all the downward slopes. In Figure 4.14 an example of this mapping is shown.

By dividing the iris code into two parts, one for each type of slopes, the errors which occur
between two iris codes do not decrease but accumulate, which means single bit errors which
are close to each other are pulled together. This means, with this algorithm the number of
burst errors increases while the number of bit level errors decreases. Figure 4.12 shows an
example of the rearranging of the iris code, which is now even more qualified for using it in
combination with a block level error correction code.



70 4.6 A Fuzzy Commitment Scheme using Block Level Error Correction Codes

original
iris code

binary
iris code

... ...
0 1 1 1 0 ... 2 2 2 2 0

00 01 01 01 00 ... 10 10 10 10 00

Figure 4.11: A sample iris code which is mapped to the analogue binary iris code. The mapping implies a loss of
entropy but holds the semantics of the iris code.

0 1 1 1 0 0 2 2 2 0 0 0

00 01 01 01 00 00 10 10 10 00 00 00

01 11 00 00 00 00 00 00 00 00

n

2n

original
iris code

binary
iris code

rearranged
iris code

Figure 4.12: A sample iris code which is rearranged so that the first half of the rearranged iris code contains all
upward slopes of cumulative sums and the second part of the rearranged iris code contains all downward slopes of
cumulative sums.

Intruders may take advantage of the fact that the entropy is reduced by the mapping of the
original iris code to a binary iris code. For instance, in the binarized iris code as it is shown
in Figure 4.11 a pair of bits can at most contain one 1. By analogy, if in the rearranged iris
code a 1 is at position m implies that there is a 0 at position m+n mod n where the entire
iris code consits of n bits. Thus given one half of the iris code intruders would be able to
construct several parts of the remaining half of the iris code. However, this security leakage
is annihilated in the key binding process.

4.6.2 The Enrollment Process

To enroll one person a total number of three input images are acquired and three iris codes
are generated according to the above algorithm. Out of these three iris codes one enrollment
iris code is generated by first filling gaps between bit groups. Subsequently, for each bit the
majority bit is assigned to the enrollment iris code. In the end, sequences of 1s which are of
length l ≤ 2 are replaced by 0s. The procedure of filling gaps of size s ≤ 2 is illustrated in
Figure 4.15 while the elimination of 1s is shown in Figure 4.16.

Furthermore, a randomly generated 128 bit key k is encoded with a Reed-Solomon code. The
code used a symbolsize m = 8 which means that it is capable of generating encoded blocks
of 256× 8 bits. Since the key consists of 16× 8 bits and the enrollment iris code consists of
a total number of 250× 8 bits, the key is encoded using a RS(250, 16) Reed Solomon code.
Thus 16 × 8 information bits are encoded using (250 − 16) × 8 bits. This implies that the
decoding function is able to correct (250− 16)/2 = 117 block level errors.

Additionally, a hash value of the key denoted by h(k), where h is a secure hash function,
can be stored as part of the biometric template.

4.6.3 The Authentication Process

At the time of authentication one iris image is acquired and an iris code is gener-
ated according to the above method. This iris code which consists of a total num-
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b)

250× 60 used pixels to generated
basic cell regions

25× 20 basic cell regions
of dimension 10× 3

5× 20 horizontal
groups

25× 4 vertical
groups

original
iris code

binary
iris code

rearranged
iris code

c)

d)

e)

f)

g)

Figure 4.13: The whole process to generate the iris code: a) use the center 250 × 60 pixels of the slitted image
texture as input b) calculation of the 25 × 20 basic cell regions c) calculation of the 5 × 20 horizontal groups d)
calculation of the 25 × 4 vertical groups e) generation of the original iris code f) binarize the original iris code g)
rearrange the binarized iris code

ber of 2000 bits is XORed with the template. The resulting bitstream is the de-
coded with the Berlekamp-Massey algorithm [5] for the decoding of Reed-Solomon
codes (code is derived from software contributed to GMD-FOKUS by C. Schuler,
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bit errors...

block errors

bit errors
...

binary
iris codesoriginal

iris codes

rearranged
iris codes

00111 00000
01110 02220

0000010101 0000000000
0001010100 0010101000

0111000000 0000001110
0011100000 0000000000

Figure 4.14: Two sample iris codes where in the binary iris codes due to five single bit errors four block level errors
occur while in the rearranged version of the binary iris codes only two block level errors result out of five bit level
errors.

a gap of
size 1

a gap of
size 2

rearranged
iris code

iris code
with filled gaps

00111 01111 00000 01110 01110 ...

00111 11111 00000 01111 11110 ...

Figure 4.15: Gaps between two upward/downward slopes of cumulative sums of size s ≤ 2 are filled to decrease the
number of single bit errors which often occur at the borders of two groups.

http://home.arcor.de/christianschuler/fec sw.html). As a result of the decoding algorithm
128 bit cryptographic key k′ is returned.

In the end this key can be tested against the stored hash value of the correct key by applying
h to k′ and check whether h(k′) = h(k). If so, the sample is accepted, otherwise it is rejected.

4.6.4 Experimental Results

The fuzzy commitment scheme, as it is described above, was tested using a subset of the
CASIA v3 database [1], where for each person at least 8 iris images are available, which
makes a total number of about 100 persons. In Figure 4.17 the distribution of the intra-class
and inter-class distances with respect to the number of block level errors is shown. Without
the rearrangement described in Figure 4.12 the intra class distances regarding to block level
errors increase and a significant part of genuine users cannot be authenticated as shown in
Figure 4.18. As described above a total number of 117 block level errors can be corrected. For
most of the authentic users correcting 117 block level errors suffices. There is only a small
number of samples which contain slightly more errors, but some which contain considerable
more block level errors.

This phenomenon can be explained by the fact that 8-bit blocks are used for the Reed-
Solomon code, while the applied algorithm operates on 5-bit blocks. Thus one 5-bit block
level error may either cause one or two block level errors on the 8-bit block level. There-
fore, some block level errors result from other block level errors. Due to this reason the
accumulation of the inter class distances is not very high.

In Figure 4.20 the FMR and the FNMR of the whole system is plotted, Figure 4.21 shown
the ROC resulting in an EER of 5.7%. This result is not very satisfying but still a FNMR of
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three sample
iris codes

majority
voting enrollment

iris code

eliminate
upward/downward
slopes of length ≤ 2

00000 01110 00000 01110
11110 00111 00111 11110
11100 00000 01110 00000

11100 00110 00110 01110 11100 00000 00000 01110

Figure 4.16: Eliminating sequences of of 1s of length l ≤ 2 is important because these sequences cause errors if
these are compared to iris codes where only sequences of 1s of length l > 2 are accepted.

6.57% and a FMR of 0.083% where reached setting up a border for being capable of correcting
a total number of 117 block level errors. This means in the proposed fuzzy commitment
scheme a total number of 117 faulty bit blocks of the overall 250 bit blocks can be corrected.
Thus, if less than 46.8% of the bit blocks of the iris code contain errors the correct key is
returned. If more than 46.8% of the bit blocks contain errors is is not possible to decode the
bitstream which means a faulty key is returned.

According to the presented results it is shown that the usage of block level error correction
codes is suitable for the above algorithm. In contrast, applying only bit level error correction
codes is not adequate. With regard to the intra class Hamming distance of extracted iris
codes as shown in Figure 4.7, bit level error correction codes, such as Hadamard codes,
would be expected to at least authenticate a part of genuine users. However, if for instance
Hadamard codes are applied, 8-bit blocks would be mapped to 128-bit blocks to generate
a bitstream of approximately 2000 bits (actually 16 · 128). Then the added error correction
information would be capable of correcting a total number of 128/4 − 1 = 31 bits in each
128-bit block. Unfortunately errors between iris codes do not occur uniformly random. If
more than 31 errors occur within at least one of the 128-bit blocks a user would be rejected.
In Figure 4.19 the maximal number of intra class and inter class errors within 128-bit blocks
is plotted. It is shown that the iris codes of all genuine users possess 128-bit blocks which
contain more than 31 errors. Thus the use of bit level error correction codes in combination
with the above algorithm is not adequate.

4.6.5 Conclusion

The proposed fuzzy commitment scheme is based on a very simple algorithm, which provides
fast feature extraction. The generated iris codes of the applied algorithm are then adapted
to minimize the number of burst errors. Altough the results of the applied algorithm were
not satisfying the results of the proposed fuzzy commitment scheme, which does not use the
same metric as the original algorithm, shows good results.

Furthermore by slightly modifying the iris code of the original algorithm the fuzzy com-
mitment scheme does require only one type of error correction, namely block level error
correction.
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Figure 4.17: The inter-class and intra-class distances of the proposed fuzzy commitment scheme with regard to the
total number of block level errors. For evaluation about 100 persons of the CASIA v3 iris database were used.
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Figure 4.18: The inter-class and intra-class distances of the above algorithm without rearranging the bits of the
extracted iris code with regard to the total number of block level errors. For evaluation about 100 persons of the
CASIA v3 iris database were used.
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Figure 4.19: The inter-class and intra-class distances of the above algorithm according to the maximal number of
errors within 128-bit blocks. For evaluation about 100 persons of the CASIA v3 iris database were used.
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Figure 4.20: The FMR and the FNMR of the fuzzy commitment scheme based on the above algorithm. For evaluation
about 100 persons of the CASIA v3 iris database were used.
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Figure 4.21: The ROC and the EER of the fuzzy commitment scheme based on the above algorithm. For evaluation
about 100 persons of the CASIA v3 iris database were used.
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4.7 An Iris Recognition Algorithm using Characteriza-
tion of Key Local Variations

L. Ma, T. Tan, Y. Wang and D. Zhang [45] proposed an iris recognition algorithm which is
invariant to translation, scale and rotation. In this approach the iris texture is treated as a
kind of transient signal which is processed using wavelet transform. The local sharp variation
points, which denote important properties of transient signals, are recorded as features. In
the following subchapters the preprocessing, feature extraction and the matching procedure
of the algorithm are summarized:

4.7.1 Preprocessing

After the acquisition of the iris image first the iris has to be localized. This means the inner
and outer boundaries (two non-concentric circles) of the iris have to be detected. First the
iris region is roughly determined and subsequently edge detection and Hough transform is
used to calculate the detailed parameters of the two circles. This process comprises several
steps:

1. First the image is projected in vertical and horizontal direction to approximately es-
timate the center coordinates of the pupil, denoted by (Xp, Yp). Since the center of
the pupil is mostly the darkest point of the pupil these coordinates are estimated by
calculating the minima of the two projection values so that

Xp = arg min
x

(∑
y

I(x, y)

)

Yp = arg min
y

(∑
x

I(x, y)

) (4.30)

so that Xp and Yp denote the center coordinates of the iris image I(x, y).

2. In the second step more accurate center coordinates are calculated. Therefore a
120× 120 region, centered at (Xp, Yp), is binarized by adaptively selecting reasonable
thresholds using the grey level histogram of this region. The centroid of the region be-
comes the new center of the pupil. This step can be repeated several times to improve
the calculated center.

3. In the third step the parameters of the two circles are calculated by using the edge
detection and Hough transform.

After the boundaries of the iris have been detected, the determined iris is normalized. Thus
the annular iris is unwrapped counter-clockwise to a rectangular iris block with a fixed size.
The normalization process reduces the distortion of the iris caused by pupil movement and
furthermore simplifies subsequent preprocessing.

To get a more well-distributed texture the intensity variations across the whole im-
age are approximated. This is done by calculating 16×16 blocks of background illumination
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a) b)

c)

d)

e)

Figure 4.22: The preprocessing procedure: a) image acquisition b) iris localization c) iris normalization d) estimation
of the local average intensity e) image enhancement

(= the mean of each grey scale block) and subtracting it from the original image. Once the
lightning is corrected the image is enhanced by means of histogram stretching.In Figure
4.22 the whole preprocessing procedure is illustrated.

4.7.2 Feature Extraction

The details of the iris, the intensity signals, are generally spread along the radial direction
which corresponds to the horizontal direction in the normalized image. For feature extraction
special 1D-wavelets are used where the wavelet function is a quadratic spline of a finite
support. The image I is decomposed so that:

Si =
1
M

M∑
j=1

I(i−1)·M+j i = 1, 2, ..., N (4.31)

where S is a set of 1-D intensity signals and the normalized image I consisting of K rows
of gray values and can be defined as:

I =


I1
I2
...
IK

 = (IT1 , I
T
2 , ..., I

T
K)T (4.32)

The total number of rows used to form a signal Si is denoted by M , which means that a
combination of M horizontal rows is used to detect local variations. Since iris regions close
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Figure 4.23: The feature transform: The length L of a binary sequence at a scale is the same as the length of the
1-D intensity signal. Furthermore, at each feature component di the binary signal changes form 1 to 0, or vice versa
(the first d1 − 1 bits are set to 1 if p1 = −1, and 0 if p1 = 1.

to the sclera do not contain much information only the top-most 78% section is used for
feature extraction. Therefore a relation between the total number of rows K and the total
number of signals N can be denoted by K × 78% = N ×M . For the experimental results
M was set to 5 and N to 10.

As wavelet transform dyadic wavelets are used which is able to decompose signals into detail
components. Using these wavelets local sharp variations can be detected. Dyadic wavelets
vary along the dyadic sequence (2j)j∈z and the dyadic wavelet transform of the signal S(x)
at scale 2j is defined as:

WT2jS(x) =
1
2j

∫
S(X)ψ

(
x−X

2j

)
dX (4.33)

where ψ
(
x/2j

)
is the wavelet function at scale 2j , which is a quadratic spline which has a

compact support and one vanishing moment. The local minimum of this wavelet denotes the
appearing of an irregular block and a local maximum of this wavelet denotes the vanishing of
an irregular block. Furthermore, two scales are used. For each signal Si the so-called position
sequences at two scales are concatenated to form the features so that,

fi = {d1, d2, ..., dm; dm+1, dm+2, ..., dm+n; p1, p2} (4.34)

where the first m positions result from the first scale and the second n position result from
the second scale of the intensity signal and p1 and p2 denote the property of the first variation
points. If, for example, the first variation point d1 is a local minimum then p1 is set to 1 and
otherwise to -1. The concatenation of all features of all intensity signals form the resulting
feature vector f , which is defined as,

f = {f1, f2, ..., fN} (4.35)

where fi denotes the features of the ith intensity signal at two scales. In the end the resulting
feature vector consists of a total number of 660 components. Additionally, to save memory
for each feature component di only the difference d′i to the previous feature component is
stored.

4.7.3 Matching

For the matching process first a binary sequence of each feature vector is generated. The
generation of such a binary sequence for one intensity level is illustrated in Figure 4.23. By
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generating a binary sequence for the whole feature vector the feature vector can be written
as,

Ef = {Ef(1,1), Ef(1,2), ..., Ef(N,1), Ef(N,2)} (4.36)

where Ef(i,1) and Ef(i,2) are the resulting binary sequences for the ith intensity signal at
the first and second scale. Since the length of Ef(i,j) is L, the resulting binary feature vector
consists of a total number of 2L×N bits. Thus a similarity function for two different feature
vectors Efa and Ef b can be defined as:

D =
1
N

N∑
i=1

1
2L

2∑
j=1

(
Efa(ij) ⊕ Ef b(ij)

)
(4.37)

As mentioned before, scale invariance is achieved by normalization of the image. To addi-
tionally achieve rotation invariance the normalized iris image is circularly shifted to a certain
degree and the minimal matching score is calculated. This can be done very easily since a
rotation of the original iris texture is just a translation in the normalized iris texture.

4.7.4 Experimental Results

For the performance evaluation of the proposed scheme the entire CASIA iris database was
used, resulting in a total number of 7223 intra-class comparisons and 2297019 inter-class
comparisons. For an implementation of this algorithm an EER of 0.09% has been claimed.

The performance of an own implementation of the proposed algorithm was evaluated using
the entire CASIA v3 iris database [1] to confirm the proposed results. In Figure 4.24 the
distribution of the intra-class distance and the inter-class distance are plotted. Compared
with the proposed distributions, these results are slightly worse. In Figure 4.25 the FMR
and the FNMR are plotted and Figure 4.26 shown the ROC resulting in an EER of 1.07%.
Nevertheless, the implementation of the proposed algorithm shows good results and the
generated feature vectors are well suited for building up a biometric cryptosystem.
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Figure 4.24: The distribution of the intra-class distance and the inter-class distance of the proposed algorithm
which are slightly worse than those proposed. For evaluation the entire CASIA iris database was used.
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Figure 4.25: The FMR and the FNMR of the implementation using the above algorithm. For evaluation the entire
CASIA iris database was used.



82 4.7 An Iris Recognition Algorithm using Characterization of Key Local Variations

 0

 2.5

 5

 7.5

 10

 12.5

 15

 17.5

 20

 0  10  20  30  40  50  60  70  80  90  100

FN
M

R
 (

%
)

FMR (%)

 

ROC ()
EER (1.073413)

Figure 4.26: The ROC and the EER of the implementation using the above algorithm. For evaluation the entire
CASIA iris database was used.
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4.8 A Fuzzy Commitment Scheme using Concatenated
Error Correction Codes

The algorithm of L. Ma, T. Tan, Y. Wang and D. Zhang [45] seems to fit well into a fuzzy
commitment scheme using a concatenation of block level and bit level error correction codes.
In Figure 4.24 the distribution of the intra class and inter class distances of the proposed
algorithm are shown. These distances correspond to the Hamming distance. This means that
single bit errors are counted. While the intra class distance for single bit errors ranges to
approximately 48%, this value drastically increases if bit blocks are compared to each other.
In Table 4.2 the intra class distances for the according block sizes are summarized. The results
for these distances show that a one-level error correction of block level error correction codes
does not suffice to correct the occurring errors. Furthermore, the cumulations of the intra
class and the inter class distances interfuse with increasing block size.

This means another way of error correction is required. Bit level error correction codes
operate on single bit blocks. Unfortunately, these codes are not capable of correcting that
many errors. Additionally, these bit errors are randomly distributed and clusters of errors
cannot be decoded using bit level error correction codes.

Therefore a combination of both, block level and bit level error correction code, must be
used to handle all occurring errors. In the following subchapter the concatenation of these
two types of codes is described generally and in detail as it is used in a fuzzy commitment
scheme.

4.8.1 Concatenation of Error Correction Codes

Using an iris recognition algorithm for which Hamming distances up to approximately 42%
are allowed, a concatenation of error correction codes is meaningful. While one error cor-
rection code can be used to correct bit errors, the other code can be used to correct block
level errors. Thus a concatenation of these two types of codes is used to encode and decode
a cryptographic key in a fuzzy commitment scheme.

While bit level error correction codes work on single bit blocks and do not employ information
besides this bit block, block level error correction codes rely on the information provided
by a set of bit blocks. Therefore it is suggested to first encode the key using a block level
error correction code and subsequently encode the result using a bit level block level error
correction code, just like in the approach of Hoa et al. [31]. Thereby in the decoding process
first the bit level decoding is applied which means that the block level error correction code
is able to make use of already decoded information. In Figure 4.27 the basic working flow of
a concatenated error correction code is illustrated.

Another aspect which is very important is that it is necessary for both error correction codes
to operate on the same blocks. This means that the bit level error correction code should
encode and decode bitblocks which form the values used in the block level error correction
code, just like it is shown in Figure 4.27. If the error correction code operates on different
blocks, one defective block in the bit level could cause several errors in the block level. This
phenomenon is illustrated in Figure 4.28.

Hence it is suggested that if a block level error correction code operates on bit blocks of
length n, the bit level error correction code should consist of at least 2n codewords. This
guarantees that in the encoding process the bit level error correction code is capable of
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Max. Intra-Class Distance (%) Bit Block Size

48.3 1

53.3 2

67.2 4

79.5 6

85.1 8

90.2 10

Table 4.2: The maximum of the intra class distances of the iris codes, using the algorithm of Tan et al. [45], to the
according size of the bit block which are compared to each other.
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Figure 4.27: The common encoding and decoding flow of a concatenated error correction using bit level and block
level error correction codes.

mapping bit blocks of length n to codewords of an arbitrary length m ,where m > n, and
vice versa in the decoding process.

In the proposed fuzzy commitment scheme the applied iris recognition of Tan et al. [45]
generates an iris code which consists of 2560 bytes where the second half of the iris code is a
bit mask. Thus only the first 1280 bytes are used. Now the parameters of the concatenated
error correction codes have to be calculated. This can be done easily by calculating reversely:
the result of the second error correction encoding step, namely the bit level error correction,
should produce a total number of 1280 bytes as output, denoted by Hres, which is XORed
with an iriscode afterwards. Applying Hadamard codes as bit level error correction codes
implies that codewords of length n are mapped to codewords of length 2n−1 (Note: an
Hadamard matrix Hk generates an Hadamard code consisting of 2k codewords of length k).
This means, if codewords of length n are used, an Hadamard code has to be generated out
of a Hadamard matrix H of dimension n−1 (Hadamard matrices of higher dimension could
be used as well). As block level error correction Reed Solomon codes are applied. The length
of the result of the block level error correction encoding, denoted by RSres, can be defined
as (1280 · 8)/2n−1. For a cryptographic key K of length l · n the block level error correction
is defined by RS(l · n, (1280 · 8)/2n−1). Thus l n-bit information blocks are encoded using
(1280 ·8)/2n−1 additional bits. In summary, the magnitudes of all bitstreams can be defined
as,

|K| = l · n, |RSres| = 1280 · 8
2n−1

, |Hres| = 1280 · 8. (4.38)

To apply a Reed Solomon it is required that 1280 · 8 < 22n−1 because the Reed Solomon
code uses code words of length n. Otherwise several Reed Solomon codes would have to be
used for different parts of the bitstream. In Figure 4.29 the whole encoding procedure is
summarized.
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Figure 4.28: If the concatenated error correction codes do not operate on the same blocks, one error in the bit level
may cause several errors in the block level.

Reed Solomon encoding
RS(l · n, (1280 · 8)/2n−1)

k · n bits 1280·8
2n−1 bits 1280 · 8 bits

n bits

1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 ... 0 1 1 1 ... 0 01 0 1 00 1 1 0 0 1 1 0 0 0 ... 1 1

Hadamard encoding
using Hn−1

Figure 4.29: The encoding procedure: Reed Solomon codes are used for block level error correction, Hadamard
codes are used for bit level error correction.

At this point it becomes clear that one type of error correction code would not suffice. For
instance, if Hadamard codes would be applied as bit level error correction codes, large burst
error could not be corrected. In detail, using only Hadamard codes a total number of 10 bit
blocks, consisting of 11 bits, could be mapped to 10 · 102 = 1280 · 8 bits to bind a 110-bit
cryptographic key. However, in the best case only 1024/4−1 = 255 errors could be corrected
for each of the 1024-bit blocks. Thus, at most 24.9% of all errors could be corrected which
would result in an unsatisfying FMR of 42.15% and an FNMR of 0% according to Figure
4.25.

On the other hand applying only block level error correction codes would not suffice either.
For instance, by using Reed-Solomon codes bit block of length 10 would have to be used,
because 10 · 210 = 1280 · 8. Thus, binding a 128 bit cryptographic key, a total number of
(1024− 128)/2 = 506 bit blocks (= 49.4%) could be corrected. However, if a single bit error
occurs within a 10-bit block the whole block is faulty. According to Table 4.2, by using bit
blocks of length 10 the maximal intra-class distance raises beyond 90%. Besides that, using
bit blocks of length 10, the distribution of the intra-class and the inter-class distances would
overlap more than for single bits. Therefore by using the above algorithm it is not adequate
to use block level error correction codes as the only layer of error correction.

4.8.2 Preprocessing

In the preprocessing step the algorithm of Tan et al. [45] is applied to generate an iris code
which consist of 2560 bytes. The second half of the iris code is dropped. This is because
the second 1280 bytes define a bit mask to detect distortions produced by eye lashes. Fur-
thermore, very fast changes in the binary signal are ignored. This means binary sequences
of 0s and 1s, which are shorter than a defined threshold, are not used. Instead, these short
sequences of 0s are replaced by 1s and vice versa.
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Figure 4.30: The enrollment procedure: the enrollment iris code is bound with an error correction encoded crypto-
graphic key to form a secure biometric template. The generation of the enrollment iris code: the majority of three
input samples is calculated and subsequently gaps are filled to produce a natural iris code.

4.8.3 The Enrollment Process

At the time of enrollment a total number of three input images are used to generate the
enrollment sample, which is combined with the encoded key to form the biometric template.
First the algorithm of Tan et al. [45] is applied for each iris image. Subsequently the majority
of the three iris codes is calculated. Then the preprocessing step is applied to the majority
iris code resulting in a representative iris code for the specified person. The generation of
the enrollment iris code is shown in Figure 4.30 as part of the whole enrollment procedure.

At the same time an arbitrary chosen cryptographic key is encoded using a Reed Solomon
block level code and a Hadamard bit level code. Here codewords of length n = 8 are used
to encode an 128 bit key using a RS(16, 80) block level code. These 80 8-bit blocks are then
mapped to 80 128-bit blocks so that,

80 =
1280 · 8

2n−1
, n = 8. (4.39)

The resulting bitstream of length 1280 · 8 bit is bound with the enrollment iris code of the
same length by simply XORing these bitstreams. The resulting 1280 · 8 bit, which represent
a secure biometric template in which the cryptographic key is hidden, are finally stored
in a database. Here a hash value of the cryptographic key could be stored additionally
to verify generated keys in the authentication process (this is suggested in a basic fuzzy
commitment scheme but in general a successful Reed Solomon decoding implies a successful
authentication). The whole enrollment process is illustrated in Figure 4.30.

4.8.4 The Authentication Process

In the authentication process a single input image is used to generate an iris code which is
then reprocessed. The result is then XORed with the biometric template and subsequently
error correction decoding is performed. Using an Hadamard code, which is generated out of
an Hadamard matrix H128 provides 28 codewords and is capable of correcting up to 128/4−1
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Figure 4.31: The authentication procedure: a single biometric input is processed, XORed with the template and in
the end error correction decoding is performed.

bit errors. In the second level of error correction, the RS(16, 80) Reed Solomon code corrects
up to (80 − 16)/2 8-bit block level errors. This suffices for the above intra class distances.
In Figure 4.31 the authentication process is shown.

4.8.5 Experimental Results

For the evaluation of the fuzzy commitment scheme the CASIA iris database [1] was used.
A total number of about 100 persons were used, namely the persons for who at least 8
image were available. The first three images were used for the enrollment procedure and the
other five images were used for authentication. In Figure 4.32 the distribution of intra-class
and inter-class distances with respect to the number of block level errors is shown. This
distribution seems to be quite similar to that of the originally scheme but obviously the
FNMR increases since some of the legitimate users are not accepted due to the one-sided
occurrence of block level errors or bit level errors. In Figure 4.33 the FNMR and the FMR
of the system are plotted and Figure 4.34 shows the ROC resulting in an EER of 1.85%. For
a FMR of 0% a FNMR of 4.642% was achieved.

4.8.6 Conclusion

The proposed fuzzy commitment scheme is an example of a biometric cryptosystem in which
a concatenation of bit level and block level error correction codes are applied. An 128-bit
cryptographic key is hidden in a biometric template so that neither information about the
user’s biometrics nor information about the cryptographic key is revealed. The applied iris
recognition algorithm generates a pretty long iris code which offers the opportunity of using
a Hadamard code generated by a Hadamard matrix of high dimension which is capable of
correcting a great number of bit level errors. Subsequently a Reed Solomon code is used to
correct remaining block level errors. These two error correction codes operate on bit blocks
of the same size.

Compared with the results of the original algorithm the FNMR increases. Nevertheless the
fuzzy commitment scheme is capable of hiding and retrieving a cryptographic key in and out
of a biometric template. This key is 128 bit long (sufficiently long to be used in a common
cryptographic system). Additionally, the biometric template is stored in a secure way.



88 4.8 A Fuzzy Commitment Scheme using Concatenated Error Correction Codes

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80

re
la

tiv
e 

m
at

ch
 c

ou
nt

 (
%

)

differing bit-blocks

 

intra class ()
inter class ()

Figure 4.32: The inter-class and intra-class distances of the proposed fuzzy commitment scheme with regard to the
total number of block level errors remaining after Hadamard decoding. For evaluation about 100 persons of the
CASIA iris database was used.
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Figure 4.33: The FMR and the FNMR of the fuzzy commitment scheme using the above iris recognition algorithm.
For evaluation about 100 persons of the CASIA iris database was used.
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Figure 4.34: The ROC and the EER of the fuzzy commitment scheme using the above iris recognition algorithm.
For evaluation about 100 persons of the CASIA iris database was used.



Chapter 5

Implementation of an Iris based
Key Generation Scheme

In this chapter an implementation of an iris based key generation scheme is proposed which
generates a arbitrary chosen cryptographic key out of iris images. The proposed scheme
makes use of an iris recognition algorithm which is based on texture analysis using wavelet
transform. The scheme uses defined intervals out of which a cryptographic key is generated.
First of all the preconditions for a basic interval scheme are defined (Section 5.1). Then the
basic working flow of interval schemes is explained (Section 5.2). Subsequently the applied
iris recognition algorithm is summarized and experimental results are presented (Section
5.3). The construction of the proposed implementation is outlined (Section 5.4) and the
security of the whole system is analyzed (Section 5.5) as well as the cancellability (Section
5.6). Finally experimental results are presented and discussed (Section 5.7, 5.8).

5.1 Preconditions for Schemes which use Intervals

First the preconditions for the construction of an iris based interval scheme must be defined.
Most iris recognition algorithms are geared to the approach of John G. Daugman with respect
to the output of the algorithm. Common iris recognition algorithms generate some sort of iris
code. These iris codes are then matched using metrics such as the lower hamming distance
or similar. By defining a boundary for the inner class distance and the inter class distance
the algorithm decides whether to accept or reject a given sample. Such algorithms operate
on the bit level. To create biometric cryptosystems using such an algorithm cryptographic
keys are hidden in the template like in a classic key binding scheme. This could be done
using a fuzzy commitment or a fuzzy vault scheme. Algorithms which operate on the bit
level are not suitable for the construction of an interval scheme since the feature vector
consists of single bits. There is no sense in defining intervals for single bits. If several bits
are combined to form feature values, minimal bit errors change the values drastically as
shown in Figure 5.1 where a decimal feature value is calculated out of some feature bits. Of
course, using a gray code or simply counting the number of 1s and 0s would in most cases
decrease the difference between calculated feature values. However, applying such codes is
only practical if a block of bits define a feature in the iris code which is not the case in
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Figure 5.1: Classic feature vectors which consist of single bits. These feature vectors are not suitable for an interval
scheme. If several bits are combined to form values minimal errors change the feature values drastically. This means
it is not possible to define tight boundaries.

generic iris recognition algorithms. Thus applying such codes to common iris codes won’t
solve this problem.

This means the construction of an interval scheme requires an iris recognition algorithm,
which generates a feature vector consisting out of several feature values (not single bits).
Furthermore, these feature values should be very distinctive and should only change slightly
from one measurement to another. If this is the case, tight boundaries can be defined for
each feature. Additionally it is required that enough of such feature values can be extracted.
Every defined interval encodes an extracted feature value with a bitcode. If only a small
number of features can be extracted, the resulting cryptographic key will be very short.

In summary the first precondition for the construction of an interval scheme is a suitable
iris recognition algorithm. This algorithm should produce a feature vector which consists of
feature values (not single bits). Secondly, it is required that a sufficiently large number of
feature values can be extracted to produces a cryptographic key which is long enough to be
used in classic cryptosystems.

5.2 Preface

If the above preconditions are fulfilled, which means a sufficiently long feature vector consist-
ing of feature values is extracted, intervals can be defined for each feature value. This is done
by measuring several biometric inputs at the time of enrollment. Out of the extracted feature
values means and deviations are calculated out of which either discrete or adapted intervals
are constructed. In the end each interval is encoded, which means a bitcode is assigned to
each interval. In the following subchapters the enrollment process and the authentication
process of a general interval scheme are described:

5.2.1 Enrollment in an Interval Scheme

As mentioned above, several biometric inputs are necessary during the enrollment procedure.
If more biometric inputs are used the boundaries of the calculated intervals will become
more precise. Once enough biometric inputs are acquired, feature extraction is applied to
each biometric input (for example, an iris image).

In the next step the feature values of all extracted feature vectors are used to set up bound-
aries for each feature. In general, this can be done by first calculating a representative value
which could be the mean, median or a similar value. Then the boundaries around this mean
value are set up, which means some deviation is calculated, for example, the mean deviation,
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Figure 5.2: Types of intervals: a) discrete intervals where each interval has the same size b) adapted intervals where
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Figure 5.3: The basic enrollment process of an interval scheme: first several samples are used to calculate means
and deviations and afterwards intervals are defined which form the biometric template.

standard deviation or a similar deviation.

Now that the interval of each feature is calculated, additional intervals have to be generated
to fill up the remaining feature space for each single feature interval. There are two ways to
fill up the feature space with intervals. This can be done by dividing the feature space into
discrete parts (each part should be considerably smaller than the smallest interval).

The second way to set up intervals in the feature space is to create adapted intervals. This
means, the boundaries of all other intervals are created randomly. These fake intervals are
calculated just like the chaff points in a fuzzy vault scheme, altough here only one dimension
has to be considered. By using this method it suffices to only use one codeword for each
interval. In Figure 5.2 these two methods of setting up intervals are illustrated.

Then all the intervals have to be encoded with codewords which together form the cryp-
tographic key. If discrete intervals are used, the intervals which are within the calculated
boundaries are encoded with the desired codeword and all other intervals are randomly
encoded with other values. This means, some intervals have to be encoded with the same
codeword. If adapted intervals are used, it suffices to use one codeword for each interval.

The encoding procedure can be seen as setting up functions which map received feature
values to distinct codewords. In the end a hash value of the correct key could be stored as
part of the template. This hash should be generated using a secure hash function. The whole
enrollment process is illustrated in Figure 5.3.

5.2.2 Authentication in an Interval Scheme

The authentication process is much simpler than the enrollment process. Once a given bio-
metric input is acquired and a feature vector is extracted, the feature values only have
to be mapped to codewords. If every feature value is mapped to a codeword, these code-
words form the resulting cryptographic key. In the end a hash of the generated key could be
tested against a stored hash value of the correct key. The whole process of authentication is
illustrated in Figure 5.4.
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Figure 5.4: The basic authentication process of an interval scheme: first a feature vector is extracted and the feature
values are mapped into intervals. The resulting codewords form a cryptographic key.

5.3 Applied Iris Recognition Algorithm

As mentioned above, one precondition for building up an interval scheme is that the iris
algorithm which is used for feature extraction should generate a feature vector which consists
of a sufficient large number of feature values. The algorithm of Zhu et al. [98] fulfills these
requirements. The algorithm is based on texture analysis using either Gabor filtering or
wavelet transform for feature extraction. By using a 2D wavelet transform a total number
of 26 floats are calculated for each biometric input. Therefore each float can be used to
calculate a codeword which is at least 5 bits long. This would result in a cryptographic key
with a length of at least 130 bits usable in classic cryptographic systems. In the following
subchapters the applied iris recognition algorithm is summarized:

5.3.1 Image Acquisition and Preprocessing

For the acquisition of the iris images Zhu et al. have designed an own device [97], which
is capable of capturing iris images of sufficiently high quality (this device has been filed
for a Chinese Patent). After iris images are captured preprocessing is performed which is
composed of three steps. In the first step the iris is localized. The result of this step are two
(mostly co-centric) circles which define the inner and outer boundaries of the iris. While
the inner boundary is detected by means of thresholding the outer boundary is detected by
maximizing changes of the perimeter-normalized sum of gray level values along the circle
(this part of the preprocessing is very similar to Daugman’s “exploding circles” method).
In the next step normalization is performed which means the extracted iris ring is mapped
to a rectangle of fixed size. This is done by transforming polar coordinates to cartesian
coordinates. Due to the reason that the original images mostly have low contrast and may
have non-uniform illumination caused by the position of the light source local histogram
equalization is applied. The whole preprocessing operation is illustrated in Figure 5.5.

5.3.2 Feature Extraction

After image acquisition and preprocessing the feature extraction is performed using two
different texture analysis methods: multi channel Gabor filtering and wavelet transform:

Gabor filtering is based on a multichannel spatial filtering approach [75]. In this ap-
proach a convenient model has been described for the hypothesized visual cortical channels
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Figure 5.5: Image acquisition and preprocessing: a) in the first step the raw image is acquired b) in the second step
the iris is localized c) in the third step the extracted iris ring is normalized d) in the last step the resulting image
is enhanced.

for the purpose of texture feature extraction. Each channel is tuned to a specific narrow-
band of spatial frequency and orientation and realized by a pair of Gabor filters hl(x, y; f, θ)
and ho(x, y; f, θ). These two Gabor filters are of opposite symmetry and are given by

hl(x, y) = g(x, y) · cos[2φf(x cos θ + y sin θ)] (5.1)

ho(x, y) = g(x, y) · sin[2φf(x cos θ + y sin θ)] (5.2)

where g(x, y) is a 2-D Gaussian function, f and θ are the central frequency and orientation,
which define the location of the channel in the frequency plane. It is recommended to use
frequencies of power 2. The central frequencies used in their approach are 2, 4, 8, 16, 32 and
64 cycles/degree. Furthermore, for each frequency f , filtering is performed at θ = 0o,45o,90o

and 135o. This leads to a lot of 24 output images (4 for each frequency), from which the iris
features are extracted. As features means and standard deviations are calculated for each
output image resulting in 48 rotation and translation invariant features. In the performance
evaluation either all of the 48 features or subsets of these features are used.

The second texture analysis method used for feature extraction is a 2-D wavelet transform.
A 2-D wavelet transform can be treated as two separate 1-D wavelet transforms. At first
wavelet transform is applied on original images. Then a set of sub images are obtained at
different resolution levels. As in the method using Gabor filtering the means and standard
deviations of each wavelet sub-image are extracted as texture features. As basis for the
wavelet transform DAUB4 is used. Due to the fact that information at finer resolution level
is noisy, only five low resolution levels excluding the coarsest level, are used. The result of
this method are 26 features which are robust in noisy environment.

5.3.3 Enrollment and Identification

For the enrollment process it is suggested to use five enrollment samples. Using one of the
above methods for all of these five samples the means and standard deviations of all features
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Features Classification Rate
All 93.8
Means 90.6
Standard Deviations 91.9
All at f=2,4,8,16,32 93.8
Wavelet Transform 82.5

Table 5.1: The best proposed results for the identification accuracy of the Gabor filtering using several subsets of
the extracted central frequencies and wavelet transform.

are calculated. Thus as result of the enrollment process the means of these feature values
are stored in a template. To identify a person the weighted Euclidean distance is used as
classifier. Features of an unknown person are compared with those of a set of known iris
images. A person is identified as person k if the following weighted Euclidean distance is a
minimum at k:

WED(k) =
N∑
i=1

(fi − f (k)
i )2

(δ(k)
i )2

(5.3)

where fi denotes the ith feature of an unknown person and f
(k)
i and δ

(k)
i denote the ith

feature and its standard deviation of person k, N is the total number of features extracted
from a single iris image. With this classifier an authentication process of one persons involves
more than one comparison. A given iris sample has to be compared to every stored template.
If a large number of persons is registered this could take a long time. A simple authentication
of one person is not possible because it is not possible to set fixed boundaries for the
calculated weighted Euclidean distance.

5.3.4 Experimental Results

For the proposed experimental results a total number of 16 different persons were tested
[98]. For each person 10 iris images were captured which makes a total of 160 iris images.
Using such a small set of iris images the proposed results do not seem to be very meaningful.
As mentioned above, for each person 5 samples were used for enrollment and 5 samples were
tested. The proposed testing was conducted using different combinations of features. The
best proposed identification results are summarized in Table 5.1.

To confirm the presented results an implementation of the proposed algorithm was tested
using the CASIA database. All persons for which at least ten iris images were available
were tested, which makes a total number of 41 persons. The implementation uses wavelet
transform to extract a total number of 26 features.

In Figure 5.6 the FMR and the FNMR are plotted. As it can be seen the results of the
implementation are much worse than the proposed ones resulting in a classification rate
of 65% which means that for a FMR of 0% the FNMR is 35%. The ROC is shown in
Figure 5.7 resulting in an EER of 7.4%. These rates could probably result from the fact
that in the results shown in Table 5.1 only 16 different image classes were used. Obviously
a subset of 16 persons of the tested could be used to receive better results. Furthermore the
method used to capture the iris images could also have an impact on the rates because the
presence of eyelids and eyelashes is not handled in the above scheme in the sense of using
a bit mask or similar. Therefore the whole test was run through again using only half of
the iris image, namely from the right side [45o to 315o] and the left side [135o to 225o] to
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Figure 5.6: The FMR and the FNMR of the implementation using the above algorithm on a total number of 41
persons of the CASIA database. Here the whole iris texture was used for the feature extraction.

get rid of most eyelids and eyelashes. But results which are shown in Figure 5.8 and Figure
5.9 are only slightly better than the aboves. Nevertheless these results should only give a
relative comparison to the interval scheme which is using this algorithm. This means the
aim of constructing the interval scheme is to retain the above results with the addition of
returning a cryptographic key.
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Figure 5.7: The ROC and EER of the implementation using the above algorithm on a total number of 41 persons
of the CASIA database. Here the whole iris texture was used for the feature extraction.

 0

 20

 40

 60

 80

 100

 20  30  40  50  60  70  80  90  100

re
la

tiv
e 

m
at

ch
 c

ou
nt

 (
%

)

normalized WED (%)

 

FMR
FNMR

Figure 5.8: The FMR and the FNMR of the implementation using the above algorithm on a total number of 41
persons of the CASIA database. Here only the iris texture from the right side 45o to 315o and the left side 135o to
225o was used for the feature extraction.
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Figure 5.9: The ROC and EER of the implementation using the above algorithm on a total number of 41 persons
of the CASIA database. Here only the iris texture from the right side 45o to 315o and the left side 135o to 225o

was used for the feature extraction.

5.4 Construction of the Interval Scheme

Using above iris recognition algorithm with wavelet transform as feature extraction method,
26 features can be used to create a key which has to be at least 128 bit long (so that it can
be used in common cryptosystems). This means, the challenge is to construct intervals and
extract at least 5 bits out of each interval resulting in a key which is at least 130 bits long.
The catchy part of the implementation is the enrollment process in which intervals are set
up and encoded. In the authentication process the extracted features only have to be fitted
into these intervals.

5.4.1 The Enrollment Process

As mentioned above, the enrollment process is the most challenging part of the system
because within the enrollment process the boundaries of the intervals are set up. As rec-
ommended in the applied iris recognition algorithm 5 iris samples are used to set up the
intervals.

In the first step features are aligned. To align the extracted features the ith feature fi of
each person is divided through a previously approximated mean mi of this feature resulting
in f̂i so that for every user k

∀i, i ≤ N, ˆ
f

(k)
i =

f
(k)
i

mi
(5.4)

where N is the number of extracted features (in the applied algorithm N is 26). This is
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Figure 5.10: The calculation of the initial interval is the result of the first step. In the next step the Interval has
to be encoded and furthermore other intervals have to be added.

done because not all the calculated features of one person are in the same range. In the
above scheme this problem is solved by dividing the difference of the features through the
quadratic standard deviation (δ(k)

i )2 of each feature fi. The quadratic standard deviation
(δ(k)
i )2 of each person k is stored in the template of person k. Since in an interval scheme

no other information besides the defined intervals, the codewords and hash of the correct
key should be stored for each feature fi fixed values are used. These approximated values
are calculated previously and can also be generated using eyes of non registered users. This
method suffices to align the extracted features.

In the next step for each person k the means of all the extracted features are calculated,

denoted by f (k)
i where

f
(k)
i =

1
n

n∑
j=1

f
(k)
ij (5.5)

and n denotes the number of enrollment samples. Furthermore, for all features the quadratic
standard deviation (δ(k)

i )2 is calculated where

(δ(k)
i )2 =

√√√√ 1
n− 1

j=n∑
j=1

(f (k)
ij − f (k)

i )2 (5.6)

Once this deviation and the mean of each feature are calculated the boundaries of the initial
interval can be set up for every feature of every person as follows:

bL = f
(k)
i − (δ(k)

i )2 mod 2l−1 (5.7)

bR = f
(k)
i + (δ(k)

i )2 mod 2l−1 (5.8)

where bL denotes the left border and bR denotes the right border of the interval and l is the
number of bits which should be extracted out of one feature (l = 5 leads to a 130 bit key).
In Figure 5.10 an example of a result of these first two steps, an initially calculated interval
I

(k)
i for the ith feature of person k, is illustrated .

In the next step, the encoding of the interval has to be performed. The most primitive way
of encoding intervals would be to just assign one codeword to each interval as it is shown
in Figure 5.2. A more secure way of encoding the calculated interval would be to define a
function, which, if it is evaluated within the boundaries of the interval, returns the right
codeword. For example, a Gaussian function could be used for this purpose as proposed by
Sutcu et al. [74]. The Gaussian function only has to be fitted into the calculated interval.
An example of such a Gaussian function which is fitted into a calculated interval is shown
in Figure 5.11.
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Figure 5.11: A Gaussian function which encodes each feature value which is within the defined interval I
(k)
i with

the codeword cn which is part of the cryprographic key.
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Figure 5.12: The calculation of the initial interval is the result of the first step. In the next step the Interval has
to be encoded and furthermore, other intervals have to be added.

Now that the first interval is set up and encoded, other intervals have to be added to hide
information. By analogy to chaff points in the fuzzy vault approach here fake intervals are
added. As mentioned earlier, global boundaries and means can be approximated for all 26
features. Thus the length of the interval could reveal information. It is advisable to add
other intervals of similar length. Once all these so-called “fake intervals” are set up for one
feature, these can be encoded randomly. Using functions to encode feature values would
mean to add other fake functions over the whole feature space. In Figure 5.12 an example
of adding fake Gaussian functions is shown.

If the fake intervals are added properly, an attacker cannot extract much information out of
the given functions. Nevertheless, defining Gaussian functions and furthermore, adding fake
Gaussian functions does not seem to be a trivial algorithm. Defining a simple polygonal chain
would serve the purpose, Figure 5.13 illustrates the analog polygonal chain of a Gaussian
function with added fake Gaussian function.
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Figure 5.13: a) a Gaussian function with added fake Gaussian functions b) the analog polygonal chain which can
be stored as a set of points.

Thus the result of the enrollment procedure would be a polygonal chain that is a set of points
(x, y) for each of the 26 features. This scheme is much simpler than one using Gaussian
functions. A simple algorithm can be defined for constructing such a polygonal chain:

1. Calculate the initial interval and define a codeword cn.

2. Construct lines through (fi, cn+1) and (bL, cn), and through (fi, cn+1) and (bR, cn).

3. Choose a random point on both lines below (fi, cn+1). Then define another two lines
which intersect with this point so that the angle of incidence equals the angle of
reflexion.

4. Choose a random point (with discrete y − value) on both lines.

5. Repeat the procedure for these two points analog to (fi, cn+1) in step 2. until enough
points are calculated.

Since the features were aligned previously, a fixed number of points can be defined for all
features. The whole algorithm for creating the points for one feature is summarized in Figure
5.14.

At the end of the enrollment procedure a hash value h(K) of the correct key K could be
stored as part of the template where h is a secure hash function.

5.4.2 The Authentication Process

At the time of authentication one biometric sample, the iris image, is acquired. Again 26
feature values are extracted, which have to be mapped into intervals. Thus each feature
value fi is first divided through a previously approximated mean mi of this feature resulting
in f̂i (just like in the enrollment phase).

Let {Pi1, Pi2, ..., PiN} be the N points which are stored in the biometric template to form
the intervals for the ith feature of a registered person. Assume that {Pi1, Pi2, ..., PiN} is an
ordered set with respect to the x-value of each point. Then the two points Pin and Pin+1 of
the point set which is stored for the ith feature have to be found so that
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Figure 5.14: The whole algorithm out of which a set of points is generated which defines the simple polygonal chain
for one feature
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Figure 5.15: The y-value for a feature value fi is calculated by interpolating two points. The lower absolute value
of the result is the codeword for the feature fi. To avoid that b(Yf̂i

)c = cn+1 a small δ should be subtracted from

the peak.



5 Implementation of an Iris based Key Generation Scheme 103

xPin
≤ f̂i ≤ xPin+1 (5.9)

where xPin
is the x-value of Pin and xPin+1 is the x-value of Pin+1. If such two points can

be found, the corresponding y-value of the extracted feature value is calculated by means of
interpolation such that

Yf̂i
= YPin

+ (f̂i −XPin
) · Y−−−−−−→

PinPin+1
(5.10)

where YPin is the y-value of the point Pin, XPin is the x-value of the point Pin and
−−−−−−→
PinPin+1 is

the vector between the points Pin and Pin+1. If the y- value of the feature value is calculated,
the codeword Cf̂i

is returned where

Cf̂i
= b(Yf̂i

)c (5.11)

This is done for all feature values as described in Figure 5.15 and the resulting key K̂ is the
concatenation of all returned codewords. To test the key, a hash value h(K) of the correct
key K could be stored as part of the template and if h(K̂) = h(K), the user is accepted and
otherwise the user is rejected.

5.5 Security Analysis

In most biometric systems the security of the template is very critical. In the proposed
scheme the template consists of a set of simple polygonal chains and a hash value of the
correct cryptographic key. This hash value is created using a secure hash function. If enough
points are involved and these points are chosen intelligently, the simple polygonal chains do
not reveal any information about the actual intervals out of which the correct key can be
constructed. The security is scalable in the sense of how many fake points are stored for
each feature. If more points are stored for each feature, the more difficult it becomes for
an attacker to get any information about the correct intervals. One problem resulting from
the proposed method is that several feature values could lead to a correct codeword. This
weakness is illustrated in Figure 5.16.

The proposed system acts like a simple private template scheme. Out of extracted feature
values codewords are generated which form a cryptographic key. But in the encoding step
the cryptographic key can be chosen randomly. This means, the key is not directly generated
out of a biometric sample but bound into the template in the encoding step.

Longer keys could be generated if a greater set of codewords would be used. But then more
fake points must be added which means the feature space has to be enlarged as well.

To make the whole system collision-free depends on the applied feature extraction method.
The interval scheme itself does not have any impact on this issue.

5.6 Cancellable Interval Scheme

The encoding function (the polygonal chain) maps the extracted features of one person to
a previously generated key. In case a cryptographic key is stolen, a new cryptographic key
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Figure 5.16: For each generated interval several other feature values, which are outside the defined boundaries,
could possibly generate the same codeword.
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Figure 5.17: For each generated interval several other feature values which are outside the defined boundaries could
possibly generate the same codeword.

can be generated and the polygonal chain is adapted. Therefore the scheme is cancellable in
case the cryptographic key is guessed, stolen or comprised. Furthermore, different keys can
be assigned to one person for different applications.

In case the biometric itself is stolen, the scheme could be extended (note that if an interval
scheme like the proposed is used for online signatures one could learn to imitate another
user’s signature - this would mean that this person is capable to generate a valid key at
any time for any application). To avoid this leakage, a physical token could be introduced
to increase security. For example, a pin-code could be stored on a smartcard, which for
example, moves the boundaries of all intervals in one direction as shown in Figure 5.17.
Thus only the biometric input in combination with the right physical token would return a
valid key. Nevertheless, if the biometrics itself is compromised the whole system is just as
secure as the pin-code.

5.7 Experimental Results

The whole system was tested on the CASIA database. All persons for which 10 images
were available were tested, which makes a total number of 41 persons. As expected the
achieved results are slightly worse than those of the original algorithm. This is because the
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Measurement Whole images Slitted images
FNMR 43.78 36.21
FMR 1.87 0.07

Table 5.2: The results for the interval scheme using entire iris images and the result of the interval scheme using
iris images from the right side 45o to 315o and the left side 135o to 225o.
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Figure 5.18: The distribution of the extracted 130 bit cryptographic keys with respect to the Hamming distance to
the correct cryptographic key. Here the entire iris images were used for feature extraction.

original algorithm aims at a classification of an iris image, which means a minimum value
of the weighted Euclidean distance has to be found (notice that a big WED value can still
represent a minimum). Thus in the original scheme no boundaries are set, while in the
interval scheme boundaries have to be set in which the extracted features are fitted into.

The experimental results for the proposed interval scheme are illustrated in Figure 5.18
(only the distance to the original key is plotted - a ROC of FMR/FNMR plot makes no
sense in this case, because only keys which match the original key suffice). Here the whole
iris image is used for the feature extraction. Both the FMR and the FNMR become worse.
The results for the FMR and the FNMR are summarized in Table 5.2. Thus in a second
experiment all iris images were slitted from the right side 45o to 315o and the left side 135o

to 225o. The rest of the iris images which does not contain as much distortion (eyelids and
eyelashes) is used for feature extraction. The results are shown in Figure 5.19. Using images
with less distortion thightens the boundaries of the intervals and thus the FNMR and the
FMR are improved. In the original algorithm slitting the image does not have much impact
on the results, because in most cases the former minimum remains the minimum. But in
the interval scheme, which uses this algorithm the performance is increased greatly resulting
in a success rate of almost 63.5%. This means that the proposed interval scheme does not
decrease the performance of the iris recognition scheme drastically.
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Figure 5.19: The distribution of the extracted 130 bit cryptographic keys with respect to the Hamming distance to
the correct cryptographic key. Here the entire iris images from the right side 45o to 315o and the left side 135o to
225o were used for feature extraction.

5.8 Conclusion

The proposed interval scheme uses an algorithm used for the classification of iris images.
As features this algorithm extracts float values which are used together with deviations to
build up an interval scheme. The performance of the interval scheme is only slightly worse
(about 1.5%) than the performance of the original scheme. Additionally, an arbitrary 130
bit cryptographic key is hidden in the biometric template during the enrollment process and
is retrieved during the authentication process. The hiding of the cryptographic key is done
by creating simple polygonal chains which provide high security (which is scalable as well).

In summary, a biometric cryptosystem was presented which does not drastically decrease the
performance of the algorithm used for feature extraction. Still, this biometric cryptosystem
hides and retrieves a cryptographic key into and out of the biometric template which is
sufficiently long to be used in a classic cryptographic system. Additionally, high security is
achieved through simple means.
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