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Abstract—Finger-vein scanners or vein-based biometrics in
general are becoming more and more popular. Commercial off-
the-shelf finger-vein scanners usually capture only one finger
from the palmar side using transillumination. Most scanners
have a contact area and a finger-shaped support where the finger
has to be placed onto in order to prevent misplacements of the
finger including shifts, planar rotation and tilts. However, this is
not able to prevent rotation of the finger along its longitudinal
axis (also called non-planar finger rotation). This kind of finger
rotation poses a severe problem in finger-vein recognition as the
resulting vein image may represent entirely different patterns
due to the perspective projection. We evaluated the robustness
of several finger-vein recognition schemes against longitudinal
finger rotation. Therefore, we established a finger-vein data set
exhibiting longitudinal finger rotation in steps of 1° covering
a range of ±90°. Our experimental results confirm that the
performance of most of the simple recognition schemes rapidly
decreases for more than 10° of rotation, while more advanced
schemes are able to handle up to 30°.

I. INTRODUCTION

Vascular pattern based biometrics, commonly denoted as

vein biometrics, provide several advantages over other, well-

established biometric recognition systems. Especially hand-

and finger-vein based systems tend to replace fingerprint based

ones in some application areas. Vein based systems rely on the

structure of the vascular pattern formed by the blood vessels

inside the human body tissue, which becomes visible in near-

infrared (NIR) light only. This vessel structure is within the

human body and thus vein based systems are insensitive to

abrasion and skin surface conditions. Moreover, a liveness

detection can be performed easily [KZ12].

However, finger-vein recognition systems are far from being

perfect in terms of accuracy, reliability and usability. Their

recognition performance may suffer from different internal and

external factors which might lead to a lower performance. In-

ternal factors include the configuration of the scanner itself, the

illumination source and the NIR camera. Most of the internal

and external factors impacting the finger-vein recognition

performance can be ruled out by means of adding components

to the scanner or tuning the scanner settings. External factors

can be divided into environmental ones, including ambient

light, dust or dirt on the sensor, high humidity, electromagnetic

radiation, etc. and factors regarding the presentation of the

finger to the scanner device. The latter includes finger move-

ment during acquisition and finger misplacement in general.

Some of the environmental factors can be ruled out by using

additional components for the vein scanner, e.g. the influence

ambient light can be reduced by installing an NIR pass-through

filter. However, especially tilt and rotation of the finger along

its longitudinal axis (which are a form or finger misplacement)

are hard to tackle. While the tilt can be avoided to a certain

extent, as soon as there is only one finger to be captured, it is

hard to avoid rotation of the finger along its longitudinal axis,

especially for touchless finger-vein scanners, but not restricted

to touchless operation. Hence, this is one of the main factors

influencing the recognition performance of finger-vein systems

in practical applications and it would be desirable if finger vein

recognition schemes are able to tolerate such a rotation at least

to a certain extent. To the best of our knowledge no systematic

investigation of this particular problem has been performed

so far. The analysis of these and other factors impacting the

recognition performance of finger-vein recognition systems

can be summarised as robustness analysis.

Some authors state that there is the problem of finger

rotation along the longitudinal axis, which is also called

out-plane finger rotation or non-planar rotation, while others

claim that their recognition scheme is able to tolerate this

up to a certain degree. Matsuda et al. [Ma16] claim that

their recognition scheme is robust against this kind of finger

misplacement. They did experiments and showed that their

scheme is robust against these rotations up to ±30°, but their

test data set, which is not publicly available, only consisted

of vein images captured from 5 different people. Chen et al.

[Ch18] proposed an approach to correct different types of

finger deformations based on a finger geometric analysis. Their

work includes finger rotation along the longitudinal axis as

well (they call it type 3 deformation). They showed that by

a non-linear correction of the finger rotation the recognition

performance can be improved. However, they only estimate the

amount of deformation, i.e. the rotation angle, while there is no

ground-truth information of the actual rotation angle available.

The main contribution of our work is a systematic robust-

ness evaluation of several finger vein recognition schemes

against the finger’s longitudinal rotation. In order to investigate

the impact of longitudinal finger rotation a suitable data set

is needed. Unfortunately, there is no such data set available,
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mainly because a specifically designed finger-vein scanner

device is mandatory to acquire one. Thus, we established a

finger rotation data set, exhibiting transillumination finger-vein

images captured in different rotation angles in 1° steps in a

range of ±90° starting from the palmar view. This data set was

captured using our custom designed, multi-perspective finger-

vein scanner device and will be made publicly available in

the future. Our experimental results show that longitudinal

finger rotation poses a severe problem for most finger-vein

recognition schemes.

The rest of this paper is organised as follows: Section II

illustrates the problem of the finger’s longitudinal rotation in

detail. Section III presents our multi-perspective finger-vein

scanner device and the finger rotation data set. Section IV

describes the experimental set-up and presents the performance

evaluation results together with a results discussion. Section

V concludes this paper along with an outlook on future work.

II. THE LONGITUDINAL FINGER ROTATION PROBLEM

Usually, finger-vein scanners are designed to capture only

one finger at a time. For these scanners, finger misplacements

are a severe problem. There are different types of misplace-

ment: shifts of the finger in x- and y-direction (planar shifts),

shifts of the finger in z-direction, in-plane (planar) rotation of

the finger, tilts of the finger and rotation around the finger’s

longitudinal axis. The planar shifts as well as the planar

rotations can be reduced by guiding walls alongside the finger,

end tips or a finger-shaped support. Shifts of the finger in z-

direction are usually not a problem if the sensor has a surface

where the finger has to be placed onto. Remaining planar shifts

and rotations can be compensated in software by aligning the

images based on the finger outline. Tilts of the finger can

be avoided by using capacitive or pressure-sensitive sensors

on the scanner surface which detect if the finger is placed

correctly. However, rotations around the finger’s longitudinal

axis cannot be detected reliably by most available commercial

available sensors. This problem could be avoided if the sensors

would not only acquire one finger, but require the subject to

place the full hand or at least more than one finger, as proposed

by Kauba et al. in [KPU18], on the sensor. Fig. 1 shows

an example of the longitudinal finger rotation, also called

non-planar rotation or out-plane rotation by some authors,

using an off-the-shelf commercial finger vein scanner. In a

supervised acquisition scenario, the supervisor can tell the user

to place his finger correctly. However, if the acquisition is not

supervised, such longitudinal rotations of the finger impose

a severe problem. This problem gets worse if the scanner is

designed to operate in a contact-less way and does not have a

contact surface.

The captured image is a projection of the finger situated in a

3D space onto a 2D plane. This principle is depicted in Fig. 2.

If the finger is rotated around its longitudinal axis, the vein

patterns look different due to the change in the perspective

or the projection, respectively. This projective transformation

cannot be reverted using translation or rotation on the images,

but can be compensated to some degree if either the rotation

Figure 1. Finger rotation example using a commercial scanner (rotation
counter-clockwise)

angle is known or can be estimated. Estimating the rotation

from a single image can be a challenging task. If the angle

of rotation increases, some vein lines might merge due to the

perspective projection. In this case, there is no way to revert

the effects caused by the longitudinal finger rotation. Thus, it

would be desirable if the recognition scheme is robust against

longitudinal finger rotation, at least to a certain extent. To the

best of our knowledge, until now the robustness against finger

rotation has not been systematically evaluated.

III. PLUSVEIN-FINGER ROTATION DATA SET

The finger rotation data set has been acquired using our

custom designed multi-perspective finger vein scanner, shown

in Fig. 3. The image sensor is an NIR enhanced industrial

camera (IDS Imaging UI-1240ML-NIR), equipped with a 9

mm wide-angle-lens (Fujion HF9HA-1b) and a NIR long-

pass filter (Midopt LP780). Five 808 nm NIR laser modules

form the light source, positioned on the opposite side of the

camera (transillumination), including an integrated automatic

brightness control to achieve an optimal image contrast. To

capture different perspectives or rotation angles, the camera

and the illuminator rotate around the finger which is placed at

the axis of rotation. This rotation principle is depicted in Fig. 4.

The finger is stabilised with the help of a finger-tip shaped hole

on the finger end and a height-adjustable finger trunk plate on

the finger trunk. All parts except the camera, lens, filter and the

laser modules were designed and manufactured by ourselves.

The data set itself contains a total of 252 unique fingers

from 63 different subjects, four fingers (right and left index

and middle finger, respectively) per subject. Video sequences

with a rotation speed adjusted to the frame rate were captured

such that frames in 1° steps can be extracted in a range of

±90° starting from the palmar view, by rotating the scanner

around the finger’s longitudinal axis. This leads to the same

output images as if the finger would rotate itself. The capture

process was repeated 5 times per finger. For each degree of

rotation there are 1260 images, resulting in 228060 images

in total. Fig. 5 shows some example images in 10° steps

and the corresponding extracted finger veins using Maximum

Curvature [MNM07]. It becomes clearly visible that the ex-

tracted vein patterns are distinct among the different views

(note the highlighted areas in the bottom row of the figure).



Figure 2. Finger longitudinal axis rotation principle: a schematic finger cross section showing five veins (blue dots) rotated from −30° (left) to +30° (right)
in 10° steps. The projection (bottom row) of the vein pattern is different according to the rotation angle following a non-linear transformation
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Figure 3. The scanner itself (originally published in [PKU18], © 2018 IEEE)

NIR Illuminatior

Camera

Finger

Figure 4. Principle of the multi-perspective finger vein scanner

The gender distribution of the volunteers is balanced. Among

the 63 subjects 36 of the subjects are male, the remaining 27

are female. The youngest subject was 18, the oldest one 79.

The image resolution is 650× 1280 pixels.

IV. EXPERIMENTS

a) Recognition Tool-chain:: Fig. 6 shows the compon-

ents of a biometric recognition system: The biometric trait

is captured by a biometric sensor and afterwards processed

in the recognition tool-chain which consists of preprocessing

(ROI (region of interest) extraction and image enhancement),

feature extraction and comparison. The input of our tool-chain

are the videos captured by our mulit-perspecitve finger vein

scanner. At first the frames corresponding to 1° steps are

extracted from the video sequences. Afterwards each image is

processed individually: the ROI is extracted and the the finger

outline detected by the help of an edge detection algorithms.

Then a straight centre line is fitted into the finger. Based on

this centre line, the finger is aligned (rotated and shifted)

such that it is in horizontal position in the middle of the

image. The area outside the finger is masked out (pixels set to

black) and a rectangular ROI is fit inside the finger area. The

ROI images have a size of 300 × 1100 pixels. To improve

the visibility of the vein pattern we use High Frequency

Emphasis Filtering (HFE), Circular Gabor Filter (CGF)

and simple CLAHE (local histogram equalisation) as prepro-

cessing. We opted for three well-established binarisation type

feature extraction methods as well as two key-point based

method. Maximum Curvature (MC) [MNM07], Principal

Curvature (PC) [Ch09] and Gabor Filter (GF) [KZ12] aim

to extract the vein pattern from the background resulting in

a binary image, followed by a comparison of these binary

images. Comparing the binary feature images is done using

a correlation measure, calculated between the input images

and in x- and y-direction shifted and rotated versions of the

reference image. In addition, two key-point based recognition

schemes, a SIFT [KRU14] based technique with additional

key-point filtering and Deformation-Tolerant Feature-Point

Matching (DTFPM) proposed by Matsuda et al. [Ma16] are

used. For more details on the preprocessing methods please

refer to [KRU14].

b) Evaluation Protocol:: To quantify the performance,

the EER as well as the FMR1000 (the lowest FNMR for

FMR ≤ 0.1%) and the ZeroFMR (the lowest FNMR for

FMR = 0%) are used. For calculating the genuine scores,

all possible genuine comparisons are performed, which are

63 · 4 · 5 · 5 = 6300 comparisons. For calculating the impostor

scores, only the first image of a finger is compared against the

first image of all other fingers, resulting in 4 · 63 · 63 = 15876

compares, so 22176 compares in total. An implementation

of the complete processing tool-chain as well as the scores

and detailed results are available at: http://www.wavelab.at/

sources/Prommegger18b/.

c) Experimental Results:: Table I lists the baseline

performance results for the different finger-vein recognition



Figure 5. Top: example images in 10° steps, from left to right: -30°, -20°, -10°, 0°, 10°, 20°, 30°, bottom: corresponding extracted MC features with two
highlighted vein paths.

PC MC DTFPM SIFT GF

EER [%] 0.48 0.59 1.15 1.53 3.14
FMR1000 [%] 0.79 0.83 2.54 4.88 5.40
ZeroFMR[%] 1.51 1.31 3.93 6.43 7.82

Table I
BASELINE PERFORMANCE RESULTS (PALMAR VIEW, 0°) FOR THE

DIFFERENT RECOGNITION SCHEMES

schemes at the palmar view (0°). PC achieves the best recog-

nition performance with an EER of 0.48%, followed by MC,

DTFPM and SIFT while GF performs worst.

In order to quantify the robustness against longitudinal

finger rotations, the images captured in the different angles

from −90° to 90° in 1° steps are compared against the

palmar view (rotation of 0°). The trend of the absolute EER

is shown in Fig. 7 left column. The relative performance

degradation (RPD)
(

EERrotated−EERpalmar

EERpalmar

)

is depicted in

the right column. The bottom row shows the area of ±25°

from the palmar view in more detail. Note that the RPD is

calculated with respect to its baseline EER of each recognition

scheme. As a result of this, the maximum RPD is limited

by RPDmax =
EERmax−EERbaseleine

EERbaseline
where EERmax is

∼ 50%.

MC (red line with triangular marker) and PC (green line

with square marker) show a similar performance: up to a

rotation angle of ±10° the EER rises just above 1% which

corresponds to a relative performance decrease about 100%.

With increasing rotation angle, the recognition performance

diminishes at a higher rate. At ±10° the EER reaches 2%,

between ±20° and ±25° the EER jumps above 10%. Around

±30° the EER exceeds 30%, at ±45° already 45%, i.e.

recognition is no longer meaningful. DTFPM (brown line with

star marker) has a higher baseline EER (1.15%) at the palmar

view but its EER increases most gently, leading to the best

robustness against finger rotation. At ±10° the performance

degradation is only 30% (EER: 1.53%). Starting from ±17°

DTFPM outperforms all other schemes. At ±30° its EER is

still below 7%. Matsuda et al. [Ma16] reported a baseline

EER of 0.152% and a relative performance degradation of

230% (EER: 0.501%) at ±30°. However, neither their data

set nor an implementation of their proposed approach is

available. With our full re-implementation we are able to

confirm their claimed robustness against finger rotation, but

with a relative performance degradation of 500% instead of

230%. SIFT (blue line with diamond marker) is more robust

against finger rotation than PC and MC, too. However, its

baseline EER is higher than the one of DTFPM. GF (black

line with cross marker) has the highest baseline EER (3.18%)

and a similar relative performance degradation as MC and

PC. Due to its high baseline EER, its RPDmax is lower

than RPDmax for PC and MC. FMR1000 and ZeroFMR,

visualized in Fig. 8, follow the same trend as the EER: first,
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Figure 6. Basic components of a biometric recognition system

the increase is relatively small and starts to rise sharply at

±15◦. FMR1000 exhibits values close to 100 from ±45°

onwards for all algorithms evaluated, ZeroFMR already at

±35°. DTFPM shows the best results for both, FMR1000 and

ZeroFMR. Consequently, a longitudinal finger rotation angle

of ±30° poses a severe problem for all evaluated schemes

except DTFPM. A rotation angle of more than ±45°makes

recognition nearly impossible.

To assist the reader in comparing the performance values

at different rotation angles, Tab. II lists the EER per rotation

angle from 0° - ±45°. The best EER for every rotation angle

is highlighted bold. This table confirms that up to a certain

rotation, the well established vein pattern based algorithms

show the best performance. It can be seen that if the rotation

exceeds a certain angle, key-point based algorithms, especially

DTFPM, outperform traditional approaches.

Tab. III lists the relative performance degradation for the

same rotation angles. With respect to RPD, DTFPM performs

best followed by SIFT. Although GF shows the lowest RPD

for ±45°, it has the worst recognition rate of all feature

types, with an EER of ∼ 50%. The low RPD is due to the

highest baseline result compared to the other feature types.

The two tables (Tab. II and Tab. III) clearly show that the

evaluated key-point based algorithms are more tolerant against

finger rotation than the vein pattern based ones. The key-point

based algorithms match relevant key-points against each other

instead of comparing binarised vein structures. If the detection

and matching of theses points is insensitive to changes in the

vein patterns due to longitudinal finger rotation, the results of a

comparison in a biometric recognition system is less sensitive

as well.

Tab. IV is the inverse of Tab. III and shows rotation angle

at which a certain performance drop is hit. While vein pattern

based algorithms (MC, PC, GF) reach 100 performance de-

crease around ±10◦, key-point based systems tolerate higher

rotation angles, e.g. DTFPM reaches a RPD of 100% at 14°.

The further the finger is rotated, the more pronounced this

trend becomes: the relative performance decrease of SIFT and

especially DTFPM is lower than the one of PC, MC and GF.

DTFPM exceeds a RPD of 500% at 28° whereas for PC, MC

and GF this performance decrease is already achieved just

above ±15◦.

V. CONCLUSION

We investigated the problem of finger rotation around its

longitudinal axis, also called non-planar or out-plane rotation

of the finger in the scope of finger-vein recognition. This kind

of finger misplacement poses a severe problem for practical

applications of finger-vein scanners, including most of the

available off-the-shelf single finger commercial finger vein

scanners, as this rotation cannot be prevented by means of the

scanner hardware construction and is hard to be compensated

afterwards by image preprocessing (assuming that the rotation

angle is not known). We established a new finger rotation

data set comprising finger-vein images captured in 1° steps

of longitudinal rotation in a range of ±90° starting from the

palmar view.

Our performance evaluation results confirm, that longitud-

inal finger rotation is a severe problem for the recognition

performance of finger-vein systems. All recognition schemes

are able to tolerate up to ±10° of rotation at a relative

performance loss of less than 120%. The key-point based

algorithms DTFPM and SIFT are more robust against finger

rotation, but their baseline performance is worse compared

to PC and MC. GF generally performs worst. However, for

rotation angles more than 30°, which can occur in practical

applications of finger-vein scanners, the recognition perform-

ance drops dramatically. This problem gets even worse for



Figure 7. Trend of performance indicators across the different rotation angles from −90° to 90° (0° corresponds to the palmar view), left: absolute EER
values, right: relative change of EER in %. The bottom row shows a more detailed view from −25° to 25°.

±0° ±5° ±10° ±15° ±20° ±25° ±30° ±45°

PC 0.48 0.60 1.04 1.96 5.38 13.43 27.14 46.50
MC 0.59 0.62 1.07 2.92 8.88 22.34 37.91 46.82

DTFPM 1.15 1.07 1.53 2.03 2.91 4.49 6.97 19.26
SIFT 1.53 1.53 2.49 3.90 5.59 8.53 12.61 30.15
GF 3.14 3.62 5.36 11.03 22.70 37.86 46.06 50.46

Table II
EER AT SPECIFIC ROTATION ANGLES [%]

±0° ±5° ±10° ±15° ±20° ±25° ±30° ±45°

PC 0% 26% 119% 312% 1031% 2727% 5610% 9684%
MC 0% 7% 83% 399% 1416% 3715% 6373% 7894%

DTFPM 0% 0% 33% 76% 153% 290% 505% 1573%
SIFT 0% 0% 63% 155% 266% 459% 726% 1876%
GF 0% 15% 71% 252% 624% 1107% 1369% 1509%

Table III
RELATIVE PERFORMANCE DEGRADATION AT SPECIFIC ROTATION ANGLES [%]



Figure 8. Trend of performance indicators across the different rotation angles from −90° to 90° (0° corresponds to the palmar view), left: FMR1000, right
ZeroFMR in %

10% 25% 50% 100% 200% 300% 400% 500%

PC ±1° ±3° ±5° ±8° ±12° ±13° ±15° ±16°
MC ±5° ±6° ±8° ±9° ±12° ±13° ±14° ±15°

DTFPM ±7° ±8° ±11° ±14° ±19° ±23° ±26° ±28°
SIFT ±4° ±4° ±8° ±12° ±16° ±20° ±23° ±25°
GF ±4° ±5° ±7° ±9° ±12° ±14° ±16° ±17°

Table IV
ROTATION ANGLE AT WHICH A CERTAIN RELATIVE PERFORMANCE DEGRADATION IS HIT

touchless finger-vein scanners with more degrees of freedom

during image acquisition.

If only the planar finger-vein images are available, the abil-

ity of a recognition scheme to cope with longitudinal rotation

of the finger is very limited due to the perspective mapping

during imaging. One way to make finger-vein recognition more

robust against finger rotation is by improving the scanner

hardware, e.g by mounting an additional finger positioning

support where the whole hand is placed on a kind of shelf such

that the rotation of the finger can be restricted. Another option

is using stereo or 3D camera systems, which is beneficial for

touchless scanners anyway, in order to estimate the rotation

angle of the finger and compensate for the rotation by applying

a perspective transform. Another way is trying to estimate the

rotation angle and compensate the rotation like Chen et al.

[Ch18] proposed, which will be evaluated in our future work.

For our data set the exact longitudinal finger rotation is

known. This information can be used to perform a systematic

evaluation of the approach in [Ch18]. A further approach is

to correct the perspective distortion by applying a non-linear

transform using the known rotation angle. We will evaluate

the recognition performance which can be retained at certain

rotation angles for both approaches in order to determine

the maximum possible rotation angle at which a reasonable

recognition is still feasible.
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