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Abstract

Present thesis 1 aims to investigate the influences of “natural perturbations” in fingerprint
images on the matching performance of different fingerprint matchers and in particular
different types of fingerprint matchers (minutiae-based as well as non-minutiae-based). The
term “natural” hereby denotes those kinds of perturbations, that frequently occur in real-life
fingerprint application scenarios, mostly caused by the particular manner in which a finger is
presented to the contact surface, when leaving the imprint. As fundamental test data for the
studies in present work, three predetermined sets of fingerprint images from the Fingerprint
Verification Contest 2004 are used. Each set has been acquired with a different type of
fingerprint scanner, under varying finger- and positioning-related conditions. In order to
simulate diverse types of natural perturbations then and to deliberately introduce them into
the given fingerprint images, in this thesis a benchmark tool from the field of digital image
watermarking robustness analysis, the StirMark Benchmark, is employed. In theory any
collection of well-defined suitable image altering operations could serve the purpose, yet the
StirMark Benchmark is in so far outstanding, as it gives great attention to standardization of
the image manipulation process, as well as to reproducibility of experimental results. These
aspects are also part of the inspiration for present work, as besides the pure investigation
of the effects of natural perturbations on individual matching results, a further goal is, to
evaluate, if the testing procedures applied in the experiments of this thesis, are suitable and
furthermore beneficial as benchmark architecture for extensive performance evaluation of
fingerprint matchers.

1This work was funded by the Austrian Science Fund (FWF).
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Chapter 1

Introduction

In recent years biometric systems have become more and more important. Not just because,
according to some, the world has become a more dangerous place, but far more significantly,
because biometric systems – foremost fingerprint recognition systems – have become afford-
able and are meanwhile being employed in a broad variety of application scenarios: from
immigration screening at airports, via the often-cited access-control systems, regulating the
entry to restricted areas (including private homes), to the fingerprint sweep-scanner, that
nowadays we commonly find built into consumer notebooks, to replace the necessity to enter
(and more troublesome: remember) passwords.

As mentioned, fingerprint recognition is by far the most prevalent biometric application in
use today. Consequently we also have a broad selection of (commercially) available fingerprint
recognition systems, occasionally also applying non-conventional (i.e. non-minutiae-based)
algorithms for fingerprint matching. To get an overview over the matching performances
of individual matchers, several attempts have been made to systematically and objectively
compare different systems with each other – one such renowned attempt is for example the
Fingerprint Verification Contest (described in chapter 3). Often the sample data, used in
these competitions, is compiled with the special intention, to include “difficult” fingerprint
images – i.e. images containing perturbations, as they might occur in real-life fingerprint
application scenarios (for instance images, where the finger imprint is only partially visible,
or images, where the ridge-lines of the imprint are not clearly perceivable, or images, which
contain certain types of noise).

One potentially interesting aspect, that would extend said comparative studies and that so
far, to the best of my knowledge, has not been explored, is the reaction of the individual
fingerprint matchers to particular types of perturbations within fingerprint images. Such an
investigation is basically the topic of present thesis.

1.1 Motivation

The StirMark Benchmark is a generic benchmark test for evaluating the robustness of digital
image watermarking methods. It was developed by Fabien A. P. Petitcolas et al. [27, 20] in
response to the problem that, by the time afore-referenced papers were published, compar-
ison of different digital watermarking techniques was difficult, due to the lack of commonly
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used and accepted evaluation procedures. Hence Petitcolas et al. had set out, to establish a
quasi-standard for robustness evaluation in digital watermarking, by providing a well-defined
benchmark-architecture.

The basic idea behind the StirMark Benchmark is, to embed a watermark in a sample image
and then to attack it, by introducing a variety of small, ideally imperceptible perturbations
into this image. Finally an attempt is made, to extract the watermark again, thereby the
respective certainty of extraction is measured. The attacks themselves are structured in a
given set of tests, each corresponding to an individual, well-defined type of perturbation,
whose characteristics can be adjusted via a small set of parameters. (For more details on
the StirMark Benchmark, its functionality and the various types of image manipulation
operations provided, please refer to chapter 2).

The pursuit of Petitcolas et al., to establish a common architecture for evaluation of digital
watermarking techniques, is also part of the motivation of present work. The aim to use
a single, openly available and well-defined benchmark to simplify and unify the testing
and comparison of watermarking systems could potentially also be adopted for fingerprint
matcher analysis and comparison.

The Fingerprint Verification Contest (FVC) for instance, introduced in detail in chapter 3,
is basically already that. It represents a sophisticated infrastructure for comparing various
fingerprint matchers: specific test data is provided, the matching procedure and precondi-
tions to be met, are well-defined and so are the criteria and methodology for performance
evaluation (to just name some of the aspects that make the FVC very well suited for ob-
jective matcher comparison). As the large number of participants suggests, the FVC also
finds/found high response and acceptance in the fingerprint matching community.

The aspect, in this regard, that I would like to investigate in present work, is following:
On one hand we have a comprehensive tool – in our case the StirMark Benchmark – that
enables us, to easily introduce a broad variety of perturbation types into images. The per-
turbation types themselves are predefined and their intensity is adjustable via a small set
of given parameters. On the other hand we have the Fingerprint Verification Contest with
aforementioned assets. My question is now: Is it feasible and more important, beneficial, to
combine both evaluation systems into a, let’s say, “extended” benchmark?

What would this extended benchmark look like and what could be its benefits? The testing
procedures, as well as the methodology for analysis and comparison of the results, could,
for example, be adopted from the Fingerprint Verification Contest. As test data we would
use a certain predetermined set of fingerprint images – ideally, as is the case with the test
images of the FVC, separate sets of samples, acquired with a representative array of diverse
fingerprint scanners under varying finger- and positioning-related conditions (please refer to
section 3.1 for details on the FVC’s sample images).

Still no different to the FVC, this basic set of test data is then used to evaluate the finger-
print matchers. Regarding the entire matching results generated in this first “test-run”, the
matchers are compared to each other and further a ranking is determined, based on their
individual matching performances.

While the analysis so far gives us an extensive overview over the matching performances of
the various fingerprint matchers, its scope is still limited to the basic set of predetermined
sample images. Concerning this point now, my proposition is to introduce the StirMark
benchmark (or any other collection of well-defined suitable image altering operations for that
matter). We use the available test data and exploit the diverse StirMark benchmark tests, by
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applying their respective image manipulation operations to the original fingerprint images.
This gives us the possibility to create a user-defined variety of additional, “new” sets of
sample images, each with a specific type of perturbation, whose properties are adjustable via
a given set of parameters. Thereby we not only considerably extend the available test data,
but even more important, we have the possibility to simulate designated perturbations within
the fingerprint images, the way they commonly appear in real-life application scenarios.

When we consider the matching results and the ranking, established beforehand by using
the original, unmodified fingerprint images in the first test-run, quasi as our “ground truth”,
then we can observe, how the fingerprint matchers react to certain types of perturbations –
taken by themselves as well as in comparison with each other. Put differently, by comparing
the results of the first test-run with the results generated by using a set of perturbed images,
we can investigate questions, like in the following examples:

• Regarding a single matcher, in how far does a specific type of perturbation influence
the matching results? Is the matching performance strongly deteriorated or can the
respective matcher cope well with it?

• How do the results of one matcher change in relation to the results other matchers?
Are all matchers equally strong influenced by the perturbations, or are some showing
a more distinct response than others?

• Do perturbations, or certain types thereof, cause changes in the overall ranking of the
fingerprint matchers? For example, is the “best” matcher exhibiting a superior overall
performance in any case?

• Are we able to identify general differences in the responses to perturbed images, de-
pending on the particular types of fingerprint matchers? (See section 4.1 for details on
various matcher types).

Bearing the idea of combining FVC-like fingerprint matching procedures with StirMark-
like image manipulation into an “extended benchmark”, further the discussed outlines for
according experiments, as well as above posed questions in mind, we can formulate the goals
of present work:

1.2 Goals

The goals of present work can be stated as follows:

• Investigate the influence of different kinds of natural perturbations in fingerprint im-
ages on the matching performance of diverse types of fingerprint matchers.

• Determine the applicability of the well-known digital image watermarking robustness-
testing tool StirMark Benchmark for simulation and induction of said natural pertur-
bations.

• Evaluate in general, if the experiment procedures applied, could form the basis for a
common fingerprint matcher comparison and analysis benchmark.

Following now an explanation of several terms, appearing in previous definition:
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Fingerprint images In my experiments in present work, technicalities of fingerprint image
acquisition are not of explicit concern, consequently I have decided to use readily avail-
able test data. I chose the sample image databases from the Fingerprint Verification
Contest 2004. Please refer to chapter 3 for details.

Furthermore the images are processed ”as is”, in other words, no quality based selection
is made. Cases of “Failure to enroll” will not be treated specially either, but will simply
lead to fingerprint templates producing a matching score of 0.

Matching performance The fingerprint matchers are tested on aforementioned sample
data, following the procedure specified in the Fingerprint Verification Contest. Details
on the testing procedure can be found in section 3.2 on page 25. For performance eval-
uation and comparison, the matching results are analyzed and the following indicators
inspected:

• Score Distribution of the genuine and impostor scores

• False Matching Rate (FMR) and False Non Matching Rate (FNMR)

• Equal Error Rate (EER)

• Receiver Operating Curve (ROC)

Further information on these performance indicators can be found in section 1.3 on
page 7.

Types of fingerprint matchers Three types of fingerprint matchers, differing in the par-
ticular properties regarded for determination of similarity between two fingerprints,
are compared in present work:

• 3 Minutiae-based matchers

• 1 Correlation-based matcher

• 1 Ridge Feature-based matcher

Concerning the latter two: In lack of readily available realizations of purely non-
minutiae-based fingerprint matchers, own implementations of already existing algo-
rithms were created. Chapter 4 on page 27 presents detailed information on the em-
ployed fingerprint matchers.

Perturbations In present work the term “perturbation” is used to denote any kind of
property of a fingerprint image, that impedes the matching process and (if not reme-
diable) consequently leads to a “non-ideal” matching score. Those perturbations can
be rotations, shearing or warping of the finger imprints, noise or blur within the image,
etc.

Simulation and Induction of Perturbations This refers to the act of deliberately in-
troducing a certain type of perturbation into a fingerprint sample image. The per-
turbation itself is thereby generated artificially, according to exact user-specifications.
As stated on several occasions above, in course of the experiments of present work,
the StirMark Benchmark will be applied for the purpose generating and introducing
the perturbations. Detailed information on the StirMark Benchmark and the various
perturbation types it provides, is given in chapter 2 on page 12.
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Natural Perturbations By “natural” we refer to those kinds of perturbations that fre-
quently appear under normal usage-related circumstances in real-life fingerprint appli-
cation scenarios. This constraint applies to the specific type of perturbation as well as
to the respective intensity.

For example a mirroring of the image is not considered as possible perturbation, as
this effect will most likely not appear “naturally” in real-life applications. On a side
note, also none of the regarded fingerprint matchers innately is prepared to deal with
mirrored images.

Another example: While for instance a rotation of up to ±180◦of one finger imprint in
relation to another might very well appear, a stretching-like deformation in horizontal
direction by more than, say, 50% is very unlikely. For illustration, Figure 1.1 shows
an original fingerprint and the same fingerprint stretched in horizontal direction by
“only” 35%.

(a) Original image (b) Stretched image

Figure 1.1: A sample fingerprint image and the same image stretched in horizontal direction by 35%

I also want to use the generated data and findings to get to a concluding verdict
about the suitability of my experimental approach for a common generic benchmark
of fingerprint matcher performances. (Referred to as “extended benchmark” in section
1.1).

1.3 Terminology

Real-life Fingerprint Application Scenario As such I consider any kind of application
scenario, where automatic fingerprint processing is actually being used in nowadays
life, ranging from simple access control at security-gates, via personality verification in
combination with a biometric passport, to forensic analysis. However these application
scenarios might look like, the one determinant that – from my point of view – they have
in common, is, that the initial process of fingerprint acquisition does not happen under
precisely set and controlled conditions. (To be accurate, in case of forensic analysis,
the acquisition of a fingerprint is most certainly a very precise process, conducted by
highly trained specialists – so in this context, henceforth please consider the incident,
that led to the latent fingerprint in first place). In other words, when acquiring several
imprints of a single, identical finger in a real-life application scenario, it is most likely,
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that no two imprints will be totally equal. This aspect is due to the broad variety of
conditions that can influence the appearance of the resulting fingerprint. Following I
will only name very few:

Conditions with respect to the finger The moisture of the fingertip; the angle,
the finger is presented to the contact surface in (relative to the axis normal to
the surface, as well as relative to the longitudinal axis of the finger); the amount
of pressure applied, furthermore its direction.

Conditions with respect to the acquisition-environment The structural prop-
erties of the contact surface; if the surface is clean or dusty, or if residual finger-
print details from previous scans are present; scan- or transmission errors that
might occur; the type of scanner.

Perturbation In regard to the previous explanation of the real-life fingerprint application
scenario and the mentioned conditions influencing the actual appearance of a finger-
print, we can get to a supplementary definition of the term perturbation as used in
present work (please compare to the original definition given in section 1.2): We can
say, it denotes the difference between a theoretical ideal imprint of a certain finger and
the actual acquired one.

Fingerprint Template This is an application dependent representation of a processed fin-
gerprint. It contains the specific features extracted from the imprint, that are supposed
to make it distinct and identifiable. For many applications it is favorable to have small
sized templates, in order to reduce processing time and memory requirement. For se-
curity reasons, an additional design-criteria might be, that given a template, it should
be impossible to reconstruct the original fingerprint from it.

Gallery Image In many application scenarios we have a database, containing enrolled
fingerprints, i.e. fingerprints that have been (voluntarily or involuntarily) registered
in combination with information which identifies the corresponding person. In present
work, I will denote such a database as gallery. As it is application dependent, in
what form a fingerprint is stored in the gallery – e.g. as original acquired image or
as preprocessed image or as specific template – I will generically use the term gallery
images to refer to the according database entries.

Probe Image With this term I will refer to an acquired fingerprint image, that is not
meant for enrollment, but to be tested against one or many gallery image(s).

Fingerprint Verification In verification systems a claim is made about the identity of
a provided fingerprint. The system then compares this probe image with the gallery
image(s) previously enrolled for this particular identity and determines, if the claim is
correct. Hence (in theory) verification systems conduct 1 to 1 comparisons.

Fingerprint Identification An identification systems is presented with a plain fingerprint
and its purpose is then, to determine the corresponding identity. This is done by com-
paring the probe image to the entire set of gallery images. In other words, identification
systems conduct 1 to many comparisons.

Matching Score When presented with two fingerprint images to be tested, fingerprint
matchers in general will return a corresponding score, representing either the similarity
or the difference between the two imprints. Regarding the fingerprint matchers applied
in present work, four matchers return a similarity score and one returns a measure of
distance. To facilitate comparability, the matching scores are treated as follows:
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1. The distance score sD is transformed into a similarity score sS by calculating
sS = maxD − sD, where maxD represents the maximum possible distance and
its value has been empirically determined, inspecting the matching results for
all available fingerprint images, including StirMark-perturbed ones. (Different
methods to transfer a distance value into a similarity score can be found for
example in [1] and [6]).

2. All scores have been normalized to a range of [0,1].

Genuine Scores Scores generated for those cases, where the presented probe image corre-
sponds to the gallery image enrolled for claimed identity.

Impostor Scores Scores generated for those cases, where the presented probe image does
not correspond to the gallery image of claimed identity.

Match, Non-Match The decision, if two fingerprint images are declared as match or as
non-match is made depending on a certain threshold t. If the calculated matching score
is less than t, the two fingerprints are declared as non-match, if the score is greater
than or equal t, the pair is declared as match.

False Match Rate (FMR) A false match denotes the error, when fingerprints of two
different fingers are mistakenly declared to be from the same finger. The false match
rate is the number of false matches per total number of matching-tests performed.

False Non Match Rate (FNMR) A false non match denotes the error, when two finger-
prints acquired from the same finger are declared to be from two different fingers. The
false non match rate is the number of false matches per total number of matching-tests
performed.

Equal Error Rate (EER) Analyzing a set of matching results, the equal error rate de-
notes the point, where corresponding FMR and FNMR have an equal value.

Zero False Match Rate (ZeroFMR) This measure denotes the lowest FNMR value es-
tablished in a set of matching results, while at the same time the FMR is still 0%.

Score Distribution (SD) This graph portraits the probability density function of the
impostor scores and of the genuine scores. See Figure 1.2 for an example.

Receiver Operating Curve (ROC) A diagram very well suited for analyzing the perfor-
mance of a verification system. In present work we plot the FNMR against the FMR.
This allows to analyze the inevitable trade-off between the two error rates. See Figure
1.3 for an example.

Notes on the ROC plots in present work:

• With the threshold running from 0 to the maximum matching score (here: 1), a
ROC plot naturally covers the complete range of values, from FMR = 100% and
FNMR = 0% to FMR = 0% and FNMR = 100%. In certain StirMark related
experiments though, the quality of the fingerprint images is derogated so strong,
that numerous match-pairings result to a matching score of 0. In the subsequent
analysis therefore, already the first threshold-step leads to a large amount of
false matches and false non-matches. In the corresponding ROC plot then, where
the single data points are connected by lines for better perceptibility, the large
gap between the first data point of FMR = 100% and FNMR = 0% and the
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second data point representing said high error rates, would lead to an irritating
long, straight connection line. As this segment might give the false impression of
several result values lying on its path, I decided to exclude the first data point
from the plots. Consequently a ROC curve then not terminates, as natural, on
point (1,0) but on the following calculated pair of error rates.

For an illustrative example, take the results produced by the fingerprint matcher
VeriFinger in the Additive Noise test for perturbed images of database DB2 (see
page 91 for test-related details). Inspecting the results of, for instance, noise level
15, we see, that already 46% of all fingerprint pairings cause a matching score
of 0. In the analysis then, when the threshold is incremented for the first time,
we immediately obtain a FMR of 44% and a FNMR of 28%. The ROC plot in
Figure 5.8c on page 94 shows, that if the natural first rate pair of FMR = 100%
and FNMR = 0% would be included and connected in the plot, we would obtain
a long straight line from (0.44,0.28) to (1,0), falsely suggesting the presence of
actual data values.

• As a consequence of the large amount of data, the plots tend to become over-
loaded, if every single data value is represented by an individual point/mark.
Hence to improve the perspicuity of the plots, in most cases, only every second
or third data value will be indicated.

Test-Run The term test-run will be used in connection with the testing activities, based
on the test-protocol specified in the Fingerprint Verification Contest (please refer to
chapter 3 for details): Following the testing procedures defined in the protocol and
using the pre-determined set of test fingerprint data, a series of all-together 7750
matches will be conducted. For simplicity I will henceforth refer to such a complete
matching-series as single test-run.
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Chapter 2

StirMark Benchmark

The StirMark Benchmark is a generic benchmark test for evaluating the robustness of digital
image watermarking methods, developed by Fabien A. P. Petitcolas et al. [27, 20].

Petitcolas et al. had observed, that around the time aforementioned papers were published,
most studies on digital image watermarking were using own test data, own methodology
and an own set of criteria to determine and report the robustness of the proposed methods.
Comparison of different watermarking systems was therefore not easily possible. This was
one of the reasons that motivated Petitcolas et al. to develop the StirMark Benchmark,
aiming to establish a quasi-standard for robustness evaluation by providing a well-defined
benchmark-architecture, that enables fair and independent comparison of various digital
watermarking techniques. With such a common tool authors would be provided the means
to easily test their own developments and subsequent reporting could be simplified to merely
publishing a table of benchmark results (supplemented, if necessary by a listing of specific
parameter settings).

2.1 Functionality

The basic idea behind the robustness tests in the StirMark benchmark is, that a digital
watermark within an image can be attacked and possibly rendered useless, by introducing
small, ideally imperceptible perturbations into the marked image. To be suitable for appli-
cation in a common generic benchmark, the specific types of perturbations are pre-defined
and the respective intensity is adjustable via a given set of parameters. 1 Typical attacks
are rotation, scaling, color quantization, various random geometric distortions, etc.

The procedure of a single robustness test for a watermarking scheme to be evaluated, is
thereby as follows (based on the definition given in [20]):

1. Take a sample image and embed a watermark with the greatest strength which does

1The same principle also applies to digital watermarking methods for other types of multimedia objects,
like audio signals, but as in present work we are only concerned with images, I will limit the discussion
accordingly. For more information on watermarking robustness evaluation for other multimedia object types,
as well as on the corresponding extension of the StirMark Benchmark, please refer to [26] and [28]. In
mentioned papers Petitcolas et al. also describe their idea for a public fully automated evaluation service
based on the StirMark Benchmark.
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not introduce annoying effects (i.e embed as such, that the image quality – for a given
quality metric – remains greater than a given minimum).

2. Attack the watermark by introducing a specific, pre-defined perturbation into the
marked image.

3. Try to extract the watermark from the perturbed image and measure the certainty of
extraction.

Petitcolas et al. note in [27], that while many of the contemporary watermarking schemes
could survive mentioned basic image manipulations, they could not cope with combinations
of them. Hence they developed the StirMark attack, which in itself combines a pre-defined
set of differing basic ones. (For a detailed description of the StirMark attack, please refer to
section 5.14 on page 171).

In order to provide previously mentioned extensive benchmark-architecture for robustness
evaluation of digital watermarking techniques, Petitcolas et al. then bundled their own Stir-
Mark attack together with a large variety of basic attacks into the encompassing StirMark
Benchmark. 2 Currently this is available in form of the “StirMark Benchmark 4.0” on the
website of Fabien A. P. Petitcolas [25].

2.2 StirMark Tests included in the Benchmark

Following, a quick overview over the individual tests provided in the StirMark Benchmark.
More detailed information can be found for example in [20], or in the corresponding sections
of chapter 5 of present document.

PSNR This test measures the PSNR of an image after the watermark to be tested has
been embedded. The expected strength of the embedding is adjustable and the test
reports a failure, if the PSNR does not meet this value (± 10% of tolerance).

Embedding Time The watermark to be tested is embedded a user-specified number of
times and the embedding time is measured.

Additive Noise Additive random noise is introduced to the input image. The amount of
noise is adjustable and can range from “none” to “completely random image”.

JPEG The image is JPEG compressed. The level of quality is thereby adjustable.

Median Cut Filtering This test applies a median cut filter to the input image. The size
of the filter mask can be set.

Convolution Filtering A generic test for any kind of convolution filtering. The specific
filter mask has to be defined by the user.

Self-Similarities A not otherwise specified test by Eurécom, dealing with self-similarities.
The parameters allow for a selection of the color-space and the respective channel(s) to
be attacked. Further the user can choose between two test-modes: spatial and exchange.

2Henceforth I will denote all attacks/tests, that are part of the StirMark Benchmark, as “StirMark
attacks/tests” and to avoid ambiguity I will use the term “the StirMark attack/test”, with emphasis on
the, when referring to the one particular attack/test, developed by Petitcolas et al., which comprises a
combination of several specific attacks.
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Remove Lines This tests removes rows and columns from a given image at the specified
frequency k – “remove 1 line in every k lines.”

Cropping While maintaining the image center, this tests crops the image to a user-defined
percentage of its original size.

Rescale Rescales the image to a user-defined percentage of its original size.

Rotation Rotates the image by a given angle.

Rotation and Cropping Rotation by a given angle followed by cropping. Thereby the
output image is cropped so much, that it only contains parts of the original input image
and no black corners, as the normal rotation introduces for areas without corresponding
input image data.

Rotation and Rescaling Same procedure as for Rotation and Cropping, followed by scal-
ing to the original input image size.

Affine Transformations Generic test for arbitrary affine image transformations. The user
specifies the parameters a, . . . , f of the inverse transformation matrix of the form:(

x′

y′

)
=

(
a b
c d

)(
x
y

)
+

(
e
f

)
Small Random Distortions The StirMark test. Being a combination of several basic ma-

nipulations (see aforementioned ones), this test aims to simulate a resampling process,
i.e. the errors introduced when printing an image and then scanning it again.

Latest Small Random Distortions Introduced in version 4.0 of the StirMark Bench-
mark, this test represents a modification of the Small Random Distortions test. It
replaces two original, sine-function-based processing steps, responsible for generat-
ing global and local image-distortion, with a single procedure, employing randomized
“Distortion Maps” instead. (See sections 5.14 and 5.15 for details).

2.3 StirMark Benchmark in Present Work

As the focus of present work is exclusively on fingerprint matching performance and has no
connection to any digital watermarking aspects, I am interested in the StirMark Benchmark
solemnly for it’s following properties:

• It provides a large collection of various image manipulation operators, suited to intro-
duce perturbations into a specified set of images.

• The available image manipulations include basic ones, like rotation, shearing, convolu-
tion filtering, etc., as well as two different versions of the StirMark test, which combines
several perturbation types in itself (see previous section 2.2 for details).

By repeated application of StirMark tests – i.e. by applying a test on already perturbed
images – the perturbations can also be arbitrarily combined (with limitations though
– see section 5.2 for details).

• The available set of perturbation types is predefined and the respective intensities, as
well as certain properties, can be adjusted via a given, small set of parameters.
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• Said set of parameters also allows for a single test to be run repeatedly, while auto-
matically changing the initialization values. E.g. for the Rotation test it is possible to
either specify a list of angular values or alternatively, to set a start value, an end value
and a step width. The test is then executed for each angle, specified by these settings.

• The setup of the StirMark Benchmark, as well as the specific settings for the individual
tests, is comfortably done via a configuration file, specified at benchmark start-up.

• The StirMark Benchmark is freely available and source code is included in the down-
loadable package [25].

For the experiments of present work a subset of the complete range of StirMark tests is
used. This subset consists of only those tests, that (to my estimation) simulate “natural”
perturbations – in other words, tests, whose influence on fingerprint images creates perturbed
versions thereof, that resemble cases appearing in real-life fingerprint application scenarios –
rotated fingerprint images being a very common example. (Also compare to the definition of
the term “natural perturbation” given on page 6). The selection of tests for the experiments
is as follows:

• Additive Noise

• Median Cut Filtering

• Convolution Filtering . . . in configurations for:

– Mean Filtering

– Modified Gaussian Filtering

• Remove Lines

• Rotation

• Affine Transformations . . . in configurations for:

– Stretching in X-direction

– Stretching in Y-direction

– Shearing in Y-direction

– Shearing in X- and Y-direction

• Small Random Distortions

• Latest Small Random Distortions

More detailed information on each individual test, on why it was chosen, as well as on the
particular range of examined parameter configurations is given in the respective sections of
chapter 5.
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2.3.1 Comments on the Selection of StirMark Tests

No Combinations of StirMark Tests

As already stated on several occasions, the aim of the experiments in present work is to
establish the differences in matching performance among the various types of fingerprint
matchers, in regard to specific types of perturbations (rotation, noise, etc.). For that matter,
the StirMark manipulations will be applied to the test data images only separately, one at the
time. In other words, the fingerprint images will either be rotated or sheared or convolution-
filtered etc., but no combination of StirMark tests will be considered. This has two reasons:

• First, as mentioned before, the StirMark tests – Small Random Distortions and Latest
Small Random Distortions – themselves already constitute a combination of basic
manipulations. So (to a certain degree) combinations of perturbation types will be
studied here implicitly.

• Second and more important: Only by regarding the StirMark manipulations sepa-
rately, the influences of their respective perturbations on matching performance can
be determined, because only then the observed changes in the matching results are
distinctively attributable.

Dealing with Changed Image Sizes

Another aspect that had to be dealt with: For certain StirMark tests the dimensions of the
perturbed output images are likely to differ from the dimensions of the original input images.
To preclude any influences that a difference in sizes of a gallery and a probe fingerprint
images might have on the matching performance, the original image dimensions have to be
reestablished:

• The tests Affine Transformation and Rotation produce output images with larger
dimensions, than that of the input images. (Except, of course, for rotations by multiples
of 90◦). In these cases the output images are being cropped to the original dimensions,
while maintaining the image center.

• The test Remove Lines per definitionem reduces the size of the output images. To re-
store the original image dimensions, the perturbed images are extended at the boarders
with monochrome pixels of a user-defined background color. Again the image center
is maintained during the operation.

As the necessary additional image manipulations for cropping and boarder-extending are
not part of the StirMark Benchmark, corresponding operators of the ImageMagick suite [41]
are applied for that purpose.

Reduced Number of Tests for Non-Minutiae-Based Fingerprint Matchers

As mentioned in the introduction, in section 1.2, five different fingerprint matchers will
be used for the experiments of present work. Two of these matchers are own implemen-
tations of existing non-minutiae-based algorithms. (Please refer to chapter 4 for details).
Unfortunately the two self-implemented matchers are extremely slow (which, to my opinion,
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is mostly due to certain very time-consuming characteristics of the underlying feature ex-
traction and matching algorithms). Consequently, running these matchers on the complete
projected collection of sets of StirMark-perturbed images would have taken several months
of processing time. Therefore, while the minutiae-based matchers will still be tested on the
entire collection, the two non-minutiae-based fingerprint matchers will only be applied to a
limited number of image sets. Details can be found in the respective sections of chapter 5.

2.3.2 StirMark perturbations only in Probe Images, not in Gallery
Images

An important aspect that has to be noted in regard to the application of the StirMark
benchmark in course of the experiments of present work, is, that in each pair of fingerprint
images to be matched, only the probe image will be StirMark-perturbed, while the image,
representing the enrolled gallery fingerprint, will be taken from the original, unperturbed
set of sample images. There are mainly two reasons for choosing this modus operandi:

• For one, as stated above, I aim to be able to distinctively attribute a change
in a matcher’s performance to the type and intensity of the respective StirMark-
perturbation in question. However, matching two perturbed fingerprint images might
lead to an interaction of the perturbations, obfuscating the potentially observable influ-
ence, a certain perturbation type would originally have on the matching performance.

For illustration, we can regard the simple perturbation-type Rotations: Matching two
images, that have been turned by 20◦will obviously have less impact on a fingerprint
matcher’s performance, than when matching a probe image rotated by 20◦and a gallery
image in its original orientation.

On the other hand, regarding for example the StirMark test Modified Gaussian Fil-
tering : As further explicated in section 5.6, the application of this test causes certain
types of fingerprint images to “thin-out” and details are gradually being lost. When
matching two such perturbed images, the result would very much depend on which
particular areas of the finger imprints are being lost and which ones remain – if, per
coincidence, corresponding areas of the fingerprint are still present in both, the probe
and the gallery image, the matching result might be good, however, if only differing
areas remain, the result will undoubtedly be bad, even though the intensity level of
the perturbation would be the same.

• Second, in most real-life fingerprint application scenarios one can assume, that during
the enrollment phase, certain means of quality control will be implemented, assuring a
minimum level of clarity, distinctiveness, etc. for those fingerprint images, that will be
registered in the gallery. (For example, this might be a trained person, monitoring the
enrollment process and visually checking the image quality, or it might be the finger-
print application itself, evaluating the acquired imprint and, if necessary, requesting
the user to present the finger once more to the acquisition-device). As such it is my
belief, that the experiments in present work correspond better to the actual charac-
teristics of real-life fingerprint application scenarios, when in the matching process, a
fingerprint image, representing the respective gallery image, is employed without any
additionally introduced perturbations.



Chapter 3

Fingerprint Verification Contest
and Test Data

The Fingerprint Verification Competition (FVC) was a contest held in the years 2000, 2002,
2004 and 2006, comparing fingerprint matching algorithms of up to 53 (in 2006) different
developing parties. The FVC was organized by the Biometric System Laboratory of the
University of Bologna [35], the Pattern Recognition and Image Processing Laboratory of
the Michigan State University [22], the Biometric Test Center of San Jose State University
[32] and of late the Biometrics Research Lab - ATVS of the Universidad Autonoma de
Madrid [34].

The aim of the FVC was to provide developers a “common benchmark” to compare their
matching algorithm’s performance to that of others, as well as to gain an overview of the
“state-of-the-art” in contemporary fingerprint recognition. The matching algorithms entered
in the competition were coming from the academic field, from commercial organizations and
from several independent developers. Further information on the Fingerprint Verification
Contests can be found on the respective websites [7, 8] and in the detailed analysis of the
results of the FVC2004 [21].

The characteristic of the FVC of being a means for unambiguously comparing different
fingerprint matching algorithms, fits very well with the aim of present work, to study the
impact of perturbations in fingerprint images, artificially introduced via the StirMark suite,
on the matching results of various types of fingerprint matchers. Hence I chose to adopt
test data and test procedure of the FVC for the experiments in present work (see following
sections for details).

3.1 Test Data

For the experiments in present work we will be using the example fingerprint images from the
FVC2004, as by the time the experiments were conducted, the “latest” fingerprint images,
i.e. those of the FVC2006 were not freely available.

The complete test data of the FVC2004 consists of four separated fingerprint image
databases, depending on the way, the images were acquired: three databases contain orig-
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inal finger imprints scanned using different sensors and one database contains artificially
generated fingerprint images (see Table 3.1 for details). Example images of each of the four
databases can be seen in Figures 3.1a to 3.1d. All images are provided in uncompressed
TIFF format.

Sensor Type Model Image Size Resolution

DB1 Optical CrossMatch V300 640× 480 500 dpi

DB2 Optical Digital Persona U.are.U 400 328× 364 500 dpi

DB3 Thermal Sweeping Atmel FingerChip 300× 480 512 dpi

DB4 Synthetic Generator SFinGe v3.0 [35] 288× 384 500 dpi

Table 3.1: Details on the fingerprint images in the four different databases of the FVC2004 test data.

(a) DB1 (b) DB2

(c) DB3 (d) DB4

Figure 3.1: Examples fingerprint images from the databases DB1-DB4 of the FVC2004 test data set (scaled to 1/3
of original size).

One explicitly stated criteria for the fingerprint images within each database was, for them
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to be “difficult”. Therefore, in regard to the three databases containing scanned original
fingerprints, the acquiring process was structured, in outlines, as follows:

• Per sensor (database) a group of 30 randomly chosen volunteers was assigned.

• Three scanning sessions were held, a minimum of two weeks between them. Each time
the volunteers were to presented alternating forefinger and middle finger of both hands
(ergo 12 imprints in total).

• Following instructions were given during image acquisition (the images show examples
of especially difficult cases. Images were scaled to 1/4 of original size):

– Imprints 1, 2: Slightly different vertical position. (Fig. 3.2)

Figure 3.2: Criteria: Different vertical position.

– Imprints 3, 4: Alternate high and low pressure. (Fig. 3.3)

Figure 3.3: Criteria: High and low pressure.

– Imprints 5, 6: Exaggerate skin distortion. (Fig. 3.4)

– Imprints 7, 8: Exaggerate rotation. (Fig. 3.5)

– Imprints 9, 10: Dried finger. (Fig. 3.6)

– Imprints 11, 12: Moistened finger. (Fig. 3.7)

• No image quality control was made, nor the sensor platens systematically cleaned.



18 3.1 Test Data

Figure 3.4: Criteria: Exaggerate skin distortion.

Figure 3.5: Criteria: Exaggerate rotation.

Figure 3.6: Criteria: Dried finger.

Figure 3.7: Criteria: Moistened finger.
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This amounts to 120 fingers, à 12 impressions per database. Out of these 1440 fingerprint
images, 880 were then selected for the final test database, which itself was split into sets A
and B.

• Set A consists of 100 fingers (IDs 1 to 100) with 8 imprints each. It is used exclusively
in the final experiments.

• Set B consists of 10 fingers (IDs 101 to 110) with 8 imprints each. This set is used for
preliminary tests, aiming to determine an optimal parameter set-up for each database.

This separation into sets A and B is done to avoid parameter over-fitting.

3.1.1 Notes on FVC2004 Test Data Usage in Present Work

Limitation to DB1, DB2 and DB3

As a consequence of the large amount of different test runs that have to be conducted per fin-
gerprint image database in course of the experiments of present work – Number of StirMark
perturbation types × Number of intensity levels – and the fact, that my implementations of
not-minutiae-based fingerprint matching algorithms (see section 4.2 for further details) have
an extremely bad performance in terms of processing speed, I decided to only use 3 of the
4 databases included in the FVC2004 test data. Given the fact, that databases DB1–DB3
contain fingerprint images scanned from real fingers, I chose those over the synthetically
generated ones in DB4.

DB1 with Image Size of 512 × 512

Another alteration that I had to introduce to the matching process in consequence of the
poor processing speed of the not-minutiae-based fingerprint matching algorithms is, that
images of DB1 are not used in their original image size of 640 × 480, but instead in a
size of 512× 512. This is a concession to the fact that both not-minutiae-based algorithms
employed in present work, use a two-dimensional Fast Fourier Transform at certain points.
As the 2D FFT algorithm applied only processes images having dimensions of a power of 2,
fingerprint images of DB1 would have automatically been extended to a size of 1024× 512
for the transform. Consequently the transformation results would likewise be of this largely
extended size, causing the subsequent, computationally expensive processing steps of the
not-minutiae-based matching algorithms to take enormous amounts of additional processing
time. Hence I settled on adjusting the size of the original input fingerprint images from
640× 480 to 512× 512. This operation is performed in two steps:

1. On the left and on the right side of the image a stripe of 64 pixels width is removed,
leaving an area of 512× 480, cut out from the center of the original image.

2. Top and bottom are extended by 16 pixels with the original image’s background gray-
level of 255 (white).

Cropping a fingerprint image, as in step 1, holds the risk of loosing valuable image informa-
tion. A scan through the complete database DB1 showed, that this was the case in only 4
images and there only very small parts of insignificant boarder sections got cut off.
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3.2 Test Procedure

The procedure for performance evaluation is basically the same in all Fingerprint Verification
Contests, from 2000 to 2006. Following I will briefly reflect the two types of tests, conducted
in the FVC:

Genuine Tests These tests are carried out to establish the False Non Match Rate FNMR.
Each sample is matched against the remaining samples of the same finger. Symmetric
matches are not executed to avoid correlation in the scores (i.e., if fingerprint image
g is matched against h, then h will not be matched against g). Using the test data of
the FVC2004 [7], per database with a width of 100 fingers and a depth of 8 imprints
per finger, the total number of genuine tests is:

8× 7

2
× 100 = 2800.

Impostor Tests These tests are carried out to establish the False Match Rate FMR. The
first imprint in each finger is matched against the first imprints of all remaining fingers.
Here likewise, symmetric matches are not executed to avoid correlation effects. Using
the test data of the FVC2004, the total number of impostor tests is:

100× 99

2
= 4950.

Another point, that is adopted from the test procedure of the FVC in present work: Together
with an executable version of their fingerprint matching algorithms, contestants are given
the possibility to provide one configuration file per database, containing database-specific
parameter settings. As the not-minutiae-based fingerprint matching algorithms employed in
present work are strongly dependent on the actual gray-level representation of the ridge and
furrow structure within a fingerprint (see section 4.1 for details), adjusting certain matching
parameters according to the type of fingerprint images to be tested, is a means of clearly
improving the respective matching performance. Details on the database-specific settings
of the applied not-minutiae-based matchers can be found in Sections “FVC2004-Database
Specific Differences” on pages 49 and 75.



Chapter 4

Fingerprint Matchers

As already mentioned in the introduction in the course of present work I want to study the
influences of various types of perturbations (distortions, noises, etc.) commonly appearing
in fingerprint images, on the matching results. In this regard it is especially interesting
to compare the performance of different fingerprint matching techniques – does a certain
method have particular strong points or weaknesses when dealing with a specific type of
perturbation? Does it maybe have advantages over other methods? These are some of the
questions, that I will examine in the course of my experiments.

4.1 Types of Fingerprint Matchers

The different approaches to fingerprint matching can best be described, when first looking
at several characteristics, that can be determined in a fingerprint and that can be utilized by
a matching algorithm to establish distinctive discriminative features, representing a single
fingerprint (please also see Figure 4.1 for reference):

• Looking at a fingerprint on a global level, the overall ridge flow structure can be
perceived, as well as the so called singular points [13, 17] therein. Generally three cat-
egories of singular points can be found: loops and whorls, characterized by areas of high
curvature and deltas, representing a specific triangle-shaped ridge pattern common to
most fingerprints. (Occasionally, like in [17], in the analysis a whorl is substituted by
two facing loops).

• Going into more detail, looking at the ridge and furrow structure in the fingerprint from
a more localized point of view, then characteristics like orientation and frequency of
the local ridge flow can be observed. The frequency being derived from the inter-ridge
spacing in the ridge pattern of the respective area, while the orientation represents its
general direction.

• On a local level then, details of the ridge shapes themselves can be determined. The
most important ones and to my knowledge the only ones used for fingerprint matching,
are ridge endings and ridge bifurcations which are subsumed in the term minutiae. A
ridge ending is a point, where a ridge simply runs out, ends. A ridge bifurcation is a
formation, comparable to a Y-junction, where a single ridge splits into two separate
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ridges. Further ridge details concerning the shape are for example islands (very short,
almost point-shaped ridges), lakes (oblong holes in the interior of a ridge) and small
holes.

• Looking even a step closer at a fingerprint, then also diminutive intra-ridge features
are detectable – the finger’s sweat pores. Yet despite being a highly distinctive char-
acteristic, individual to each finger, the pattern of sweat pores is not well suited for
most applications, as it can only be determined in sufficiently good quality in high-
resolution fingerprint images of for example 1000dpi and above. As in present work
we exclusively deal with fingerprint images of 500dpi resolution, sweat pore related
algorithms are not further considered.

Singular Point 
(Loop)

Singular Point 
(Delta)

Ridge

Furrow

Minutia
(Ridge Ending)

Sweat Pore

Minutia
(Ridge Bifurcation)

Figure 4.1: Overview over different features detectable in a fingerprint image.

Now depending on what type of features, what aspects of a fingerprint a matcher takes
into account when establishing the resemblance of two fingerprint images, its approach will
basically be one of the following classes [13]:

Correlation-Based Matcher These approaches use the fingerprint images in their en-
tirety. Here the global ridge and furrow structure of each fingerprint is decisive, when
the images are correlated at different rotational and translational alignments. Option-
ally different image transform techniques may be utilized for that purpose. The final
matching score is then related to the correlation values.

Ridge Feature-Based Matcher Matching algorithms in this category likewise deal with
the overall ridge and furrow structure in the fingerprint, yet in a localized manner.
Characteristics like local ridge orientation or local ridge frequency are used to generate
a set of appropriate features representing the individual fingerprint. Matching two
fingerprints then merely consists of comparing their corresponding feature sets.

Minutiae-Based Matcher The set of minutiae within each fingerprint is determined and
stored as list, each minutia being represented (minimum) by its location and direction.
The matching process then basically tries to establish an optimal alignment between
the minutiae sets of two fingerprints to be matched, resulting in a maximum number of
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pairings between minutiae from one set with compatible ones from the other set. The
higher the number of there pairings, the higher the similarity between the respective
fingerprints.

The minutiae-based approach is the most common and most widely used method for
fingerprint matching.

Hybrid Techniques There also exist fingerprint matching algorithms, that combine some
or all of the above listed techniques, aiming to combine the particular strong points
of each individual approach into a single, more precise matcher. For example [30]
combine a minutiae-based rotational and translational fingerprint alignment with a
ridge feature-based matching method.

4.2 Matchers in Present Work

In the experiments of present work, I will use an array of five different fingerprint matchers to
generate matching results for the StirMark altered fingerprint images. Three of the matchers
are minutiae-based, one is correlation-based and one ridge-feature based.

From the set of minutiae-based matchers, two are commercial software products (see sections
4.3 and 4.4) and one is freely available as open source program (see section 4.5). As for the
not-minutiae-based fingerprint matching methods, I was not able to find adequate existing
realizations, that were freely or at least easily available. For that reason I chose to create own
implementations based on already proposed algorithms, covering the other two minutiae-
independent fingerprint matching approaches (see sections 4.6 and 4.7).

In the following three sections I will briefly introduce the minutiae-based fingerprint match-
ers. As far as possible I will also mention some details on their respective matching proce-
dures, as it is my believe, that a deeper insight in the operating mode of a matcher will also
give a better understanding as to how and why it will react to certain perturbation types in
fingerprint images.

In sections 4.6 and 4.7 I will then turn to the not-minutiae-based matchers and my realiza-
tions in more detail: First I will give a basic overview over the respective matching algorithm
and its specific matching method. Then I will cover several aspects of my implementation,
including the changes compared to the original algorithm, I introduced. Concluding each of
the two sections, I will state the matcher setup for the experiments, especially in regard to
settings depending on the particular FVC2004 fingerprint image database in use.

Finally, I want to make a note, concerning my realizations of the not-minutiae-based match-
ing algorithms: The implementations of the proposed algorithms were created to the best
of my knowledge and abilities, following the information given in the according papers as
closely as possible. My added changes and improvements are based on experiments con-
ducted with my implemented versions during and after the creation process. Yet despite
all these efforts, it can still very well be, that the original implementations, created by the
authors of the algorithms, exhibit superior matching performances than mine. Hence I do
not claim, that my matching results represent the best achievable results using the proposed
matching algorithms.



24 4.3 Griaule Biometrics – Fingerprint SDK 2009

4.3 Griaule Biometrics – Fingerprint SDK 2009

The first in the list of minutiae-based fingerprint matchers, that I use in the experiments
of present work, has been developed by Griaule Biometrics [9] and is applied in form of
the Fingerprint SDK 2009 (in particular the Java version of the SDK). For the sake of
simplicity, I will henceforth, throughout this document, refer to this matcher as GrFinger.

Griaule Biometrics is based in San Jose, California, USA, with a research and development
headquarter in Campinas, São Paulo, Brazil and links to the State University of Campinas.

Researchers associated with Griaule Biometrics, that are named on [9]: Pascual Figueroa
Rivero, Luis Mariano Del Val Cura, Gustavo Sá. Research advisers: Roberto de Alencar
Lotufo, Neucimar Jerônimo Leite.

The Griaule fingerprint recognition algorithms won in the “Open Category”, section “Aver-
age results over all databases” of the Fingerprint Verification Contest 2006 [8], with having
the best Average EER.

4.3.1 GrFinger Algorithm

Regarding the fingerprint matching algorithm, I quote the information as it is given on [9]:

• The fingerprint is acquired from a fingerprint scanner.

• Image is improved (better contrast and distinctness).

• Noise and defects are eliminated.

• Fingerprint features are detected and analyzed.

• Minutiae are identified.

• Fingerprint search on database is made based on some measures; so polygons are
determined connecting 3 minutiae. Thus, internal angles, sides and each minutia angle
are computed. These measures are invariant to rotation and translation.

This method allows that a desired fingerprint can be localized on database even with
position variation (displacement and rotation) in relation to the found fingerprint.

Concerning the robustness of the matching algorithm, Griaule Biometrics claims: “Our ma-
ture technology provides for the best recognition rates overcoming the real-life challenges
such as rotation, scratches, low-contrast, distortion, dirt, different resolutions, different im-
age sizes, ink-and-paper, digitized fingerprints.”

4.3.2 Further Notes on Application in Present Work

In course of the experiments of present work, the GrFinger matcher is used with a rotation
alignment range of ±180◦ and a range of ±20◦. Latter setting provides for the results to
be better comparable with the results of the two not-minutiae-based fingerprint matching
algorithms that I created an implementation for, whose rotation alignment is also set to
±20◦. (Please refer to sections 4.6 and 4.7 for details).
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4.4 VeriFinger

The second minutiae-based fingerprint matcher, that is applied in present work, is called
VeriFinger and is developed by Neurotechnology [24]. For integration in PC- and web-based
application this matcher is currently available in form of the VeriFinger SDK 6.2.

Neurotechnology, until 2008 known under its former name Neurotechnologija, is based in
Vilnius, Lithuania and released the first version of VeriFinger in 1998.

In the Fingerprint Verification Contest 2006 [8], in the “Open Category”, section “Average
results over all databases” VeriFinger ranked 7th and was additionally having the best
Average Zero FMR results among the contestants.

4.4.1 VeriFinger Algorithm

As for the algorithm, Neurotechnology gives the following information in [24]: “The
VeriFinger algorithm follows the commonly accepted fingerprint identification scheme, which
uses a set of specific fingerprint points (minutiae) along with a number of proprietary algo-
rithmic solutions that enhance system performance and reliability”

Concerning the robustness of the matching algorithm, Neurotechnology states, that the
VeriFinger algorithm is tolerant to fingerprint translation, rotation and deformation. Noises,
ridge ruptures and stuck ridges are being eliminated to make minutiae extraction reliable.
Identification is said to be possible even if the gallery template and the query fingerprint
only have 5 -7 similar minutiae.

4.4.2 Further Notes on Application in Present Work

The template extraction procedure, as well as the fingerprint verification engine of VeriFinger
both provide an individual threshold that allows to regulate the minimal quality required of
the generated template and the matching result respectively. To allow for a fair comparison
between the results of VeriFinger and those of the other fingerprint matchers regarded, both
threshold are set to the minimum level of 0 in course of the experiments of present work.

Further, cases where templates could not be created by the extraction procedure, due to
problems like “too few minutiae” in the respective fingerprint image, are regarded equal to
empty templates. Hence, when referenced during the matching process, the matching score
will automatically be 0.

4.5 bozorth3

The third minutiae-based matcher in use is bozorth3. It is part of the NIST Biometric Im-
age Software (NBIS) package [23], developed by the National Institute of Standards and
Technology (NIST) for the Federal Bureau of Investigation (FBI) and Department of Home-
land Security (DHS). bozorth3 is a “modified” version of a matcher originally written by
Allan S. Bozorth.
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4.5.1 bozorth3 Algorithm

Basically the bozorth3 program reads two minutiae files and computes their matching score.
The input files each contain a list of minutia points found in the corresponding fingerprint,
with a point being represented by location (x-, y-coordinates), direction and quality infor-
mation.

Minutiae detection with mindtct

In order to detect minutiae in a fingerprint image and to generating a format compliant
minutiae file, the program mindtct can be used, which is likewise part of the NBIS package.
This is also the way chosen in present work.

The mindtct algorithm itself is comprised of the following processing steps (for further details
please refer to [37]):

• Generate Image Quality Maps

– Direction Map, representing areas in the fingerprint image with sufficient ridge
structure; recording general ridge orientation.

– Low Contrast Map, to localize areas for which no reliable minutiae information
can be determined.

– Low Flow Map, marking blocks that could not initially be assigned a dominant
ridge flow, due to low quality, etc.

– High Curve Map, marking high-curvature areas, like delta and core regions as
unreliable for minutiae detection.

– Quality Map, integrating the information of the previous maps.

• Binarize Image, using a rotated window scheme.

• Detect Minutiae, scanning the binary image, identifying specific localized pixel pat-
terns.

• Remove False Minutiae, like islands, lakes, in regions of poor quality, etc.

• Count Neighbor Ridges, reporting up to 5 nearest neighbors.

• Assess Minutiae Quality, a consolidation of quality map information and pixel intensity
statistics like mean and standard deviation.

• Output Minutiae File

Matching with bozorth3

According to [36], the bozorth3 algorithm is designed to be rotation and translation invariant
and consists of three major steps:

Construct Intra-Fingerprint Minutia Comparison Tables Created for each finger-
print to be matched. Per minutia within the fingerprint the relative measurements
to all others in the same fingerprint are listed.
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Construct an Inter-Fingerprint Compatibility Table The comparison tables of two
fingerprints to be matched are examined to find “compatible” entries.

Traverse the Inter-Fingerprint Compatibility Table The set of compatible entries is
regarded as tree and is traversed, starting at various points. Clusters of compatible
entries are built and themselves combined further. At the end the match score is
derived from the number of linked compatibility entries. The higher, the better the
match.

4.5.2 Further Notes on Application in Present Work

According to [37], mindtct can take the following file types as input: standard compliant
ANSI/NIST-ITL 1-2007, WSQ, JPEGB, JPEGL and IHEAD. In present work preliminary
tests were made with fingerprint images in WSQ and JPEGL (lossless JPEG) format. As
expected, bozorth3 produced clearly better matching results, when working with minutiae
files generated from lossless JPEG images. Furthermore considering that the other finger-
print matchers applied, take uncompressed TIFF images as input, it was decided to only
apply fingerprint images in lossless JPEG format for bozorth3 tests in course of the final
experiments.

4.6 Phase Only Correlation Matcher

The first non-minutiae based fingerprint matching algorithm that I created an implemen-
tation for, to include it in the array of fingerprint matchers used in the experiments of
present work, is based on [19]. Therein Ito et al. refer to the the known fact that there
are a considerable number of people who can not be identified by means of feature-based
fingerprint matching algorithms, due to various special skin conditions on their fingertips.
The magnitude of this group of people varies over race, sex, age, job groupings, etc. but it is
said to be up to 5% of the respective population. To address this problem Ito et al. propose
a matching algorithm using a Phase-Only Correlation function. A technique that has been
used in image registration tasks for computer vision applications, as for example in [2] or
[18], but can also be effectively used in fingerprint matching scenarios, as is for example
discussed in [10].

Consider two N1 ×N2 images f(n1, n2) and g(n1, n2) with the index ranges (as defined by
Ito et al.) being n1 ∈ {−M1, . . . ,M1} and n2 ∈ {−M2, . . . ,M2}, with M1,M2 > 0 and
further N1 = 2M1 + 1 and N2 = 2M2 + 1.

The 2D Discrete Fourier Transform (DFT) of image f(n1, n2) is defined in [19] by

F (k1, k2) =
∑
n1,n2

f(n1, n2)W k1n1

N1
W k2n2

N2
(4.1)

with k1 = −M1, . . . ,M1 and k2 = −M2, . . . ,M2, further WN1 = e−j
2π
N1 and WN2

= e−j
2π
N2 ,

and the operator
∑
k1,k2

denoting
∑M1

k1=−M1

∑M2

k2=−M2
.

G(k1, k2), representing the 2D DFT of image g(n1, n2), is likewise defined.

Using the Fourier transforms of the images, the normalized cross spectrum (or cross-phase
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spectrum) is calculated:

R̂FG(k1, k2) =
F (k1, k2)G(k1, k2)

|F (k1, k2)G(k1, k2)|
(4.2)

The phase-only correlation function is then defined as the 2D Inverse Discrete Fourier Trans-
form (2D IDFT) of the normalized cross spectrum:

r̂fg(n1, n2) =
1

N1N2

∑
k1,k2

R̂FG(k1, k2)W−k1n1

N1
W−k2n2

N2
. (4.3)

4.6.1 Properties of the Phase-Only Correlation Function

Ito et al. state, that the following properties inherent to the POC function make it very well
suited for the use in fingerprint matching:

High discrimination capability As opposed to the normal correlation function, the
phase-only correlation produces a sharp and distinct peak, when two images are mostly
similar, however if the images are different, the correlation peak drops significantly.
In the special case that the two images are identical, the POC function r̂(n1, n2) even
turns into the Kronecker’s delta function δ(n1, n2) with a value of 1, if n1 = n2 and 0
else.

Shift invariance This property follows directly from the shift invariance of the underlying
Fourier transform. Ito et al. show this as follows:

Let g1(n1, n2) be the shifted version of the original image g(n1, n2) defined as

g1(n1, n2) = g(n1 + τ1, n2 + τ2), (4.4)

with (τ1, τ2) being the displacement. The POC function r̂fg1(n1, n2) between f(n1, n2)
and g1(n1, n2) will then be given by

r̂fg1(n1, n2) =
1

N1N2

∑
k1,k2

ej{θ(k1,k2)− 2πτ1n1
N1

− 2πτ2n2
N2

}W−k1n1

N1
W−k2n2

N2
(4.5)

∼= r̂fg(n1 + τ1, n2 + τ2). (4.6)

(The same definitions as for Equation 4.1 apply.)

The above equations show, that for an image shifted by (τ1, τ2) the correlation peak
will be shifted likewise, while on the other hand the value of the peak is not being
influenced by the translation.

This property of shift invariance of the POC function is important for the fingerprint
matching algorithm of Ito et al. mainly for two reasons:

First of all the value of the correlation peak is directly related to the matching score,
therefore it must not be influenced in any way by the relative position of the two
fingerprint images that are being matched.

Second, the fact that a displacement of one of the two regarded images relative to
the other leads to a displacement of the correlation peak by the same amount will be
used to establish the translational alignment for the images. For more details on the
translational alignment see Section “Displacement Alignment” on page 40
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Brightness invariance This property of the phase-only correlation function can likewise
be deduced from the properties of the underlying Fourier transform:

Let g2(n1, n2) be the brightness-scaled image of g(n1, n2), given by

g2(n1, n2) = αg(n1, n2), (4.7)

with the scaling factor α ∈ R, α > 0. The 2D DFT G2(k1, k2) of g2(n1, n2) is then
given by

G2(k1, k2) =
∑
n1,n2

αg(n1, n2)W k1n1

N1
W k2n2

N2

= αG(k1, k2).

(4.8)

Now calculating the normalized cross spectrum R̂FG2 we get:

R̂FG2
=

F (k1, k2)G2(k1, k2)

|F (k1, k2)G2(k1, k2)|
=

F (k1, k2)αG(k1, k2)

|F (k1, k2)αG(k1, k2)|

=
αF (k1, k2)G(k1, k2)

α|F (k1, k2)G(k1, k2)|
= R̂FG

(4.9)

So as the normalized cross spectra of the the brightness-scaled image and of the original
image, R̂FG2 and R̂FG, are shown to be equal, it follows that also their 2D IDFTs,
i.e. their phase-only correlations, are equal. This implies that the POC function is not
influenced by brightness change.

At this point I would like to add a comment to the above stated property of bright-
ness invariance about an observation, that is also of influence when dealing with the
StirMark perturbations of fingerprint images, discussed in chapter 2 and more specific
in sections 5.2 and in 5.6:

As shown above, it is obviously true, that on a theoretical level the POC function
is not influenced by a brightness-scaling of one or even of both of the input images.
This situation changes though, when dealing with an application scenario, where the
range of brightness values that image data can assume is limited – most common in
fingerprint applications is the usage of 8bit gray-scale images with gray-levels ranging
from 0 to 255 as input-images, for storage purposes, etc. In this case the assump-
tion, that the brightness-scaled image g2(n1, n2) can be represented as αg(n1, n2)
with a uniform positive scaling factor α, will only be true under the precondition
that ∀(n1, n2) ∈ N1 × N2 : αg(n1, n2) ≤ maxColorlevel, with maxColorlevel rep-
resenting the maximum possible color-level in the image domain (i.e. the value 255
in images with a color-depth of 8 bits per channel). Otherwise, image data elements
of g(n1, n2) that, when brightness-scaled by α exceed maxColorlevel, can not be
represented in the brightness-range of g2(n1, n2) as is, but will be dealt with in an
application-dependent manner – in most cases values ≥ maxColorlevel will simply be
mapped to maxColorlevel itself. This obviously leads to a change (in this case: loss)
of the overall image information. Therefore the assumption g2(n1, n2) = αg(n1, n2) is
no longer true and consequently the phase-only correlation functions of g(n1, n2) and
g2(n1, n2) will lead to differing results.

High immunity to noise To demonstrate this property, Ito et al. present a series of dia-
grams depicting the behavior of the phase-only correlation function when calculated
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between an original image and the same images with additive white noise. The fig-
ures show, that in the presented cases – ranging from S/N = 20dB to S/N = 0dB
– the correlation-peak can be clearly identified, even though its value decreases with
increasing noise.

Fingerprint matching performance under noisy conditions is also one of the topics of
my StirMark-related experiments. The setup and the results can be found in section
5.3

4.6.2 Band-limited Phase-Only Correlation Function

Based on the experiences and observations made in [10], Ito et al. found that in a 2D DFT of
a fingerprint image the most significant information is concentrated in an elliptical frequency
band, which is the representation of the respective ridge pattern of the fingerprint, whereas
the high frequency areas in the 2D DFT usually have low power and only contain rather
meaningless and highly unreliable information. Yet the calculation of the normalized cross
spectrum, R̂FG(k1, k2), emphasizes those high frequency components, whereby the unreliable
parts of the 2D DFT representation strongly effect the outcome of the POC function, leading
to reduced distinctiveness of the correlation peak.

In order to improve the matching performance, Ito et al. introduce the notion of Band-
limited Phase-Only Correlation Function. The idea behind it being, to limit the frequency
spectrum regarded for the calculation of the normalized cross spectrum to only those areas,
that are strongly related with the actual fingerprint information – especially the inherent el-
liptical frequency band originating from the ridge pattern – thereby excluding the interfering
components in the high frequency areas.

One problem though, that occurs when applying the band-limited POC function for fin-
gerprint matching, is, that it might produce not just one, but multiple correlation peaks.
This effect, Ito et al. explain, is caused by elastic deformations in a fingerprint, that can for
example occur, when the fingerprint touches the sensor during image acquisition. Each peak
will then represent one sub-division of the fingerprint that has been distorted independently
from the other areas. So to take this effect into account and thereby also make the matching
algorithm robust against elastic deformations, Ito et al. use the sum of the highest P peaks
of the band-limited POC function as final matching score.

4.6.3 POCmatcher Algorithm

The fingerprint matching algorithm proposed by Ito et al. in [19] consists basically of four
consecutive steps: rotation alignment, displacement alignment, common region extraction
and finally fingerprint matching. The output of the algorithm is a score value from the
interval [0,1], expressing how well the presented probe image matches the specified gallery
image. A score of 1 constitutes a perfect match (i.e. two identical images) and a score of 0
stands for no match at all.

Following I will briefly describe each of the four stages of the algorithm. Details concerning
my implementation will be discussed in the next section, 4.6.4.
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Rotation Alignment

The phase-only correlation function is very sensitive to rotation, therefore it is important
to establish a rotational alignment of the two images to be matched, before continuing with
subsequent processing steps. Ito et al. even suggest to align the images with an angular
resolution of less than ±1◦ to achieve “high-accuracy fingerprint matching”.

To obtain the rotational estimation the algorithm adopts a “straightforward approach”, i.e.
it starts by generating a set of rotated versions of the gallery image, with rotations in a
predefined angular range and predefined step-width – Ito et al. suggest a range of ±20◦ with
a step-width of 1◦, employing bi-cubic interpolation. In the next step the POC function is
put to use to establish the correlation between each of the rotations of the gallery image and
the probe image. The one rotated version of the gallery image that produced the highest
correlation peak is then regarded as the rotation-normalized image and will be used for the
subsequent matching process.

Displacement Alignment

As already shown on page 36, the phase-only correlation function is shift invariant. Still,
in regard to the third processing step of the matching algorithm it is highly beneficial to
establish a translational alignment between the probe image and the rotation-normalized
version of the gallery image.

As denoted when explaining the shift invariance property of the POC function, we can
directly obtain the displacement of one fingerprint image to the other from the location of
the correlation peak. Using the amount of displacement in horizontal and vertical directions
and the respective sign, both images are then border-extended accordingly (for example the
gallery image with an amount of τ1 on the right and τ2 on the bottom border, while the
probe image with τ1 on the left and τ2 on the top border) to normalize the position of the
finger imprints in the images.

Common Region Extraction

This step establishes the regions of actual fingerprint information in the normalized gallery
image and probe image respectively and then crops both images to the common area of
intersection. As the images got rotation- and translation aligned beforehand, now only those
image-sections remain, where both images contain fingerprint data. The non-overlapping
regions which would lead to uncorrelated noise in the POC function, got cut away.

Fingerprint Matching

This final step follows the procedure outlined in section 4.6.2 to calculate the band-limited
phase-only correlation function between the common regions of the gallery and the probe
image. For establishing the “inherent frequency band”, used for setting the borders of the
band-limitation, only the 2D DFT of the gallery image is examined.

The conclusive matching score is then established by summing up the P highest peaks (Ito
et al. suggest P = 2) of the band-limited POC function.
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4.6.4 POCmatcher Implementation

In this section I would like to give some details on my implementation of the Phase-Only
Correlation fingerprint matching algorithm presented by Ito et al. in [19]. Starting with some
general information, I will then go through the separate stages of the algorithm, like was
done in section 4.6.3 and briefly describe how I implemented it, how I interpreted those
details left unexpressed in [19] and where I introduced changes and modifications to the
original algorithm, in order to further improve the matching performance, based on the
findings in my own preliminary tests and experiments during the implementation phase.

Additional information on the actual matcher-configurations and -settings for application in
the experiments of present work can be found in section 4.6.5

General Information

The POCmatcher code was written in Java and last tested with the java-6-openjdk. For
image handling I have chosen to use the Java Advanced Imaging (JAI) API [38] (currently
in its version 1.1.3). I chose this image processing API mainly for three reasons:

• First, because by the time I started my project, the more commonly used Java Image
I/O API – as far as I could find out – did not readily provide methods and interfaces
for dealing with images in the TIFF format, yet the fingerprint images in the FVC2004
databases are all TIFF-images.

• Second, because besides the essential methods for image I/O, access and manipulation
of the image data as well as the image properties, the JAI API offers an extensive set
of interfaces for high-level image processing. For example a large set of point operators
for real- and complex-valued images, a very useful set of area operators including an
interface for convolve operations, geometric operators like rotate and translate, file-type
specific operators and last but not least frequency operators, especially for Cosine- and
Fourier transforms, which I heavily applied in the implementations of the POCmatcher
and the FCmatcher.

• Third, because aside from the easily accessible and comprehensive API documentation,
there exist also a number of sources with explanations and sample code for the usage
of the JAI framework and for its specific operations. In particular I would like to
mention two online resources, that helped me a great deal in getting acquainted to the
framework and understanding how to use it (efficiently):

– The extensive programmer’s guide Programming in Java Advanced Imaging [39]

– R. Santos’ website Java Advanced Imaging Stuff [33] which features a good variety
of source code examples.

Despite the fact, that great efforts were made to speed up the overall processing time –
on several occasions in the following sections I will refer to this aspect in detail – the Java
implementation of the POC fingerprint matching algorithm is very slow, therefore extremely
limiting its applicability in real-life scenarios. For example using the current speed-optimized
implementation for matching two 512x512 pixels 8bit gray-scale images on an Intel Core 2
Duo processor with 2.53GHz, the whole algorithm cycle – including loading the files with
the appropriate JAI operators, creating the set of rotations for the gallery image, etc. . . until
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the output of the final matching score – takes about 9.5 seconds. Applying the POCmatcher
for a complete test run according to the FVC-regulations (see section 3.2 for details), the
overall processing time therefore amounts to more than 12 hours.1

Rotation Alignment

My implementation of the rotational alignment processing step follows the specifications
outlined by Ito et al. as close as possible. The only changes that I introduced here, was
to add a cache for the rotated versions of the gallery image and some other minor tweaks
to speed up the overall processing time, especially when the matcher is used for batch
processing.

When the rotation alignment subroutine is called with the filename of the gallery image
used in the current matching process, it first checks, if this filename equals the filename of
the last call to the subroutine (which means the last matching process).

If so, then the whole set of gallery-image rotations (i.e. a set of rotated versions of the
gallery image, with rotations within a preset angular range, spaced by a preset step-width
in degrees) is loaded from cache.

If not so, then the gallery image will be loaded into the system using the JAI fileload
operator, the set of rotations will be newly created and afterwards also stored in the cache
for subsequent calls to the matching process.

While creating the rotated versions of the gallery image, two aspects have to be paid atten-
tion to:

• When rotating an image using the JAI operator rotate those areas for which there is no
original image data to fill them with (i.e. the image corners), will instead be filled with
a gray-level of 0, ergo black (see the example in Figure 4.2a). For fingerprint images
that do not have black as background color, this added image information (especially
the added edges) has a negative impact, when applying the POC function, resulting
in a degraded performance in establishing the rotational alignment.

As the JAI framework does not provide the possibility to set the default background
color of an image and as other suggested solutions 2 to this problem did not work
without introducing a new set of problems, I had to subject to the “straight forward”
version of extending the image by half its respective dimension on each side, using its
original background color, rotate this image and then crop it back to its original size
(see the example in Figure 4.2b) This, of course, goes not without a minor penalty in
processing speed and memory usage. Additionally it also raises the question of how to
establish the original background color of a fingerprint image.

Analyzing the images of the FVC2004 databases I observed, that in most cases the
four corner pixels hold the original background color. In some cases one of the corners
shows foreground data and in very few cases two or more corners are non-background.
Looking for a fast solution I decided on following: Insert-sorting the four corner pixels
and taking the average of the 2nd and 3rd largest values. This way I eliminate at least

1Taking 9.5 seconds × 7750 matches as occur in a FVC-conform test run, the processing time would turn
out to be ≈20.5 hours. The difference to the actual time needed, is the effect of various caching mechanisms,
included in the current POCmatcher implementation, that work in favor of processing speed, when using
the matcher for batch- processing.

2for example: http://archives.java.sun.com/cgi-bin/wa?A2=ind0204&L=jai-interest&P=R165926&I=-3
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(a) Without background padding (b) With background padding

Figure 4.2: Example of rotation by 20◦without (a) and with (b) background padding.

one outlier (1st and/or 4th largest value) and in case of 2 or more non-background
corner pixels, I limit their influence by averaging.

• Another effect that has to be taken care of, comes into play, when the images be-
ing matched are pre-processed using the image enhancer based on Hong et al. [11].
(Please refer to Section “Application of Image Enhancement” on page 47 for motiva-
tion and details on the application of said image enhancement in the POC matcher).
The image returned by the enhancer is binarized to amplify the distinctiveness of the
ridge-structure, with the fingerprint ridge-information being displayed as 1 and the
background being displayed as 0 (or any other high-low combination for that matter).
Yet when rotating a gallery image, the bi-cubic interpolation being applied by the ro-
tation operator causes especially strong blurring at the edges of the ridge lines. As the
edge information of the ridges is vital to the outcome of the POC function, this leads to
an impaired accuracy of the rotational alignment function. Therefore, when image en-
hancement is used together with the POC matcher, I introduce an additional adjusted
binarization step at this point, to re-establish clear edges at the fingerprint-ridges.

After having loaded the set of rotated versions of the gallery image, the rotation alignment
process enters the second stage, which establishes the “rotation-normalized gallery image”.
This is done by looping over the set of rotations and each time calculating the phase-only
correlation function between the current entry and the probe image. The one pairing that
leads to the highest correlation peak, is regarded as rotation aligned and the corresponding
rotated version of the gallery image will then be used in all the subsequent matching steps.

Displacement Alignment

Using the probe image and the rotation-normalized version of the gallery image, the phase-
only correlation function is once more calculated, yet this time not the height of the correla-
tion peak is regarded, but its location. Theoretically I could have also memorized the peak
location already during the second phase of the rotation alignment step, when repeatedly
applying the POC function for establishing the optimal rotated version of the gallery image,
but tests during the implementation phase showed, that the overall processing time can be
considerably reduced, when substituting the repeated location-determination by this single
additional calculation of the POC function.
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The rest of the displacement alignment step closely follows the proposal of Ito et al.: The
dislocation of the correlation peak from the origin at the image-center is regarded as displace-
ment vector (τ1, τ2). The gallery- and probe images are then border-extended in a suitable
way, to achieve their translational alignment: τ1 is used to extend the images in horizontal
dimension, one image on the left, the other on the right border. τ2 is used for the vertical
dimension, here again extending the images on opposite borders respectively.

Common Region Extraction

In a first step the area of actual fingerprint-data in the gallery-image and probe-image are
separately established. This is done by initially creating the projections of the image in the
horizontal and vertical dimension. Next these projections are scanned, starting from both
ends, for those indices, where a difference between the current value and the last value greater
than an heuristically determined threshold occurs. These indices mark those respective rows
or columns in the original image, where background data ends and foreground data begins.

Special care has to be taken for those cases, where the foreground data already starts at
an image border or where no foreground data can be found at all, which is occasionally the
case in some experiments of present project (see especially section 5.6).

Having established the fingerprint-data areas of the gallery- and probe image, next both
images are cropped to their “common area” – i.e. the intersection of both data areas. In
theory both images now only consist of common rotational- and translational aligned finger-
print data, while the non-correlated, result-derogating sections are limited to a minimum.
An example for the limitation to the common region can be seen in Figure 4.3.

As a small note: The implementation also takes care, that the common region has even-valued
dimensions – if necessary adding a 1 pixel broad column of row in background color to the
images – as otherwise the following DFT and IDFT operations would be disproportionately
elongated.

Fingerprint Matching

After the gallery- and the probe image have been rotation aligned, displacement aligned and
reduced to their common regions of actual fingerprint data, now follows the actual fingerprint
matching and score generation.

First the prepared images have to be Fourier transformed. At this point, the image dimen-
sions are in general not equal to a power of 2. The FFT-implementation of the JAI API
though can only work with image dimensions being a power of 2, therefore it automatically
extends the images accordingly with a value of 0 prior to transformation. To circumvent a
possible influence on the matching result, caused by this automatic image extension, espe-
cially when executing the inverse transformation on the band-limited phase only correlation
function (see further down for explanation) I chose to not apply the JAI FFT and -IFFT
operators for this fingerprint matching step, but a FFT package by “teneighty.org”, [40].
The explanation in [40] states “The main algorithms in use in this package are the Cooley-
Tukey (including both the radix-2 and the mixed-radix flavors) algorithm, the Prime Factor
algorithm, and Rader’s algorithm”. The transform-methods in the teneighty.org package are
therefore able to handle images of arbitrary dimensions. This freedom though comes with a
noticeable penalty in processing speed, as compared to the JAI operators. This speed-issue is
also the reason, why I limited the application of the teneighty.org methods to the fingerprint
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(a) Input gallery image (DB1, ID 1 1) (b) Input probe image (DB1, ID 1 2)

(c) Extracted region of gallery image (d) Extracted region of probe image

Figure 4.3: Results of the common region extraction processing step. Here common region is set to “intersection”.

matching step alone, instead of using it already in the phase only correlation related calcula-
tions, when establishing the rotational normalized version of the gallery image. There I chose
to trade the possible slight inaccuracies, caused by the implicit image extension of the JAI
transforms, for the minutes of additional calculation time, that the use of the teneighty.org
transforms would have brought per matching run.

When the gallery- and probe image have been Fourier transformed, their normalized cross
spectrum is created. Contrary to the rotation alignment step, now the matching score is not
directly derived from the inverse Fourier transform of the normalized cross spectrum, but
at this point the aspect of band-limitation is introduced:

First the limits are established. Therefore the projections in horizontal and vertical dimen-
sion of the amplitude spectrum of the gallery image are created and their respective mean
values calculated. Each projection is then scanned to find those indices where the accu-
mulated values (first) rise above the related mean value. (As the amplitude spectrum is
symmetric, a scan starting from one end of a projection suffices). These indices are regarded
as the band-limits.

To restrict the inverse Fourier transform of the normalized cross spectrum to only the fre-
quencies within the established limits, in order to create the band-limited phase only correla-
tion, I adopted the straight forward approach, to simply crop the normalized cross spectrum
to the area within the limits. The inverse transform is then executed only on this cropped
section. For the sake of precision, here again the transform-methods of the teneight.org
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package are applied.

The matching score is finally established by summing up the P highest peaks in the result
of the band-limited phase only correlation function. The value P can be set via parameter
on instantiation of the matcher object.

Application of Image Enhancement

The original POC fingerprint matching algorithm as proposed by Ito et al. in [19] does not
include any image enhancement or any other form of image pre-processing. The fingerprint
images are taken ’as is’ and passed in their original form to the processing chain.

In the course of implementing the Finger Code fingerprint matcher, I also created a real-
ization of a fingerprint enhancement- and segmentation algorithm based on a proposal by
Hong et al. [11] (see section 4.7 for information on the Finger Code matcher and section
4.7.1 for details on the the enhancement- and segmentation algorithm). Thus having this
fingerprint image enhancer ready at hand, I also tried to apply it as a pre-processing step to
the POC matcher. My question was, if enhancement and segmentation of the fingerprint im-
ages prior to processing in the various matching-steps of the POC matcher would show any
clear and evident effect on its matching performance. The answer to this question was not
at all obvious to me, given that the band-limited phase-only correlation algorithm provides
own strategies to cope with varying quality of fingerprint images – foremost the process of
band-limitation itself and the high immunity to noise, inherent to the POC function.

Figure 4.4 shows, that application of prior fingerprint image enhancement can indeed have
an obvious effect on the overall matching performance. In this example we see the ROC
curves for the matching results for fingerprint images of FVC2004 DB2, when tested with
the POC matcher once without and once with prior enhancement. As can be seen in the
diagram, in this setup the test-run with enhancement clearly brings better results.
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Figure 4.4: Comparison of Receiver Operating Characteristics of the Phase Only Correlation Matcher for fingerprint
images of the FVC2004 DB2 data set: once the images are matched in their original form and once fingerprint image
enhancement was applied prior to matching. Enhancement clearly improves the results.

Further observations regarding the application of image enhancement as pre-processing step
to the POC matcher when dealing with fingerprint images of the FVC2004 databases can
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be found in Section “FVC2004-Database Specific Differences” on page 49, under point “En-
hancement”.

Batch Runner for FVC Test

In order to conduct the matching test runs following the regulations of the FVC2004 (see
chapter 3 for details) using the POCmatcher, I created a dedicated batch runner. Put simple,
its purpose is to:

• set up the POC matcher and if necessary the image enhancer used for pre-processing

• loop through the required pairings of gallery and probe images, each time calling the
matcher with a respective pair.

• outputting the results into a csv-file.

As input the batch runner receives a configuration file and, if not specified within the con-
figuration file, the location of the probe images for the current test. Currently the batch
runner supports a set of 39 different parameters that can be supplied via the configuration
file and are used to set and fine-tune the behavior of the batch runner, the POC matcher
and the image enhancement in pre-processing. Among them the most important ones are
parameters for setting up the location of the gallery and probe images, those for setting up
the angular range and step-width of the rotation alignment process and a parameter that
specifies the type of image database used (in case of the current work: FVC database 1, 2
or 3). With this last parameter all the other “behavioral” parameters can be set at once to
the values I established during my numerous preliminary tests to be optimal for the specific
types of images. (Further details on the database-specific settings are given in the following
section)

The output of the batch runner is a csv-file containing a result-line for every gallery- and
probe image pair matched. The format is probe image;gallery image;matching score;.

4.6.5 FVC2004-Database Specific Differences

Here a short discussion of those parameters set via the batch runner, that optimize the func-
tionality of the fingerprint enhancer and matcher for working with the respective fingerprint
image types in the FVC2004 reference databases.

Sum P Peaks

As mentioned in section 4.6.2 the band-limited phase-only correlation function tends to
produce multiple peaks due to the elastic deformations in the fingerprints. Therefore in the
proposed algorithm of Ito et al. the sum of the highest P peaks (P = 2 suggested) is being
used as final matching score.

Regarding the fingerprint images of the FVC2004 databases and using the suggested value
P = 2, I established in my experiments, that only for DB2 the summation of the highest
peaks leads to an improved matching performance. For the databases DB1 and DB3 the
opposite is true: The sum of P peaks clearly leads to worse results than when using just the
highest peak alone as matching criterion.
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Enhancement

As opposed to the application of the image enhancer as pre-processing step in the Finger
Code matching algorithm (see section 4.7.1 for details), here, with the POC matcher, a
database-dependent adjustment of the segmentation parameters does not lead to an im-
proved matching performance. My rather conservative default settings for the segmentation,
which are aimed to just segment the foreground from the background, but not care about
low-quality areas in the finger-imprint, bring the best results.

An explanation for this effect seems to be, that when a rather aggressive segmentation also
eliminates areas of low fingerprint-quality, this changes the overall shape and appearance of
the imprint, also adds additional sharp edges and therefore strongly influences the finger-
prints 2D DFT and in consequence also the phase only correlation function. This detraction
can be witnessed especially clear, when the removed low-quality areas are internal to the
fingerprint. In other words, for the POC matching algorithm it is of advantage, when the
segmentation rather works a bit “sloppy”, but therefore leaves the general shape of the
imprint untouched.

Still it can not be said, that all databases can be treated equal in respect to image enhance-
ment. As stated in section 4.6.4 the introduction of image enhancement in the processing
cycle can lead to a big improvement in matching performance. Regarding the databases of
the FVC2004, the positive effect can very clearly be witnessed for DB2 (see also Figure 4.4).
Also in DB1 the improvement is obvious, though not as strong as in DB2. (The respective
EER values can be found in Table 4.1). DB3 however shows a diffenent behavior: As can be
seen in Figure 4.5 for DB3 the matching results are clearly better without prior enhancement
of the fingerprint images.

EER (%) EER (%)
without enhancement with enhancement

DB1 29.52 21.91

DB2 34.75 9.51

DB3 15.13 18.43

Table 4.1: Equal error rates (EER) for Phase Only Correlation Matcher, when matching is performed without or
with preceding fingerprint image enhancement

Common Region Extraction Area

As explained in Section “Common Region Extraction” on page 40 the third processing step
of the band-limited phase-only correlation algorithm, first establishes the areas of fingerprint-
data in the gallery- and the probe image respectively. Then it reduces the images to only the
intersection of the data areas, thereby chopping off all uncorrelated sections in the original
images.

On one hand out of curiosity, on the other because of noticing that the intersection of the
data areas sometimes leads to very small resulting images, I also regarded the application
of the union of both data-areas instead.

Using the database specific settings I figured out so far, regarding the sum of P peaks and the
application of enhancement, I was trying out both possible common region configurations
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Figure 4.5: Comparison of Receiver Operating Characteristics of the Phase Only Correlation Matcher for fingerprint
images of the FVC2004 DB3 data set: once the images are matched in their original form and once fingerprint image
enhancement was applied prior to matching. Here enhancement does not improve the results.

– intersection versus union of the respective fingerprint data areas – for each of the three
databases. This lead to following, quite interesting observations: For matching the images
of DB2 the original common region extraction version (i.e. intersection of the data areas)
showed a slightly better performance. On the other hand for databases DB1 and DB3 it
was the union-version that outperformed the intersection-version. For DB3 the difference is
again rather small, but regarding the results of DB1, the improvement by using the union
as common region is quite clearly observable. Figure 4.6 show the two different outcomes:
The original version having better results than the union-version for DB2 (4.6b) and vice
versa for DB1 (4.6a).
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Figure 4.6: Comparison of Receiver Operating Characteristics of the Phase Only Correlation Matcher when defining
either the intersection or the union of the actual fingerprint data areas withing the images as “common region”.
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4.7 FingerCode Matcher

The second explicit not-minutiae-based fingerprint matcher that I implemented, is basically
a realization of the algorithm presented by Ross et al. in [31]. Additionally I also took some
inspirations from a later paper by the same authors, [30], and a paper by de Sá and Latufo
[5], who propose several improvements to the matching stage of the algorithm in [30].

The common ground that all aforementioned papers relate to, in one way or another, is a
method to generate a fixed-length feature vector representing the individual ridge and furrow
structure of a fingerprint, called FingerCode, introduced by Jain et al. in [14]. Originally
developed as basis for a fingerprint classification algorithm, Jain et al. later also put the
FingerCode to use in fingerprint matching [15].

The idea behind FingerCode is to apply a bank of 8 Gabor filters to capture the orienta-
tion and frequency of the ridges in the fingerprint. The resulting filtered images are then
tessellated in a specific way and per cell a distinctive feature representation is created.
Thus each feature value captures the local ridge information of its cell, while the global
ridge-configuration is recorded by the enumeration of the cells, induced directly by the tes-
sellation.

The algorithm in [14] applies a circular tessellation centered around a previously established
core point. The FingerCode is then created by calculating the standard deviation of gray-
scales within each cell. This feature vector looks very similar to the IrisCode introduced by
Daugman in [4], hence its name.

In [15] instead of the standard deviation, the average absolute deviation from the mean
is used to create the FingerCode. For fingerprint matching then the Euclidean Distance
between the FingerCodes of the gallery and the query image is established.

In theory the feature vectors are inherently translation invariant, as the tessellation is created
around the core point, which is supposed to be identical in imprints of the same finger.
Rotation invariance on the other hand is approximated by cyclically rotating the FingerCode
features, a rotational step therefore being equivalent to a rotation of 22.5◦of the underlying
fingerprint image.

This algorithm by Jain et al. generally has some drawbacks though:

• It is dependent on a single core point, which acts as center for the circular tessellation
and indirectly as reference point for the alignment. Detecting the core point is not
an easy problem [31]. Additionally it might happen, that the actual core point of a
fingertip is not even present in the imprint or that it is so close to the image border
that large parts of the tessellation would be lying outside the image boundaries. (This
might be the case for example, when the imprint was acquired using a small solid-state
sensor, or when dealing with latent fingerprints.)

• It only takes into account the circular tessellation, which in general does not cover the
entire fingerprint, thus forfeiting potentially valuable information outside the circular
area.

• The feature extraction is done on the original input image without any prior enhance-
ment. Therefore the matching performance is highly sensitive to perturbations like
noise or brightness variance.

To circumvent these problems, subsequent algorithms substitute the circular with a square
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tessellation, covering the whole fingerprint image. Further they present different strategies
for alignment of the gallery and probe images, to avoid the dependence on the single core
point. [16, 30, 5] for example use additionally gathered minutiae information to establish the
translational as well as the rotational alignment. Thereby of course heavily depending on the
accurate localization and successful matching of the minutiae information of the respective
fingerprints.

As stated in section 1.2 my goal is to find and implement an algorithm that is explicitly
not using minutiae data in any stage of the fingerprint matching process, to compare the
matching performance of the minutiae matchers listed in sections 4.3, 4.4 and 4.5 to that of
essentially different approaches. Therefore I selected an algorithm presented by Ross et al.
in [31] for my implementation.

In the following sections, 4.7.1 and 4.7.2, I will give a brief overview over the individual pro-
cessing steps of the algorithm. At first about the fingerprint enhancement and segmentation
method applied and then about the further steps of the matching algorithm itself. In the
next sections then I will go into more detail on my implementation of the enhancer (section
4.7.3) and of the matcher itself (4.7.4). My explanation of the FingerCode algorithm and
realization will then conclude in stating the differences in individual matcher set-up for the
three FVC2004 image databases used in the experiments of present work.

4.7.1 FingerCode Algorithm - Enhancement and Segmentation

As first step the FingerCode algorithm presented by Ross et al. [31] starts by applying
image enhancement and subsequently a separate fingerprint segmentation to the supplied
fingerprint image. The enhancement method is specialized on fingerprints and was developed
by Hong et al. [11]. Its purpose is to reduce the negative influences of noise and brightness
variations in fingerprint images on the matching result, as well as to improve the clarity of
the ridge-furrow structure.

The enhancement algorithm basically consists of the following five sequential steps: Nor-
malization of the fingerprint image, estimation of the local ridge orientations, estimation of
the local ridge frequencies, generation of a region mask and finally filtering the normalized
image with a bank of Gabor filters, utilizing all of the information gathered in the previous
steps.

Normalization

As quasi pre-processing to the subsequent algorithm steps, this normalization aims to reduce
the variations in gray-level values of the original fingerprint image. This is done by pixel-
wise adjusting the gray-levels to obtain an image with pre-specified mean and variance. A
procedure which does not have any influence on the clarity of the ridges and furrows though.
In [11] the mean and variance are set to 100.

Orientation Image Estimation

The orientation image represents the local ridge orientation in the normalized fingerprint
image, which is specified for blocks of size w × w (instead of per pixel). Hong et al. suggest
w = 16. The according processing steps are as follows:
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The gradients in horizontal and vertical direction are calculated for each pixel in the nor-
malized image. For that purpose an arbitrary gradient operator can be applied. (Hong et al.
name a Sobel and a Marr-Hildreth operator as examples).

Using the gradient information, the least square estimate of the local ridge orientation in
each block is established. The resulting orientation image already corresponds quite well
to the actual ridge orientations in the original fingerprint, yet still includes a number of
incorrectly estimated blocks. These errors are due to noise or other disturbances in the
corresponding blocks of the fingerprint image or happen occasionally, if minutiae or other
singular points were present in the respective area.

To deal with the incorrectly estimated orientations, Hong et al. exploit the fact, that local
ridge orientation varies slowly in a neighborhood without singular points. They transform
the orientation image into a continuous vector field and apply a 2-dimensional low-pass filter
with unit integral to smoothen it. A filter size of 5× 5 is suggested. An accordingly smooth
orientation image is then obtained from this vector field.

Frequency Image Estimation

The normalized fingerprint image and the orientation image are used to create an image
representing the local ridge frequency, which is defined in [11] as “the frequency of the ridge
and furrow structures in a local neighborhood [without minutiae or singular points] along
a direction normal to the local ridge orientation”. To calculate the local frequencies, we
proceed as follows:

Per block an oriented window with size l × w is defined. Hong et al. propose l = 32 and
w = 16. This rectangular window is centered at the center of the block and its length l
lies in a direction orthogonal to the ridge orientation of the block. Within this window
the x-signature is calculated, which is figuratively speaking the projection of the respective
gray-level values of the normalized image onto the length l.

Except for blocks, where minutiae, singular points or disturbances are present in the finger-
print, the x-signature forms a discrete sinusoidal-shape wave with the same frequency as the
ridge and furrows in the oriented window. The frequency can therefore be determined, by
taking the reciprocal of the average distance between peaks in the x-signature.

Those blocks, where the x-signature did not form a discrete sinusoidal-shape wave, can be
identified by inspecting the calculated frequencies. If the value does not lie within a certain
range, specific for an average ridge furrow structure, the respective block is marked as invalid.
The frequency of an invalid block then has to be interpolated from the frequencies of the
neighboring blocks. For this interpolation Hong et al. apply a discrete Gaussian kernel with
a mean of 0, a variance of 9 and a size of 7.

As last step of the frequency image generation, outliers are removed, by filtering the image
with a 2-dimensional low-pass filter with unit integral and a filter size of 7.

Region Mask Generation

This section deals with the segmentation of a fingerprint image into foreground and back-
ground regions, or as Hong et al. put it, recoverable and unrecoverable regions. For that
purpose Hong et al. apply a one-nearest neighbor classifier working with block-wise feature
vectors containing amplitude, frequency and variance of the respective x-signature. In [31]
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though, Ross et al. use a separate segmentation algorithm, that is applied to the image
returned by the enhancer. Yet no hint can be found in [31], which algorithm is referenced or
how it would function. Then again in [30], where the enhancement algorithm by Hong et al.
is used as well, Ross et al. write about their segmentation method: “Segmentation is done
by observing the local variation of intensity on the original gray-scale image.” and reference
[12], that again references [29], which states: “We compute the variance of gray-levels in
a direction orthogonal to the orientation field in each block [. . . ] the background has low
variance in all the directions”.

Filtering

The idea of the filtering step is, to apply a band-pass filter, tuned to the local orientations
and frequencies determined in the previous steps, to the normalized fingerprint image, in
order to remove noises and clarify the ridge and furrow structure itself. “Gabor filters are
band-pass filters which have both orientation-selective and frequency-selective properties and
have optimal joint resolution in both spatial and frequency domains” [14, 3], therefore they
are very well suited for this purpose.

The real part of an even symmetric Gabor filter has the following form:

Gθ,f (x, y) = exp

{
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2

[
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θ

σ2
x

+
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θ
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y

]}
cos(2πfxθ), (4.10)

xθ = x sin θ + y cos θ, yθ = x cos θ + y sin θ,

where θ is the orientation of the Gabor filter, f the frequency of the sinusoidal plane wave
and σx, σy being the standard deviations of the Gaussian envelope along the x and y axis
respectively.

When applying Gabor filters to the normalized fingerprint image, per block the parameter
values for frequency and orientation are determined by the corresponding values in the
frequency image and orientation image created earlier. The parameters σx and σy are set to
4, based on empirical data, not specified in more detail. The size of the Gabor filters is set
to 11.

4.7.2 FingerCode Algorithm

After a supplied fingerprint image has been enhanced and segmented as described in the
previous section, the FingerCode algorithm by Ross et al. [31] next aims to determine local-
ized information on the strength and on the orientation of the ridge-structure in the imprint.
As already noted when explaining the enhancement algorithm, Gabor filters are very well
suited to extract this type of features, therefore they are also applied by Ross et al. in present
matching algorithm.

The definition of the Gabor filter here, is basically equal to the one given in [11] and presented
in the previous section, Equation (4.10). Ross et al. also refer to the empirical data by Hong
et al. when setting σx and σy, the standard deviations of the Gaussian envelope along the x
and y axes, to a value of 4.

A difference then lies in the definition of the parameter f , the frequency of the sinusoidal
plane wave at an angle θ with the x-axis. In [11] the value for f is set locally, directly obtained
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from the corresponding block in the frequency image of the current fingerprint. Here, in the
matching algorithm on the other hand, the value of f is pre-set in advance to a constant
value that corresponds to the inter-ridge spacing in an average fingerprint image. (In [31]
f = 1

8 , while in my implementation f is set to a separate specific value for each FVC2004
fingerprint database in use. See more information in Section “Gabor Filter Frequency” on
page 76).

The most significant contrast to the application of Gabor filters during the enhancement
phase is, that in the matching algorithm the value for θ, the direction of the filter, is not
determined by a local orientation field, but a preset filter bank is used. This filter bank
consists of eight separate Gabor filters, each oriented at a different constant angle. The
reason behind that being, that the matching algorithm is not trying to perfectly fit the
orientation of the filter to that of the underlying ridges in the fingerprint, but on the contrary
examines the varying responses of the ridges and furrow structure to the differently oriented
filters and bases its discriminating features there upon. The angles chosen by Ross et al. for
the parameter θ are 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦and 157.5◦.

The Gabor filter bank is then applied on the enhanced and segmented fingerprint, resulting
in eight distinct filtered images. For each of these a standard deviation image is created by
calculating per pixel the standard deviation of its 16× 16 neighborhood. The union of these
eight standard deviation images constitutes the so called Standard Deviation Map.

When the algorithm operates in enrollment mode, i.e. the fingerprint image has been in-
tended for registration in the database (in present work called the “gallery”), the fingerprint’s
standard deviation map is further processed in order to obtain a small, fixed length tem-
plate. Each of the eight standard deviation images is sampled at regular intervals – Ross et
al. suggest every 16th pixel – in horizontal and vertical direction, creating the so called ridge
feature images. The union of which then constitutes the Ridge Feature Map.

Matching

Suppose one or more fingerprint images have been enrolled, their ridge feature maps stored
in the gallery. When a probe image is presented to the system, its standard deviation map
is created as described above. This standard deviation map is then matched against each
ridge feature map in the gallery as follows:

The eight ridge feature images within a map are expanded to the size of the probe finger-
print’s standard deviation images by interpolating with 0s. In other words, the ridge feature
values “return” to the positions they have been sampled from, re-obtaining their original
layout.

The translational alignment of the probe and gallery fingerprint is then achieved by aligning
the two maps: each expanded ridge feature image is 2D correlated with the corresponding
entry in the standard deviation map of the probe fingerprint. The correlation is done in the
Fourier domain and the resulting matrices are summed. Next the values in that matrix sum
(i.e. the potential translation offsets) are c. The translation vector then corresponds to the
location of the maximum value in the weighted matrix sum.

Having established the alignment, the matching score is created by calculating the Euclidean
Distance between the non-zero elements in the expanded ridge feature map and the corre-
sponding non-zero values in the probe images’ standard deviation map.

The matching algorithm per se does not include a procedure to establish the rotation align-
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ment of the probe and gallery fingerprint. Ross et al. suggest though, that this aspect could
be accounted for by applying various rotated versions of the ridge feature map for matching
with a probe’s standard deviation map.

4.7.3 Enhancer and Segmentation Implementation

The implementation of the fingerprint image enhancement procedure based on the algorithm
by Hong et al. [11] as well as the implementation of the FingerCode fingerprint matcher
based on the algorithm by Ross es al. [31] were both written in Java. For specialized image
processing I chose to apply the Java Advanced Imaging (JAI) API. Further details on this
API as well as the main reasons, why I decided to use it, can be found on page 41, in Section
”General Information”.

Simply put, the fingerprint image enhancer receives a fingerprint image and returns an
enhanced version of it, together with a so called region mask. The region mask specifies on a
block-wise level, which areas in the enhanced image show ridge and furrow data and which
areas belong to the background or represent fingerprint areas that are too heavily damaged
to obtain reliable structural information. The enhancement process itself is modeled by and
large on the algorithm steps described briefly in section 4.7.1.

Normalization

This step is basically implemented word for word according to the specification in [11].
However the normalized images tended to show considerable differences in range of values
– some areas within an image were set to gray-levels far below that of other areas, thereby
impeding the performance of subsequent algorithmic steps. Large improvement could be
achieved by further normalizing the calculated image values to a range of [0,255] and even
better to a range of [-255,255]. Tests during implementation showed that this additional
range-normalization leads to improved enhancement results, ultimately leading to a better
separability between true matches and true non matches in the FingerCode matcher al-
gorithm. An example for the differing enhancement results when applying the additional
range normalization or not can be found in Figures 4.9b (with range normalization) and
4.10 (without).

Orientation Image Estimation

The orientation image estimation starts by calculating the horizontal and vertical gradients
of the normalized fingerprint image. I tried out a Sobel-, a Prewitt- and a Frei-Chen-operator
and all three lead to nearly the same results in terms of the final enhanced image. For the
current program version I settled on the Sobel-operator.

In the remaining steps of the orientation image generation, again I basically followed the
formulas and specifications given in [11]: The normalized fingerprint image is tiled into blocks
of size 16×16. Per block the least square estimate of the local ridge orientation is calculated.
Figure 4.7b shows and example of a set of least square estimates overlaid on the original
fingerprint image. Next this first version of the orientation image is smoothed by initially
converting it into a continuous vector field, then filtering this field with a 2-dimensional low-
pass filter with unit integral and finally re-obtaining the orientation estimates. An example
for the resulting smoothed orientation image can be seen in Figure 4.7c.
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From my side, only minor adjustments were necessary in the implementation. For example
I had to deal with problems occurring in angular calculations due to the fact, that a ridge
orientation of α and one of α+ π can not be differentiated from each other.

(a) Input image (b) Initial orientation image (c) Final smoothed version

Figure 4.7: Input fingerprint image and the estimates for the ridge orientation field (overlaid). a) shows the original
input image (DB1, ID 78 3), b) is the initial set of least square estimates for the orientation field and c) shows the
final version, smoothed using a 2-dimensional low-pass filter.

Frequency Image Estimation

As input to this procedure we receive the normalized fingerprint image and the orientation
image, created in the previous step. An oriented window is defined for every block in the
normalized image and therein the x-signature is calculated, precisely following the formulas
given in [11].

Next the frequency of the local ridge and furrow structure is determined by establishing
the average distance between peak-values within the x-signature. I found it interesting, that
in this regard even the treatment of the boundary values of the 1-dimensional x-signature
array has a considerable influence on the detection of the actual ridge frequency, evident
in the correct alignment of the Gabor filter in the final filtering step, ultimately leading to
an effective image enhancement. The best configuration I found in my tests is, when the
first array value is regarded as peak, given the second value is lower, while on the other
hand the last array value is never considered as peak. Another topic that is influential, when
establishing the ridge frequency from the x-signature, is how to deal with plateaus, in other
words a consecutive number of equal values in the array. In these cases I choose the center
of the plateau as peak location.

When the frequency value has been calculated, it is inspected. If the frequency does not lie
within a certain range characteristic for the present fingerprint image type, the respective
block is deemed invalid, i.e. the ridge and furrow structure has been “corrupted” by minutiae,
singular points, noise, etc., and the block is marked with a value of -1. Hong et al. suggest to
test for a frequency range of [0.33,0.04]. For the fingerprint images used in the experiments
of present work, I found to achieve better results, when testing for a narrower range of
[0.21,0.08]. An example fingerprint image and this first version of its frequency image can
be seen in Figures 4.8a and 4.8b.

The interpolation of the invalid blocks with the frequencies in the neighborhood applies a
Gauss filter. This step again is implemented following the specifications word for word. For
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comparison, the interpolated frequency image for the example image can be seen in Figure
4.8c.

For the final step in frequency image estimation, the removal of outliers, Hong et al. propose
the use of a 2-dimensional low-pass filter with unit integral and a kernel size of 7. When in
my implementation I worked with a mean filter of size 7, the frequency image appeared to
be smoothed quite strong, so I also experimented with mean filters of sizes 5 and 3, as well
as with Gaussian filters of the sizes 7, 5, and 3. In regard to the final enhancement image
and lastly the matching performance, the best results were achieve, using a simple mean
filter of size 3. The final frequency image for the example fingerprint image can be seen in
Figure 4.8d.

(a) Input image (b) Initial frequency image

(c) Gauss interpolated version (d) Final smoothed version

Figure 4.8: Input fingerprint image with the estimates for its ridge frequencies. a) For comparison the input image
is shown again. b) Represents the initial frequency image, derived from the block-wise x-signatures. Black (empty)
blocks mark those areas, where the established frequency is not within pre-set limits. c) Shows the frequency image
interpolated using a Gauss filter and c) is the final version, smoothed using a 2-dimensional low-pass filter.

Filtering and Segmentation

As for the filtering step in my implementation, I closely followed the specifications and
formulas provided in [11]: per block in the normalized fingerprint image a Gabor filter is
created, with its parameters being set to the corresponding values in the frequency and
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orientation images. Each pixel within the block is then filtered and the value stored in the
output image. From my part, no additions worth mentioning were integrated.

For the creation of the region map, i.e. a map indicating foreground and background blocks
in the fingerprint image, Hong et al. apply a one-nearest neighbor classifier. Aiming to avoid
the complexities and complications of implementing and training such a classifier, I adopted
the approach of Ross et al. instead, to use a different and simpler method to establish a
segmentation.

As mentioned in Section “Region Map Generation” on page 56, Ross et al. essentially seem
to be using “the variance of gray-levels in a direction orthogonal to the orientation field in
each block” as criterion to establish a segmentation into foreground and background blocks
on a fingerprint image. “Orthogonal to the orientation field”, to my understanding, is an
area of pixels, similar to the one defined by the oriented window, used when creating the x-
signature for ridge frequency estimation. Yet despite my best efforts to follow this approach
by Ross et al, I was not able to find any accordant ways to calculate a criterion with sufficient
distinctiveness, to reliably distinguish between foreground and background blocks – at least
not in a way that would outperform the solution I finally settled to. Attempts to limit the
pixels within the oriented window to only those inside the current block, or to use different
measures than the variance, did not show any better results either.

Now to the method of segmentation that I included in my current implementation: A measure
that, to my surprise, has already quite a fair distinctive character is the ridge frequency.
Taken the frequency values by themselves, it is already possible to determine a threshold
that creates a segmentation, roughly fitting the results expected from an effective algorithm.
And this is true for fingerprint images from all three of the FVC2004 databases in use for
present project. Reasons that might explain the unexpectedly good performance of the ridge
frequency as decision criterion are: The frequency value is calculated from the x-signature,
which is orthogonal to the respective ridge orientation and has a length of even twice the
block-length. Therefore, if the orientation fits that of the actual ridges in the corresponding
fingerprint image block, then also the ridge frequency has a good chance to be close to the
actual value. Additionally, as mentioned on page 61, the frequency value has been certified
to be within a specific range, representing a clear ridge and furrow structure in an average
fingerprint image.

Still, a number of blocks remain, that would actually belong to the background, but due
to specific noise or other particular conditions in the original fingerprint image, possess
frequency values similar to those of genuine foreground blocks. A simple frequency threshold
alone would therefore not be sufficient to correctly categorize these areas. When inspecting
the corresponding segments in the enhanced image, it can be found, that the majority of
them has one thing in common: The distance between the highest and the lowest image value
within each block is clearly smaller, than that observed in blocks displaying clear ridge and
furrow structures. (Henceforth I will call the distance between the highest and the lowest
image value within a block its dynamic range). For that reason, I use the dynamic range
of a block in the enhanced fingerprint image as my second criterion in my segmentation
method. This also has an additional benefit: The dynamic range can likewise be used to
identify sections in the original image, that are part of the fingerprint itself, but show an
indistinct ridge and furrow structure, because those also tend to produce smaller values (in
terms of the absolute value) in the enhanced image. Therefore by adjusting the threshold
for the dynamic range, it is also possible to determine the degree of clarity a local ridge and
furrow structure must exhibit, for its corresponding block to be part of the foreground.
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So to summarize the segmentation method being used in the current implementation of the
fingerprint enhancer: A block in the enhanced fingerprint image is declared a foreground
block, if its ridge frequency and its dynamic range are both above the respective thresholds.
The dynamic range is better suited to identify blocks of indistinct ridge and furrow structure
in the original fingerprint. Naturally both thresholds have to be optimized for the respective
type of fingerprint image in use - in the case of current project, the threshold values differ
for each of the FVC2004 databases. The classification of each block is recorded as boolean
value in the region map.

Enhancer output

The final output of the enhancer is an object containing the enhanced fingerprint image and
the corresponding region map. An example for the resulting enhanced fingerprint image can
be seen in Figure 4.9. The segmentation is hereby already “included”, as in the example
image, background blocks have been set to gray-level 0.

(a) Input image (b) Enhanced output image

Figure 4.9: Comparison of enhancer input (DB1, ID 78 3) and out-
put. (Additionally the output is segmented using the established region
map).

Figure 4.10: Enhancer output, when
range normalization (see 4.7.3 for
details) is not applied.

So far the example images presented in this section have been showing the entire enhance-
ment process for an image taken from the FVC2004 test data set DB1 (to be precise: my
adapted set of DB1 images with an image size of 512 × 512 pixels). To give an example
for the enhancement effects for (slightly difficult) images of databases DB2 and DB3, the
essential intermediate stages and the final results can be found in Figures 4.11 and 4.12.

4.7.4 FingerCode Matcher Implementation

After the fingerprint image has been enhanced and the region mask, indicating the fore-
ground and background blocks, established, the next step is to create the standard devia-
tion map. In principle, following the algorithm description in [31], this process is the same
for gallery images as for query images. Only thereafter the algorithm would distinguish, if
the current fingerprint is destined for enrollment in the gallery or as query in a matching
process and continue the course of action accordingly. In my implementation on the other
hand, I have to make the distinction already at this point. The reason lies in the integration
of rotational alignment into the matching process:
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(a) Input image (b) Orientation Image (c) Ridge Frequency Image (d) Output (segmented)

Figure 4.11: Essential enhancement steps for example fingerprint image of FVC2004 DB2 (ID 28 2). a) Is the input
image. b) The input image overlaid with the established ridge orientation image. c) The smoothed ridge frequency
image. d) The final output of the enhancer, segmented using the additionally created region map.

(a) Input image (b) Orientation Image (c) Ridge Frequency Image (d) Output (segmented)

Figure 4.12: Essential enhancement steps for example fingerprint image of FVC2004 DB3 (ID 32 3). a) Is the input
image. b) The input image overlaid with the established ridge orientation image. c) The smoothed ridge frequency
image. d) The final output of the enhancer, segmented using the additionally created region map.

Rotational Alignment

Concerning the rotational alignment of a query fingerprint and the gallery template it is
matched against, I follow the proposal by Ross et al. to use various rotated versions of the
template ridge feature map and correlate them with the query feature map.

In this line of thought and also with an eye on keeping the processing speed within reasonable
bounds, I tried out different ways of creating the “various rotated versions”:

Rotating the original supplied fingerprint image Rotated versions of the originally
supplied fingerprint image are created and the for each of the rotations the steps:
enhancement, creating of the standard deviation map and sampling it for ridge feature
map creation are performed. Following the separate ridge feature maps are assembled
into a comprehensive one.

This method is the slowest of all, as enhancement has to be performed for each rotated
fingerprint image.
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Rotating the enhanced image The original fingerprint image is enhanced and then this
enhanced image is rotated. Here again per rotated image a separate standard deviation
map is created and sampled to obtain the ridge feature map. Finally the set of ridge
feature maps is united into a comprehensive one.

In this rotational alignment method one topic has to be taken special care of: As was
already noted on page 44, in the listing of Section “Rotation Alignment” of the POC-
matcher, rotation of a binarized enhanced fingerprint image leads to strong blurring
along the ridge lines, therefore a second adjusted binarization step has to be applied
on each rotated image prior to standard deviation map generation, to re-establish the
clarity of the ridge and furrow structure.

Rotation adjusted sampling In this method the original image is enhanced and the stan-
dard deviation map is created “as normal”. Rotation comes into play, when the ridge
feature map is created from the standard deviation map, as now the sampling loca-
tions are rotation adjusted. In other words not the fingerprint image or one of its
representations so far is rotated, but the sampling grid that produces the ridge feature
map.

This method is fast, as no image rotations are necessary.

Rotation adjustment during matching My last rotation alignment candidate is some-
what related to the previous one, yet here the rotational alignment happens during
the matching phase instead of during enrollment. Here every ridge feature map only
contains the representation of the original image and no rotations. During the match-
ing phase then, when the ridge feature map gets expanded and interpolated with 0s,
the locations, where the ridge features get expanded to, are rotation adjusted.

This method is the fastest and uses the least memory, as the ridge feature maps only
contain one rotation.

For my implementation I chose the second method, to rotate the enhanced image. In match-
ing performance it is clearly better than methods 3 and 4 (with 4 showing the worst results)
and only slightly inferior to the first method, rotation of the original image. Whereas the first
method is rather unfit for actual application, due to the enormous additional time needed
for the additional enhancement operations.

Standard Deviation Map - Query Image

In a first step, the image as returned by the fingerprint image enhancer is binarized to
amplify the distinctiveness of the ridge and furrow structure, with the fingerprint ridge-
information being displayed as 1 and the background being displayed as 0 (or any other
high-low combination for that matter). In the course of my preliminary tests during the
implementation phase, I found that this binarization has great positive influence on the
matching performance.

Another step concerning the enhancer output, that can be activated via a parameter on
program start, is to apply a single pass of erosion with a plus-sign shaped structuring element
of size 3 × 3 on the region mask. This serves to impose an even stricter limitation of the
foreground area to “pure” foreground blocks, eliminating bordering blocks that potentially
contain just ends of ridge lines that fade into a background area. (Further notes concerning
the application of erosion when dealing with fingerprint images from the FVC2004 databases
can be found in Section “Erosion” on page 75.)
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The next and very essential step is to filter the enhanced fingerprint image using the Gabor
filter bank. As noted in the explanation of the matching algorithm in section 4.7.2, the
orientations of the eight filters in the filter bank is set to constant pre-defined values. Also
the filter frequency is determined a-priori, depending on the type of fingerprint images in
use. Hence the Gabor filters can already be calculate on program start and the filter bank
can be realized as simple look-up table, allowing for fast access.

The filters are generated using the same procedure as the image enhancer (see section 4.7.3
for details). The convolution is done using the JAI operator convolve. The result of this
processing step are eight filtered images, showing the response of the ridge structure in the
fingerprint to the Gabor filter of respective orientation. Corresponding examples can be seen
in Figures 4.13 and 4.14 on page 70.

For each of the eight filtered images a separate standard deviation image is generated.
Thereby also the region mask, established in the segmentation step, is taken into account.
Every pixel related to a background block is automatically set to 0. For each pixel in the
foreground area the standard deviation of its 16× 16 neighborhood is calculated and stored
in the output image. Special care has to be taken, to exclude those foreground pixels from the
calculation, that are part of the boarder that was introduced by the convolution operation
along the edges of the filtered image. This boarder has a size of half the Gabor filter kernel
and contains unreliable data.

Taken together, the eight standard deviation images compose the standard deviation map
of the originally supplied fingerprint image. Corresponding examples of standard deviation
images can be seen in Figure 4.15 on page 71.

Standard Deviation Map - Gallery Image

This section explains the differences in processing, when the standard deviation map is cre-
ated during enrollment, for a fingerprint that is intended to be registered in the gallery. The
additional processing steps necessary originate from the introduction of rotation alignment
capability to the fingerprint matching algorithm. (Present explanation assumes, that the
alignment method titled “Rotating the enhanced image” on page 66 is in use.) As result of
this processing step, a standard deviation map will be created, that contains eight standard
deviation images – stemming from the 8 pre-set Gabor filter orientations – for each rotated
version of the enhanced fingerprint image. As default values my implementation uses an an-
gular range of [-20◦,+20◦] with a step-width of 1◦. (Corresponding to the settings of rotation
alignment for the POC matcher).

The enhancement step is executed on the supplied gallery fingerprint the same way as for
the query fingerprint. A difference then occurs in dealing with the region mask. Generated
from the original image, it is not easily rotatable, due to its limitation to block-indices. For
that reason it can not be used to impose a segmentation on the rotated fingerprint images.
As alternative I already incorporate the segmentation directly into the enhanced image, by
setting all those pixels to 0, that correspond to a background block. A drawback is though,
that during creation of the standard deviation image I can not refer to the region mask to
exclude entire background blocks from calculation already in advance, therefore substantially
prolonging the overall processing time for this step.

After the segmentation has been incorporated directly into the enhanced fingerprint image,
this image is rotated according to the rotation alignment parameters noted above.
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As already explained on page 66, when the enhanced image is rotated, an additional adjusted
binarization has to be applied, to mend the negative effects of the bi-cubic interpolation on
the clarity of the ridge lines. This is done for each single rotated image and afterwards
it is used to create the individual standard deviation map, following the same calculation
procedure as was described for query images.

The output of this processing step is a comprehensive standard deviation map, that contains
an individual map for each rotated version of the enhanced fingerprint image.

The examples in Figures 4.14 and 4.15 shows the Gauss-filtered images and the standard
deviation map for the gallery image (Figure 4.13) in the “original” rotation of 0◦.

Ridge Feature Map

In this final step of the enrollment procedure the FingerCode – the fixed-length template of
the current fingerprint, to be stored in the gallery – is created. A ridge feature map can be
seen as the structure containing the FingerCode. It is directly obtained from the standard
deviation map created as described in the previous section.

Following the specification of the rotation alignment method “Rotating the enhanced im-
age” on page 66, the final ridge feature map is again a compilation of separate ones, each
representing a single rotated version of the supplied fingerprint image.

The creation of the ridge feature map is straight-forward: Per rotation step, for each of
the eight standard deviation images, every 16th pixel is sampled and stored in a ridge
feature image in according structural layout. The overall ridge feature map is then stored
as FingerCode in the gallery.

Using the default parameter settings of an angular range of ±20◦and a step-width of 1◦, the
resulting ridge feature map hence contains 41 separate ones, each comprising 8 ridge feature
images. Considering a fingerprint image with a resolution of 512 × 512 pixels, every ridge
feature image contains 31× 31 values. Hence the entire FingerCode for a single fingerprint
image has a length of 41× 8× 31× 31 = 315208 values.

Figure 4.16 on page 72 shows an example for a ridge feature map of the gallery image (Figure
4.13) at the rotation step of 0◦. For the sake of perceptibility the ridge feature images have
been “zoomed”, with each block representing a single ridge feature value.

An important figure, needed during the matching phase, providing information on the sig-
nificance of the matching result, is the number of nonzero FingerCode values. (A detailed
explanation on that topic is provided in section “Matching” on page 70).

With regard to simplicity and portability of the program for execution among different
systems, the current implementation of the FingerCode matcher uses the file system as
storage for the ridge feature maps. The maps are stored as .rfm files and the output folder
as well as the folder from where they are loaded back into the system, can be specified
per parameters on program start. Along with the feature values of the FingerCode also
the corresponding rotation parameters – start- and end-value of the angular range and the
step-width – as well as the number of feature values nonzero are stored in the output .rfm
files.
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(a) Input image (b) Output of enhancer (segmented)

Figure 4.13: Example gallery fingerprint image (DB1, ID 90 3) and the respective output of the enhancement step,
which will be used as basis for the subsequent steps in the ridge feature map generation.

(a) 22.5◦ (b) 45.0◦ (c) 67.5◦ (d) 90.0◦

(e) 112.5◦ (f) 135.0◦ (g) 157.5◦ (h) 180.0◦

Figure 4.14: The result of applying the Gabor filter bank on the enhanced input image (Figure 4.13b). Each image
is generated by one of the eight differently oriented filters within the filter bank.

Matching

When the FingerCode matcher is used in matching mode, the filename of a query fingerprint
image is presented together with the ridge feature map from the gallery, that the query should
be matched against. The query fingerprint is loaded and a standard deviation map is created
as described on page 67. This is then matched against every single rotated version within
the ridge feature map as follows:

The ridge feature map of current rotation step is loaded and each ridge feature image therein
is expanded to the size of the query image. This is done by mapping feature values of a ridge
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(a) 22.5◦ (b) 45.0◦ (c) 67.5◦ (d) 90.0◦

(e) 112.5◦ (f) 135.0◦ (g) 157.5◦ (h) 180.0◦

Figure 4.15: The eight images within the standard deviation map for the rotation value of 0◦of the input image
(Figure 4.13). Each standard deviation image is created from the corresponding Gabor filtered image (compare to
Figure 4.14).

(a) 22.5◦ (b) 45.0◦ (c) 67.5◦ (d) 90.0◦

(e) 112.5◦ (f) 135.0◦ (g) 157.5◦ (h) 180.0◦

Figure 4.16: The eight images within the ridge feature map for the rotation value of 0◦of the input image (Figure

4.13). The ridge feature map is created from the standard deviation map by basically sampling every 16th pixel.
For the sake of perceptibility the ridge feature images have been “zoomed”, with each block representing a single
ridge feature value.
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Figure 4.17: Ridge feature map expanded to size of probe image by interpolating with gray-level 0. The example
image is the expanded version of the ridge feature image in Figure 4.16h, corresponding to Gauss filter orientation
of 180.0◦.

feature image back to their original locations (by simply multiplying their horizontal and
vertical indices with 16) and setting all other pixels in the resulting image to 0. An example
for an expanded ridge feature image can be seen in Figure 4.17.

Next a translation vector has to be determined, that represents the translational offset
between the query fingerprint and the gallery fingerprint. This is done by correlating the two
respective maps, or to be more precise, the eight images therein. To speed up the process, the
correlations are performed in the Fourier domain. For that matter each standard deviation
image and its corresponding expanded ridge feature image are Fourier transformed, the
ridge feature image is conjugated and then both images are multiplied. The outcome of the
multiplication is then inverse Fourier transformed.

The hereby computed eight correlation matrices are summed up and the result constitutes
the “unweighted correlation matrix”. At this point Ross et al. apply a weighting function,
to take the amount of overlap between the two maps into account, creating the “weighted
correlation matrix”. However this is a step that I found to not have any positive effects on
the matching performance of my implementation, even when trying out different parameter
settings for the proposed weighting function. This is probably due to the number of adapta-
tions that I introduced at several points in the enhancement and matching algorithm. (For
further details please also refer to section 4.7.5). Hence I pass the weighting procedure and
instead use a different criterion to account for the overlap between the standard deviation
map and the expanded ridge feature map when calculating their euclidean distance. (See
following paragraph for details)

Having established the correlation matrix of the two fingerprint maps, the translation vector
then corresponds to the horizontal and vertical index of its maximum value.

Concluding a matching run per rotation, the matching score is established. The core of this
processing step is to simply calculate the Euclidean distances between translation adjusted
ridge feature values of the gallery fingerprint and standard deviation values at the same
coordinates in the corresponding image of the query’s standard deviation map. The matching
score is then determined by summing up these differences, yet only those, where both feature
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values involved are nonzero.

One problem though, that has to be dealt with, is related to the amount of overlap between
the two maps: For demonstration consider the theoretical extreme case, where the maps
only overlap in a single nonzero feature value 3 , as opposed to a “normal” case, where
about 2000 differences are being summed up. If this one single difference is per coincidence
quite small, then the query and gallery fingerprint would already be considered a good
match. One measure that I included in my implementation, to deal with this problem, is
to average the distance sum over the number of distances included. This already helps a
lot to get a more stable overall matching performance, largely reducing the influence of
the actual number of overlapping feature values on the matching results. Yet a significant
set of fingerprint pairings still remain, where the query map and gallery map only have a
very small area of overlap, though those few feature values that can be considered, exhibit
a small overall distance. The resulting low matching scores then cause a number of false
accepts. To also handle these cases, I included a threshold in my implementation, that defines
the minimum amount of overlap, a matching pair has to have, in order for its matching
score to be considered significant. If the threshold is not reached, the matching score is
set to a pre-defined maximum distance value. As criterion for the amount of overlap, I
calculate the ratio of the number of distances included in the matching score to the number
of maximum possible ones, i.e. the number of feature values nonzero in the gallery images’
ridge feature map. (Also refer to Section “Amount of Minimum Overlap” on page 78). In
my tests, this additional quality criterion clearly reduced the number of false accepts in the
overall matching results.

When the matching scores for every single rotated version of the gallery fingerprint has been
calculated, then the lowest one (lowest, because the matching score represents a distance
measure) is seen as representing the best alignment and is returned as final result of the
matching process.

Batch Runner for FVC Test

The batch runner for the FingerCode matcher follows in purpose and functionality the one
created for the POC matcher. Please refer to the corresponding section on page 48 for details.
The only major difference lies in the integration of a template gallery in the FingerCode
matcher. While in the POC matcher case query and gallery fingerprint images are presented
in equal form to the matching algorithm, the FingerCode matcher, as noted on numerous
occasions, relies on a gallery of ridge feature maps, to match the query fingerprints with.
This means for the batch runner, a complete FVC-conform test run basically is separated
in two stages:

Enrollment The batch runner loops through the set of required gallery fingerprint images
and creates or loads the corresponding ridge feature map. When creating, the batch
runner invokes the steps described in section “Ridge Feature Map” on page 69. When
loading from file, a check is made, if the rotation parameters equal those necessary for

3Admittedly the “only one value overlaps” case will not appear in real-life applications of the FingerCode
matcher, yet cases where less than 100 overlapping values exist, may occur. This can be the case when
then query fingerprint area is rather small, like for example is quite common in latent fingerprints and this
area’s structure is additionally quite different from the ridge structure of the gallery fingerprint. A significant
translation alignment will not be found then and the resulting translation vector might be so “wrong”, that
the fingerprint maps will only overlap in a very small section.
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the current test run. If not, then the .rfm file is unsuitable and the ridge feature map
has to be created anew in the required configurations.

Matching The batch runner establishes the necessary pairings for a test run and calls the
matching routine of the FingerCode matcher with the filename of the query image and
the according ridge feature map from the gallery.

The results of the batch run are once again saved to a csv-file.

4.7.5 FVC2004-Database Specific Differences

Among the 42 different parameters set via the batch runner, also the FingerCode implemen-
tation has a set of database specific settings, that fine-tune the enhancer and matcher for
the different types of fingerprint images in the FVC2004 databases.

Segmentation Thresholds

As already mentioned in Section “Filtering and Segmentation”, on page 64, individual ridge
frequency thresholds and dynamic range thresholds had to be established for each database.
The values were primarily chosen to separate the image background as effective as possible
from the fingerprint. Further, for application together with the FingerCode matcher, the
dynamic range value was set with the aim to also eliminate a moderate amount of unre-
liable blocks, stemming from areas of indistinct ridge and furrow structure in the original
fingerprint.

Erosion

As noted in Section “Standard Deviation Map” on page 67, the implementation offers the
possibility to apply the morphologic operation Erosion on the region mask returned by the
fingerprint image enhancer. A plus-sign shaped structuring element of size 3 × 3 is used
to basically reduce the foreground area by one block along its border, in order to further
eliminate blocks that only partially contain foreground data (for example ridge line endings).
An example can be found in Figure 4.18.

Erosion is used when dealing with fingerprint images of DB1. For databases DB2 and DB3
erosion did not lead to an improvement in matching performance.

Gabor Filter Frequency

As was already mentioned on several occasions, in the FingerCode matching algorithm,
the frequency of the eight Gabor filters in the filter bank is constant and pre-set to a value
representing the inter-ridge spacing of an average fingerprint image. Obviously an individual
value for each database had to be determined. For this I adapted the procedures used in the
fingerprint enhancer to create the frequency image. My related tests then showed, that a
precision of at least 10−3 is necessary, to achieve best possible matching performance. While
in [31] the filter frequency was set to 0.125, the values I established are as follows: 0.136 for
DB1, 0.147 for DB2 and 0.153 for DB3.
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(a) Original enhancer output (b) With eroded region mask

Figure 4.18: This Figure displays the effect of additionally eroding the region map for the enhancer output of a
fingerprint image of DB1 (here: image ID 38 1) to remove bordering blocks only partially containing foreground
information.

Variance Map, not Standard Deviation Map

For databases DB2 and DB3 better matching performance can be achieved by using the
variance instead of the standard deviation as representation of the ridge features. This
substitution that was for example also applied by Ross et al in [30].

For DB1 using the standard deviation still leads to better matching results.

Convolution - Extended Range

This options can be applied in the stage of standard deviation map creation. Tests during
implementation showed, that for image databases DB2 and DB3 obvious improvements
in matching performance can be achieved by normalizing the values of the Gabor filtered
images. This positive effect is be amplified, when the values are normalized to a relatively
large range – in current version a range of [-1000,1000] is used. For images of DB1 however,
the normalization does not improve the matching performance.

Weighting of Ridge Feature Values for Translation Alignment

My implementation of the translation alignment method according to the algorithm by
Ross et al. and explained in Section “Matching” on page 58, did not lead to satisfactory
results. In preliminary tests with images manually shifted by specified offsets, the majority
of translation vectors, established from the correlation of the query’s standard deviation
map and the gallery’s ridge feature map, was too far from the expected results. Also the
weighting function proposed in [31] did not bring noticeable improvement.

When inspecting a ridge feature map, it can be found, that each of the eight images within
contains a small set of high values, corresponding to those fingerprint ridges that responded
strongly to the Gabor filter of respective orientation and a larger set of low values, analo-
gously representing weaker ridge responses. Now to improve the results of the correlation of
the feature maps, I sought to heighten the influence of the crucial, high feature values. For
that purpose I am using an altered version of the ridge feature map in the correlation. Two
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strategies that lead to considerably improved alignment results are:

Power of 3 Every value withing the ridge feature map is taken to the 3rd power, thereby
obviously increasing the distance between high and low feature values. (The 2nd power
turned out to be insufficiently strong, while powers higher than 3 did not display better
matching results). This strategy is applied when matching fingerprint images of DB1.

Percentage Threshold The highest value within the ridge feature map is determined. Now
only those ridge feature values are transfered in the altered map, whose magnitude is
at least a certain pre-defined percentage of the maximum value. This method leads to
notedly improved matching results for fingerprint images of databases DB2 and DB3.
The most effective percentage-value determined in my tests is 97%.

Amount of Minimum Overlap

Another parameter, that had to be individualized for each database, is the threshold that
determines the minimum amount of overlap between the expanded ridge feature map of the
gallery image and the standard deviation map of the query image necessary, for the matching
score to be considered significant. In my implementation I take the amount of overlap into
account by calculating the ratio of Euclidean distances included in the matching score to the
number of maximum possible ones (i.e. the number of nonzero values in the ridge feature
map)

The thresholds per database were empirically determined, based on an extensive series of
tests using different parameter values. For DB1 a minimum overlap of 30% is necessary to
obtain stable matching scores, for DB2 just 15% and for DB3 20%.

Maximum Matching Score

As already noted before, the matching score returned by the FingerCode algorithm is a
distance measure, based on the Euclidean Distance between the ridge feature representations
of the query and gallery images. Therefore the lower the score, the better – the matching
score for two similar images is 0. An interesting question is, what value to set the maximum
score to. (The maximum score is needed, as the score for matching pairs with insufficient
overlapping area will be set to this value). A theoretical maximum for each type of database
is very hard to establish so I chose to rather use empirically determined values instead.
(A value signifying positive infinity or the maximum representable number of the matching
score’s data type would be possible as well, yet is rather troublesome when normalizing the
results for analysis). I refined my choices with increasing number of test runs performed,
so that the values that I finally came up with – the values set as defaults in the current
program version – are above the highest score found in the results of all tests conducted for
present work together (StirMark related and others). As these tests contain a very broad
variety of image qualities, the risk in a real-life application of a fingerprint matching pair to
ever produce a matching score exceeding my default maximum values is very small and even
if this were to happen, the impact would be very limited, as by then the score is already at
a level, that undoubtedly signifies a mismatch.



Chapter 5

StirMark Experiments

This chapter presents details and results regarding the experiments aimed to investigate the
influence of “natural perturbations” in fingerprint images on the matching performance of
different fingerprint matchers and fingerprint matcher types. For more information on the
motivation behind these tests, as well as the particular objectives, please refer to section 1.1.

The testing procedure in the experiments follows the protocol specified in the Fingerprint
Verification Competition 2004 and 2006 and as fingerprint test data I likewise apply the
sample images of the FVC2004. Further details on the matching protocol and the test
data can be found in sections 3.2 and 3.1 respectively. As explicated in section 2.3, the
“natural perturbations” will be simulated and introduced in the test images by individual
“attacks” provided by the StirMark Benchmark utility. In each pair of fingerprint images
to be matched, only the probe image will be perturbed, while the image representing the
enrolled gallery fingerprint, equals the original sample from the FVC2004 databases (see
also section 2.3.2 for further explanation).

In the following, each section deals with a specific type of perturbation. I will briefly explain
the respective StirMark attack utilized and in how far I consider it fit, to simulate a “nat-
ural perturbation”. In line with the possible application of present experiments in form of
aforesaid extended benchmark (please refer to page 3 for explanation), I will list the specific
parameter settings, thereby providing for repeatability of the tests. For visualization of a
parameters’ influence, samples of perturbed images in the lowest, a medium and the high-
est parameter configuration will be provided. As representative example, an image from the
FVC2004 database DB1 (ID 91 2) will be used. For brevity, samples from the databases DB2
and DB3 will only be shown, if the StirMark manipulations lead to considerably differing
results.

After this introduction and explanation of each test, I will present and discuss the exper-
imental results. The discussion will have two main focuses: on the individual reaction of
the matchers to the perturbations as well as on the comparison of respective performances.
Due to the large amount of separate tests – per perturbation type, five matchers, on the
images of three databases, times the number of various StirMark parameter configurations –
I kindly ask for the readers understanding, that not all results can also be displayed graphi-
cally. As far as possible, I was trying to make a selection of those plots, that show the most
interesting, most distinct results.



5 StirMark Experiments 63

Comments on Notation

In current chapter the following abbreviations will be used to denote the different fingerprint
matchers:

• bozo3 – for the bozorth3 matcher

• VF – for the VeriFinger matcher

• GF180 – for the GrFinger matcher with rotational alignment set to a range of ±180◦.

• GF20 – for the GrFinger matcher with rotational alignment set to a range of ±20◦.

• POC – for the Phase Only Correlation matcher

• FC – for the FingerCode matcher

Furthermore, when using the term DB1, I will be referring to the accustomed version of the
original FVC2004 database DB1, where the image dimensions were adjusted from originally
640× 480 to 512× 512. Please refer to section 3.1.1 for details.

5.1 Original Images - Basis of Comparison

Before we examine the performance of the fingerprint matchers for StirMark perturbed
images, it is necessary, to first establish a basis of comparison. In other words, we conduct the
FVC-protocol compliant tests on the original “unperturbed” test images from the FVC2004
databases DB1 - DB3.

Following now, a discussion of the individual matching performances per database, together
with a visualization of the results in form of receiver operating characteristic (ROC) curves.
The corresponding equal error rates (EER) are listed in Table 5.1.

bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

DB1 13.90 5.59 10.94 13.30 12.42 21.91

DB2 10.86 5.12 12.33 13.56 10.21 9.51

DB3 6.73 3.22 7.11 5.85 8.88 15.13

Table 5.1: The equal error rates EER for the array of fingerprint matchers used in present experiments, when
applied to the original, “undistorted” sample image databases.

DB1

Regarding the ROC curves for DB1 in Figure 5.1, it is clearly observable, that here the POC
matcher shows the worst matching performance of all considered matchers. Correspondingly
Table 5.1 shows, that also the EER of the POC matcher is a full 8% higher than that of the
second worst rate, of bozorth3.

bozorth3 itself does not perform all too well on DB1 either. For most of the considered
range it shows the second worst results. Only in areas of low FMR (< 8%) and higher FNMR
(> 17%), it exchanges places with the FingerCode matcher.
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The FingerCode matcher shows interesting results: starting, as mentioned, with the second
worst performance in areas of low FMR and high FNMR, it subsequently exchanges places
with the other matchers, until, from a point of high FMR (about 47%) and low FNMR
(about 2%) on, it even achieves the best results – in how far the matching performance at
such high levels of false matches is still relevant for real-life applications is left to the reader
to judge.

As for the GrFinger matcher, as expected, the setup with rotational alignment within a
range of ±180◦(GF180) quite clearly outperforms the setup, where rotational alignment is
limited to ±20◦(GF20). Only in an area of high FMR and low FNMR – from about the
same point on, where FingerCode and VeriFinger exchange positions – the range-limited
setup shows better results. Interestingly the FingerCode matcher, which is also limited to a
rotational alignment range of ±20◦, beats GF20 already from a point on, where the FMR
is still lower than the FNMR (FMR > 10% and FNMR < 15%) while GF180 only in areas,
where the FMR is larger than the FNMR (FMR > 21% and FNMR < 8%).

Overall VeriFinger clearly shows the best matching performance and this only changes,
as mentioned before, from a very high false match rate of > 47% on, when the FingerCode
matcher has better results. Up until a FNMR of about 11% the VeriFinger matcher is able
to perform on DB1 without any false matches – recorded in the so called ZeroFMR measure
– while the second best matcher in that area, GF180, has a ZeroFMR of already 36%.
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Figure 5.1: Receiver operating characteristics of the fingerprint matchers used in present work, applied to the test
database DB1.
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DB2

Compared to the results for DB1, the situation changes quite some, when regarding the
ROC curves for fingerprint images of DB2 (Figure 5.2). Rather undisputed, VeriFinger
once again exhibits the best results among the matchers and again only in the area of very
high FMR (> 57%) and very low FNMR (< 2%) the FingerCode matcher manages to
perform better. Like for DB1, also here in DB2, VeriFinger clear shows the best ZeroFMR
characteristic: It operates without any false matches until a FNMR of about 9%, as compared
to the second best ZeroFMR of 39%, again by GF180.

As for the GrFinger matcher: Here in DB2, for most of the considered range, the two con-
figurations show the worst performance, with GF180 once again producing slightly better
matching results than GF20. For FMR close to 0 and FNMR > 25% the GrFinger matcher
shows a behavior quite equal to that of the other matchers, then the GF20 rates get worse.
At this point GF180 actually still has the second best results, until about a FNMR of 18%,
when its performance in comparison to the other matchers drops as well .

The two non-minutiae-based fingerprint matchers produce surprisingly good results for the
images of DB2. Regarding the EER, the Phase Only Correlation matcher has the second
best, the FingerCode matcher the third best value. For the area of FMR < 18% and FNMR
> 7% the POC outperforms FC, while FC is better in the complementary area (FMR > 18%
and FNMR < 7%).

For the largest part bozorth3 performs decidedly better than GrFinger and at least equally
good on an area of FMR close to 0 and FNMR > 18%. On the other hand, from about the
same point on, bozorth 3 shows performance mostly inferior to that of the non-minutiae-
based matcher. Only at a FMR of about 57% and FNMR of about 3% POC and bozorth3
exchange position, while FC is still clearly better.

DB3

As with the results for images of DB1, the one thing that is most obvious, when regarding the
ROC curves for DB3 in Figure 5.3, is, that clearly the Phase Only Correlation matcher
shows the worst matching performance. Once again referring to the table of EER values
(Table 5.1), we see a difference of about 6% to the second worst result by the FingerCode
matcher. Another aspect that catches the eye when looking at Figure 5.3, is, that the ROC
curves of all the other matchers are lying quite closely together – at least in comparison to
the plots for DB1 and DB2.

The VeriFinger matcher decidedly exhibits the best matching performance, including the
best ZeroFMR characteristic: at a FNMR of 5% versus a FNMR of 15% for the second
best, GF20. And here is a very interesting detail in the results of DB3: GF20, the GrFinger
matcher with a limited rotational alignment range of ±20◦, quite clearly shows the second
best matching performance, while the unlimited version, GF180, is in parts even outper-
formed by the bozorth3 matcher. In detail: for low FMR of < 5% and increasing FNMR
of > 7% the ROC curve for GF180 lies between those of GF20 and bozorth3, while for the
complementary ranges, i.e. increasing FMR of > 5% and FNMR of < 7%, bozorth3 produces
better results than GF180.

The FingerCode matcher once again exhibits the second worse performance and only man-
ages to beat GF180 and subsequently also bozorth3 in an area of high FMR (> 38%).
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Figure 5.2: Receiver operating characteristics for database DB2.
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Figure 5.3: Receiver operating characteristics for database DB3.
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General Observations

Comparing the ROC plots for all three databases, following observations can be made:
Overall the VeriFinger matcher shows the best matching performance. It also stands out
with a clearly superior ZeroFMR characteristic. An equally clear statement about the second
best, third best, etc. performance is not easily possible, as notedly the individual matching
performances of the other matchers fluctuate differently strong, depending on the respective
database. For example:

• The ROC curve for POC “jumps” from “clearly worst” in DB1 to “among top three”
in DB2, then back to “clearly worst” in DB3.

• bozorth3, GF180 and GF20 exchange positions.

• Even the expected impairment of the matching performance of GrFinger, when limiting
the angular range considered for rotational alignment, can only be observed in DB1
and DB2.

• Aside from VeriFinger, FingerCode seems to be subject to the least amount of fluctu-
ation, as when comparing the ROC curves of FC for all three databases, the respective
shape and location stays relatively constant, as opposed to that of the other matchers.
An observation that is also backed up, when regarding the table of equal error rates.
The difference between lowest and highest of the three values per matcher, is least for
VeriFinger, followed by FingerCode and then by the others.

5.2 General StirMark Influence

Another question, that has to be dealt with before conducting the experiments on perturbed
sample images, is: “Does the application of the StirMark Benchmark by itself already have
any influence on the results of the regarded fingerprint matchers?”

As mentioned in section 2.1, when running a StirMark test on a sample image – the means,
by which we introduce a specific, predefined perturbation into the fingerprint images – the
benchmark also automatically embeds a theoretically imperceptible watermark “with the
greatest strength which does not introduce annoying effects” [20]. While essential for the
robustness test of watermarking techniques that the StirMark Benchmark was originally
designed for, here, for the experiments of present work, the particular embedded watermark
is of no interest. Yet the question, that is of relevance to us in this context is, if the watermark
or the embedding process itself, has any influence on the matching results of the individual
fingerprint matchers.

To get to an answer, I applied a StirMark test, employing a convolution attack to the images
of the three fingerprint databases. In order to single out the influence on the sample images
caused by the StirMark Benchmark itself, the convolution was performed using a filter mask
of the form:  0 0 0

0 1 0
0 0 0


Therefor the convolution operation, in theory, has no effect on the images, hence any changes
that appear, can be contributed to the benchmark process itself.
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Results and Discussion

bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

DB1 13.90 5.59 10.94 13.30 12.42 21.91

marked DB1 14.81 5.87 11.41 13.61 12.54 22.60

DB2 10.86 5.12 12.33 13.56 10.21 9.51

marked DB2 11.12 5.01 11.72 12.89 9.60 9.69

DB3 6.73 3.22 7.11 5.85 8.88 15.13

marked DB3 6.68 3.60 6.90 5.82 8.98 15.07

Table 5.2: Comparing equal error rates of the fingerprint matchers when operating on the original fingerprint images
(DB1 – DB3) and on images processed by a basic StirMark test without purposefully generated perturbations
(marked DB1 – marked DB3).

As can be seen in Figure 5.4, matching results show, that the application of a StirMark
test actually does have an influence on the matching performance of the various fingerprint
matchers. The deviation is comparatively small, so for better perceptibility a logarithmic
scale was used in the plots.

Comparing the results for the three image databases, we notice, that StirMark processing
has seemingly the largest impact on images of DB1, with a general tendency to worsen the
matching performance. Here only the FingerCode matcher appears to be largely indifferent
to the changes.

For DB2, the noticeable differences are less distinct than for DB1, yet interestingly we
can even observe a slight improvement in the results of the GrFinger matcher in both
configurations, as well as for the FingerCode matcher. As can be found in Table 5.2, this
behavior is also reflected in the corresponding EER.

The matching results for images of DB3 show the least response to the StirMark manip-
ulation. Regarding Figure 5.4c, we see that the ROC curves, representing the results of
matching the StirMark processed images, get to lie almost on top of those stemming from
the original database images – for all matchers but VeriFinger. Here, for DB3, VeriFinger
exhibits a comparatively strong impairment of its matching performance, when dealing with
the StirMark manipulated images.

Trying to figure out, where this small, yet definitely observable alterations in the matching
results for the StirMark manipulated sample databases come from, closer inspection of the
involved images leads to following observation: When subtracting an original fingerprint
image from its StirMark processed version, a difference image akin to the example for a
DB1-image shown in Figure 5.5 is created. (For clarity and to simplify the recognition of
details, the image values in Figure 5.5 have been normalized to a range of [0,255]).

When regarding said example image, several isolated spikes can be detected (most easily
discernible in the black background area). In all likelihood this noise represent the traces of
the embedded watermark and was to be expected. Something that was not to be expected
though, is, that we also see the clear traces of the actual finger imprint. While shown in
the enhanced example image in a gray-level value of 255, in the actual difference image the
fingerprint traces have a constant value of 13. After further inspecting difference images for
databases DB2 and DB3, we get to following realization:
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(a) Receiver operating characteristics for DB1 (logarithmic scale)
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(b) Receiver operating characteristics for DB2 (logarithmic scale)
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Figure 5.4: Figures a), b) and c) show the differences in matching performance of the individual fingerprint matchers,
between using the original sample images as provided in the FVC2004 databases and using images that have been
processed once by a StirMark test (yet without deliberately introducing image perturbations).
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Figure 5.5: Example difference image created, when subtracting the original fingerprint image (present example
taken from DB1) from the StirMark processed version. (For better visibility, the image values have subsequently
been normalized to [0,255]). Two kinds of residuals can be observed: Sparsely distributed spike noise (seen for
example close to the right border) and a trace of the finger imprint itself, with a constant gray-level of 13.

The StirMark test not only embeds a watermark into a processed image, but also brightens
the entire image by a value of 13. Yet it has to be noted, that the maximum gray-level
value in an output image is still 255, hence the brightening caused by StirMark leads to a
loss of information for any image values within the range of [243,254], as these can not be
proportionally raised. An observation that leads me to the conclusion, that it is probably
this brightening feature of a StirMark test, that causes the deviation of the matching results,
as the sparsely distributed spike noise should, in theory, not have any real influence on the
performance of the fingerprint matchers, especially not on that of the minutiae-based ones.

Besides affecting the matching results, the brightening of image values also has a second con-
sequence: It affects/limits the possibility of combining several different perturbation types,
as the repeated application of the StirMark tests also leads to consecutive image brightening,
going along with potential loss of image information.

5.2.1 Consequence

In consequence of the detected alterations of the overall matching results, introduced alone
by processing the fingerprint images with the StirMark Benchmark, henceforth these results
will be used as basis for comparison in the subsequent experiments using StirMark perturbed
images, instead of the matching results created, when performing the FVC-conform perfor-
mance evaluation for the original, “unprocessed” fingerprint images of databases DB1-DB3.

5.3 Additive Noise (noise)

The Additive Noise test simply adds an adjustable amount of random noise to the input
image.
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Relation to Fingerprints

This test is intended to simulate noise, that might naturally appear in fingerprint images.
Possible causes for this kind of noise could for example be actual dust on the contact area
during acquisition of the imprint, graining caused by the acquisition equipment itself or
other kind of systematic errors introduced during processing, transmission and/or storage
of the collected images.

Parameter Configurations

The amount of noise that will be added by the StirMark test is adjusted using a single
parameter, ranging from 0 to 100. A parameter value of 0 results in an identical image while
a value of 100 results in a completely random one.

Following parameter values are used in the experiments of present work: {3, 5, 7, 9, 11,
13, 15}. As noted on page 18 within section 2.3.1, only a reduced number of tests will be
executed on the non-minutiae-based fingerprint matchers, due to the enormous amount of
necessary processing time. This reduced selection covers parameter values {3, 7, 11, 15}.
Noise for a value < 3 is barely noticeable in the images, while values > 15 create an amount
of noise, that I would hardly consider “natural” any more. Examples for the noise levels 3,
9 and 15 are given in Figure 5.6

(a) Noise level 3 (b) Noise level 9 (c) Noise level 15

Figure 5.6: Examples for the Additive Noise test, applied to an image from DB1 (ID 91 2).

Results and Discussion

DB1

When gradually introducing random noise into the fingerprint images, the matcher, whose
matching performance is influenced the strongest, is GrFinger (with both rotational align-
ment configurations exhibiting about the same degrees of impact, GF180 only slightly
stronger than GF20). As shown in the corresponding Figure 5.7a, the ROC curves are very
clearly separated, indicating the continuing degradation of the matching results with each
level of increased noise intensity. When referring to Table 5.3 this behavior can also be as-
serted in the respective equal error rates: From “unperturbed” to “Noise Level 15” the EER
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of GF180 gradually deteriorates up to 8.56% (6.21% for GF20).

For the bozorth3 matcher, the influence of random noise in the fingerprint images is already
weaker than for the GrFinger matcher, yet we can still observe an obvious spreading of the
ROC curves. One interesting point though is, that for weak to medium noise levels (levels 03
to 09) an increase in the amount of noise does not necessarily cause a correlative decrease of
matching performance: Within the observed range, the corresponding ROC curves intersect
each other and change “positions”. For example: While expecting the third noise-level in the
experiments (level 07) to cause worse matching results than the two weaker levels (03 and
05), this is only true for an area of FMR > 21% and FNMR < 14%. Up until this point,
the ROC curve for level 07 indicates less impairment of the matching performance than is
caused by the two weaker noise levels.

Regarding the plot of the ROC for the VeriFinger matcher in Figure 5.7b, we see, that
only for the two strongest levels of random noise within the fingerprint images (levels 12 and
15), the matching performances is intelligibly impaired. The ROC curves originating from
the weaker noise levels are lying very close together and are likewise close to that for the
unperturbed fingerprint images.

Overall, for fingerprint images of DB1, the matching performances of the non-minutiae-based
fingerprint matchers are very little influenced by additive random noise. In fact, as can be
seen in Figure 5.7c, the ROC curves for the FingerCode matcher lie comparatively close
together and also Table 5.3 shows, that the difference between the EER for the unperturbed
images and the EER for the strongest noise level is only 5.3%.

Figure 5.7d portraits the ROC curves for the matching results of the Phase Only Cor-
relation matcher. Also here the curves lie relatively close together. Yet a very interesting
observation is, that only the strongest noise level (15) produces slightly worse matching
results than the unperturbed images. For the other three regarded noise levels, the match-
ing performance actually improves, with best results here caused by noise level 07. As for
why the POC matcher produced better matching results for the theoretically impaired fin-
gerprint images of DB1 than for the original uninfluenced ones, is still subject to further
investigation.

Noise Level bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

03 16.07 5.76 11.86 13.43 12.97 21.89

05 16.61 6.05 13.03 14.07

07 16.27 5.76 13.37 14.15 12.99 20.68

09 17.19 5.82 13.84 15.43

11 17.45 6.42 16.23 16.32 12.65 21.18

13 19.38 6.65 17.92 17.99

15 20.27 7.76 20.06 19.82 13.01 22.96

Table 5.3: Equal error rates for Additive Noise test conducted on sample image database DB1.
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(a) GrFinger matcher, 180◦
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(b) VeriFinger matcher
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(c) FingerCode matcher
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(d) Phase Only Correlation matcher

Figure 5.7: Receiver operating characteristics for StirMark test Additive Noise on fingerprint images of DB1.

DB2

For fingerprint images of DB2, the introduction of additive noise leads to slightly different
effects in the matchers’ performance:

Once again the GrFinger matcher is clearly influenced. As can be seen in Figure 5.7a,
the ROC curves corresponding to the individual noise-levels are clearly separated and also
notedly distant from the ROC curve indicating the matchers performance for the original,
unperturbed fingerprint images. As would normally be expected, the results show, that an
increase in added random noise leads to an according decrease in matching performance.

Somewhat different from the results for fingerprint images of DB1, the bozorth3 matcher
and even the POC matcher exhibit an impairment of their matching performance, which
is quite similar to that for the GrFinger matcher. Only for the two lowest noise levels
(03 and 05) bozorth3 shows comparatively better results: Just mildly impaired matching
performance, with noise level 03 even slightly outperforming the test run on unperturbed
images in an area around the EER. (Please refer to Figure 5.8a and Table 5.4 for details).

As for the VeriFinger matcher, rather contrary to the observations for fingerprint images
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Figure 5.8: Receiver operating characteristics for StirMark test Additive Noise on fingerprint images of DB2. (As
for the particular appearance of Figures 5.8c and 5.8d, please also refer to the “Notes on ROC plots” on page 10).

of DB1, Figure 5.8c displays, that additive noise in images of DB2 has a distinct impact
on the matchers’ performance. For noise levels 03 and 05 no separation of the ROC curves
can be determined. For the subsequent higher noise levels on the other hand, the curves
are clearly separated, depicting a progressive impairment of the matching performance with
rising amount of noise. In particular, examining for example the results of VeriFinger for
fingerprint images with added noise of level 15, we see that already 46% of all match-pairs
have a matching score of 0. Consequently, in the rate analysis, with the first increment of
the threshold value, we obtain a FMR of 44% and a FNMR of 28%.

Among all the tested matchers, FingerCode seems to, once again, be the least influenced by
the added noise, even though the impairment of the matching performance is already stronger
than in the DB1 case. Interesting is also, that here stronger noise does not automatically
correlate with worse results. As can be seen in Figure 5.8d, noise level 11 leads to clearly
better results than noise level 07. And while noise level 15 expectedly causes the worst
matching results over most of the regarded value range, at a point of FMR of 42% and
FNMR of 14% its ROC curve starts intersecting the other curves. In other words, for high
FMR noise level 15 causes less false non-matches than added noise of lesser density.
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Noise Level bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

03 10.86 5.05 13.90 14.90 11.85 10.65

05 12.40 5.43 15.48 15.76

07 15.03 7.07 17.27 17.91 17.22 14.36

09 17.90 9.50 19.63 19.08

11 20.54 14.20 22.89 21.56 14.74 20.22

13 25.99 20.74 28.10 26.44

15 30.78 29.24 31.17 29.40 21.80 26.94

Table 5.4: Equal error rates for Additive Noise test conducted on sample image database DB2.

DB3

Now, comparing with the results for DB1 and DB2, how does the introduction of random
noise into fingerprint images of database DB3 influence the respective performance of the
fingerprint matchers?

Both configurations of the GrFinger matcher show only a light impact in their matching
results. Generally the ROC curves for the individual noise levels lie close together. Mostly
around the area of the EER a moderate separation of the curves is observable. Inspecting
this area closer, we can see, that the matching results basically follow our expectation:
Gradually worsening matching performance per increased noise level. The corresponding
plot for GrFinger with the rotational alignment range of 180◦can be seen in Figure 5.9a.

Roughly the same can be said about the performance of the bozorth3 matcher. Even though
the ROC curves lie slightly closer together and the separation around the area of EER is
decidedly less distinct. Additionally, the test for noise level 11 exhibits a surprisingly good
matching performance: After noise level 03, it produces the second best results of the noise-
tests. This can also be seen in the respective EER rates: 6.68% for unperturbed images,
7.05% for noise level 03 and 7.08% for noise level 11. (For further equal error rates, please
refer to Table 5.5).

The VeriFinger matcher shows to be very robust against additive noise in images of DB3.
The ROC curves for the different noise levels appear to almost lie on top of each other.
Only by zooming in closely to the area of the EER (see Figure 5.10), we can reveal an
interesting behavior: Though the differences are only comparatively marginal - a maximum
difference in EER of 0.57% - the unperturbed fingerprint images produce the worst results,
closely followed by images of noise level 15. The best results, on the other hand, could be
obtained for noise level 13, followed by level 07. These observation can also be confirmed,
when inspecting the corresponding EER values in Table 5.5. So obviously, in the case of
VeriFinger, increased noise in the fingerprint images of DB3 does not correlate with decreased
matching performance.

Turning to the non-minutiae-based fingerprint matchers, this time it is the Phase Only
Correlation matcher, that is less influenced by the added noise in the fingerprint images:
The ROC curves for the lower noise levels almost fall together with that, produced by
unperturbed images. The ROC curve for the results of noise level 11 then, lies slightly
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Figure 5.9: Receiver operating characteristics for StirMark test Additive Noise on fingerprint images of DB3.
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Figure 5.10: Close detail of the receiver operating characteristics of matcher VeriFinger for StirMark test Additive
Noise on fingerprint images of DB3. The ranges are set to FMR [0%, 6%] and FNMR [1.5%, 5%].

above aforementioned ones and finally, the ROC curve caused by noise of level 15 is clearly
separated from the others (see also the EER values in Table 5.5).

The response of the FingerCode matcher, on the other hand, stands in strong contrast
to the behavior displayed for noisy images of databases DB1 and DB2: While so far the
FingerCode matcher appeared to be the matcher the most robust to noise, here, for finger-
print images of DB3, it exhibits the strongest impairment of matching performance among
the whole set of considered fingerprint matchers. Regarding Figure 5.9b, we see, that the
ROC curves are clearly separated. Each level of increased noise causes a decrease in match-
ing performance. Yet this decrease is not linear, but from the ROC curve representing the
results for unperturbed images on, the gap between the curves of the individual noise levels
constantly widens. An effect, also mirrored in the corresponding EER values (see Table 5.5
for details).
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Noise Level bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

03 7.05 3.25 7.43 6.09 9.25 15.28

05 7.21 3.23 7.92 6.12

07 7.19 3.03 8.06 6.59 10.50 15.16

09 7.31 3.41 8.97 7.37

11 7.08 3.29 9.28 7.86 14.79 15.71

13 7.99 3.11 9.69 8.08

15 7.91 3.25 9.78 8.14 24.99 17.46

Table 5.5: Equal error rates for Additive Noise test conducted on sample image database DB3.

5.4 Median Cut Filtering (medianCut)

This test applies a median cut filter of adjustable size on the input image. I.e. per pixel p of
the input image, the median of all image values within an area of pre-selected size, centered
at p, is established, to be returned as value of the corresponding pixel in the output image.

Relation to Fingerprints

The Median Cut Filtering attack is employed in present experiments to simulate smudgy
fingerprints, as they are common in real-life applications, for example when the fingertip is
too moist during the acquisition via a scanner. Compared to the Mean Filtering attack (5.5),
Median Cut Filtering likewise adds a certain amount of blur to the image, but additionally
it also corrupts the clarity of the ridge-and-furrow structure of the imprint, inducing the
desired smudginess. This effect is strongest in the interior of the imprint.

Parameter Configurations

Via a single parameter the size of the median cut filter – and therefore the intensity of its
effect – can be adjusted. Height and width of the filter take the same value and only odd-
valued dimensions are accepted. The upper limit is a size of 15, thus resulting in a 15× 15
filter.

For the experiments of present work, following parameter values have been chosen: {3, 5, 7,
9}. A filter size < 3 obviously is of no real benefit. On the other hand, values > 9 have been
excluded, as in these cases the median cut filter leads to the creation of spurious ridges, even
with higher frequency than the original ones. As interesting as this effect might be, as little
it complies with our demand for “natural” perturbations. Examples for filter sizes 3, 7 and
9 can be seen in Figure 5.11.
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(a) Filter size 3 (b) Filter size 7 (c) Filter size 9

Figure 5.11: Examples for the Median Cut Filtering test, applied to an image from DB1 (ID 91 2).

Results and Discussion

DB1

Of the array of fingerprint matchers employed in the Median Cut Filtering test for images of
database DB1, VeriFinger is the one matcher, whose performance clearly is influenced the
most by the “smudge-like” perturbations introduced. Regarding Figure 5.12b, we see, that
for a 3×3 filter, the resulting ROC curve lies close to the one for unperturbed images. When
applying a filter of size 5× 5, the ZeroFMR value rises from 14% to 27% and for increasing
FMR, the FNMR values lie continuously above those of the previous curve. The big “drop”
in matching performance then occurs for a filter-size of 7× 7: The ZeroFMR value goes up
to 75%, yet compared to the results of the other matcher even more drastic: the EER value
changes from 12.82% to 40.42% (see also Table 5.6). In comparison: GF20, for example, has
an EER of 40.19% only for a filter-size of 9×9 (GF180: 44.23%) and an EER of just 27.52%
for the 7×7 filter (GF180: 31.65%). Finally the ROC curve, representing VeriFinger’s results
for the test with a 9× 9 filter, lies clearly above those, produced by all the other matchers
for median cut filtered fingerprint images of database DB1. Interestingly the curve also is of
convex shape, i.e. in comparison, the FNMR per FMR are particularly high.

Looking at GrFinger, we can clearly observe the influence of the introduced image pertur-
bations in the matching performance (see also Figure 5.12a). The ROC curves representing
the individual median cut filter sizes are well separated and, as was expected, the higher
the degree of perturbations, the worse the results. For the first two levels, the impairment
of the matching performance is somewhat comparable to the one observed with VeriFinger:
A filter size of 3× 3 causes the ROC curve to lie only slightly above the curve produced by
the unperturbed images The curve for the 5 × 5 filter, is comparatively close, but clearly
separated. The gaps to and between the following two ROC curves then, representing the
results for fingerprint images filtered with filter of sizes 7 × 7 and 9 × 9, are considerably
larger, yet interestingly quite equal – regarding the equal error rates in Table 5.6, we find a
distance of 12.81% between the EER of tests medianCut 05 and 07 and a distance of 12.58%
between the EER of tests medianCut 07 and 09.

A further point that can also be verified by inspecting the respective EER values is, that
overall the results of GF20 – GrFinger with rotational alignment restricted to only ±20◦–
are better, than the results of GF180.
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On first glance, the ROC plot for the matching results of bozorth3 looks quite similar to the
ones, produced by the GrFinger matcher configurations. On closer inspection, we find, that
bozorth3 is slightly more robust to the perturbations introduced by the median cut filtering
test, than GrFinger: For one, the separation between the ROC curves for the application
of 3 × 3 and 5 × 5 filters is considerably smaller. Further, while the ROC curves for tests
medianCut 07 and 09 have nearly the same properties as for GF180 (also the EER values
are close), we have to consider, that the basis of comparison (i.e. the matching performance
for unperturbed images) of GrFinger is superior to the one of bozorth3.

Generally we can establish, that the non-minutiae-based fingerprint matchers are
clearly less influenced by “smudginess” introduced in fingerprint images of database DB1,
than the minutiae-based ones: As can be seen in Figure 5.12c for the FC matcher and in
Figure 5.12d for the POC matcher, the overall separation of the ROC curves is evidently
smaller than in the previously discussed matchers.

As for the Phase Only Correlation matcher, the ROC curves corresponding to filter-sizes
3×3 and 5×5 lie relatively close to the curve for unperturbed images, the relative distances
quite similar to the results for bozorth3. Subsequently we have two larger “jumps” to the
graphs for filter-sizes 7 × 7 and 9 × 9. How much less the POC matcher is influenced by
the median cut filtering of fingerprints of DB1 than the minutiae-base matchers, can also be
observed in the equal error rates in Table 5.6: For instance the distance between the EER
for unperturbed images and the one caused by filtering with a filter of size 9× 9, is 15.15%
for POC, while 26.58% for GF20, 32.82% for GF180, 32.07% for bozorth3 and even 50.21%
for VeriFinger.

Concerning the first three levels of perturbation-intensities, the FingerCode matcher dis-
plays an even better matching performance (see also Figure 5.12c): The ROC curves for both
filter-sizes, 3×3 and 5×5 lie nearly on top of each other and also the curve related to filter-
size 7 × 7 lies so close, that also its EER is only 4.01% higher than that for unperturbed
images (in comparison: 8.11% for POC, followed by 13.91% for GF20). The influence of
filter-size 9× 9 on FingerCode’s matching performance is relatively strong, when compared
to the influence of the smaller filter-kernels. Yet still the results get only about as “bad”, as
for the POC matcher.

Filter Size bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

03 15.50 7.09 13.68 14.52 12.90 23.63

05 17.69 12.82 18.84 17.86 13.52 24.92

07 32.17 40.42 31.65 27.52 16.55 30.71

09 46.88 56.08 44.23 40.19 28.26 38.11

Table 5.6: Equal error rates for Median Cut Filtering test conducted on sample image database DB1.

DB2

Regarding the results of the Median Cut Filtering tests for fingerprint images of database
DB2, especially in comparison to the previous observations for images of DB1, we can say,
that for the minutiae-based fingerprint matchers, the results in general look quite alike
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Figure 5.12: Receiver operating characteristics for StirMark test Median Cut Filtering on fingerprint images of
DB1. “median Cut 03 .. 09” refers to the size of the median cut filter.

those for DB1: Filtering with a filter-size 3× 3 has only a minor influence on the matching
performance. Filtering with a 5× 5 filter affects the matching results already more, yet the
really drastic impairment of the matching performance comes with the employment of the
filters of sizes 7×7 and 9×9, where the results for the latter filter configuration are roughly
twice as bad, as those of the former. Inspecting said results a little bit more detailed:

For VeriFinger, the impairment caused by median-filtering the fingerprint images of DB2
with a filter of size 7×7 is slightly less than for images of DB1, while the situation is clearly
contrary in case of the 9 × 9 filter. This behavior can also be witnessed in the respective
equal error rates: Regarding the difference from the EER for unperturbed images to the
EER for medianCut 07 we get 34.55% for DB1 and 33.23% for DB2, while to the EER for
medianCut 09 we get 50.21% for DB1 and 56.84% for DB2.

In case of bozorth3, the influence of perturbed images from DB2 is notedly stronger than
that of images from DB1. All ROC curves relating to the filtered images lie comparatively
farther above the curve for unperturbed images, with the respective deviation even slightly
increasing per step in filter-size.

The same can be said, regarding the matching performance of both GrFinger configura-
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tions, for the two larger filter settings 07 and 09. In particular, in case of the 9× 9 filter, the
results are so bad, that in analysis,already with the first incrementation of the threshold,
the rate values rise to about 47% FMR and 64% FNMR for GF180 and 38% FMR and 66%
FNMR for GF20. For fingerprint images of DB2 filtered with the filters of sizes 3 × 3 and
5 × 5 on the contrary the matching performance is slightly superior than in the results for
DB1 images.

Comparing the performance of the non-minutiae-based fingerprint matcher in response
to the “smudgy” perturbations in fingerprint images of DB2 with the results achieved for
images of DB1, we can observe some major differences:

Of all the matchers employed in the experiment, it is now the Phase Only Correlation
matcher, which is clearly the most robust to the median cut filtering. In Figure 5.13d we
see, that especially the ROC curves representing the tests with the two smaller filter-sizes
lie closer together now, and also the gap to the ROC curve for the 7× 7 filter got somewhat
reduced. The distance between the ROC curve for unperturbed images to the curve for
medianCut 09, on the other hand, got a little larger, which we can also see in the difference
of the respective equal error rates: 16.54% in present case, compared to 15.51 for images of
DB1.

More drastic are the changes in the results for the FingerCode matcher, as can be seen
in Figure 5.13c: The ROC curve for filter-size 3 × 3 still lies almost on top of the curve
for unperturbed images and also the performance for images filtered with the 5 × 5 filter
dropped only relatively little. Yet the distances to the ROC curves of medianCut 07 and
furthermore medianCut 09 increased largely. Although the curve related to the 7 × 7 filter
is still below the corresponding ones of the minutiae-based matchers, the ROC curve for
filter-size 9 × 9 indicates a respective matching performance about as bad as the one of
GrFinger – potentially worse, as the rate values immediately jump from the initial 100%
FMR and 0% FNMR to 38% FMR and 68% FNMR.

Filter Size bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

03 12.17 5.97 13.06 14.13 9.42 11.03

05 18.22 11.44 17.75 17.19 10.95 11.38

07 37.36 38.34 35.08 33.66 24.94 16.94

09 51.97 61.85 – – – 26.23

Table 5.7: Equal error rates for Median Cut Filtering test conducted on sample image database DB2.

DB3

Now turning to fingerprint images of DB3, we can observe, that for the minutiae-based
matchers, in general, the influence of the median cut filtering on the matching performance
is not as strong, as it was the case for images of DB1 and DB2. And once again the reactions
of the non-minutiae-based matchers is different from the behavior witnessed so far.

Both GrFinger configurations show the same kind of overall performance, even though the
relative deviations are smaller for GF20 than for GF180. For the filter-size of 3 × 3 the
results are about as good as for unperturbed images. In the area around the equal error rate,
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Figure 5.13: Receiver operating characteristics for StirMark test Median Cut Filtering on fingerprint images of
DB2. “median Cut 03 .. 09” refers to the size of the median cut filter.

the filtered images even produce slightly better results (also compare to Figure 5.14a).The
impairment caused by filtering with a 5 × 5 median cut filter is already clearly evident yet
still relatively minor. Again, the drops in matching performance get increasingly larger for
filter sizes 7 × 7 and 9 × 9. For GF180 and medianCut 09 for example, the EER then lies
at 30.29%, which results in a difference from the EER for unperturbed fingerprint images
of 23.39% – for comparison, this distance was 32.28% for images of DB1 and for DB2, the
number of false non-matches was constantly so large, that no point of equal error could be
reached.

The ROC plot displaying the results for bozorth3 looks quite similar to that of GF180,
except that the relative distances of the individual ROC curves are slightly larger – a behavior
that can also be verified in the respective EER values in Table 5.8.

Corresponding to aforesaid general observation, also the overall matching performance of
VeriFinger improves for images of DB3, as compared to its previous results for fingerprint
images of DB1 and DB2. Still, among the minutiae-based fingerprint matchers, VeriFinger
stays the one, displaying the strongest sensibility to the “smudgy” perturbations generated
by the Median Cut Filtering StirMark test.
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The restriction to “minutiae-based fingerprint matchers” in previous statement was nec-
essary, as for fingerprint images of DB3, the FingerCode matcher displays an extensive
impairment of its matching results. So while being the matcher the most robust to median
cut filtering for fingerprint images of DB1 and still being the second most robust matcher
in case of DB2, now here, for images of DB3, the FingerCode matcher exhibits clearly the
worst performance. Although the results produced by images filtered with the 3 × 3 filter
are as good as those for unperturbed images, as can be seen in Figure 5.14c, for larger
filter-sizes, the relative distance between the corresponding ROC curves increases strongly.
Additionally, the results of medianCut 09 show such high rates of false non-matches, that
in this case an EER value can not be reached.

The Phase Only Correlation matcher shows a somewhat “mixed” reaction to the per-
turbations introduced in the fingerprint images of DB3: The application of filters of sizes
3 × 3 and 5 × 5 cause a stronger impairment of the matching results of the POC matcher,
than it does in the results of the minutiae-based matchers. Then again, the contrary is true,
when regarding the results caused by filters of sizes 7× 7 and 9× 9: Here the POC matcher
clearly turns out to be the matcher the most robust to the perturbations. An observation
also backed up by the corresponding equal error rates (please refer to Table 5.8 for details).

Filter Size bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

03 7.28 3.49 6.59 5.46 9.12 15.98

05 8.26 7.18 8.40 7.32 12.51 19.43

07 18.70 22.31 17.85 15.42 26.66 24.85

09 35.09 48.88 30.29 26.92 – 29.30

Table 5.8: Equal error rates for Median Cut Filtering test conducted on sample image database DB3.

5.5 Convolution Filtering – Mean Filtering (convMean)

Relation to Fingerprints

By itself the StirMark Benchmark only provides a generic Convolution Filtering operation,
that filters the input image with an arbitrary user-defined filter matrix. This of course pro-
vides the possibility for a wide range of image manipulations. Looking at the most common
utilizations of convolution filters, image sharpening, edge-detection and embossing did not
appear to me, to have any real application in the attempt to introduce natural perturba-
tions into fingerprint images. Blur on the other hand is an impairment that can very well
be observed in original, real-life fingerprint images. The most common and renowned cause
for this blur probably being slight movement of the finger during image acquisition.

Now to simulate this blurring effect, I chose to apply the most simple form of image blurring
by convolution operation: mean filtering. The corresponding filter matrix can be described
as follows: Let h be a mean filter of size n× n, then it is given by:
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(d) Phase Only Correlation matcher

Figure 5.14: Receiver operating characteristics for StirMark test Median Cut Filtering on fingerprint images of
DB3. “median Cut 03 .. 09” refers to the size of the median cut filter.

hn,n =
1

n2


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


Figure 5.15: n× n mean filter.

Parameter Configurations

In the experiments of present work, I use mean filters of sizes {3, 5, 7}. Larger filter matrices
are not applied, as for once the blurring of the original ridge-and-furrows structure gets too
strong to still be considered “natural” and second, like with median cut filtering (5.4), such
excessive filtering also tends to create spurious ridges in the fingerprint. Examples of filtered
images can be seen in Figure 5.16.
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(a) Filter size 3 (b) Filter size 5 (c) Filter size 7

Figure 5.16: Examples for the Mean Filtering test, applied to an image from DB1 (ID 91 2).

Results and Discussion

DB1

Among the minutiae-based fingerprint matchers, bozorth3 is clearly the one, that is the
least influenced by the blur, introduced in the fingerprint images of database DB1. Inspecting
the results more closely, we find, that for the 3× 3 filter, the matching performance is equal
and in parts even slightly better than that for unperturbed images. As can likewise be seen
in Figure 5.17a, also the ROC curve caused by employing the 5× 5 filter, lies comparatively
close to that for unperturbed images. A significant drop in matching performance then only
occurs, when filtering the images with the filter of size 7 × 7. The difference between the
EER for unperturbed images and the EER caused by the 7 × 7 filter is then 17.10%, as
compared to 1.86% for the case of filter-size 5× 5.

The next best matching performance of a minutiae-based matcher is achieved by GF20.
While the ROC plots of both GrFinger configurations look very much alike, the relative
distances between the individual ROC curves are slightly smaller for GF20 than for GF180
– a property, that can also be witnessed, when regarding the respective equal error rates in
Table 5.9. Inspecting said ROC plots, we can see, that mean-filtering with a filter of size 3×3
has only a very small negative influence on the matching results. The more obvious difference
to the performance of bozorth3 becomes apparent, when regarding the ROC curve produced
by the 5 × 5 filter: While, as stated above, for bozorth3 it lies still very close to the curve
for unperturbed images, here, for GrFinger it is already clearly separated. The differences
between the corresponding EER values and that for unperturbed fingerprint images then
results to 8.40% for GF180 and 5.26% for GF20. When finally regarding the response of
GrFinger to fingerprint images filtered with the 7 × 7 mean-filter, we find, that the results
of GF20 are slightly less and the results of GF180 are slightly more impaired than those of
bozorth3. On the other hand we can also see in the related ROC curves of (for example)
GF20, that with the first step of the threshold the FMR and FNMR jump to 70% and 13%
respectively, while bozorth3 “delivers” distinct values until a point of 94% FMR and 1%
FNMR.

When regarding the effect of blurring the fingerprint images of DB1 on the performance
of the VeriFinger matcher, we can largely compare the results for mean-filter-sizes 3 × 3
and 5 × 5 to those obtained with GF180. Only in the area around the EER VeriFinger
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achieves slightly better results in the 3× 3 filter case, than GF180. However, when dealing
with images perturbed by the 7 × 7 mean-filter, VeriFinger exhibits a strongly impaired
matching performance: For example the distance of the corresponding EER to the EER for
unperturbed images amounts to 39%, while the second worst distance, produced by GF180
in the 7 × 7 case, is only 23%. Further, when regarding the ROC curve, we note, that it
forms a convex shape and ends already at a FMR of 77% and a FNMR of 15%.

Both non-minutiae-based fingerprint matchers are clearly less influenced by the blur-
ring introduced by mean-filtering in the fingerprint images of DB1, than the minutiae-based
matcher.

Of all tested fingerprint matchers, FingerCode turns out to be the most robust to the
perturbations in DB1 fingerprints. Inspecting the ROC plot in Figure 5.17d, we see, that
the curves relating to the filters of sizes 3× 3 and 5× 5 lie almost on top of the ROC curve
for unperturbed images and also the distance to the ROC curve caused by the 7× 7 filter is
less, than in any other matcher’s results - the difference between the EER for unperturbed
images and that caused by the 7× 7 filter is only 3.90%.

The Phase Only Correlation matcher shows the second best matching performance (see
also Figure 5.17d): Very much like in case of bozorth3, the ROC curve for the results caused
by the 3×3 filter lies on top and in parts even a little under the ROC curve for unperturbed
images, and the curve related to the 5× 5 filter is only slightly separated from it. The filter
of size 7×7 then influences the matching performance already stronger, yet still the relative
impairment is weaker than in any minutiae-based matcher (compare also the respective equal
error rates in Table 5.9).

Filter size bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

3 14.41 6.89 13.33 14.25 12.75 22.70

5 16.67 15.03 19.80 18.86 13.07 24.58

7 31.91 44.64 33.98 29.15 16.43 31.13

Table 5.9: Equal error rates for Convolution Filtering – Mean Filtering test conducted on sample image database
DB1.

DB2

Interestingly, for fingerprint images of DB2, the reaction of the minutiae-based finger-
print matchers to the blurriness introduced by mean-filtering, is largely the same: Apart
from the specific values, we can observe, that a filter-size of 3× 3 only has a very limited ef-
fect on the matching performance. Correspondingly we can see in the individual ROC plots,
that the ROC curve caused by the 3× 3 filter lies only slightly above that for unperturbed
images. For a mean filter of size 5 × 5 then, the matching performance is already stronger
impaired – referring to the respective equal error rates, (as listed in Table 5.10), we see,
that the difference between the ERR of unperturbed images and the EER caused by the
5×5 filter is 6.67% for GF20 and around 8% for the other minutiae-based matchers. A large
drop in matching performance then occurs with the application of the 7 × 7 mean filter.
Once again referring to the equal error rates, we can find, that this impairment is about 3.5
(bozorth3) to 5 times (GF20) as strong as that introduced by the 5× 5 filter.
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(d) Phase Only Correlation matcher

Figure 5.17: Receiver operating characteristics for StirMark test Convolution Filtering – Mean Filtering on fin-
gerprint images of DB1.

While showing clearly the highest robustness to blurriness in fingerprint images of DB1, for
images of DB2 the FingerCode’s matching results are decidedly the most impaired ones: As
is the case with the other matchers, filtering the images with a 3× 3 mean-filter only barely
affects the matching performance of FingerCode. Yet already when regarding the influence of
the 5× 5 filter, we find, that the results are worse than for any other of the tested matchers,
at this level of perturbations. And the same is true for fingerprint images filtered with the
7×7 mean-filter: When regarding Figure 5.18c, we not only see, that the ROC curve related
to the 7 × 7 filter lies above the corresponding curves in the other matchers’ plots, but we
also notice, that already with the first incrementation of the threshold, we obtain a FMR of
about 29% and a FNMR of 66% – an equal error rate is not even reached anymore.

Like was also the case in the Median Cut Filtering test for fingerprint images of DB2,
the Phase Only Correlation matcher now is the matcher, that, in general, is the least
influenced by the introduced perturbations. While according to the respective EER values,
the POC matcher is still slightly beaten in the performance related to the 3 × 3 filter
by bozorth3, GF20 and even FingerCode, for the two larger filter sizes its performance is
undisputedly superior: Already when inspecting the ROC plot in Figure 5.18d, we see, that
the relative distances among the individual ROC curves of the POC matcher are notedly
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Figure 5.18: Receiver operating characteristics for StirMark test Convolution Filtering – Mean Filtering on fin-
gerprint images of DB2.

smaller than is the case for any other matcher and the equal error rates listed in Table 5.10
back-up this observation.

Filter size bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

3 11.99 6.50 13.44 14.16 10.08 11.14

5 20.06 13.39 19.78 19.57 19.95 13.03

7 42.10 44.22 48.23 46.62 – 19.80

Table 5.10: Equal error rates for Convolution Filtering – Mean Filtering test conducted on sample image database
DB2.
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DB3

Like previously witnessed for fingerprint images of DB2, also in the present test the individual
reactions of the minutiae-based fingerprint matchers to the introduced blur, are very
much alike. In fact, the only major difference, when comparing the matching performances
for images of DB2 and images of DB3, is, that for fingerprint images of DB3 the relative
impairment of the matching results, caused by the mean filters of sizes 5 × 5 and 7 × 7,
is clearly less extensive: Regarding the ROC plots for DB3 images, the curves relating to
filter-size 5×5 are now very close to those for unperturbed images and only the ROC curves
caused by the 7 × 7 filter lie clearly separated from the others. This aspect can also be
observed, when comparing the respective equal error rates.

So while for the minutiae-based matchers the effect of the blur-simulating perturbations is
less evident when dealing with images of DB3, the opposite is true for the FingerCode
matcher: Although FingerCode’s performance was already very bad in the tests for finger-
print images of DB2, in present experiments for DB3 images, the results turn out to be
even more impaired by the mean filtering. When regarding Figure 5.19c and comparing it
to Figure 5.18c of the DB2 case, we can see, that the relative distance between the ROC
curves produced by the mean-filtered images and that for unperturbed images increased in
present tests. In particular we also see the extremely distorted ROC curve portraying the
results for fingerprint images of DB3 filtered with the 7 × 7 mean-filter. The reason for its
shape is, that the FingerCode matcher seemingly has such big difficulties, matching this
filtered fingerprint images, that 89% of all match-pairs result to a matching score of 0. In
consequence, with the first increment of the threshold, we obtain a false match rate of 12%
but at a false non-match rate of 91%.

The Phase Only Correlation matcher performance in the Convolution Filtering – Mean
Filtering tests for DB3 is very much comparable to its performance in tests for DB2. Com-
paring the results in detail, we see two relatively small differences: The impairment of the
matching performance caused by filtering with the mean-filter of size 5×5 is slightly stronger
for DB3 images – also the difference between the EER for unperturbed images and that for
images filtered with the 5×5 filter increased by 1.22%. On the other hand for images of DB3
filtered with the 7 × 7, the negative influences are less apparent than in the DB2 results –
here above-described difference in the EER values is 3.31% smaller.

Overall, for fingerprint images of DB3, we can no longer easily determine, which fingerprint
matcher is the most robust to the added blur. While POC still proves to be the least
influenced by filtering the images with a mean-filter of size 7×7, the minutiae-based matchers
now display a clearly superior performance for filter-sizes 3× 3 and 5× 5.

Filter size bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

3 6.72 3.52 6.73 5.45 10.09 16.00

5 6.76 6.11 7.83 6.44 22.71 19.63

7 17.17 20.59 17.13 14.33 – 21.88

Table 5.11: Equal error rates for Convolution Filtering – Mean Filtering test conducted on sample image database
DB3.
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Figure 5.19: Receiver operating characteristics for StirMark test Convolution Filtering – Mean Filtering on fin-
gerprint images of DB3.

5.6 Convolution Filtering – Modified Gaussian Filtering
(convGauss)

Next to mean filters, a second commonly used convolution filter type to introduce blur to an
image, are Gaussian filters. As starting ground for present StirMark test, I chose to employ
the most simple version of a Gaussian filter, in form of the 3× 3 matrix seen in Figure 5.20.

h3,3 =
1

16

1 2 1
2 4 2
1 2 1


Figure 5.20: Original 3× 3 Gaussian filter.
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Relation to Fingerprints

First trials with the filter matrix of Figure 5.20 produced blurry fingerprint images that
looked very much like the output created by the Mean Filtering test. The differences were not
distinctive enough to justify an additional, separate test. However, further experiments with
slightly changed matrix values or with an altered normalization constant lead to following
interesting results:

While blur is no longer introduced in the images, the finger imprints themselves tend to “thin
out” – gradually details are being lost, the imprint’s gray-scale values get slightly brightened
and the actual visible section of the imprint is reduced. Thus the images produced by
this Modified Gaussian Filtering test very much resemble those original, real-life fingerprint
images, that result, when during acquisition the fingertip was either too dry or the exercised
pressure on the contact area too low. Examples can be seen in Figure 5.22.

Interestingly the described effect of this StirMark test is only observable in fingerprint images
of databases DB1 and DB2. For images of DB3, the convolution with the modified Gaussian
filter matrices has two types of impact: for one, it roughens the ridge lines, amplifying
imperfections already present in the input image; and second, it tends to “clear” the overall
image – the darkish background is brightened up and gets almost separated from the actual
imprint. Corresponding examples can be seen in Figure 5.27.

Parameter Configurations

As also noted above, in the experiments of present work, we will be using eight different
modifications of the commonly used 3 × 3 Gaussian filter matrix stated in 5.21. There
configurations are as follows:

h3,3 = 1
12

1 2 1
2 4 2
1 2 1


(a) Configuration 1

h3,3 = 1
11

1 2 1
2 4 2
1 2 1


(b) Configuration 2

h3,3 = 1
9

1 2 1
2 4 2
1 2 1


(c) Configuration 3

h3,3 = 1
9

1 2 1
2 6 2
1 2 1


(d) Configuration 4

h3,3 = 1
9

1 2 1
2 8 2
1 2 1


(e) Configuration 5

h3,3 = 1
9

1 2 1
2 12 2
1 2 1


(f) Configuration 6

h3,3 = 1
9

1 2 1
3 12 3
1 2 1


(g) Configuration 7

h3,3 = 1
9

1 3 1
3 12 3
1 3 1


(h) Configuration 8

Figure 5.21: Eight modifications of a Gaussian filter matrix, that will be applied in the Modified Gaussian Filtering
tests during the experiments of present work.

The reduced set of test, that will also be conducted on the non-minutiae-based fingerprint
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matchers, covers the configurations {1, 2, 3, 4, 5, 6} for DB1 and DB2, and configurations {1,
3, 6, 8} for DB3. Example images for configurations 1, 4, and 8 being applied on a fingerprint
image of database DB1, can be found in Figure 5.22. For comparison, the different reaction
of images from DB3 to the Modified Gaussian Filtering test can be seen in Figure 5.23.

(a) Configuration 1 (b) Configuration 4 (c) Configuration 8

Figure 5.22: Examples for the Modified Gaussian Filtering test, applied to an image from DB1 (ID 91 2).

(a) Configuration 1 (b) Configuration 4 (c) Configuration 8

Figure 5.23: Examples for the Modified Gaussian Filtering test, applied to an image from DB3 (ID 49 4).

Results and Discussion

DB1

When comparing the matching performances of the fingerprint matchers in regard to their
responses to the perturbed fingerprint images, we can primarily make following general
observations:

The matching performance of every single matcher clearly worsens with each step of increased
effectiveness of the modified Gaussian filter (identifiable by the configuration-numbers: 1
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has weakest and 8 has strongest effect). The only two exceptions can be seen in GF180 and
VeriFinger, where configuration 7 affects the results stronger than configuration 8.

Furthermore we notice when regarding the ROC plots (see also the selection of plots in
Figure 5.24), that if, within a plot, we were to build clusters of ROC curves based on their
relative distances, for all matchers we would get the same following groups: configurations 1
and 2, then 3, 4 and 5 and finally 6, 7 and 8. So the responses of the matchers to the various
filter-configurations appears to be rather analogue – what mostly differs then from matcher
to matcher (read: from ROC plot to ROC plot) are the intra- and inter-group distances in
the results.

As third general observation we can state for the reduced set of configurations 1 to 6, that
the non-minutiae-based matchers are less influenced by the perturbations introduced
in the fingerprint images, than the minutiae-based matchers. Especially the Phase Only
Correlation matcher appears to be fairly robust to the image manipulations. This can not
only be seen in the respective ROC plots, but also the list of equal error rates in Table 5.12
confirms the observation – for instance, if we regard the difference between the EER for
unperturbed images and that related to the strongest perturbations (here configuration 6),
it is 9.70% for POC while 16.30% for FingerCode and even larger for the other minutiae-
based matchers.

Turning to the set of minutiae-based matchers, we find, that the matcher, whose matching
performance is the least influence by the effects of filtering the fingerprint images of DB1,
is GF20, closely followed by the bozorth3 matcher.

As for the two remaining matchers, GF180 and VeriFinger, VeriFinger performs better for
images filtered with the weaker filter-configurations 1 and 2, yet for stronger perturbation-
levels then, GF180 clearly produces less-impaired results. This is especially true for filter-
configurations 6, 7 and 8, where the results of VeriFinger are so bad, that an equal error
rate can not be established anymore (see also Figure 5.24b)

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

1 20.91 11.54 17.63 17.25 14.42 25.27

2 22.73 14.16 20.57 20.87 15.36 25.31

3 26.45 21.56 26.25 24.23 19.06 28.68

4 28.27 24.42 29.09 25.71 20.93 29.49

5 30.65 27.18 30.87 27.54 23.04 30.15

6 32.37 – 34.78 30.65 28.84 32.29

7 34.11 – 37.28 32.14

8 34.61 – 35.97 32.32

Table 5.12: Equal error rates for Convolution Filtering – Modified Gaussian Filtering test conducted on sample
image database DB1.



94 5.6 Convolution Filtering – Modified Gaussian Filtering

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

fa
ls

e
 n

o
n
-m

a
tc

h
in

g
 r

a
te

 (
F

N
M

R
)

false matching rate (FMR)

unperturbed
config. 1
config. 2
config. 3
config. 4
config. 5
config. 6
config. 7
config. 8

(a) GrFinger matcher, 20◦

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

fa
ls

e
 n

o
n
-m

a
tc

h
in

g
 r

a
te

 (
F

N
M

R
)

false matching rate (FMR)

unperturbed
config. 1
config. 2
config. 3
config. 4
config. 5
config. 6
config. 7
config. 8

(b) VeriFinger matcher

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

fa
ls

e
 n

o
n
-m

a
tc

h
in

g
 r

a
te

 (
F

N
M

R
)

false matching rate (FMR)

unperturbed
config. 1
config. 2
config. 3
config. 4
config. 5
config. 6

(c) FingerCode matcher

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

fa
ls

e
 n

o
n
-m

a
tc

h
in

g
 r

a
te

 (
F

N
M

R
)

false matching rate (FMR)

unperturbed
config. 1
config. 2
config. 3
config. 4
config. 5
config. 6

(d) Phase Only Correlation matcher

Figure 5.24: Receiver operating characteristics for StirMark test Convolution Filtering – Modified Gaussian Fil-
tering on fingerprint images of DB1.

DB2

Regarding the matching results of the tested fingerprint matchers for perturbed fingerprint
images of database DB2, we can see, that the impact of filtering the images with above-
defined modified Gaussian filters, is clearly stronger, than it was for images of DB1. While
basically being able to make the same general observations, as we did for fingerprint images of
DB1, about the gradual worsening of the matching performance with increasing effectiveness
of the modified Gaussian filters, as well as about the relative spacing of the ROC curves in the
related plots, we have to state, that for filter-configurations 4 and above, the perturbations
in the fingerprint images of DB2 lead to severely degraded matching results:

At configuration 4, it is only the matchers GF180, FingerCode and POC, that still deliver
results, that enable us to determine their respective equal error rates. For the other matchers,
the results are already so bad, that with the first incrementation of the threshold, the false
non-match rates rise to values larger than the related false match rates.

From configuration 5 onwards, POC is the only matcher left, whose results still cross the
equal error rate. Overall, when looking at the selected ROC plots in Figure 5.25 – for
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“completeness”: the ROC plots for bozorth3 and GF20, which were left out to save space,
look very similar to the plot for GF180 – we can find, that the POC matcher is quite
exceptional in relation to the broad spectrum of its results. Even for the highest filter
configuration, that POC was tested on – configuration 6 – the results still cover the ranges
[0%, 63%] for FMR and [26%, 100%] for FNMR, while the second most detailed results for
this perturbation level, by FingerCode, only cover the ranges [0%, 17%] for FMR and [64%,
100%] for FNMR.

It has to be noted thought, that for the filter configurations 1 and 2, FingerCode and further
also GF20 show to be more robust to the perturbations introduced in the images, than POC.
An observation that can also be verified, when regarding the respective equal error rates in
Table 5.13.

The two matchers that are the most sensitive to the reduction of the finger-imprint area,
caused by filtering the images of DB2 with the modified Gaussian filters, are bozorth3 and
VeriFinger. While for the weak filter configurations 1 and 2, VeriFinger still outperforms
bozorth3, for configurations 3 to 8, it very evidently exhibits the worst matching performance
of all fingerprint matchers tested (see also Figure 5.25). Inspecting for instance the results
for the most “extreme” case – filter configuration 8 – VeriFinger assigns a matching score of
0 to 93% of all fingerprint pairings matched, while bozorth3 to 86% and GF180 to “only”
81% of all pairings.

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

1 17.93 10.96 16.73 16.81 12.80 15.14

2 25.49 17.93 22.48 21.83 17.00 19.14

3 37.67 – 38.18 35.74 31.53 32.09

4 – – 42.57 – 39.42 37.46

5 – – – – – 39.13

6 – – – – – 42.60

7 – – – –

8 – – – –

Table 5.13: Equal error rates for Convolution Filtering – Modified Gaussian Filtering test conducted on sample
image database DB2.

DB3

As mentioned before, the application of the modified Gaussian filters to images of database
DB3 generally leads to a different kind of perturbations than it does for fingerprint images
of databases DB1 and DB2: Instead of gradually reducing the section of the fingerprint, that
is visible in the image, filtering an fingerprint image from DB3 tends to clear this image.
Additionally the surface of the ridge-lines get roughened (please refer to section “Relation
to Fingerprints” on page 113 for details).

Due to the fact, that the described types of perturbations do not essentially influence the
ridge-and-furrows structure of a finger imprint (in best case, the “clearing” effect of the
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(d) Phase Only Correlation matcher

Figure 5.25: Receiver operating characteristics for StirMark test Convolution Filtering – Modified Gaussian Fil-
tering on fingerprint images of DB2.

filtering might even lead to a improved perceptibility), no major influence of the modified
Gaussian filtering test on the performance of the individual fingerprint matchers is to be
expected.

The experiments confirm this assumption. In fact, the only matcher, where a rather dis-
tinct impairment of the matching results occurs, is the Phase Only Correlation matcher.
The POC matchers’ special sensitivity to the filtering process might be contributed to said
roughening of the ridges surface – as it adds a large amount of medium to high frequency
noise to the image, it is very possible, that this affects the exactness of the highly frequency-
dependent Phase Only Correlation.

Inspecting the results for the POC matcher more closely, we find, that the matching per-
formance worsens with increasing effectiveness of the modified Gaussian filters. The only
exception is around the area of the EER, where locally configuration 8 produces slightly
better results than configuration 6. The corresponding equal error rates (listed in Table
5.14) show, that the maximum distance between the EER for unperturbed images and the
EER values for the filtered images is 4.64% – which actually is still a comparatively small
value.
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Figure 5.26: Receiver operating characteristics of the Phase Only Correlation matcher for StirMark test Convolution
Filtering – Modified Gaussian Filtering on fingerprint images of DB3.

When looking at the ROC plots for the other fingerprint matchers considered in the tests,
we find, that the ROC curves produced by the fingerprint images filtered with the filters
of given configurations, all lie almost on top of the respective ROC curves for unperturbed
images. In other words, the effect of filtering DB3-images with the modified Gaussian filters,
on the matching performance of the fingerprint matchers, is marginally at best. It is only by
looking very closely at the ROC plots and by regarding the EER values, that we find minor
differences in the matching results, produced by the individual matchers:

Probably the most noteworthy fact is, that for matchers GrFinger, VeriFinger and
FingerCode, the filtered fingerprint images generally lead to better results than the un-
perturbed ones (only exceptions: GF180 and VeriFinger for those filter configurations, that
create the strongest perturbations – configurations 7 and 8). In the respective EER values we
can see relative improvements of 0.22% to 1.07%. bozorth3 appears to be the only matcher
(despite POC of course), where filtering the fingerprint images of DB3 has a negative effect
on the matching performance – once again referring to the equal error rates, we find a max-
imum difference of 1.02% between the EER for unperturbed images and those values caused
by image filtering.

For illustration, in Figures 5.27a and 5.27b ROC plots for matchers bozorth3 and GF20
respectively, can be found (the plots apply a logarithmic scale with ranges set to FMR [1%,
60%] and FNMR [1%, 15%]).

5.7 Remove Lines (rml)

This StirMark test removes single rows and columns from the input image, in adjustable,
quasi-periodical intervals.

Relation to Fingerprints

This test aims to simulate errors in fingerprint images, that occasionally occur during fin-
gerprint acquisition, when the scanner is not able to read the fingerprint in its entirety, but
misses/skips certain lines. Especially sweep sensors are prone to this kind of complications.
Two corresponding examples can be found in Figure 5.28.
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Figure 5.27: Receiver operating characteristics for StirMark test Convolution Filtering – Modified Gaussian Fil-
tering on fingerprint images of DB3. (Plots apply logarithmic scales. Ranges are set to FMR [1%, 60%] and FNMR
[1%, 15%].

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

1 6.99 3.44 5.83 5.02 8.75 15.73

2 6.79 3.40 6.01 5.15

3 6.92 3.34 6.09 4.97 8.46 17.70

4 7.48 3.35 6.06 4.82

5 7.22 3.13 6.18 4.78

6 7.12 3.35 6.08 5.08 8.64 19.71

7 7.71 3.77 6.66 5.27

8 7.62 4.04 7.07 5.48 8.76 19.43

Table 5.14: Equal error rates for Convolution Filtering – Modified Gaussian Filtering test conducted on sample
image database DB3.

Figure 5.28: Two examples showing the type of error introduced in the finger imprint, when the fingerprint scanner
misses certain lines during acquisition.
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Parameter Configurations

The frequency of line removal can be adjusted by a single parameter k, following the princi-
ple: “remove 1 line in every k lines”. For added randomization, per single line removal the
system also shifts the value of k by ±1 on a random basis. The possible range of values for
k is [1, min(image width, image height)]. One thing, that has be kept in mind though, is,
that the line removal operation naturally also reduces the size of the output image.

In the experiments of present work, the frequency parameter will be set to the following
values: {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}. The limited set of test runs, that will be
run on the non-minutiae-based matchers, will cover the parameter values {90, 70, 40, 20}.
Examples for the Remove Lines test being applied to an image of DB1 for the parameter
values 100, 50 and 10 can be seen in Figure 5.29.

(a) Remove 1 line every 100 lines (b) Remove 1 line every 50 lines (c) Remove 1 line every 10 lines

Figure 5.29: Examples for the Remove Lines test, applied to an image from DB1 (ID 91 2).

Results and Discussion

First of all we can state, that the influence of the Remove Lines perturbations on the match-
ing performance of the fingerprint matchers tested, is very limited. For example, inspecting
the equal error rates of the matching results for perturbed images of all three databases (see
Tables 5.15, 5.16, 5.17) we find, that 80% of the 144 equal error rates relating to perturbed
images lie within a distance of ±1% of the respective EER for unperturbed images and 91%
lie within ±2%. In fact, there are only two results, where the difference between their EER
and the EER for unperturbed images is larger than 4% and both are produced by POC
at the most effective Remove Lines configuration tested with this matcher – “1 in 20”: a
difference of 5.06% for images of DB2 and a difference of 8.53% for images of DB3.

Furthermore, due to the general low influence of the Remove Lines test on the individual
matching results, we find, that the reaction of the fingerprint matchers to the perturbations
in the fingerprint images is basically the same for all three image databases, DB1 to DB3.
For illustration, Figure 5.30 shows examples for images of DB1.

First, regarding minutiae-based fingerprint matchers: for the effectiveness levels ”1 in
100” to ”1 in 40”, the results are very close to those for unperturbed images – sometimes
slightly worse, sometimes slightly better (compare also with listing of EER values in Tables
5.15, 5.16, 5.17). As can be seen in Figures 5.30a and 5.30a, the corresponding ROC curves
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lie in a comparatively close surrounding of the ROC curve representing the matching perfor-
mance for unperturbed images. From level ”1 in 30” on then, the matching results exhibit a
permanent decrease in matching performance, with the biggest “drop” evident in the results
for the most effective perturbation level of ”1 in 10”.

As previously stated, the non-minutiae-based fingerprint matchers were only tested on a
limited set of perturbation-levels. Yet the inspection of the results and the corresponding
EER values, hints to following tendencies:

The FingerCode matcher seems to be comparatively robust to the perturbations intro-
duced. Especially for images of DB1, the equal error rates for perturbed images never differ
more from that for unperturbed images than ±0.1% (for DB2 and DB3 the difference values
are ±3.8% and ±3.0% respectively). An observation that can for instance also be seen in
Figure 5.30c.

The Phase Only Correlation matcher, on the contrary, is the matcher, whose matching
performance clearly displays the strongest influence by the image perturbations. Especially
for the two more efficient perturbation-levels tested – ”1 in 40” and ”1 in 20” – the results
of POC are notedly stronger impaired than those of any other matcher regarded. An effect
that is also visible in the corresponding ROC plots (see Figure 5.30d for example). The
current estimation, as to why the POC matcher reacts decidedly more sensitive to the image
manipulations caused by the Remove Lines test, than the competitors, is as follows: The
down-scaling of the finger imprint, that is inevitably caused by the line-removal operation of
the test, changes the intrinsic frequency of its ridge-and-furrows structure, which on the other
hand implicitly is the distinctive feature used by the POC matcher to identify a fingerprint.
Ergo this is bound to affect POC’s matching accuracy. Generally though, this topic would
be a subject for further investigation.

k bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

100 13.60 5.94 11.70 13.27

90 13.48 6.08 12.00 13.86 12.56 22.35

80 14.12 5.96 12.27 14.23

70 14.10 5.60 11.62 14.23 12.45 22.63

60 14.29 5.47 11.95 13.59

50 13.77 5.48 12.14 13.86

40 14.45 5.97 12.57 14.03 12.51 23.82

30 14.46 5.63 12.30 14.18

20 14.52 6.33 12.97 14.48 12.53 26.02

10 17.93 7.12 15.27 16.15

Table 5.15: Equal error rates for Remove Lines test conducted on sample image database DB1. (Parameter k:
“Remove 1 line in every k lines”.)
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(d) Phase Only Correlation matcher

Figure 5.30: Receiver operating characteristics for StirMark test Remove Lines on fingerprint images of DB1. (Plots
apply a logarithmic scale.)

5.8 Rotations (rot)

Relation to Fingerprints

Rotation is a very typical, not to say: omnipresent, challenge for fingerprint matching, as in
the very least cases a finger will be presented twice in exactly the same orientation to the
contact area during image acquisition. Thus the Rotations test is included in the experiments
of present work, aiming to provide the means for comparison of the rotational alignment
capabilities of the various fingerprint matchers.

Parameter Configurations

The set of angular values that will be inspected in the experiments of present work is as
follows: {-20◦, -15◦, -10◦, -5.5◦, -5◦, 7◦, 7.5◦, 13◦, 18◦, 20◦}. The limited selection, used in
the experiments that will also be run on the non-minutiae-base fingerprint matchers, covers
the angles {-15◦, -5.5◦, 13◦, 20◦}. Examples for rotations of -15◦, -5.5◦and 20◦can be seen
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k bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

100 10.86 5.12 11.87 13.02

90 11.04 5.09 12.43 13.57 9.71 10.00

80 10.85 5.22 12.38 13.41

70 11.60 5.37 12.09 13.39 9.73 10.24

60 11.28 5.43 12.01 13.70

50 11.39 5.14 12.21 13.80

40 11.99 4.96 12.59 13.79 9.47 11.18

30 12.23 5.07 12.70 13.76

20 12.92 5.27 12.96 14.46 9.97 14.75

10 16.20 5.51 15.18 15.79

Table 5.16: Equal error rates for Remove Lines test conducted on sample image database DB2. (Parameter k:
“Remove 1 line in every k lines”.)

k bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

100 6.95 3.38 6.84 5.65

90 7.23 3.30 6.76 5.71 8.68 16.51

80 7.04 3.59 7.23 5.63

70 7.08 3.61 6.46 5.52 9.14 17.10

60 7.47 3.37 6.99 5.69

50 7.48 3.47 7.05 5.78

40 7.53 3.68 7.48 6.08 8.78 18.46

30 7.75 3.09 7.19 5.89

20 8.52 3.53 7.82 6.27 8.94 23.60

10 11.60 4.25 9.48 7.65

Table 5.17: Equal error rates for Remove Lines test conducted on sample image database DB3. (Parameter k:
“Remove 1 line in every k lines”.)

in Figure 5.31

Results and Discussion

As stated above, the aim of the Rotations test is to establish how well the individual finger-
print matchers cope with rotation in fingerprint images.

In theory, those matchers, that consider an angular range of ±180◦for their rotational align-
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(a) Rotation of -15◦. (b) Rotation of -5.5◦. (c) Rotation of 20◦.

Figure 5.31: Examples for the Rotations test, applied to an image from DB1 (ID 91 2).

ment functionality, should not show any noteworthy differences in their results for rotated
fingerprint images, compared to the respective results for the original, unperturbed images.
On the other hand, those matchers (matcher configurations), where the rotational alignment
is limited to ±20◦(the two non-minutiae-based matchers and the GrFinger configuration
GF20) should provide more diverse results – already caused by the fact alone, that some of
the rotational displacements that per se existed between two imprints of the same finger in
the original fingerprint image sets, will be expanded past the amount of ±20◦.

The test results are conform to our expectations: For those fingerprint matchers (configura-
tions) taking a possible angular range of ±180◦ into account – bozorth3, VeriFinger and
the GrFinger-configuration GF180 – the effects of rotation in the fingerprint images is very
limited, and this is true for fingerprints of all three databases, DB1 to DB3, alike. When for
example regarding the listings of equal error rates for said matchers (see the corresponding
columns in Tables 5.18, 5.19, 5.20), we find, that besides two exceptions, the equal error
rates of the results for rotated images differ no more than ±1% from the respective EER for
the original images. The exceptions are for once GF180 for images of DB1 and DB3 rotated
at 20◦, as here said differences are 1.16% and 1.56% respectively and second bozorth3 for
rotated images of DB1. What is special about bozorth3 and rotated fingerprint images of
DB1, is, that the results for every rotational step tested are better than the results for the
original, unperturbed images – in Figure 5.32a we see, that the ROC curves corresponding
to the Rotations tests all lie below that for unperturbed DB1 images and when regarding
the related equal error rates, we find, that those rates, corresponding to the rotated images,
are between 1.37% and 1.87% better than the equal error rate for the unperturbed images.

Also the results of the tests for GF20 and the non-minutiae-based matchers are conform to
afore-stated expectations: While the matching performance of GF180 proves to be largely
unaffected by any of the Rotations tests performed, inspecting the results of GF20, we can
clearly witness a gradually decrease in matching performance with increasing amount of
rotational displacement: Referring for example to Table 5.19, to the equal error rates of
GF20 for fingerprint images of DB2, we find, that the differences between the EER caused
by rotated images and the one for unperturbed images rise, up to an amount of 10.16% at
a deliberate rotation of 20◦, while the same difference is only 0.03% for GF180.

The non-minutiae-based matchers likewise display the effects of the rotations introduced
to the fingerprint images, in their results. Yet even though these two matchers were tested
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Figure 5.32: Details of the receiver operating characteristics for StirMark test Rotations on fingerprint images of
DB1. (Plots apply a logarithmic scale. Ranges set to FMR [1%, 80%] and FNMR [1%, 40%])

only on a reduced set of rotational displacement values, they appear to be generally less
sensitive to the rotations than GF20. Especially for the higher rotation-levels within the
reduced test set – 13◦, -15◦and 20◦– FingerCode and POC show a clearly better matching
performance. This behavior can for instance be seen in the corresponding ROC plots (see
Figure 5.33 for examples of DB2), where the ROC curves caused by the different rotational
values and the respective ROC curve for unperturbed images lie relatively closer together in
the plots relating to the non-minutiae-based fingerprint matchers, than they do in the plot of
GF20. Further also the corresponding equal error rates show, that the relative degradation
due to the influences of the rotations, introduced to the fingerprint images, is less distinct
for FingerCode- and POC matcher, than for GF20.

When finally directly comparing the matching performances of the two non-minutiae-based
fingerprint matchers, we find, that in case of images of DB3, the FingerCode matcher persis-
tently shows to be less influenced by the deliberate rotations. In cases of DB1 and DB2 on
the other hand, only for fingerprint images with an introduced rotation of 20◦, FingerCode
clearly outperforms the POC matcher, while for the other rotation-levels the results are
either equally strong impaired or POC manages to deliver better results.
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Figure 5.33: Receiver operating characteristics for StirMark test Rotations on fingerprint images of DB2. The plots
compare those fingerprint matchers (matcher configurations), that consider only a limited angular range of ±20◦for
possible rotational alignment of two finger imprints.

Rotation bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

-20 13.27 5.40 12.14 21.09

-15 13.00 5.28 12.59 17.66 14.74 24.34

-10 13.25 5.72 12.26 15.54

-5.5 12.94 5.78 11.80 14.14 12.90 22.67

-5 13.26 5.37 11.25 14.12

7 13.34 6.44 11.83 14.50

7.5 13.30 6.01 11.60 15.16

13 13.05 5.89 11.62 17.02 13.63 23.79

18 13.44 5.36 12.05 20.25

20 13.41 5.12 12.56 22.38 15.44 26.18

Table 5.18: Equal error rates for Rotations test conducted on sample image database DB1.
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Rotation bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

-20 10.40 5.66 12.28 22.03

-15 11.00 5.57 12.62 18.70 14.13 14.22

-10 10.36 5.49 11.95 16.29

-5.5 11.28 5.49 12.62 14.12 12.04 10.89

-5 10.14 5.85 12.23 13.96

7 11.19 5.47 11.97 14.86

7.5 10.56 5.50 12.26 14.63

13 10.59 5.65 12.15 17.93 13.57 13.01

18 10.67 5.58 12.00 21.67

20 10.94 5.59 11.75 23.05 16.27 18.08

Table 5.19: Equal error rates for Rotations test conducted on sample image database DB2.

Rotation bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

-20 6.66 3.34 7.65 16.10

-15 6.83 3.04 7.53 9.28 9.62 16.06

-10 6.79 3.23 6.75 5.82

-5.5 6.81 3.21 6.99 6.03 9.57 15.96

-5 6.63 3.41 6.92 5.47

7 6.79 3.39 6.60 5.60

7.5 6.88 3.46 6.75 5.55

13 6.72 3.47 6.75 6.67 9.02 15.80

18 7.29 3.16 7.51 10.24

20 7.41 3.21 8.48 14.01 10.22 18.93

Table 5.20: Equal error rates for Rotations test conducted on sample image database DB3.

5.9 Affine Transformations – General Notes

Relation to Fingerprints

The application of affine transformations to fingerprint images is intended to simulate dis-
tortions of the entire finger imprint, that can appear in real-life situations during fingerprint
acquisition, depending on the way, the finger is pressed on the contact area. In the experi-
ments of present work I will to examine two such distortion types in particular:
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• A shearing effect can occur, when the force that is exercised while pressing the finger
on the contact area is not exerted perpendicular to this area. For example, if the finger
is presented, with the user pushing rather in direction to the upper-right of the sensor,
than straight downwards.

• A certain stretching might appear in the finger imprint, when the amount of force
applied while pressing the finger on the contact area is large/larger than usual.
And leaving the conceptual model of a fingerprint-acquired-by-scanner situation and
considering a scenario that might for example be of forensic interest: Stretching of a
fingerprint can also very well appear, if the finger was imprinted on a soft or flexible
surface.

As already noted in section 2.2, the StirMark Benchmark provides a generic procedure
for applying affine transformations to input images. A specific transformation can then be
generated by adequately setting the parameters of the inverse transformation matrix, stated
in Figure 5.34.

(
x′

y′

)
=

(
a b
c d

)(
x
y

)
+

(
e
f

)

Figure 5.34: Parameterized inverse transformation matrix applied in Affine Transformations tests.

While this enables a user to generate a broad variety of different affine transformation types
and especially also combinations thereof, for the experiments of present work, I chose to
limited the number of tests to the following four representative basic types: stretching in X-
direction, stretching in Y-direction, shearing in Y-direction, shearing in X- and Y-direction.
The corresponding parameter configurations, example images and experimental results will
be presented in the subsequent sections.

5.10 Affine Transformations
Stretching in X-Direction (affineXstretch)

Parameter Configurations

Table 5.21 lists the parameter configurations for the inverse transformation matrix shown
in Figure 5.34 as used for the StirMark test Stretching in X-Direction in the experiments of
present work.

The reduced set of test, that will also be executed on the non-minutiae-based fingerprint
matchers, includes configurations {2, 4, 6, 8}. Examples images for configurations 1, 5 and
8 can be found in Figure 5.35.

Results and Discussion

One general observation that can be made about the reaction of all tested fingerprint match-
ers to perturbed images of all three databases, DB1 to DB3, is, that except for very few,
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Configuration a b c d e f

1 1.035 0 0 1 0 0

2 1.070 0 0 1 0 0

3 1.105 0 0 1 0 0

4 1.140 0 0 1 0 0

5 1.175 0 0 1 0 0

6 1.210 0 0 1 0 0

7 1.280 0 0 1 0 0

8 1.350 0 0 1 0 0

Table 5.21: Configurations of the parameters of inverse transformation matrix stated in Figure 5.34 as applied in
the StirMark test Affine Transformations – Stretching in X-Direction

(a) Configuration 1 (b) Configuration 5 (c) Configuration 8

Figure 5.35: Examples for the Affine Transformations – Stretching in X-Direction test, applied to an image from
DB1 (ID 91 2).

negligible exceptions, the individual matching performance of each matcher decreases grad-
ually with increasing effectiveness of the stretching-operation applied to the test images.
Yet an interesting point here is, that especially for fingerprint images of DB1, some of the
matchers “start” with better matching results for the first level(s) of perturbations, than
they produce for unperturbed images.

Furthermore, regarding the set of minutiae-based fingerprint matchers, we can state,
that, as well for all three fingerprint image databases alike, GrFinger turns out to be the
matcher the most robust to the perturbations introduced in the images, with the config-
uration GF20 (matching with rotational alignment limited to an angular range of ±20◦)
noticeably outperforming the configuration GF180. Except in 4 of the total 3× 8 Stretching
in X-Direction tests performed, VeriFinger then shows relatively stronger impaired match-
ing results than GF180 (for details please refer to the listings of the individual equal error
rates in Tables 5.22, 5.22 and 5.22). bozorth3 finally is clearly the minutiae-based matcher,
whose matching performance is influenced the most by the perturbations introduced in the
fingerprint images of databases DB1 to DB3 – especially for the higher test-configuration
levels, the relative distance to the results of aforementioned matchers is quite obvious, in
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the related ROC plots and the corresponding equal error rates alike.

Still, of all fingerprint matcher considered, the one fingerprint matcher, that continuously
shows the highest sensitivity to the image manipulations of the Stretching in X-Direction
StirMark tests, is the Phase Only Correlation matcher.

About the results of the FingerCode matcher no meaningful general statement can be made,
but a more detailed analysis is required.

DB1

Overall GrFinger appears to be the matcher, that is the least influenced by the Stretching
in X-Direction perturbations introduced in the fingerprint images of database DB1 – with
configuration GF20 being even slightly more robust than GF180. A look at Figure 5.36b, for
example, reveals, how close the ROC curves for the test-configurations 1 to 6 are to the ROC
curve for unperturbed images, with the curves relating to the less-effective configurations
even lying below it. The corresponding equal error rates, listed in Table 5.22, also confirm,
that the EER for configurations 1 to 6 are no farther distant from the EER for the original,
unperturbed images, than 0.54% for GF20 and 1.17% for GF180. For the remaining two
configurations, 7 and 8 then, we notice a more distinct impairment in the matching results –
visible also in the respective plots, as the ROC curves related to these stronger perturbation
levels appear distinctively separated from the set of the other curves.

Even though the FingerCode matcher was only tested on the reduced set of Stretching in
X-Direction StirMark tests, its results are still quite interesting, as they put FingerCode’s
matching performance right between those of GF20 and GF180. Hard to distinguish from
the ROC plots, the listing of equal error rates in Table 5.22 leads clearly to the conclusion,
that in each of the conducted tests, for images of DB1, FingerCode is less influenced by the
perturbations introduced in the fingerprint images than GF180, yet more than GF20 shows
to be.

The behavior of the VeriFinger matcher across the tests for DB1 is quite similar to that
of GF180 and also in the respective equal error rates for VeriFinger, we see only a slight
deterioration. As for bozorth3 on the other hand, the negative influences caused by the
perturbations in the fingerprint images are definitely more apparent – for instance in Figure
5.36a, where we can see, that the ROC curves relating to the various test configurations,
are decidedly more spread than in the plots for GF20 and FingerCode. Furthermore when
inspecting Table 5.22 again, we find, that despite a relative good performance of bozorth3
for the two weakest perturbation levels, the matching performance then degrades faster than
in any other of the aforementioned fingerprint matchers.

Yet, as already mentioned previously, when listing the general observations, the Phase
Only Correlation matcher is undoubtedly the one, whose results are the most impaired
by the effects of the Stretching in X-Direction tests. When regarding the relative difference
between the equal error rates caused by perturbed images and the respective EER for the
original, unperturbed images, we can make the following exemplary observations: Already
for configuration 2 the EER is 1.42% worse than that for unperturbed images, which is
a difference, that bozorth3 reaches only at configuration 4 or GF20 only at configuration
7. Further the relative difference of POC for configuration 4, 4.38%, is larger than the
maximum differences reached in GF20 and FingerCode and for configuration 6 also the
maximum differences reached in GF180 and VeriFinger have been surpassed. (For further
details please refer to Table 5.22).
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(d) Phase Only Correlation matcher

Figure 5.36: Receiver operating characteristics for StirMark test Affine Transformations – Stretching in X-
Direction on fingerprint images of DB1. (Plots apply a logarithmic scale).

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

1 13.85 5.51 11.64 13.07 12.38 23.06

2 14.56 5.86 11.11 13.15 12.27 24.02

3 14.95 5.82 11.05 13.24

4 16.10 6.78 12.14 13.28 12.73 27.43

5 16.93 7.50 12.20 13.58

6 17.95 7.79 12.58 14.00 13.40 31.96

7 21.51 9.87 15.47 15.44

8 24.78 12.45 17.11 16.17 16.08 37.91

Table 5.22: Equal error rates for Affine Transformations – Stretching in X-Direction test conducted on sample
image database DB1.
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DB2

In comparison to each other, the matching performances of the minutiae-based fin-
gerprint matchers, related to the various Stretching in X-Direction tests for images of
database DB2, are very much alike to those exhibited in the case of DB1-images. Only the
influences of the perturbations are more distinctive in the individual results of current tests.

Like for images of DB1, the matcher that proves the most robust to the image-manipulations
performed by the tests, is GrFinger, with GF20 again slightly outperforming GF180. As
can be seen in Figure 5.37b and in the corresponding equal error rates in Table 5.23, the
results for test configurations 1 to 5 are still relatively close to the results for the original,
unperturbed images, yet not as close, as was the case for images of DB1. For example:
for DB1-images and matcher GF20 the differences between the equal error rates for per-
turbed images and the equal error rate for the original images get larger than 1% only for
configurations 7 and 8. In the tests for DB2 this happens already from configuration 5 on.

Comparing VeriFinger and GF180, we once again see a very similar behavior. It is only
for configuration 8, that the influence of the perturbations causes the results of VeriFinger
to be notedly worse than those of GF180 – with the corresponding EER of VeriFinger
showing 2.25% more difference to the EER for unperturbed images, than GF180, while for
configurations 1 to 7 the respective relative impairments permanently differ by less than 1%.

The bozorth3 matcher, as well, displays a reaction to the perturbations, introduced into
the fingerprint images of DB2, that is quite similar to that for images of DB1: A good
performance for the test configurations 1 and 2, but then the effects of the perturbations
manifest themselves comparatively stronger in the matching results of bozorth3 than they
do in the results of the other minutiae-based matchers. Interestingly though, here, for the
DB2-related Stretching in X-Direction StirMark tests, FingerCode’s matching performance
is very much akin to that of bozorth3. When regarding Table 5.37c and analyzing both
matchers’ equal error rates in relation to the respective equal error rates for unperturbed
fingerprint images, we find, that the relative degradations are quite close. Also when looking
at the ROC curves in Figures 5.37a and 5.37d we can detect a certain degree of resemblance.
However, one general difference we also see in the ROC plots is, that for FMR below the
EER, the FingerCode matcher tends to have higher FNMR than bozorth3, while on the
other hand for FMR above the EER, bozorth3’s FNMR tend to be comparatively higher.

Like was the case for fingerprint images of DB1, also here, for images of DB2 the pertur-
bations introduced by the Stretching in X-Direction test have the strongest impact on the
matching performance of the Phase Only Correlation matcher. This observation is most
comprehensible in Figure 5.37d, when regarding the comparatively large separation of the
individual ROC curves.

DB3

When introducing the perturbations of the Stretching in X-Direction tests into fingerprint
images of database DB3, we find, that overall the fingerprint matchers display largely ana-
log reactions to those, previously shown for images of DB2. Only a detailed inspection of
the individual matching results reveals rather small differences in case of the minutiae-
based matchers and comparatively larger differences in case of the non-minutiae-based
fingerprint matchers:

First of all, when considering both GrFinger-configurations and regarding Table 5.24, we
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Figure 5.37: Receiver operating characteristics for StirMark test Affine Transformations – Stretching in X-
Direction on fingerprint images of DB2.

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

1 10.96 5.65 12.00 13.00

2 11.63 5.96 12.37 13.63 9.73 14.83

3 12.76 5.98 12.62 13.49

4 13.28 6.59 12.93 13.64 11.60 20.47

5 16.01 7.41 13.38 14.17

6 17.76 8.37 15.22 14.84 14.96 24.96

7 21.69 10.80 17.38 17.21

8 25.90 15.05 19.51 19.09 24.64 33.59

Table 5.23: Equal error rates for Affine Transformations – Stretching in X-Direction test conducted on sample
image database DB2.
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see what also the ROC plots (see the example for GF20 in Figures 5.38b) hints at: The
impairment caused by the perturbations in the fingerprint images on the matching results
is slightly less, yet basically equally strong as it was in the corresponding results for images
of DB2. In fact, when regarding the differences between the EER for perturbed images and
the respective EER for unperturbed images, the values for DB3 are all smaller than those
for DB2, yet by no more than 1.18%.

The same can be said about the relative matching performance of VeriFinger, with one
exception: For configuration 8 the perturbations in the images of DB3 lead to clearly less
impaired results than they did for images of DB2. Hence VeriFinger’s performance is now
almost similar to that of GF180.

When comparing the results of bozorth3 for the StirMark tests on images of DB3 with
those on images of DB2, we see a general, mild aggravation.

As we noted in the Stretching in X-Direction tests for images of DB1 and DB2 alike, also
here, for images of DB3, bozorth3 is the minutiae-base fingerprint matcher, that is the
most sensitive to the perturbations introduced in the fingerprint images. When comparing
the results for images of DB3 with those of DB2 we even see a further mild aggravation –
particularly in the matching results related to test configurations 4, 7 and 8. This behavior
is for example observable in Figure 5.38a, where the corresponding ROC curves are farther
separated from the ROC curve for unperturbed images, as they were in the ROC plot for
DB2 images, Figure 5.37a.

While for perturbed fingerprint images of DB2 the FingerCode matcher exhibits a better
performance than bozorth3 for every configuration part of the reduced test-set, except for
configuration 8, here, for images of DB3, bozorth3 permanently outperforms the FingerCode
matcher. The biggest differences appear for configurations 2 and 6 – as is also very obvious
when comparing the corresponding ROC plots in Figures 5.37a and 5.38c) or referring to
the respective equal error rates in Table 5.24.

When likewise inspecting the results for the Phase Only Correlation matcher, it becomes
very obvious, that for the Stretching in X-Direction tests on fingerprint images of DB3,
the POC matcher once again exhibits the strongest-impaired matching performance of all
regarded matchers. Additionally the results for images of DB3 are considerably worse than
the results POC produced for images of DB1 or DB2. Accordingly, when regarding the ROC
plot in Figure 5.38d, we see, how comparatively far the ROC curves for the various test
configurations lie from the ROC curve representing the results for the original, unperturbed
images. The listing of equal error rates in Table 5.24 confirms the observations. Therein we
find for example, that for the second and third worst matcher in regard to the Stretching in
X-Direction tests – FingerCode and bozorth3 – the EER for configuration 8 is worse than
the respective EER for unperturbed images by 16.81% and 16.69% respectively. In case of
the POC matcher, the EER of configuration 4 is already 16.65% worse, than its EER for
unperturbed images and the difference for configuration 8 is even 27.62%.
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Figure 5.38: Receiver operating characteristics for StirMark test Affine Transformations – Stretching in X-
Direction on fingerprint images of DB3.

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

1 6.95 3.41 7.01 5.59

2 7.70 3.86 6.80 5.88 10.99 23.89

3 8.57 3.61 6.89 5.67

4 11.13 4.80 7.63 6.38 13.90 31.72

5 12.33 5.67 8.34 6.37

6 14.14 6.44 9.77 7.75 17.98 37.20

7 18.99 8.60 11.38 9.61

8 23.38 11.18 14.09 10.96 25.79 42.69

Table 5.24: Equal error rates for Affine Transformations – Stretching in X-Direction test conducted on sample
image database DB3.
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5.11 Affine Transformations
Stretching in Y-Direction (affineYstretch)

Parameter Configurations

Table 5.25 lists the parameter configurations for the inverse transformation matrix shown
in Figure 5.34 as used for the StirMark test Stretching in Y-Direction in the experiments of
present work.

Configuration a b c d e f

1 1 0 0 1.035 0 0

2 1 0 0 1.070 0 0

3 1 0 0 1.105 0 0

4 1 0 0 1.140 0 0

5 1 0 0 1.175 0 0

6 1 0 0 1.210 0 0

7 1 0 0 1.280 0 0

8 1 0 0 1.350 0 0

Table 5.25: Configurations of the parameters of inverse transformation matrix stated in Figure 5.34 as applied in
the StirMark test Affine Transformations – Stretching in Y-Direction

The reduced set of test, that will also be executed on the non-minutiae-based fingerprint
matchers, includes configurations {2, 4, 6, 8}. Examples images for configurations 1, 5 and
8 can be found in Figure 5.39.

(a) Configuration 1 (b) Configuration 5 (c) Configuration 8

Figure 5.39: Examples for the Affine Transformations – Stretching in Y-Direction test, applied to an image from
DB1 (ID 91 2).



116 5.11 Affine Transformations – Stretching in Y-Direction

Results and Discussion

DB1

When comparing the individual matching performances of the regarded fingerprint matchers
(configurations) in relation to the perturbations introduced in fingerprint images of database
DB1 by the Stretching in Y-Direction StirMark test, the most noticeable observation is, that,
like in the related StirMark test Stretching in X-Direction, the Phase Only Correlation
matcher is again the matcher, whose results exhibit the most distinct negative influences
by the perturbations. When regarding POC’s equal error rates in Table 5.26, we find for
example, that already for test configuration 2, the corresponding EER is further apart
from the EER for unperturbed images, than is the case for most of the other matchers
for configuration 4.

When on the other hand looking for the fingerprint matcher that is the least influenced by
the perturbations introduced in images of DB1, the answer is already a bit more complicated:
Up until test-configuration 5, it is the bozorth3 matcher, the proves to be the most robust.
When regarding the ROC plot in Figure 5.40a, we see, that for configurations 1 to 3 the ROC
curves even lie below that representing the results of the original, unperturbed images. A
look at Table 5.26 then confirms, that the equal error rates of bozorth3 for configurations 1 to
3 are 1.48% to 1.14% smaller than that for unperturbed images. However, from configuration
6 on, bozorth3’s results exhibit a distinct drop in matching performance, making it only the
fourth best matcher, behind GF20, VeriFinger and FingerCode.

So, the second least influenced matcher in regard to perturbed fingerprint images of DB1,
and the one, that takes the “lead” after bozorth3’s drop for configuration 6, is GrFinger in
configuration GF20 (GF20 only considers a limited angular range of ±20◦for its rotation
alignment attempts), closely followed by the VeriFinger matcher. In fact, the manifestation
of the perturbations’ influence in the results of GF20 and VeriFinger is so much alike, that
when regarding both matchers’ equal error rates in Table 5.26 and calculating the relative
impairments per test configuration level (by building the difference between the EER for
unperturbed images and the EER for the respective perturbed images), the values of GF20
and VeriFinger never differ more than 1%.

GF180 then turns out to be the minutiae-based matcher, that shows the most sensitivity to
the perturbations of the Stretching in Y-Direction tests for images of DB1. When looking at
the listing of equal error rates in Table 5.26 and for example comparing those of GF180 with
those of GF20, we will notice, that especially for higher test-configuration levels the actual
EER values of both matchers are very close, or GF180’s is even higher. Yet when taking
into account, that GF20’s EER for unperturbed images is already 2.20% worse than that of
GF180, the relatively stronger impairment of the results of GF180 gets apparent. Further-
more we find, that also the FingerCode matcher – for the limited set of test configurations
that it was tested on – shows less impairment in its EER values than GF180.

In overall comparison, we can state, that the FingerCode matcher exhibits a worse match-
ing performance than VeriFinger, yet its results are still less influenced by the perturbations
in fingerprint images of DB1, than those of GF180 and of the Phase Only Correlation
matcher.
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Figure 5.40: Receiver operating characteristics for StirMark test Affine Transformations – Stretching in Y-
Direction on fingerprint images of DB1.

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

1 13.33 6.23 12.08 13.38 12.75 23.56

2 13.38 6.13 12.49 14.29 13.48 25.22

3 13.67 7.17 13.57 14.43

4 15.75 7.40 14.56 15.08 15.49 30.63

5 17.72 9.11 15.40 16.49

6 19.88 10.21 17.69 17.75 17.88 37.20

7 23.62 12.96 20.46 19.91

8 27.33 16.01 23.98 22.76 24.40 45.71

Table 5.26: Equal error rates for Affine Transformations – Stretching in Y-Direction test conducted on sample
image database DB1.
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DB2

Most noticeable, also for the Stretching in Y-Direction test on images of DB2 the Phase
Only Correlation matcher exhibits a clearly stronger impairment in its matching results,
than any other of the examined fingerprint matchers. Already at first glance, the ROC plot
of the POC matcher shows, how decidedly farther the ROC curves are spread, than they are
in the plots for the other matchers. Also when regarding Table 5.27, we find, that already
for the lowest perturbation level tested on the POC matcher – test configuration 2 – the
distance between the corresponding EER and that for unperturbed images is 4.38%. Equally
strongly impaired results are produced by the other matchers only from configurations 5 or
6 onwards.

The bozorth3 matcher shows a comparatively high robustness to perturbations introduced
by the two least efficient Stretching in Y-Direction test configurations – 1 and 2 – into
the fingerprint images of DB2. Inspecting Figure 5.41a we can even observe, that the ROC
curve corresponding to configuration 1 lies almost on and in parts even below the ROC
curve representing bozorth3’s matching results for the original, unperturbed images. Yet
like for images of DB1, also in the current tests, the higher-valued test configurations have a
comparatively strong impact on bozorth3’s matching performance, leading to a more distinct
gradual aggravation of the matching results, than we witness for the other matchers but
POC.

Comparing the other three minutiae-based fingerprint matchers based on their respective
equal error rates (see Table 5.27), we can state, that latest from test-configuration 3 on,
GF20’s matching performance is clearly the least sensitive to the perturbations introduced
in the fingerprint images of DB2. VeriFinger’s equal error rates reveal a slightly stronger
impairment, yet the amount of aggravation per configuration level is quite alike to that of
GF20. Regarding the equal error rates of GF180 then, for configuration 2 to 5, the same
can be said as for VeriFinger. For the more effective configurations, 6 to 8, though, the
impact of the corresponding perturbations is more conspicuous than is the case for GF20 or
VeriFinger. For illustration we can regard the actual EER values of GF180 and GF20: The
initial EER for unperturbed images of GF180 is 1.16% below that of GF20 and the individual
EER of GF180 stay below those of GF20, up until configuration 5. For configurations 6 to
8, though, GF180’s EER are permanently around 1% higher than the corresponding ones
for GF20.

As stated above, when regarding the respective sets of equal error rates, both matchers
exhibit a largely comparable amount of impairment, caused by the perturbations in the
fingerprint images, with GF20 slightly outperforming VeriFinger. When additionally re-
garding the matchers’ ROC plots and comparing the corresponding ROC curves of both
matchers, we can observe a likewise interesting behavior in the area of high(er) FMR (above
the EER) and low(er) FNMR (below the EER): In case of VeriFinger, the curves relating
to matcher configurations 1 to 4 trend relatively fast towards the curve representing the
results for unperturbed images and for FMR > 25% about, they get to lie in a very nar-
row area around the latter. The ROC curves for configurations 5 to 8 also strive towards
the curve for unperturbed images, yet for the most part they stay clearly separated from
aforesaid group of curves. For matcher GF20 in contrast, the ROC curves corresponding to
configurations 1 to 4 strive not so much for the curve for unperturbed images, but stay in a
rather narrow band clearly above it. On the other hand tough, the curves for configurations
5 to 8 approach way faster the set of curves for the lower configurations, than they do in
the ROC plot for VeriFinger. So in summary, when comparing the responses of GF20 and
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Figure 5.41: Receiver operating characteristics for StirMark test Affine Transformations – Stretching in Y-
Direction on fingerprint images of DB2.

VeriFinger to perturbations introduced by test Stretching in Y-Direction in images of DB2
and observing the FNMR against increasing FMR, we find, that for test-configurations 1 to
4 the FNMR in VeriFinger’s results reach the level of unperturbed images faster than the
do in GF20’s results, while for test-configurations 5 to 8 the FNMR drop faster in results of
GF20.

The FingerCode matcher turns out to be more sensitive to the perturbations in fingerprint
images of DB2 than it is for images of DB1. Comparing the respective equal error rates (see
Tables 5.26 and 5.27), regarding the Stretching in Y-Direction tests for fingerprint images
of DB1, FingerCode’s rates exhibit less impairment than those of GF180 and bozorth3. In
case of current test, for images of DB2, the FingerCode matcher is only able to outperform
bozorth3 but not GF180 anymore. Also the corresponding exemplary plots in Figure 5.41
portray this behavior quite clearly. Especially the ROC curves relating to test configurations
6 and 8 make the considerably large discrepancy in the matching performances of bozorth3
and FingerCode apparent.
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Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

1 10.93 5.55 11.80 13.38

2 11.51 5.24 12.64 13.67 10.20 14.52

3 13.11 5.91 13.05 13.76

4 14.19 6.76 13.62 13.99 12.15 21.22

5 16.16 7.61 14.41 14.60

6 18.35 8.07 16.66 15.60 14.63 27.14

7 22.27 10.90 18.70 17.52

8 25.24 13.66 21.48 20.58 20.61 33.97

Table 5.27: Equal error rates for Affine Transformations – Stretching in Y-Direction test conducted on sample
image database DB2.

DB3

Also in the Stretching in Y-Direction tests for fingerprint images of DB3, the Phase Only
Correlation matcher is the one, in whose matching results the negative influence of the
introduced image-perturbations is most intelligible. Once again, in the ROC plot for the
POC matcher the individual ROC curves are farther separated from each other, than in any
other matcher’s plot and accordingly distinct is also the increase in POC’s EER values (see
Table 5.28 for details).

Interestingly, in relation to the fingerprint images of DB3, now the FingerCode matcher
shows the second highest sensitivity to perturbations caused by the Stretching in Y-Direction
StirMark tests. Already the comparison of the ROC plots for FingerCode and for bozorth3
– the third most sensitive matcher in current tests for DB3 – in Figures 5.42d and 5.42a
shows quite clearly the relatively stronger impairment in FingerCode’s matching results –
in particular, in the plot for the FingerCode matcher, the ROC curves representing the
matching performances for test configurations 6 and 8 are unmistakably farther distant
from the respective ROC curve for original, unperturbed images than they are in the plot
for bozorth3.

Another major difference to the results of the Stretching in Y-Direction tests for fingerprint
images of DB1 and DB2 can be seen in VeriFinger’s reactions to the perturbations in-
troduced in the images of DB3: For test configuration 1, VeriFinger behaves like GF20, in
that it exhibits quasi no influence in its results at all. From configuration 2 onwards though,
VeriFinger shows decidedly more robustness to the perturbations, than any other matcher re-
garded in the tests. Even GF20, being the strongest matcher in the tests for DB1 and DB2, is
clearly outperformed by the VeriFinger matcher. This behavior becomes very evident, when
regarding the corresponding ROC plots in Figure 5.42. For further illustration we can have a
look at the equal error rates in Table 5.28: Calculating per matcher the differences between
the EER for unperturbed images and the EER for the respective test-configurations, aiming
to establish the individual deteriorative effect of the image-perturbations, we find, that from
configuration 2 on, GF20’s difference-values are between 0.65% and 1.91% higher than those
of VeriFinger.
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Figure 5.42: Receiver operating characteristics for StirMark test Affine Transformations – Stretching in Y-
Direction on fingerprint images of DB3.

Comparing the two GrFinger configurations with each other, for fingerprint images of DB3
we see again the effect, that GF20 proves to be more robust to the introduced perturbations
than GF180. Even thought the amount by which GF180’s results are stronger impaired
than GF20’s, is slightly smaller than it was in the tests for images of DB1 and DB2.

As for bozorth3, the matcher once more turns out to be the minutiae-based matcher, that
is the most sensitive to the attacks of the Stretching in Y-Direction tests. As can be seen by
comparing the exemplary ROC plots in Figure 5.42 and the equal error rates in Table 5.28
alike, the higher the effectiveness of the test-configuration, the higher the relative aggravation
of the matching results, in comparison to the impairment witnessed in the results of the other
minutiae-based matchers. For illustration: The equal error rates for unperturbed images are
quite equal for bozorth3 and for GF180 – 6.68% and 6.90% respectively. For low-valued test-
configurations they are still quite close, bozorth3’s EER only slightly worse. Yet latest from
configuration 4 onwards, bozorth3’s matching performance drops rapidly, so that finally, for
test-configuration 8, its EER is 4.87% worse than that of GF180.
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Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

1 7.38 3.57 7.23 5.75

2 7.90 3.52 8.02 6.39 11.23 18.22

3 8.80 3.61 8.73 6.89

4 10.40 4.35 8.89 7.20 14.25 23.99

5 12.23 4.70 10.53 8.82

6 14.29 5.83 11.21 9.72 18.40 29.69

7 17.83 7.86 14.41 11.42

8 22.22 10.20 17.57 15.03 27.12 37.67

Table 5.28: Equal error rates for Affine Transformations – Stretching in Y-Direction test conducted on sample
image database DB3.

5.12 Affine Transformations
Shearing in Y-Direction (affineYshear)

Parameter Configurations

Table 5.29 lists the parameter configurations for the inverse transformation matrix shown
in Figure 5.34 as used for the StirMark test Shearing in Y-Direction in the experiments of
present work.

Configuration a b c d e f

1 1 0 0.05 1 0 0

2 1 0 0.10 1 0 0

3 1 0 0.15 1 0 0

4 1 0 0.20 1 0 0

5 1 0 0.25 1 0 0

6 1 0 0.30 1 0 0

Table 5.29: Configurations of the parameters of inverse transformation matrix stated in Figure 5.34 as applied in
the StirMark test Affine Transformations – Shearing in Y-Direction

Examples images for configurations 1, 4 and 6 can be found in Figure 5.43.

Results and Discussion

Regarding the results of the various fingerprint matchers in response to the perturbations
introduced into fingerprint images of the FVC databases DB1 to DB3, we can make the
following general observations:
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(a) Configuration 1 (b) Configuration 4 (c) Configuration 6

Figure 5.43: Examples for the Affine Transformations – Shearing in Y-Direction test, applied to an image from
DB1 (ID 91 2).

Overall the fingerprint matchers are surprisingly robust to the image-manipulations of the
Shearing in Y-Direction tests. When regarding the exemplary ROC plots per database, in
Figures 5.44, 5.45 and 5.44, said behavior becomes very apparent, as within each ROC
plot, despite the relatively close zoom – the ranges for FMR and FNMR in the plots are
set to [0:0.35] – the individual ROC curves representing the matching performances per
test-configurations, lie comparatively close together.

Another point that, as well, can easily be recognized in said ROC plots, but that is also
likewise obvious in the listings of equal error rates in Tables 5.30, 5.31 and 5.32, is, that
undoubtedly VeriFinger is the matcher, whose matching performance exhibits the least
negative influences by the image-perturbations caused by the Shearing in Y-Direction tests.
Not only do the EER corresponding to the various test-configurations show only a very
small difference to the respective EER for unperturbed images, but also in the ROC we
can observe three major aspects, that indicate VeriFinger’s superior matching performance
under current test conditions: For one, we can clearly see, how exceptionally little the ROC
curves for the individual test-configurations are separated from each other. The same can
then also be said about the points of ZeroFMR. Furthermore, regarding the area of FMR
> EER, we can note how comparatively faster the FNMR values in the various results for
perturbed images trend to the FNMR level related to unperturbed images, occasionally even
under-run it.

Almost the opposite of what can be said about VeriFinger’s matching performance, can be
said about the performance of the Phase Only Correlation matcher. In the Shearing in
Y-Direction tests for fingerprint images of DB1, DB2 and DB3 alike, POC clearly shows the
worst – i.e. the most influenced by the image-perturbations – results of all matchers tested.
The actual magnitude of the impairment varies from database to database, but can be as
much as three times the amount observed in the other fingerprint matchers.

DB1

As mentioned in the general comments, VeriFinger is the matcher, that is the most robust
to the perturbations introduced by the Shearing in Y-Direction in the fingerprint images
of DB1. Regarding the listing of equal error rates in Table 5.30, we find, that even for the
most effective test-configuration, number 6, the EER is only 2.44% worse, that the EER for
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unperturbed images. Taking a look at Figure 5.44c, we likewise see, that the ROC curves
produced by the matching results for test-configurations 1 to 3, lie almost on top of the
ROC curve for the original, unperturbed images. Only from configuration 4 onward, the
corresponding ROC curves lie in increasing, yet – compared to the other matcher’s plots –
small distance.

Comparing the two GrFinger configurations – GF20 and GF180 – with each other, we
find in the corresponding equal error rates, that from test-configuration 2 onwards, GF180
exhibits slightly more sensitivity to the perturbations in the fingerprint images, than GF20.
When additionally comparing the ROC plots, we find another interesting behavior: In the
area of (very) low FMR (< 7% about) and accordingly high(er) FNMR (> 13% about),
GF180 seems to be more robust than GF20 – not only are the points of ZeroFMR relatively
closer together, but in this section, the ROC curves corresponding to configurations 1 and
2 partially even indicate better results than for unperturbed images. A behavior we do not
find as articulated in the ROC plot of GF20.

bozorth3 shows a more diverse reaction to the image-manipulations of the Shearing in
Y-Direction tests: For fingerprint images of test-configurations 1 and 2 the matching results
turn out better than those for the original, unperturbed images. A glance at Table 5.30 con-
firms, that the respective equal error rates are about 1% lower than the one for unperturbed
images. For test-configuration 3 then, the matching performance is quite similar to that for
the original images, which can also be seen in Figure 5.44a, as the two corresponding ROC
curves get to lie almost on top of each other. However, with test-configuration 4 to 6 then,
the matching performance decreases comparatively fast, so that for level 6 bozorth3’s results
are the second most impaired ones. The only matcher showing worse results then, is – as
already mentioned in the general comments – the Phase Only Correlation matcher.

As for FingerCode’s matching performance in comparison to that of the other matchers,
FingerCode turns out to be surprisingly robust to the perturbations introduced in fingerprint
images of DB1. Regarding for example the listing of equal error rates in Table 5.30, we find,
that, except in test-configuration 03, the EER achieved by the FingerCode matcher for the
individual perturbation levels are permanently less distant from the respective EER for
unperturbed images, than is the case with the EER of GF20 and hence also GF180. For
test-configurations 5 and 6, FingerCode’s matching results are also clearly better, than those
of bozorth3. A behavior, that also becomes very apparent, when regarding the respective
ROC plots in Figure 5.44.

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

1 13.85 5.58 11.24 13.79 12.57 22.64

2 13.88 5.77 12.12 13.92 12.76 24.79

3 14.88 6.01 13.23 14.28 13.30 27.43

4 16.26 6.74 13.64 15.60 14.15 29.90

5 17.96 7.26 14.56 16.16 14.71 37.73

6 21.46 8.31 16.37 17.33 15.82 40.22

Table 5.30: Equal error rates for Affine Transformations – Shearing in Y-Direction test conducted on sample
image database DB1.
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Figure 5.44: Receiver operating characteristics for StirMark test Affine Transformations – Shearing in Y-Direction
on fingerprint images of DB1.

DB2

A very interesting point in the matching results of VeriFinger, GF20 and GF180 is, that
the relative impairment, caused by the perturbations in the fingerprint images, is remarkably
similar between the respective equal error rates related to the Shearing in Y-Direction tests
for DB1 and those related to the tests for DB2. In other words, regarding the listing of
equal error rates for the current tests in Table 5.31: When per matcher – VeriFinger, GF20
and GF180 – calculating the differences between the EER corresponding to the individual
test-configurations and the respective EER for unperturbed images, then we will find the
same values (±0.8%), when calculating described differences based on the equal error rates
for the DB1-related tests (see Table 5.30).

However, that does not necessarily mean, that therefore the overall matching performances
of the three matchers for fingerprint images of DB2 is identical to that for images of DB1.
For instance, when comparing the respective ROC plots for the two GrFinger configura-
tions (as representative example see the ROC plots for GF20 in Figures 5.44b and 5.45a),
we will find several small differences: In the area of (very) low FMR (< 10% about) and
accordingly high(er) FNMR (> 13% about), in the ROC plots for current tests, the ROC
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curves related to the different test-configurations are somewhat spread-out farther, than
they are in the ROC plots for the DB1-based tests, which indicates a higher influence of
the image-perturbations in current results. On the other hand, in the area of high(er) FMR
(past the EER) the respective FNMR values of the DB2 test-results trend faster towards
the FNMR-level achieved for unperturbed DB2-images, than is the case in the DB1-related
ROC plots.

Also the comparison of the ROC plots for VeriFinger’s results in the tests of DB1 and
DB2 reveals small differences: For example does it become quite obvious in the plot related
to DB1, that the points of ZeroFMR in the results for the diverse test-configurations, are
relatively farther distanced from the point of ZeroFMR in the results for unperturbed images,
than we can observe in the plot related to DB2. Another example for the differences between
the two respective ROC plots is, that in the plot related to DB1, in the area of FMR < 5%,
the ROC curves generated for the results of test-configurations 1, 2 and 3 lie notedly closer
to the ROC curve for unperturbed images than in the plot related to DB2.

Inspecting the matching results of bozorth3 for the Shearing in Y-Direction tests on images
of DB2, we find that here the perturbations in the fingerprint images have overall a higher
impact on bozorth3’s matching performance, than they have in images of DB1. In compar-
ison to the other minutiae-based matchers then, we can state, that for test-configurations
1 to 3, the impairment in the results is quite comparative to that observed in the other
matchers’ results. Yet, as was the case in the tests on DB1 images, the relative matching
performance worsens considerably for the more effective test-configurations 4 to 6. For illus-
tration: while the difference between the EER for unperturbed images and the EER related
to test-configuration 6 is only 2.26% for VeriFinger and 4.48% for GF180, this difference is
8.07% for bozorth3.

In the previous Shearing in Y-Direction tests on images of DB1 the FingerCode matcher
exhibits a surprisingly high robustness to the perturbations in the fingerprint images. For
images of DB2 on the other hand, the negative influence caused by the image-perturbations
is clearly noticeable in the respective matching results. This behavior becomes most ap-
parent, when regarding the corresponding ROC plot in Figure 5.45d: As is very obvious,
the ROC curves relating to the various test-configurations lie clearly above the ROC curve
representing FingerCode’s matching performance for the original, unperturbed fingerprint
images of DB2. A very interesting observation though is, that for test-configurations 1 to 4
the individual ROC curves for the perturbed images lie comparatively close together, which
is especially true for the area of FMR > 12%. Also the ROC curves related to the most
effective test-configurations, 5 and 6, gradually trend towards said set of ROC curves for the
lesser perturbed images and from a FMR of about > 27% onwards, even fall together with
it. So in this regard one might almost say, that after an initial level of deterioration in the
results, introduced already by test-configuration 1, an increase in the tests’s effectiveness
only brings minor additional impairment.

When comparing FingerCode’s matching results in current tests on fingerprint images of
DB2, to those of the minutiae-based matchers, we have to state, that here now both GrFinger
configurations clearly outperform the FingerCode matcher. However, regarding bozorth3’s
results, we find, that the FingerCode matcher once again turns out to be comparatively less
influenced by perturbations of the two highest intensity levels (test-configurations 5 and 6).

Inspecting the matching performance of the Phase Only Correlation matcher in current
Shearing in Y-Direction tests for fingerprint images of DB2, we find that the perturbations
created by test-configurations 1 to 4 lead to a relative aggravation of the matching results,
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(d) FingerCode matcher

Figure 5.45: Receiver operating characteristics for StirMark test Affine Transformations – Shearing in Y-Direction
on fingerprint images of DB2.

when compared with POC’s performance in the previous tests on images of DB1. For il-
lustration we can regard the listing of equal error rates in Table 5.31: While in the case of
DB1, the EER in the results for test-configuration 1 is quasi equal with the EER generated
for unperturbed image, in case of DB2 we already find a difference of 1.54%. This perfor-
mance gap then widens with increasing level of effectiveness of the test-configuration, so
that in the respective EER values for configuration 4 we find a difference to the respective
EER value for unperturbed images of “only” 7.31% in case of DB1 images, but already of
11.58% in case of DB2-images. However, comparing the matching performances for the two
most-effective test-configurations, 5 and 6, we discover, that the opposite is true: Here for
fingerprint images of DB2 the perturbation’s influence is comparatively less than we witness
it for images of DB1. Accordingly also the corresponding EER in the results for DB2 are
0.47% and 1.13% less distant from the respective EER for unperturbed images.

DB3

Of all the matchers regarded, VeriFinger shows once again the least sensibility to the
perturbations introduced by the Shearing in Y-Direction tests into the fingerprint images
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Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

1 11.07 5.27 12.18 13.26 12.19 11.23

2 11.38 4.98 11.91 13.57 12.39 14.26

3 11.92 5.55 12.77 13.95 12.77 17.84

4 13.70 6.04 13.83 14.74 13.22 21.27

5 16.35 6.24 14.16 15.53 14.39 24.35

6 19.20 7.27 16.56 17.04 15.74 26.19

Table 5.31: Equal error rates for Affine Transformations – Shearing in Y-Direction test conducted on sample
image database DB2.

of DB3. When further comparing VeriFinger’s matching performance in current tests with
that exhibited in the tests for DB1 and DB2 we see, that in the matching results for images
of DB3 the negative influence of the image-perturbations is the least apparent. Inspecting
VeriFinger’s equal error rates in Table 5.32, we find, that for test-configurations 1 to 3 the
corresponding EER even lie slightly below that for the original, unperturbed images. For the
most effective test-configuration, number 6, the distance between the corresponding EER
and the EER for unperturbed images is just 1.44%.

Like for VeriFinger, also the results of both GrFinger configurations, GF20 and GF180, for
the current tests on images of DB3 exhibit clearly less impact by the perturbations in the
fingerprint images, than is the case in the previous tests for DB1 and DB2. When comparing
the corresponding ROC plots, it becomes very apparent, that in the plots related to cur-
rent tests, the ROC curves representing the results for the individual test-configurations lie
notedly closer to the ROC curve for unperturbed images, than they do in the plots related
to the tests on DB1 and DB2 images (see also Figure 5.46b in comparison to Figures 5.44b
and 5.45b). Also the corresponding equal error rates in Table 5.32 support this observations.
Further we can find, that for fingerprint images of DB3, GrFinger produces better matching
results for test-configuration 1 than for the original, unperturbed images.

The behavior of bozorth3 in current tests is somewhat contrary to that of the other
minutiae-based matchers: judging by the listing of equal error rates in Table 5.32, the intro-
duction of the perturbations created by the Shearing in Y-Direction tests, into fingerprint
images of DB3, causes a stronger deterioration in the matching results, than we observe in
the tests for fingerprint images of DB1 or DB2. Still, one aspect where bozorth3’s matching
performance in current tests is superior to that exhibited in the test for DB1 and DB2,
becomes apparent, when regarding the ROC plot in Figure 5.46a: In the area of high(er)
FMR (> 20%) the FNMR of all test-results trend clearly faster towards the FNMR levels
achieved for the original, unperturbed images, than we can observe it in the corresponding
plot of the previous tests (see Figures 5.44a and 5.45a).

As was the case in the tests for fingerprint images of DB2, the matching results of the non-
minutiae-based matchers for the current tests on images of DB3 generally exhibit a stronger
influence of the Shearing in Y-Direction perturbations, than the results of the minutiae-
based matchers. However, and also in line with the previous observations for images of
databases DB1 and DB2, the FingerCode matcher once more shows a higher robustness to
the perturbations introduced by the two most effective test-configurations, 5 and 6, than does
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(d) FingerCode matcher

Figure 5.46: Receiver operating characteristics for StirMark test Affine Transformations – Shearing in Y-Direction
on fingerprint images of DB3.

the bozorth3 matcher. Not only are the corresponding EER in FingerCode’s matching results
less different from the respective EER related to the unperturbed fingerprint images (please
refer to Table 5.32 for details), but also a glance at the ROC plots in Figure 5.46 reveals,
that FingerCode’s ROC curves, displaying the matching performance for test-configurations
5 and 6, trend faster towards the FNMR levels achieved for unperturbed images, than do
the corresponding ROC curves of bozorth3.

The Phase Only Correlation matcher, on the other hand, is once more the matcher with
the highest sensitivity to the perturbations, with its results for DB3-images displaying an
even stronger impairment, than is the case for images of DB1 or DB2.
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Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

1 7.13 3.27 6.20 5.22 9.67 16.30

2 7.47 3.42 7.09 5.80 10.03 20.30

3 8.03 3.37 7.06 5.80 10.80 25.21

4 8.62 4.05 7.88 6.27 12.09 30.02

5 11.07 4.85 8.26 6.46 13.51 35.73

6 14.56 5.04 9.64 8.43 15.59 37.97

Table 5.32: Equal error rates for Affine Transformations – Shearing in Y-Direction test conducted on sample
image database DB3.

5.13 Affine Transformations
Shearing in X- and Y-Direction (affineXYshear)

Parameter Configurations

Table 5.33 lists the parameter configurations for the inverse transformation matrix shown in
Figure 5.34 as used for the StirMark test Shearing in X- and Y-Direction in the experiments
of present work.

Configuration a b c d e f

1 1 0.05 0.05 1 0 0

2 1 0.10 0.10 1 0 0

3 1 0.15 0.15 1 0 0

4 1 0.20 0.20 1 0 0

5 1 0.25 0.25 1 0 0

6 1 0.30 0.30 1 0 0

Table 5.33: Configurations of the parameters of inverse transformation matrix stated in Figure 5.34 as applied in
the StirMark test Affine Transformations – Shearing in X- and Y-Direction

Examples images for configurations 1, 4 and 6 can be found in Figure 5.47.

Results and Discussion

As expected, the combination of the two image-manipulations Shearing in X-Direction and
Shearing in Y-Direction leads to a clearly stronger deteriorating effect on the matching
performances of the individual fingerprint matchers regarded, than the application of, for
example, just the Shearing in Y-Direction manipulation alone, as in the previously discussed
StirMark-test.
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(a) Configuration 1 (b) Configuration 4 (c) Configuration 6

Figure 5.47: Examples for the Affine Transformations – Shearing in X- and Y-Direction test, applied to an image
from DB1 (ID 91 2).

DB1

Regarding the matching performance of matcher bozorth3 in response to the perturba-
tions of tests Shearing in X- and Y-Direction in fingerprint images of DB1, we can make the
following statements: For test-configuration 1, the StirMark test does not have any note-
worthy influence on bozorth3’s matching results: In the ROC plot in Figure 5.48a, we find,
that the ROC curve corresponding to test-configuration 1 lies almost on top of the ROC
curve representing the matching results for the original, unperturbed images of DB1 – in the
area around the equal error rate, even slightly below. For test-configuration 2, the negative
effect of the image-perturbations on bozorth3’s performance is already clearly detectable,
as not only the corresponding ROC curve in the ROC plot lies decidedly above that for
unperturbed image, but also as the corresponding equal error rate rises from 14.56% to
17.44%. From test-configuration 3 onward then, the test results of bozorth3 show a stronger
impairment, than the results of any other regarded fingerprint matcher but the Phase Only
Correlation matcher. Inspecting the listing of equal error rates in Table 5.34, we can find
for example, that for test-configuration 3 bozorth3’s EER is already 7.56% higher than it’s
EER for unperturbed images, while for the second most impaired minutiae-based fingerprint
matcher, GF180, this difference is only 5.75%.

When comparing both GrFinger configurations, GF20 and GF180, in regard to the amount
of influence the perturbations, introduced by the Shearing in X- and Y-Direction tests into
the fingerprint images of DB1, have on the individual matching performances, we find, that
throughout all test-configurations, GF20 clearly outperforms GF180. This behavior becomes
most apparent, when comparing the corresponding ROC plots, as in case of GF20 all the
ROC curves related to the various test-configurations lie clearly closer to the ROC curve for
unperturbed images than the do in the plot for GF180. The listing or equal error rates in
Table 5.34 likewise supports the observation: Already for test-configuration 1 the EER for
GF180 is 0.63% more different from the respective EER for unperturbed images, than is the
case for GF20. And this gap in performance even grows with increasing effectiveness of the
test-configuration, so that finally, for configuration 6, the relative impairment in the EER
for GF180 is 8.16% higher than that in the EER for GF20.

The VeriFinger matcher demonstrates a somewhat more diverse reaction to the perturba-
tions in fingerprint images of DB1: Not only in the ROC plot in Figure 5.48c, but also when
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regarding the respective equal error rates in Table 5.34 we find, that for test-configurations 2
to 4, of all the matchers regarded, VeriFinger exhibits the least impairment in its matching
results. For test-configurations 5 and 6 though, VeriFinger’s matching performance dete-
riorates considerable, so that in terms of robustness to the image-perturbations, it falls
behind both GrFinger Configurations and FingerCode. For illustration let us regard the
listing of equal error rates and compare the differences between the EER corresponding
to specific test-configurations and the respective EER for unperturbed images: Looking at
test-configuration 4, VeriFinger’s EER here is 5.69% different from its EER for unperturbed
images. For GF20 this difference is 5.82%, for FingerCode 7.44% and for GF180 it is even
10.41%. Now turning to test-configuration 6, the situation changes as described above and
accordingly said difference values get 23.19% for VeriFinger, while only 14.54% for GF20,
16.43% for FingerCode and 22.71% for GF180.

As already indicated in the previous paragraphs, the FingerCode matcher turns out to
be surprisingly robust to the perturbations introduced into the fingerprint images of DB1
by the Shearing in X- and Y-Direction tests. Based on the equal error rates in Table 5.34,
and backed up by a comparison of the corresponding ROC plots (please refer to Figure
5.48), we can determine, that the only fingerprint matcher that exhibits less influence in
its results, over the whole range of test-configurations, is GF20. On the other hand, as
stated before, bozorth3’s and VeriFinger’s matching performances appear only in the first
two, respectively first four levels of perturbation intensity less impaired, than FingerCode’s
performance. The two remaining fingerprint matchers, GF180 and Phase Only Correlation,
then produce clearly stronger influenced matching results in all regarded test-configurations.

The Phase Only Correlation matcher is decidedly the one matcher, exhibiting the highest
sensitivity to the Shearing in X- and Y-Direction perturbations introduced in the finger-
print images of DB1. The related ROC plot shows, that the ROC curves, corresponding to
the individual test-configurations, are undoubtedly farther distant from the ROC curve for
unperturbed images, than is the case in the ROC plot of any of the other matchers. Accord-
ingly also the equal error rates in Table 5.34 show, that the relative distances between the
EER achieved for the original, unperturbed images and the EER related to the individual
test-configurations are constantly the higher than those in the results of the other matchers.

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

1 14.56 6.15 12.13 13.71 13.22 24.92

2 17.44 6.57 14.24 15.17 14.34 29.98

3 22.38 8.94 17.15 16.76 16.52 34.37

4 30.14 11.57 21.82 19.42 19.97 45.31

5 37.21 19.44 28.46 24.30 24.37 49.96

6 40.71 29.06 34.11 28.15 28.97 52.82

Table 5.34: Equal error rates for Affine Transformations – Shearing in X- and Y-Direction test conducted on
sample image database DB1.
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Figure 5.48: Receiver operating characteristics for StirMark test Affine Transformations – Shearing in X- and
Y-Direction on fingerprint images of DB1.

DB2

The reaction of bozorth3, when the perturbations created by the Shearing in X- and
Y-Direction tests are introduced into fingerprint images of DB2, resembles largely that, ex-
hibited by bozorth3 in the tests for images of DB1: For test-configuration 1, the influence of
the perturbations is barely noticeable in the matching results and also the calculated equal
error rate is quasi similar to that established in the results for unperturbed images of DB2.
However, for test-configurations 2 to 6, bozorth3’s matching performance is decidedly af-
fected by the image-perturbations. An inspection of the equal error rates listed in Table 5.35
reveals, that for test-configurations 2 to 6 bozorth3 is subject to the strongest impairment
among all minutiae-based matcher and from test-configuration 3 on, is also outperformed
by the FingerCode matcher. A comparison of the ROC plots in Figure 5.49 supports this
observation.

Regarding both GrFinger configurations, GF20 and GF180, and comparing their respective
matching results for current tests with those, generated during the previous set of tests on
fingerprint images of DB1, we can state, that GF20 generally shows a somewhat higher
sensitivity to the perturbations in images of DB2, while in contrast GF180 appears less
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affected, than it was in the tests for DB1. Still, when regarding the listing of equal error rates
in Table 5.35, we can see clearly, that also in current tests GF20 clearly outperforms GF180.
For example the difference between the EER in the matching results for test-configuration
1 and the EER for the unperturbed images is 1.12% for GF180 and only 0.90% for GF20.
Per more-effective test configuration again also the manifestations of the negative influences
increase faster in GF180’s matching results than in GF20’s results. For configuration 6 finally,
we find, that GF180’s EER is 19.84% higher that its EER for unperturbed images, while for
GF20 this difference is only 15.53%.

The VeriFinger matcher behaves in the tests for fingerprint images of DB2 very much like
it did in the previous tests for images of DB1. In the results for the test-configurations 4 to 6
though, we see a certain improvement – i.e. a higher robustness to the introduced perturba-
tions – compared to the results for DB1-images. Due to this improvement, when comparing
the matching performances of the individual fingerprint matchers for current Shearing in
X- and Y-Direction tests on images of DB2, VeriFinger now exhibits the least impaired
results of all matchers for the test-configurations 2 to 5 (while for images of DB1 this was
“only” the case for configurations 2 to 4). Moving from configuration 5 to configuration 6
thought, VeriFinger’s matching performance, once again, degrades essentially – the corre-
sponding equal error rate dropping from 11.30% to 21.66% – revealing a higher sensitivity
to the image-perturbations in this test-configuration, than both GrFinger configurations or
the FingerCode matcher.

When regarding the listing of equal error rates in Table 5.35 and comparing FingerCode’s
overall matching performance, in response to the perturbations introduced into the finger-
print images of DB2, to that of the other fingerprint matchers tested, we find already for
test-configuration 1, a degradation of 2.78%, which, at this level of test effectiveness, is
only surpassed by a degradation of 4.43% in case of the Phase Only Correlation matcher.
Also at the next level of perturbation intensity the results of the FingerCode matcher are
still more impaired than those of the minutiae-based fingerprint matchers. However, from
test-configuration 3 on, the bozorth3 matcher turns out to be clearly more influenced by
the perturbations in the fingerprint images, than the FingerCode matcher. Further for the
most effective test-level, configuration 6, as said before, FingerCode then even manages to
outperform the VeriFinger matcher: Regarding the listing of equal error rates again and
calculating the differences between the EER in the respective results for test-configuration
6 and the corresponding EER achieved for the original, unperturbed images, we witness
an aggravation of 20.33% for FingerCode, of 22.09% for VeriFinger and even 26.80% for
bozorth3.

Also in the Shearing in X- and Y-Direction tests on images of DB2 the Phase Only Cor-
relation matcher displays overall the strongest impaired matching results of all fingerprint
matchers regarded in the experiments. However, when comparing the matching performances
for the various perturbation intensities in present tests for images of DB2 with those ex-
hibited in the previous tests on fingerprint images of DB1, we can make an interesting
observation: Regarding the particular listings of equal error rates in Tables 5.34 (DB1) and
5.35 (DB2), we find, that for the first three test-configurations, 1 to 3, in present tests on
DB2-images the matching performance deteriorates clearly faster than it does for images of
DB1. Yet for the higher effective test-configurations, 4 to 6, the opposite is true, as here the
perturbations, introduced in images of DB1, clearly have a stronger negative influence on
the matching results, than when they are introduced in the fingerprint images of DB2.
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Figure 5.49: Receiver operating characteristics for StirMark test Affine Transformations – Shearing in X- and
Y-Direction on fingerprint images of DB2.

DB3

Regarding the results for the Shearing in X- and Y-Direction tests on fingerprint images
of DB3 and comparing the individual matching performances of the examined fingerprint

Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

1 11.18 5.29 12.85 13.79 12.37 14.12

2 14.75 6.53 14.09 14.22 13.85 21.40

3 19.26 8.10 16.85 16.58 16.06 28.08

4 27.97 10.45 21.57 20.25 20.10 30.72

5 32.85 16.31 26.00 24.24 24.20 34.03

6 37.92 26.67 31.56 28.42 29.93 36.96

Table 5.35: Equal error rates for Affine Transformations – Shearing in X- and Y-Direction test conducted on
sample image database DB2.
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matchers with each other, we find a general behavior, that is largely comparable to the one
observed in the previous tests for images of DB2:

The GrFinger configuration GF20 exhibits notedly less influence by the perturbations in
the fingerprint images, than the configuration GF180. It is worth noting though, that for
test-configuration 1, GF20 and GF180 both manage to produce matching results that are
(very) slightly better than those generated for unperturbed images and here GF180 is able
to reduce the EER by 0.41%, while GF20 “only” by 0.26%. Overall, comparing GrFinger’s
matching performance relating to fingerprint images of DB3 to that presented so far, for
images of DB1 and DB2, GF180 clearly produces the least impaired results for DB3, while
for GF20 a likewise clear statement can not be made (For further details please refer to the
respective equal error rates in Tables 5.34, 5.35 and 5.36).

Of all fingerprint matchers regarded in current tests, VeriFinger’s matching performance
is, once again, the most robust to the negative influences by the perturbations in the fin-
gerprint images of DB3 – apart from two exceptions: For one, for test-configuration 2 GF20
manages to produce mildly less impaired results. But second and more significant, for test-
configuration 6, the results are impaired as such, that here both GrFinger configurations,
GF20 and GF180, exhibit a better performance at this level of test-effectiveness. However,
contrary to the observations in the previous tests on images of DB1 and DB2, the FingerCode
matcher no longer manages, to outperform the VeriFinger matcher at this highest level of
perturbation intensity. The described behavior becomes not only apparent, when inspecting
the corresponding equal error rates in Table 5.36, but is especially obvious when comparing
the related ROC plots in Figures 5.50b, 5.50c and 5.50d.

Among the set of minutiae-based fingerprint matchers, bozorth3 is, the most sensitive to
the perturbations in fingerprint images of DB3, which – and this is a difference to bozorth3’s
behavior for the perturbed images of DB2 – is also true for the results for test-configuration
1. When further comparing bozorth3’s matching performance in regard to all three image
databases DB1 to DB3, we can state that for images of DB1 the perturbations generated
by the Shearing in X- and Y-Direction tests have the least impact on the results and for
images of DB3 the strongest. An observation that can be verified in the corresponding equal
error rates and the related ROC plots alike.

As was the case in the previous tests for fingerprint images of DB2, also here, in current
test for images of DB3, FingerCode’s matching results are strongly impaired by the per-
turbations introduced in the fingerprint images. For test-configurations 1 and 2 the extend
of the negative influence on the matching results of FingerCode is larger than witnessed in
the results of any minutiae-based fingerprint matcher. From test-configuration 3 on thought,
bozorth3 turns out to be more influenced by the perturbations than the FingerCode matcher
– a behavior that basically falls in line with the observations made in the results for the
previous tests on the fingerprint image databases DB1 and DB2. For illustration we can
once again consider the differences between the respective EER achieved for the original,
unperturbed images and the EER in the results for the individual test-configurations: Re-
grading for example configuration 3, we find, that for FingerCode said difference is 7.13%,
while for bozorth3 it amounts already to 8.19%. At the highest perturbation level, in test-
configuration 6, the discrepancy in the individual susceptibility to the influences of the
perturbations becomes even more noticeable, as the differences then amount to 16.43% for
FingerCode and 25.90% for bozorth3.

The Phase Only Correlation matcher is once more the matcher displaying clearly the
strongest impaired results in all Shearing in X- and Y-Direction tests on images of DB3.
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Figure 5.50: Receiver operating characteristics for StirMark test Affine Transformations – Shearing in X- and
Y-Direction on fingerprint images of DB3.

Regarding the listing of equal error rates in Table 5.36, we can establish, that already for
test-configuration 1 POC’s EER shows a difference to the EER for unperturbed images, that
most other matchers do not even reach at test-configuration 3. Comparing POC’s matching
performance in the previous tests for fingerprint images of databases DB1 and DB2 to that,
exhibited in current tests then, we can state, that the results for the tests on DB3 are
stronger impaired by the image-perturbations, than the results of both previous tests for
fingerprint images of DB1 and DB2.

5.14 Small Random Distortions (rnddist)

This constitutes the StirMark test. It is a combination of the aforementioned basic image
manipulations and aims “in its simplest version” [27] to simulate a resampling process. In
other words it generates perturbations, that typically appear when printing an image and
thereafter scanning it again.

The image manipulation happens in the following four consecutive processing steps (more
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Configuration bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

1 7.56 3.48 6.49 5.56 10.14 20.83

2 9.41 4.01 7.57 6.03 11.96 29.82

3 14.87 5.10 10.25 8.25 16.11 35.88

4 22.39 8.24 14.88 11.86 22.72 43.52

5 29.65 14.74 19.95 17.50 29.65 45.85

6 34.71 28.06 27.61 23.41 36.70 48.96

Table 5.36: Equal error rates for Affine Transformations – Shearing in X- and Y-Direction test conducted on
sample image database DB3.

detailed information can be found in [27], here I just present an excerpt to facilitate under-
standing of the influence the StirMark test has on fingerprint images):

1. Minor geometric distortions – The images are (slightly) stretched, sheared, shifted
and/or rotated by a random amount, followed by a resampling applying bi-linear or
Nyquist interpolation. The distortion itself is determined by the function: M = α[βA+
(1 − β)D] + (1 − α)[βB + (1 − β)C], where A, B, C, D are the corners of the image,
M is a point, whose location is to be distorted and 0 ≤ α, β ≤ 1 are the coordinates of
M, relative to the corners.

2. Transfer function – A not otherwise specified transfer function, aimed to emulate
analog/digital converter imperfections, introduces a small and smoothly distributed
error into each image value.

3. Global “Bending” – A (slight) deviation is applied to each pixel, which is greatest at
the center of the image and decreasing towards the boarders.

4. Higher Frequency Displacement – Additional displacement of the image values is per-
formed, based on the function λ sin(ωxx) sin(ωyy) + n(x, y), with n being a random
number.

5. JPEG compression – As final step a medium JPEG compression is applied to the
image.

Relation to Fingerprints

In its character of being a combination of several different image distortions, by applying
the StirMark test on fingerprint images, I aim to simulate an interaction of various naturally
occurring image perturbations: Foremost a random warping of the ridge lines, that in real
life would for example be caused by unevenly distributed pressure exercised on the contact
area during acquisition, or if this contact area were to be uneven by itself. Also inaccuracies,
errors introduced by the fingerprint scanner can be a source for this type of deformation
(two corresponding examples are shown in Figure 5.51).
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Figure 5.51: Two examples for warping effects in fingerprint images. In this case introduced by the fingerprint
scanner.

As is stated in above listing of the StirMark internal processing steps, said image-warping
will be performed both on a global, as well as on a very local level, adding even more to the
“natural”, “coincidental” character of the output fingerprint images.

Parameter Configurations

The intensity of the StirMark perturbations can be adjusted via a single parameter. As the
corresponding source code reveals, “the attack parameter is simply a factor that multiplies
the default parameters”. In the experiments of present work, we will be applying the Small
Random Distortions test with following set of parameter values: {0.6, 1.0, 1.4, 1.8, 2.2, 2.6,
3.0, 3.4, 3.8, 4.2} and the limited number of tests, run on the non-minutiae-based fingerprint
matchers, cover the set {0.6, 1.0, 1.8, 2.6, 3.4, 4.2}. Figure 5.52 shows examples generated
for parameter values 0.6, 2.6 and 4.2.

(a) rnddist 0.6 (b) rnddist 2.6 (c) rnddist 4.2

Figure 5.52: Examples for the Small Random Distortions test, applied to an image from DB1 (ID 91 2).

For values < 0.6 the influence of the attack is barely noticeable. On the other hand, when the
parameter is set to values > 4.2, the distortions reach a level, that will hardly be found in any
real-life fingerprint applications. One effect in particular that causes a decidedly “unnatural”
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appearance in the fingerprint images, is, that for high parameter values the ridge lines
adopt a periodic, wave-shaped structure. This behavior seems to be a manifestation of the
employed sine-functions in the processing steps “Global Bending” and “Higher Frequency
Displacement”. Said wave-structure can partially already be witnessed for parameter value
4.2 – see Figure 5.52c for a corresponding example.

Results and Discussion

Overall, when regarding the influences of the StirMark tests, Small Random Distortions, on
the matching performances of the individual fingerprint matchers, we can establish, that for
all three databases, DB1 to DB3, the perturbations, which are introduced into the finger-
print images, have only a very limited negative impact on the respective matching results.
In fact, for some matchers certain perturbation-levels even lead to an improved matching
performance, in comparison to the results achieved for the original, unperturbed fingerprint
images.

DB1

Of all the fingerprint matchers regarded, VeriFinger is clearly the one matcher, whose
results are the least influenced by the perturbations, introduced into fingerprint images of
DB1 in course of current Small Random Distortions tests. Inspecting the listing of equal error
rates in Table 5.37, we find, that in VeriFinger’s results, the maximum difference between
an EER related to a test on perturbed images and the EER for unperturbed images, is only
1.33%. Further we can also note, that for test-levels 0.6 to 1.8 the matching results turn out
to be better, than those generated for unperturbed images. When regarding the according
ROC plot in Figure 5.53c, we can observe this behavior in particular in the area of FMR
greater than the respective EER.

The response of the bozorth3 matcher to the perturbations, introduced in the fingerprint
images of DB1, is in so far very interesting, as the matching results for the first six test-levels,
rnddist 0.6 to 2.6, are considerably better, than the matching results for unperturbed images.
Regarding Table 5.37, we can establish, that the EER in the results for rnddist 0.6 to 2.6
are up to 1.15% lower than the EER relating to the original fingerprint images. Accordingly,
when referring to the ROC plot in Figure 5.53a, we find the ROC curves corresponding to
the first six test-levels to lie notedly below the ROC curve portraying bozorth3’s matching
performance for unperturbed images of DB1.

Comparing the matching performances of both employed GrFinger configurations, GF20
and GF180, in regard to their individual sensitivity to the image manipulations by current
Small Random Distortions tests, we can state, that in all cases but rnddist 0.6, the matching
results of GF20 are clearly less influenced, than those of GF180. This becomes for example
very apparent, when examining the respective equal error rates in Table 5.37 and calculating
per GrFinger matcher, how far the EER related to the individual test-levels are separated
from the EER for unperturbed images. For GF180 this difference value is in average 1.05%
higher than for GF20.

When evaluating GF20’s and GF180’s matching performance relative to the other two
minutiae-based fingerprint matchers, it becomes obvious, that overall GF180 is the minutiae-
based matcher exhibiting the highest sensitivity to the perturbations in fingerprint images
of DB1. As for GF20, it depends on the individual level of test-effectiveness, if the results
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of GF20 are more impaired than those of bozorth3 or VeriFinger – no simple, clear verdict
can be found here (for details, please refer to the listing of equal error rates in Table 5.37).

Turning to the non-minutiae-based fingerprint matchers, we find for example, that the
FingerCode matcher exhibits a rather interesting reaction to the perturbations introduced
into the fingerprint images of DB1: Already with the first and least-effective test, rnddist
0.6, the EER rises from originally 12.54% for the unperturbed images to 13.60% (a difference
of 1.06%). However, for the following three tests-levels of the reduced set of tests performed
on the non-minutiae-based matchers, rnddist 1.0, 1.8 and 2.6, the increased extend of the
image-perturbations does not seem to have an accordingly larger effect on FingerCode’s
matching performance, as the corresponding EER values stay relatively constant: 13.58%,
13.67% and 13.79% respectively. Only for the two higher effective test-levels, rnddist 3.4 and
4.2, then, the matching performance gradually decrease again. The ROC plot in Figure 5.53d
supports this observation: We can see, how – especially for FMR > 10% about – the ROC
curves, corresponding to the four least effective levels of the Small Random Distortions tests
conducted on the FingerCode matcher, lie very close to each other and in a certain, almost
fixed distance to the ROC curve representing the matching performance for unperturbed
images of DB1. The ROC curves corresponding to tests rnddist 3.4 and 4.2 though, each lie
clearly separated from the other curves.

When comparing the matching results of the FingerCode matcher in current tests, to the
results of the minutiae-based fingerprint matchers regarded, we can generally state, that
the FingerCode matcher shows clearly a higher sensitivity to the Small Random Distortions
perturbations in the fingerprint images. The only two exceptions are, that in the tests rnddist
2.6 and rnddist 4.2 FingerCode manages, to appear more robust than GF180. For illustration
we can refer to the listing of equal error rates in Table 5.37: When calculating the differences
between the EER in the results for the individual test-levels and the corresponding EER
for the original, unperturbed images, we find, that in FingerCode’s results for tests rnddist
2.6 and rnddist 4.2 said differences are lower by 0.46% and 0.75% respectively, than those
in GF180’s results.

Also the Phase Only Correlation matcher displays a somewhat unexpected matching
performance in the Small Random Distortions tests of the reduced test-set. For tests rnddist
0.6 and 1.0, the generated matching results are notedly better than the results POC originally
achieves for the unperturbed images of DB1: The equal error rates relating to said tests are
1.03% and 1.14% lower than the EER for the unperturbed images (see Table 5.37 for details).
Accordingly also the POC matcher’s ROC plot shows, that the ROC curves corresponding
to rnddist 0.6 and 1.0 lie clearly below the ROC curve for the original database images.

For the tests rnddist 1.8 and 2.6 then, the equal error rates exhibit a certain deterioration in
the matching results – almost neglectable for rnddist 1.8, already larger for rnddist 2.6 (the
difference between the EER related to test rnddist 2.6 and the EER for unperturbed images
amounts to 1.28%). Yet an interesting behavior of the Phase Only Correlation matcher in
regard to these medium-effective test configurations is revealed, when inspecting the ROC
plot again: In the area of FMR < 23% the ROC curves representing the matching results
for rnddist 1.8 and 2.6 lie clearly above the ROC curve which indicates the POC’s matching
performance for unperturbed DB1-images. However, at a FMR of about 23%, the ROC
curve for rnddist 1.8 falls below the curve for the unperturbed images and trends further
downward, until a FMR of 39% about, from which point on the ROC curve for rnddist 1.8
nearly falls into line with the curves for the two less effective test-configurations, rnddist 0.6
and 1.0. In addition, at quasi the same level of FMR, also the ROC curve for rnddist 2.6
falls below that for unperturbed images and stays there, until we finally reach the point of
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Figure 5.53: Receiver operating characteristics for the StirMark test Small Random Distortions on fingerprint
images of DB1. (Plots apply a logarithmic scale. Ranges are set to FMR [1%,70%] and FNMR [1%,40%]).

100% FMR and 0% FNMR.

Turning to the two most-effective test-levels within the reduced set of Small Random Distor-
tions tests, rnddist 3.4 and 4.2, we can make another interesting observation in the results
of the Phase Only Correlation matcher: From rnddist 2.6 to rnddist 3.4 we witness a rather
drastic drop in the matcher’s performance – the equal error rates differ by 6.52% – while
the gap between rnddist 3.4 and rnddist 4.2 again is comparatively small, with a relative
deterioration of the respective equal error rate by “only” 1.75%.

DB2

When comparing VeriFinger’s matching performance in current Small Random Distortions
tests on fingerprint images of DB2 with its performance in previous tests on images of DB1,
we can note a slight aggravation in the overall matching results: For example, in Table 5.38
we find, that the equal error rates related to the individual levels of test-effectiveness are in
average 0.50% farther distant from the equal error rate for unperturbed DB2-images, than
they are in case of DB1-images. However, in comparison to the other fingerprint matchers
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Factor bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

0.6 13.69 5.71 11.18 13.40 13.60 21.57

1.0 13.67 5.72 11.87 13.00 13.58 21.45

1.4 13.82 5.77 12.04 13.74

1.8 13.76 5.82 12.03 13.46 13.67 22.64

2.2 14.42 6.06 12.76 14.13

2.6 14.31 6.03 13.12 14.20 13.79 23.88

3.0 15.06 6.26 13.24 14.16

3.4 15.20 6.73 13.49 13.97 14.75 30.40

3.8 16.66 6.85 14.23 14.78

4.2 16.67 7.21 14.85 15.48 15.24 32.14

Table 5.37: Equal error rates for Small Random Distortions test conducted on sample image database DB1.

regarded in current tests, VeriFinger is still the one matcher, whose matching results are, in
general the, the least influenced by the perturbations introduced in the fingerprint images
during the tests.

Like the VeriFinger matcher, also the bozorth3 matcher exhibits a deteriorated matching
performance, when working on the perturbed fingerprint images of DB2. While in the tests
for DB1, the matching results of the first six levels of test-effectiveness are better even, than
the results for unperturbed images, in case of DB2-related tests, the same can only be said
for the weakest test, rnddist 0.6. Overall – and this point, as well, is different to bozorth3’s
behavior in the previous tests – we can observe, that with increasing effectiveness of the
applied Small Random Distortions tests, also the matching results aggravate accordingly.
The ROC plot in Figure 5.54a clearly illustrates this observation, as does the corresponding
listing of equal error rates in Table 5.38. Another aspect, that we can find when regarding
the equal error rates, is, that for the lower test-levels, up until and including rnddist 2.2,
bozorth3 shows a higher robustness to the image perturbations in DB2-images, than both
GrFinger configurations, GF20 and GF180. For test-levels rnddist 2.6 to 3.8 then, the match-
ing performances of GrFinger and bozorth3 are quite comparable. For the highest test-level,
rnddist 4.2, though, bozorth3’s matching results exhibit clearly the strongest impairment of
all minutiae-based matchers’ respective results.

Inspecting the matching results of the GrFinger matcher, we can establish also for the
Small Random Distortions tests on images of DB2, that GF180 once again shows a higher
sensitivity to the perturbations introduced in the fingerprint images, than GF20. However,
the respective differences to the relative impairments found in the test-results of GF20
are not as distinct anymore. This correlates to the fact, that in comparison to the results
achieved in previous tests for DB1-images, the current matching performance of GF20 is
clearly deteriorated, while in case of GF180 only 5 of 10 test-results for DB2-images are
relatively stronger impaired, than the corresponding results for images of DB1.

For images of DB2 now, we can decidedly state, that both non-minutiae-based fingerprint
matchers, FingerCode and Phase Only Correlation, are more sensitive to the perturbations
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of the Small Random Distortions tests, than any of the minutiae-based fingerprint matchers
– at least this is true for the reduced set of tests conducted on the non-minutiae-based
matchers, even though the matcher’s results so far suggest a rather similar behavior for the
remaining levels of test-effectiveness.

The overall reaction of the FingerCode matcher to the perturbations in fingerprint images
of DB2, generated by the Small Random Distortions tests, is very much comparable to its
reaction in the previous tests on DB1-images: Already at the first test-level, rnddist 0.6, we
can witness a relatively strong impairment in the matching results – a glance at Table 5.38
reveals, that the EER for rnddist 0.6 is already 2.82% higher, than the EER in the results
for unperturbed images. Any further increase in the tests’ effectiveness though, causes only
a comparatively small additional aggravation in the respective test results. Aside from the
listing of EER, the described behavior can also be observed in Figure 5.54d, where we can
see, how comparatively close the ROC curves corresponding to the individual test-levels are
to each other (especially in the area of FMR > 15% about), yet how clearly this group of
curves is separated from the ROC curve representing the FingerCode’s matching results for
the original, unperturbed DB2-images. Inspecting the developing of the individual curves
more closely, we can also make a further, quite interesting observation in FingerCode’s ROC
plot: In the area of FMR < 20% about, the curves portrait the expected behavior, that
with each increasing level of perturbation-intensity in the fingerprint images, the matching
performance gradually deteriorates, while from a FMR of about 20% onwards, it turns out,
that FingerCode produces obviously lower FNMR for the higher effective test-levels rnddist
2.6 to 4.2, than it does for the lesser effective levels rnddist 0.6 to 1.8.

Comparing now the Phase Only Correlation matcher’s performance on the perturbed
images of current tests to that of FingerCode, the respective ROC plots as well as the
related equal error rates in Table 5.38 depict the following situation: For tests rnddist 0.6
and 1.0, POC’s matching results are clearly less influenced by the image-perturbations than
FingerCode’s – while, for example, for test rnddist 0.6 the EER in the results of FingerCode
is 2.82% higher than the respective EER for unperturbed images, this difference amounts
to only 1.20% in the corresponding results of POC. However, for the more effective tests
rnddist 1.8 to rnddist 4.2 then, it is the FingerCode matcher, that undoubtedly exhibits the
greater robustness. For instance, regarding the listing of equal error rates again, we find,
that POC’s EER in the results for rnddist 1.8 to rnddist 4.2 are up to nearly three times as
far separated from its EER for unperturbed images, than are the corresponding EER of the
FingerCode matcher.

DB3

In regard to the Small Random Distortions tests on fingerprint images of DB3, the matching
performances of all examined fingerprint matchers, but the Phase Only Correlation matcher,
exhibit a general improvement – i.e. a smaller manifestation of the negative influences by
the generated image perturbations in the respective matching results – compared to the
performances displayed in the previous section for tests on images of DB2. Furthermore for
VeriFinger and the GrFinger configuration GF180, the current test results also show less
impairment in comparison to those, generated in the tests on fingerprint images of DB1.

Of all the fingerprint matchers regarded in current Small Random Distortions test for DB3-
images, VeriFinger once more turns out to be the matcher, the most robust to the influ-
ences of the image perturbations created by the tests. Inspecting the equal error rates of
VeriFinger’s matching results in Table 5.39, we can observe two interesting aspects: For one,
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Figure 5.54: Receiver operating characteristics for the StirMark test Small Random Distortions on fingerprint
images of DB2. (Plots apply a logarithmic scale. Ranges are set to FMR [1%,70%] and FNMR [1%,40%]).

we notice, that in the first six levels of increasing test-effectiveness, rnddist 0.6 to 2.6, the
corresponding EER lie a little below the EER in the results for the original, unperturbed
fingerprint images of DB3, which indicates a slightly better matching performance for those
test-levels. Second – and this reveals just how little VeriFinger’s matching performance is
affected by the perturbations introduced in images of DB3 – all test-related EER lie within
a distance of between -0.19% and 0.51% from the EER related to the unperturbed images.

As mentioned before, the results of current tests show, that also GF180 is less sensitive to
the Small Random Distortions perturbations in images of DB3, then was the case in the
previous tests for fingerprint images of DB1 and DB2. Yet still – and this behavior is in line
with the previously exhibited results – also for fingerprint images of DB3, GF20 shows a
higher robustness to the image-perturbations than GF180, even though, when regarding the
listing of equal error rates in Table 5.39, we find, that the differences between the relative
matching performances of GF20 and GF180 are marginally at best. Another observation
that we can make in the respective equal error rates and that is likewise discernible in
GF20’s ROC plot in Figure 5.55b, is, that for the less-effective test-levels rnddist 0.6 to
2.2, both GrFinger configurations produce slightly better matching results, than they do for
the original unperturbed images of DB3. Interesting to note: Among denoted set of tests,
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Factor bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

0.6 10.78 5.17 12.27 13.32 12.42 10.89

1.0 11.35 5.58 12.62 13.76 12.34 11.49

1.4 11.66 5.83 12.17 13.01

1.8 11.75 5.51 12.92 13.89 12.40 13.23

2.2 11.79 5.54 12.94 13.76

2.6 12.57 5.78 13.01 14.29 12.61 16.34

3.0 13.07 6.16 13.26 14.68

3.4 13.23 5.69 14.22 15.32 13.57 19.00

3.8 14.05 6.43 14.71 15.57

4.2 14.82 6.77 15.00 16.14 14.05 21.96

Table 5.38: Equal error rates for Small Random Distortions test conducted on sample image database DB2.

a higher intensity of the image-perturbations does not necessarily cause stronger impaired
matching results. A statement, that, by the way, can also be made about the results of
VeriFinger for the first six test-levels (see above for details).

As for the matching performance of the bozorth3 matcher in current tests on fingerprint
images of DB3: When regarding the corresponding ROC plot in Figure 5.55a it becomes
quite apparent, that bozorth3 is the one minutiae-based matcher, whose matching results are
subject to the strongest impairment, caused by the Small Random Distortions perturbations
in the fingerprint images. Also the listing of bozorth3’s equal error rates in Table 5.39
supports this observation: While for the second most sensitive minutiae-based matcher,
GF180, the maximum difference between the EER related to the unperturbed DB3-images
and the EER of a Small Random Distortions test is 1.15%, bozorth3 surpassed this level of
impairment already for test rnddist 3.0. For tests rnddist 3.4 to 4.2 the negative effect of
the image perturbations on the matching results increases further, so that finally the EER
in bozorth3’s results for test rnddist 4.2 is 3.37% higher than the EER for the unperturbed
images.

Like in the Small Random Distortions tests for images of DB2, now also here, in current
tests on images of DB3, both non-minutiae-based fingerprint matchers are clearly
stronger influenced by the generated image-perturbations, than any of the minutiae-base
matchers regarded. Furthermore, and also in line with the observations in previous Small
Random Distortions tests for fingerprint images of databases DB1 and DB2, the results
of the Phase Only Correlation matcher are notedly stronger impaired, than those of the
FingerCode matcher.

In the previous tests for images of DB1 and DB2 alike, we could observe in the matching
results of the FingerCode matcher, that already with the perturbations created by the
least effective test-level, rnddist 0.6, we induced a rather distinct “initial” impairment in
the matcher’s results – well observable in the corresponding ROC plots, in form of a clear
gap between the ROC curve displaying the FingerCode’s performance for rnddist 0.6 and
the ROC curve related to the original, unperturbed fingerprint images. In present tests for
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images of DB3, this effect can not be witnessed anymore. However, judging by the equal
error rates in Table 5.39, we can establish, that for images of DB3 the negative influence of
the image-perturbations, caused by the Small Random Distortions tests, on FingerCode’s
overall matching performance, is clearly less, than is the case for images of DB2. When
comparing with the results of the tests on images of DB1 on the other hand, the same can
only be said for test-levels rnddist 0.6 to 1.8, while for the more intensive perturbations
introduced by rnddist 2.6 to 4.2, the results for fingerprint images of DB3 appear notedly
stronger impaired.

Despite the fact, that the Phase Only Correlation matcher is once again the one finger-
print matcher regarded, whose matching performance is decidedly the most susceptible to
the negative influences caused by the perturbations of the Small Random Distortions pertur-
bations in the fingerprint images of DB3, the POC matcher is also the only matcher, whose
results for current tests on images of DB3 do not show any relative improvement in robust-
ness to the perturbations, when compared with its results generated in the previous tests
for images of DB1 or DB2. As the listing of equal error rates in Table 5.39 displays, for the
two least effective tests, rnddist 0.6 and 1.0, POC’s matching performance for DB3-images is
very comparable to that, exhibited for fingerprint images of DB2. The more effective tests,
rnddist 1.8 to 4.2, however, cause a deterioration in the matching results, that is clearly
stronger, than previously observed for images of DB1 or DB2. As illustrative example we
can regard the EER in the database-specific results for the most effective test-level, rnddist
4.2 and calculate its difference to the respective EER achieved for unperturbed images: Said
difference amounts to 9.55% in the tests for DB1, to 12.27% in the tests for DB2 and finally
to 15.10% in current tests for fingerprint images of DB3.

Factor bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

0.6 6.74 3.41 6.70 5.61 9.45 16.28

1.0 6.95 3.33 6.92 5.57 9.61 16.80

1.4 7.04 3.30 6.77 5.29

1.8 7.21 3.50 6.71 5.55 10.00 19.18

2.2 7.56 3.59 6.70 5.53

2.6 7.58 3.31 7.47 5.89 10.60 22.43

3.0 8.15 3.62 7.68 6.38

3.4 8.78 4.12 7.75 6.50 11.39 27.58

3.8 9.59 3.93 7.42 6.23

4.2 10.06 3.99 8.05 6.50 12.87 30.17

Table 5.39: Equal error rates for Small Random Distortions test conducted on sample image database DB3.

5.15 Latest Small Random Distortions (lrnddist)

This test represents the latest modification of the StirMark test, the way it was introduced
with version 4.0 of the benchmark (as the comments in the source code suggest). It differs
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Figure 5.55: Receiver operating characteristics for the StirMark test Small Random Distortions on fingerprint
images of DB3. (Plots apply a logarithmic scale. Ranges are set to FMR [1%,70%] and FNMR [1%,40%]).

from the Small Random Distortions test in so far, as it replaces the two processing steps
Global Bending and Higher Frequency Displacement with a single distortion procedure:

The two original steps strongly rely on sine-functions to determine the individual distor-
tion of each point in the output image (which is clearly noticeable in a periodical pattern
introduced in the perturbed images for high values of the attack parameter). In contrast,
the new function employs two random Distortion Maps instead – one map influences the
distortion of the x-coordinate and the other the distortion of the y-coordinate of each point
in the output image.

According to a comment at line 241 in file SMBDistrotionMap.cpp of the StirMark Bench-
mark source files, a distortion map is generated “by specifying pseudo randomly the Fourier
transform of this map”. More information on the creation of the distortion maps and on
the specifics of the Latest Small Random Distortions test in general, can likewise (only) be
found in the source code of the related classes, downloadable at [25].
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Relation to Fingerprints

Very much like with the previously listed Small Random Distortions attack, also by em-
ploying the Latest Small Random Distortions, I aim to simulate a random, haphazard com-
bination and interaction of various natural distortions in fingerprint images. So while the
intentions for the application of both “original” StirMark tests are the same, the pertur-
bations generated by the tests differ distinct enough, for me to embrace this Latest Small
Random Distortions attack as quasi “second type” of random combination of natural dis-
tortions.

Parameter Configurations

Like with above older version of the StirMark test, also here in Latest Small Random Dis-
tortions a single parameter, representing a multiplier for the default parameters, is used to
adjust the intensity of the attack.

For the experiments of present work, I chose the same parameter sets as previously with
the Small Random Distortions attack: {0.6, 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2} for the
complete analysis and {0.6, 1.0, 1.8, 2.6, 3.4, 4.2} for the limited number of tests, run on
the non-minutiae-based fingerprint matchers. Figure 5.56 shows example images generated
for parameter values 0.6, 2.6 and 4.2.

(a) lrnddist 0.6 (b) lrnddist 2.6 (c) lrnddist 4.2

Figure 5.56: Examples for the Latest Small Random Distortions test, applied to an image from DB1 (ID 91 2).

Similar to the Small Random Distortions test, for parameter values < 0.6 the influence of
the attack is barely noticeable in the output images. Yet due to the substitution of the two
sine-function-based processing steps with random “Distortion Maps”, aforementioned wave-
like structures in the ridge lines of the fingerprint do not appear anymore when selecting
high parameter values.

Results and Discussion

Very much comparable to the observations in the previous test-series applying the original
StirMark test Small Random Distortions, we can also state for the revisited StirMark test
Latest Small Random Distortions, that the created image perturbations, introduced in fin-
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gerprint images of databases DB1 to DB3, have only a very limited impact on the individual
matching results of the fingerprint matchers employed in our experiments.

DB1

Regarding the matching results of the fingerprint matcher VeriFinger for the Latest Small
Random Distortions tests on fingerprint images of DB1, we find, that in the four lesser
effective test-levels, lrnddist 0.6 to 1.8, VeriFinger’s matching performance is nearly equal
or in parts even better, than it is originally for the unperturbed images of DB1. A look at
the listing of equal error rates in Table 5.40 confirms, that the corresponding EER are up
to 0.65% lower than the EER in the matching results for unperturbed images. From test
lrnddist 2.2 onwards then, with each increase in test-effectiveness, the relative impairment
caused in the matching results, becomes likewise more apparent – a behavior that can also
be observed in the related ROC plot in Figure 5.57c. Finally the EER in VeriFinger’s results
for the most effective test, lrnddist 4.2, lies 2.00% above that related to the unperturbed
images.

In comparison with the other fingerprint matchers regarded, we can establish, that overall
VeriFinger’s matching performance exhibits the highest robustness to the influences caused
by the perturbations, introduced during the Latest Small Random Distortions tests into the
fingerprint images of DB1. However, this “lead” over the other fingerprint matchers is by
far not as distinct, as we could witness it in the set of Small Random Distortions tests in
previous section 5.14.

The fingerprint matcher, that displays the second least influence by the perturbations in DB1
images, is the GrFinger configuration GF20. As opposed to the results of VeriFinger, here,
for GF20, only the matching results for lrnddist 0.6 are in parts better than the matcher’s
results for unperturbed images of DB1 – the ROC plot in Figure 5.57b shows, that while
the ROC curve corresponding to test lrnddist 0.6 is constantly very close to the ROC curve
representing the matching results for the unperturbed images, it is only in the area of FMR
< 2% and also the area of FMR short before the EER, that the test-related curve indicates
the smallest FNMR. On the other hand, we further find in the plot, that also the ROC
curves related to tests lrnddist 1.0 to 1.8 lie in a relatively close distance to the curve for
unperturbed images (in the area of FMR > 45%, the curve corresponding to the results for
lrnddist 1.4, even lies considerably below all others). This observation is supported by the
respective equal error rates in Table 5.40: The EER for tests lrnddist 0.6 to 1.8 all lie withing
a range of ±0.11% around the EER for the original, unperturbed fingerprint images of DB1.
For more effective test levels then, the negative influences of the image-perturbations on
GF20’s matching results, become more discernible. In particular between the tests lrnddist
3 and 3.4 we experience a rather notable drop in matching performance, as also the respective
EER “jump” from 14.30% to 15.05%.

When comparing GF180’s matching results to those of GF20, we can establish, that GF180
is clearly more susceptible to the perturbations introduced by the Latest Small Random
Distortions tests into the fingerprint images of DB1. In fact, GF180 exhibits the worst – i.e.
most influenced – overall matching performance of all minutiae-based matchers regarded:
For the least effective test level, lrnddist 0.6 the matching results or GF180 are actually
even slightly better than those, it achieves for the original, unperturbed images of DB1 –
the respective EER lies 0.17% below that for unperturbed images and also in the ROC plot,
the ROC curve related to test lrnddist 0.6 lies below all others. However, when increasing
the level of test-effectiveness, the corresponding results deteriorate comparatively strong.
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Regarding the listing or equal error rates in Table 5.40, we find, that already from lrnddist 0.6
to the following test, lrnddist 1.0, the EER increases by 1.07%. Although the results suggest,
that with GF180, an amplification of the Latest Small Random Distortions perturbations
in the fingerprint images does not necessarily cause an accordingly stronger deterioration of
the matching performance, for test levels lrnddist 1.0 and above the cognizable impairment
is permanently on a relative high level. For the most-effective test, lrnddist 4.2, finally, the
corresponding EER is 4.42% higher than GF180’s EER for unperturbed images.

The reactions of the bozorth3 matcher to the Latest Small Random Distortions pertur-
bations in fingerprint images of DB1 are very interesting in so far, as for tests lrnddist 0.6
to lrnddist 1.8 (and in parts even for test lrnddist 2.6) bozorth3 achieves decidedly better
matching results, than it does for the original, unperturbed DB1-images: Regarding the
respective ROC plot in Figure 5.57a, we can see, that the ROC curves, corresponding to
said four least-effective test levels, lie clearly below the ROC curve indicating bozorth3’s
matching performance on the unperturbed images. The same can also be observed for the
ROC curve related to test lrnddist 2.6, for FMR > 14%. When additionally referring to
the listing of equal error rates in Table 5.40, we find that the EER in the bozorth3’s re-
sults for tests lrnddist 0.6 to 1.8 are between 0.78% and 1.21% lower than the EER for the
unperturbed fingerprint images. Another aspect of bozorth3’s matching performance, that
becomes apparent in the ROC plot, is, how relatively far the ROC curves for the results
of the two most-efficient Latest Small Random Distortions tests, lrnddist 3.8 and 4.2, are
separated from the set of the other curves. This marks the comparatively large drop in
matching performance between test levels lrnddist 3.4 and 3.8 – the corresponding EER
differ by 2.36%.

The matching behavior, that the FingerCode matcher exhibits in current Latest Small
Random Distortions tests on fingerprint images of DB1 is very comparable to its behavior
in the previous Small Random Distortions tests on DB1-images (see page 175 for details):
Already with the least effective test, lrnddist 0.6, the impairment in the matching results
is as such, that the corresponding EER is 1.05% higher, than the EER achieved for unper-
turbed fingerprint images. For the more effective tests however, the according aggravations
in the results appear rather limited – until test-level lrnddist 2.6 the further increase in the
respective EER is no more than 0.41% and even the EER in the results for the most effec-
tive test, lrnddist 4.2, is only 1.66% higher, than that for lrnddist 0.6. For none of the other
matchers regarded in current tests, we find the matching performances for the individual
perturbation-levels to lie that close to each other – an observation that becomes also very
apparent, when comparing the corresponding ROC plots in Figure 5.57.

A further statement that we can make, when comparing FingerCode’s matching perfor-
mances in current tests, with those of the minutiae-based matchers, is, that for tests lrnddist
2.6, 3.4 and 4.2 (the three most effective test-levels in the reduced set of tests, that were also
conducted on the non-minutiae-based matchers) FingerCode turns out to be more robust to
the perturbations in the fingerprint images, than GF180. For lrnddist 4.2 this can also be
said in regard to bozorth3’s performance (please refer to the listing of equal error rates in
Table 5.40 for details).

In the results of the two least effective Latest Small Random Distortions tests we can see a
surprisingly strong improvement in the Phase Only Correlation matcher’s performance,
relative to the results achieved for the original, unperturbed images of DB1. In the corre-
sponding ROC plot, we find, that the ROC curve related to test lrnddist 0.6, as well as, from
a FMR > 10% about onwards, also the ROC curve related to test lrnddist 1.0 lie clearly
below the ROC curve displaying POC’s matching performance for the unperturbed images.



152 5.15 Latest Small Random Distortions

The listing of equal error rates in Table 5.40 indicates, that the EER in the results for tests
lrnddist 0.6 and 1.0 are 1.68% and 0.93% respectively lower than the EER for the original
DB1-images.

Turning to the medium-effective tests, lrnddist 1.8 and 2.6, then, we can also observe an
interesting matching behavior: In the corresponding matching results, the impairment caused
by the perturbations in the fingerprint images is clearly noticeable – especially in the area
of FMR < 35% about, the negative influences cause a comparatively strong deterioration
of the matching performance, which can also be witnessed in the corresponding EER, that
are up to 2.07% higher than the EER for unperturbed images. Yet when regarding the the
ROC plot again, we find that from the point of 35% FMR about, the ROC curve related
to test lrnddist 1.8 drops under the curve representing POC’s results for the unperturbed
images. At FMR of 48% about, also the ROC curve related to test lrnddist 2.6 follows.

Inspecting the Phase Only Correlation’s results for the two most-effective test-levels regarded
on this matcher, lrnddist 3.4 and 4.2, the influence by the perturbations in the fingerprint
images becomes very apparent, as we witness a comparatively large drop in the matcher’s
performance. For illustration we can once more refer to the listing of equal error rates in
Table 5.40: While the EER in the results for the four less effective test-levels are all within
a range of about ±2% from the EER for the original, unperturbed images, the EER related
to the perturbations in lrnddist 3.4 has already a distance of 8.36% and that for lrnddist 4.2
a distance of 11.86%.

Factor bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 14.81 5.87 11.41 13.61 12.54 22.60

0.6 13.60 5.88 11.24 13.49 13.59 20.92

1.0 14.00 5.24 12.31 13.71 13.75 21.67

1.4 13.88 5.72 12.25 13.72

1.8 14.04 5.71 12.12 13.72 13.85 23.27

2.2 15.23 5.84 12.54 14.16

2.6 14.76 6.37 13.49 14.00 14.00 24.63

3.0 15.75 6.22 13.12 14.30

3.4 15.99 7.15 14.29 15.05 14.71 30.96

3.8 18.35 7.39 14.60 15.80

4.2 18.13 7.88 15.82 15.53 15.24 34.46

Table 5.40: Equal error rates for Latest Small Random Distortions test conducted on sample image database DB1.

DB2

The overall matching performance of the VeriFinger matcher in the Latest Small Random
Distortions tests on fingerprint images of DB2 is very much alike to that, exhibited by the
matcher in the previous tests for images of DB1 – the extent by which the influence of
the image-perturbations affects the matching results for each individual test-level is largely
comparable. Further, when comparing the corresponding ROC plots (see Figures 5.57c and
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Figure 5.57: Receiver operating characteristics for the StirMark test Latest Small Random Distortions on finger-
print images of DB1. (Plots apply a logarithmic scale. Ranges are set to FMR [1%,70%] and FNMR [1%,30%]).

5.58c) we find in both plots a quite similar matching behavior: The degradation in the
results for the higher-effective tests, lrnddist 3.4 to 4.2 (and in parts also lrnddist 3.0), is
decidedly stronger than in the results of the remaining, less effective tests. Accordingly the
ROC curves related to these tests, lrnddist 3.0 to 4.2, permanently lie above all other ROC
curves. Now regarding the ROC curves representing VeriFinger’s matching performance for
the less effective tests, lrnddist 0.6 to 2.6, for FMR < 3.5% they all lie above the ROC curve
related to the original, unperturbed images. For FMR > 3.5% though, one after the other,
the ROC curves corresponding to lrnddist 0.6 to 2.6 start to under-run that for unperturbed
images – starting with the curve for lrnddist 1.8, followed by lrnddist 1.4 at a FMR of 13%,
etc., until a FMR of 33%, from which point on even the ROC curve corresponding to lrnddist
2.6 indicates a relatively lower FNMR per FMR, than does the ROC curve for VeriFinger’s
original results for unperturbed DB2-images. Altogether, like in previous tests on fingerprint
images of DB1, also in current tests VeriFinger turns out to be the matcher most robust to
the generated images-perturbations.

Regarding the matching performance of both GrFinger setups, GF20 and GF180, in the
current tests on fingerprint images of DB2 we can make several interesting observations:
For one, in both setups the matching results of the least-effective test, lrnddist 0.6, appear
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comparatively strong influenced by the Latest Small Random Distortions perturbations in
the DB2-images (for illustration: the respective EER are 0.89% (GF20) and 0.79% (GF180)
higher, than the EER for unperturbed images), while in case of previous DB1-related tests,
the corresponding results turn out to be even slightly better, than those for unperturbed
fingerprint images. Generally the matching results of GF20 for all current tests, but lrnddist
3.8, exhibit a stronger negative impact by the image-perturbations than is the cases for
images of DB1. The equal error rates in Table 5.41 show, that in average GF20’s EER,
related to current tests, lie 0.48% further distant from the EER for unperturbed fingerprint
images of DB2, than they did in the previous tests for DB1. In contrast, the matching results
of GF180 for all current tests, but lrnddist 0.6 (as mentioned above), are equally or even
less affected by the perturbations introduced in DB2-images, than witnessed in DB1-related
tests. Overall however, GF20’s matching results are still less impaired than those of GF180.

Compared with its matching performance in previous tests for images of DB1, in current
tests for DB2, the bozorth3 matcher exhibits clearly a higher sensibility to the Latest Small
Random Distortions perturbations introduced in the fingerprint images. For illustration we
can, for example, examine the respective equal error rates in Table 5.41: In average, the EER
in bozorth3’s matching results for the individual lrnddist tests on DB2-images are 0.96%
further distant from the corresponding EER for the original, unperturbed images, than we
find it in the results for the tests on DB1-images (please see also Table 5.40 for details).
A further interesting observation in regard to the listing of equal error rates is, that the
EER for test-levels lrnddist 0.6 and 1.4 indicate a relatively better matching performance of
bozorth3 in those tests, than for the unperturbed DB2-images. When additionally regarding
the ROC plot in Figure 5.58a, we find, that this is only true in the area of FMR between
6.5% and 22% about. In the complementary area the ROC curves related to lrnddist 0.6
and 1.4 lie rather clearly above the ROC curve representing the matching results for the
original, unperturbed fingerprint images. Instead then, from the same point of 22% EER on,
the matching results of lrnddist 1.8 produce the relatively lowest FNMR values.

All in all the observations lead to the verdict, that for fingerprint images of DB2, bozorth3
appears to be the minutiae-based fingerprint matcher, whose matching performance is the
most influenced by the image perturbations generated by the individual Latest Small Ran-
dom Distortions tests. Overall however, the non-minutiae-based fingerprint matchers
exhibit a decidedly higher sensitivity to the influence of the perturbations in the fingerprint
images of DB2, than the minutiae-based matchers. Further, the results of the FingerCode
matcher and the Phase Only Correlation matcher alike, show, that in current tests on images
of DB2 the impairment is also relatively stronger than in the previous tests on images of
DB1.

Regarding the equal error rates for the FingerCode matcher in Table 5.41, we see, that
already for the least effective test-level, lrnddist 0.6, the EER is 2.56% higher than the
EER achieved for the original, unperturbed DB2-images. The EER related to the other
tests then stay at such a high level and even increase, so that finally for the most effective
test, lrnddist 4.2, the difference to the EER for unperturbed images amounts to 5.29%. The
corresponding ROC plot in Figure 5.58d supports our observations: The most obvious aspect
is, that the ROC curve, displaying FingerCode’s matching performance on unperturbed
images, permanently lies very clearly under the ROC curves related to the individual Latest
Small Random Distortions tests. For FMR > 10% about, this gap even widens considerably.
The test-related ROC curves then have an interesting behavior as well: For FMR < 15% the
individual curves lie fairly separated. For FMR > 15% though, they move comparatively
close together – all, except the ROC curve related to test lrnddist 0.6, which gradually
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exchanges “positions” with the other test-related curves, until finally, for FMR > 25%, it
indicates the highest FNMR per FMR in all of FingerCode’s test results.

Concerning the matching performance of the Phase Only Correlation matcher in current
tests on fingerprint images of DB2, it is rather sufficient to regard the listing of respec-
tive equal error rates alone, as the ROC plot supports the observation of the quite distinct
differences in the relative impairment of the matching results and does not add any fur-
ther essential details. So when regarding Table 5.41, we can establish the following aspects:
The EER related to the least-effective test, lrnddist 0.6, is 1.0% higher, than the EER for
the unperturbed DB2-images. This difference is smaller, than we witness it for the same
test-level in the results of the FingerCode matcher (there: 2.56%, see above for details). In
other words, the perturbations introduced by test lrnddist 0.6 into the fingerprint images
of DB2, deteriorate FingerCode’s matching performance notedly more, than that of the
Phase Only Correlation matcher. A similar statement can be made, when comparing both
non-minutiae-based matcher’s results for the following test, lrnddist 1.0. Also here the POC
matcher appears less influenced by the image perturbations, even though the difference is not
as clear as before. However, for the remaining tests-levels from the reduced set of tests con-
ducted on the non-minutiae-based fingerprint matchers, the situation changes considerably:
For test lrnddist 1.8 the respective EER of POC is already 4.16% higher, than the EER for
unperturbed images, while the corresponding difference is only 3.01% for FingerCode. This
gap in both matcher’s performances even widens, until finally for lrnddist 4.2, which intro-
ducing the strongest Latest Small Random Distortions perturbations considered in present
tests, POC’s EER lies 14.69% above the EER it achieves for unperturbed images, while in
FingerCode’s results this difference is “only” 5.29%.

Factor bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 11.12 5.01 11.72 12.89 9.60 9.69

0.6 10.50 5.40 12.52 13.78 12.16 10.69

1.0 11.20 5.35 12.24 13.22 12.12 11.78

1.4 10.68 4.78 12.70 13.59

1.8 11.71 4.97 12.52 13.94 12.61 13.85

2.2 12.96 5.64 13.13 13.76

2.6 12.52 5.10 13.32 13.80 13.59 18.70

3.0 13.16 5.58 13.52 14.04

3.4 13.44 6.22 13.65 14.84 13.83 21.45

3.8 14.84 6.39 14.96 14.75

4.2 15.40 6.91 15.15 15.38 14.89 24.38

Table 5.41: Equal error rates for Latest Small Random Distortions test conducted on sample image database DB2.

DB3

Regarding the impact of Latest Small Random Distortions perturbations in fingerprint im-
ages of database DB3 on the matching performances of the fingerprint matchers examined
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Figure 5.58: Receiver operating characteristics for the StirMark test Latest Small Random Distortions on finger-
print images of DB2. (Plots apply a logarithmic scale. Ranges are set to FMR [1%,70%] and FNMR [1%,30%]).

in our experiments, and comparing these observations to those made in previous tests for
fingerprint images of databases DB1 and DB2, we get to following, quite interesting distinc-
tion: In case of matchers VeriFinger, GF20, GF180 and FingerCode the perturbations have
clearly less influence on the respective matching results, when introduced in fingerprint im-
ages of DB3, than when introduced into images of DB1 or DB2. For matchers bozorth3 and
Phase Only Correlation the opposite is true: Here the image perturbations in the fingerprint
images of DB3 affect the respective matching results clearly stronger, than is observable in
the previous tests for images of DB1 or DB2.

Inspecting the matching results of matcher VeriFinger closer, we find, that the cognizable
effect of the Latest Small Random Distortions perturbations is only very limited. The corre-
sponding equal error rates in Table 5.42 show, that the maximum difference between any one
test-related EER and the EER for the original, unperturbed images of DB3 is only 1.08%
(in case of the most effective test, lrnddist 4.2). In fact, 7 of 10 test-related EER are within a
range of ± 0.55% of the EER for the unperturbed images. Another observation we can make
in the listing of equal error rates and which is also clearly evident in the corresponding ROC
plot in Figure 5.59a, is, that for the 3 least-effective tests, lrnddist 0.6 to 1.4 and in parts
also for the tests lrnddist 1.8 and 2.2, VeriFinger produces better matching results than it
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achieves for the original, unperturbed fingerprint images.

Despite its extraordinary good – i.e. unimpaired – results, in current tests for images of
DB3, VeriFinger is not the one matcher, exhibiting the highest robustness to the influences
of the image perturbations. Even though its overall matching performance also includes an
“outlier”, in average the matching results of GF20 turn out to be slightly less influenced,
than VeriFinger’s. Regarding, for example, the equal error rates in Table 5.42, we find,
that the differences between GF20’s EER for the unperturbed fingerprint images and the
EER corresponding to the individual Latest Small Random Distortions tests lrnddist 0.6 to
3.8, lie within the range of [-0.36%, 0.72%]. The only exception, aforementioned “outlier”,
occurs in the results for the most effective test, lrnddist 4.2: The respective EER is 2.02%
higher than that for the unperturbed images. A further observation we can make, is, that
for the four least-effective test-levels, lrnddist 0.6 to 1.8, GF20, in parts, exhibits a better
matching performance, than it does for the original, unperturbed fingerprint images of DB3
– this especially holds for the area of FMR < 10% about. GF20’s ROC plot in Figure 5.59b,
confirms aforesaid statements: The two aspects that are the most obvious in the plot are, for
one, how comparatively close the ROC curves for tests lrnddist 0.6 to 3.8 lie to each other
and second, how relatively far the ROC curve corresponding to the matching results for test
lrnddist 4.2 is separated from the others.

As mentioned before, comparing the matching performances of GF180 in the Latest Small
Random Distortions tests for all three databases, DB1 to DB3, the level of robustness to
the image perturbations, that we witness in current tests for images of DB3 is higher, than
it is for images of DB1 or DB2. In case of GF180, this relative increase in performance – or
for that matter: decrease in impairment – is clearly more distinct, than we can observe it in
matchers VeriFinger or GF20. (As for the respective behavior of the FingerCode matcher: In
results for the reduced set of tests that were conducted on the non-minutiae-based matcher,
we find, that the gain in robustness from the tests for DB1-images to the tests for DB3-
images is even more distinct than in the corresponding results for GF180, yet clearly less
distinct from tests for DB2-images to tests for DB3-images).

All in all however, also in the current tests for fingerprint images of DB3, GF180’s match-
ing results appear slightly stronger influenced by the generated image-perturbations, than
those of GF20 and VeriFinger. “Stronger influenced” thereby applies in both ways: For one,
GF180 exhibits a better matching performance for test lrnddist 0.6 than for unperturbed
images. The difference between the respective EER amounts to 0.70% – in case of GF20 and
VeriFinger, which exhibit a comparable performance for test-level lrnddist 0.6, the differences
between the test-related EER and that for unperturbed images are just 0.36% and 0.34% re-
spectively. Regarding the other end of the scale, test lrnddist 4.2 for example, GF180’s EER
is 2.92% higher than its EER for unperturbed images, while the corresponding differences
2.02% for GF20 and only 1.03% for VeriFinger.

Of the set of minutiae-based fingerprint matchers considered, bozorth3 is the matcher,
whose performance on fingerprint images of DB3 is the most impaired by the Latest Small
Random Distortions perturbations introduced in the images. Regarding the corresponding
equal error rates in Table 5.42, we find, that for the least-effective test, lrnddist 0.6, the
related EER is 0.19% higher, than that for the original, unperturbed DB3-images. This
difference then increases with each successive level of test-effectiveness, until finally the
EER for test lrnddist 4.2 is 5.52% higher than the EER for the unperturbed images. In
the respective ROC plot in Figure 5.59a, we can well observe said continuous increase in
the EER rates. Additionally we can make two quite interesting observations: For one, we
see that the three ROC curves representing the matching results for tests lrnddist 0.6, 1.0
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and 1.4 and further also the three ROC curves related to tests lrnddist 1.8, 2.2 and 2.6 lie
relatively close to each other. This finding holds especially in the area of FMR between 2%
and 20% about and can also be witnessed in the respective equal error rates. Moreover we
find in the ROC plot, that for FMR < 4.5% about, as well as for FMR > 30% about, the
matching results for lrnddist 1.0 and 0.6, in parts also lrnddist 1.4 exhibit a better matching
performance, than bozorth3 achieves for the original, unperturbed fingerprint images.

Comparing the matching results of both non-minutiae-based matchers, FingerCode and
Phase Only Correlation, for the reduced set of Latest Small Random Distortions tests con-
ducted on them, with the corresponding results of the minutiae-based fingerprint matchers,
we can establish also in the current case of DB3-images, that in general the non-minutiae-
based matchers are notedly more susceptible to the negative influences caused by the pertur-
bations in the fingerprint images. The only exceptions we find, are in relation to bozorth3’s
matching performance, as for tests lrnddist 1.8, 3.4 and 4.2 the FingerCode matcher exhibits
a comparatively higher robustness to the perturbations. This behavior can best be observed,
when inspecting the listing of the equal error rates in Table 5.42: Considering for example
the matcher’s results for test lrnddist 4.2, then FingerCode’s respective EER value lies 4.18%
higher, than the EER, it achieved for the original, unperturbed fingerprint images of DB3,
while in case of bozorth3, the corresponding difference amounts to 5.52%.

When regarding the ROC plot for the FingerCode matcher in Figure 5.59d, the rela-
tive aggravation in the matching results, caused by the Latest Small Random Distortions
perturbations in the fingerprint images of DB3 becomes apparent, as the ROC curves rep-
resenting FingerCode’s matching performance for the individual tests are fairly separated.
However, the clear distance between the group of test-related ROC curves and the ROC
curve indicating the matching results for the original, unperturbed images, that can be seen
in the ROC plots for the previous tests for fingerprint images of DB1 and DB2 (see Figures
5.59d and 5.59d), is not as clearly observable in the plot for present matching results. When
further referring to Table 5.42, we can establish, that the differences between the EER in
FingerCode’s matching results for the Latest Small Random Distortions tests and the EER
for unperturbed images range between 0.49% (lrnddist 1.0) and 4.18% (lrnddist 4.2).

As already mentioned before, the matching results of the Phase Only Correlation matcher
for fingerprint images of DB3 exhibit a decidedly larger impairment, caused by the generated
perturbations introduced into the images, than they do for the tests on images of databases
DB1 or DB2. Besides having the ROC plot depict a rather “unambiguous” image, also the
equal error rates in Table 5.42 attest the comparatively strong impairment in POC’s match-
ing results: The EER corresponding to the least-effective test lrnddist 0.6 is already 1.43%
higher, than POC’s EER for unperturbed images of DB3. This is a level of impairment, that
for example for the bozorth3 matcher – the least robust minutiae-based matcher in current
tests – we only observe for test lrnddist 2.2. The Phase Only Correlation matchers’s results
for the successive tests then show, that with increasing intensity of the Latest Small Random
Distortions perturbations introduced in the fingerprint images also the level of deterioration
of the results grows. For the most effective test, lrnddist 4.2, we then accordingly establish an
EER of 34.34%, which is sizable 19.27% higher, than the EER for the original, unperturbed
fingerprint images.
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Figure 5.59: Receiver operating characteristics for the StirMark test Latest Small Random Distortions on finger-
print images of DB3. (Plots apply a logarithmic scale. Ranges are set to FMR [1%,70%] and FNMR [1%,30%]).
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Factor bozo3 (%) VF (%) GF180 (%) GF20 (%) FC (%) POC (%)

unperturbed 6.68 3.60 6.90 5.82 8.98 15.07

0.6 6.87 3.26 6.20 5.46 9.56 16.50

1.0 6.86 3.13 6.68 5.59 9.47 17.21

1.4 7.24 3.05 6.98 5.79

1.8 7.96 3.19 7.12 5.60 10.15 21.25

2.2 8.09 3.49 7.59 5.92

2.6 8.20 3.63 7.30 6.14 10.76 25.21

3.0 9.18 4.10 7.49 6.17

3.4 10.06 4.48 8.78 6.53 11.86 31.40

3.8 10.97 4.37 8.22 6.39

4.2 12.21 4.63 9.82 7.84 13.16 34.34

Table 5.42: Equal error rates for Latest Small Random Distortions test conducted on sample image database DB3.



Chapter 6

Summary

In the introduction to this thesis, I have stated three major goals and posed several additional
questions, which were intended, to be examined in course of my studies in present work.
Consequently I will now also commence this summary by referring to these statements and
thereby trying to get to conclusive answers, based on the experiences and findings gathered
in the experiments.

The main goal was to Investigate the influence of different kinds of natural perturbations in
fingerprint images on the matching performance of diverse types of fingerprint matchers.

At first I will briefly recapitulate the experiments that were conducted in this thesis: Five
fingerprint matchers – three minutiae-based, one ridge-feature based and one correlation-
based – were being employed. The fundamental test data was adopted form parts of the
sample data of the Fingerprint Verification Contest 2004. It consisted of three individual
sets, each containing 800 fingerprint images – 100 different fingers à 8 imprints. Each par-
ticular set had been acquired with a different type of fingerprint scanner, under varying
finger- and positioning-related conditions. The “natural perturbations” (in terms of defi-
nition on page 6), that I set out to investigate, were simulated and introduced into the
sample images, by the StirMark Benchmark, a tool that originates from the field of digital
image watermarking robustness analysis. Thus, based on the initial three sample data sets,
“new” sets of perturbed fingerprint images were created for altogether 12 different types
of perturbations, with up to 10 varying levels of intensity per type. Using aforementioned
five fingerprint matchers on the original, unperturbed fingerprint images, initial matching
results were created, that determined each matcher’s fundamental matching performance
on the sample images and henceforth served as basis of comparison. The thereby employed
test procedure followed the regulations, defined in the Fingerprint Verification Contest 2004
(and 2006 alike), resulting in 7750 individual matching operations per test-run (2800 genuine
tests and 4950 impostor tests). In the same manner, the experiments where then conducted
on the five fingerprint matchers, using the various sets of perturbed fingerprint images. Per
perturbation type, the results generated by a matcher were mainly analyzed in regard to
two aspects: For one, “How does the matchers’ performance change over the various levels
of perturbation-intensity, viewed in comparison to its initial performance for unperturbed
images?” and second “How extensive is the manifestation of the particular perturbation in
the matchers’s results, in comparison to that observed in the results of the other fingerprint
matchers?”.
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The detailed analysis and discussion of the experimental results for each type of simulated
natural perturbation can be found in the respective sections in chapter 5. In present summary
I want to take a more generalized view on the various findings:

One fundamental observation that we can state is, that the robustness of an individual
fingerprint matcher to perturbations in fingerprint images, is very much dependent on two
factors: the particular type of perturbations, as well as on the respective type of fingerprint
images concerned: When regarding the results of all experiments conducted and comparing
the individual matching performances with each other, we can establish, that in terms of
robustness to the perturbation-related influences, none of the considered fingerprint matchers
was able to continuously outperform the others (or at least a certain group thereof). On the
contrary, for each matcher we can find at least one combination of perturbation type and
fingerprint image type, for which its matching results are less affected by the respective
perturbations, than the corresponding results of all other matchers. Likewise also exists at
least one set of tests, for which the respective matcher is among the two most influenced
matchers.

How strong a particular image type can affect a matchers susceptibility to the influences of
the image perturbations, can best be seen in a concrete example: Regarding VeriFinger’s
matching performance in the Additive Noise tests (see section 5.3 for details), we find,
that for fingerprint images of DB1, VeriFinger exhibits clearly the least sensitivity to the
perturbations of all the matchers regarded. For fingerprint images of DB2 the opposite is
true and VeriFinger generates the most-impaired results. Finally, for fingerprint images of
DB3 then, VeriFinger shows once again a very high level of robustness. Additionally, for
DB3 images we can also observe another very interesting aspect in the matcher’s response
to the image perturbations, which I will soon address in more detail: For almost all tested
levels of additive noise, VeriFinger produces (slightly) better matching results, than it does
for the original, unperturbed fingerprint images of DB3.

So, inspecting the results of the experiments, we are not able to establish a “global”, generally
applicable ranking of the fingerprint matchers, based on their specific robustness to the
different kinds of perturbations in the various kinds of fingerprint images. Even when limiting
the scope of the analysis to the particular types of fingerprint images (in our case, the single
databases) we still find too high variations in the individual, perturbation-type dependent
performances of the fingerprint matchers, as that we would be able to establish an order
on the set of matchers, per image type. One statement, that we can make though, is, that
for databases DB1 and DB3, the bozorth3 matcher and the GrFinger configuration GF180
never assume the rank of the most robust matcher, Yet on the other hand, for all three
databases, they also never turn out to be the most impaired one.

Taking hitherto noted observations into account, for an overall summary it would thus
be very desirable, to arrive at a tabulation, stating for each specific perturbation type in
combination with each type of fingerprint images, which fingerprint matcher exhibits, in
its matching results, the strongest influences caused by the perturbations, which matcher
exhibits the second strongest influences and so on. However, the experiments show, that also
at this level of detail, oftentimes it is not easily possible to establish such a clear ranking.
When regarding the entirety of matching results, generated for a particular combination
of perturbation type and fingerprint image type, we frequently find, that despite gradually
increasing intensity of the perturbations across the tests within the test set, the amount of
influence, these perturbations have on the fingerprint matchers’ results, does not always grow
accordingly, nor equally strong for every matcher. Mostly these variations happen on a small
scale, from one test-level to the other – quasi: ”in the first test matcher A appears stronger
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influenced, in the second test matcher B, in the third test matcher A again...”. Still, we can
also find examples where two matchers exchange “positions” rather continuously, over the
whole set of tests – for instance in the Latest Small Random Distortion tests for fingerprint
images of database DB2 (see also page 189), between matchers bozorth3 and GrFinger in
configuration GF180: At first bozorth3’s matching performance is clearly less influenced
by the perturbations than GF180’s. With increasing perturbation-intensity though, this
relative distance gradually lessens, until from test-level lrnddist 3.0 on, GF180 then exhibits
increasingly more robustness than bozorth3.

As we see, the experimental results make it quite difficult, to derive general conclusions
about the fingerprint matchers’ sensitivity to the various perturbations, rather a detailed
analysis is encouraged. Regarding more specific aspects however, we still get to a series of
further interesting findings:

Starting off, for example, with a fairly broad comparison of the specific results of the different
types of fingerprint matchers examined in this thesis – the ridge-feature-based FingerCode
matcher, the correlation-based Phase Only Correlation matcher and the three minutiae-
based fingerprint matchers bozorth3, VeriFinger and GrFinger. (Detailed information on
the respective matcher types and on the individual matchers is given in chapter 4). In the
following I will have to separate the analysis into the three sample image databases, to be
able to make more distinct statements. Also, please bear in mind, that the non-minutiae-
based fingerprint matchers were only tested on a reduced set of test-levels per StirMark test
set, so the related findings presented, are also based on extrapolations of the existing data
and assumptions about the further matching behavior:

DB1 The level of robustness to the perturbations in the fingerprint images of DB1, exhib-
ited by the non-minutiae-based fingerprint matchers in the first four StirMark-tests
presented, Additive Noise, Median Cut Filtering, Mean Filtering and Modified Gauss
Filtering (please refer to sections 5.3 – 5.6 for details) is surprisingly high. While the
matching results, generated by the set of minutiae-based fingerprint matchers, ap-
pear strongly impaired (especially for higher levels of perturbation-intensity), also the
ROC plots confirm a comparatively low amount of perturbations-related influence in
the results of the FingerCode matcher and further also the Phase Only Correlation
matcher.

While the first four StirMark tests so far only affect the visual quality of a finger-
print image, all the other tests also affect the shape and orientation of the respective
finger imprint. With that, the response of the non-minutiae based matchers changes
drastically: While for the fifth test, Remove Lines, in those test-levels, that were also
examined on the non-minutiae-based fingerprint matchers, FingerCode appears to be
the least influenced matcher of all matchers regarded, the Phase Only Correlation
matcher now exhibits the highest amount of influence in its matching results. In the
Rotations test, only the GrFinger configuration GF20 shows a worse performance,
than the non-minutiae-based matchers. In the subsequent four StirMark tests, which
employ affine transformations to generate the perturbations, POC is once again the
most influenced fingerprint matcher, while FingerCode competes quite well with the
individual minutiae-based matchers. Finally, in the StirMark tests, Small Random
Distortions and Latest Small Random Distortions, the set of minutiae-based matchers
clearly shows more robustness to the perturbations in the fingerprint images of DB1,
than any of the non-minutiae-based fingerprint matchers.

DB2 For the first two perturbation types, both non-minutiae-based fingerprint matchers
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once again exhibit the highest level of robustness to the perturbations in the finger-
print images of DB2 – in the Additive Noise test the FingerCode matcher appears less
influenced, in the Median Cut Filtering test the Phase Only Correlation matcher. In
the following two tests, based on convolution filtering, POC generates still the least
impaired results of all regarded fingerprint matchers, while FingerCode competes with
VeriFinger for the rank of the most-influenced matcher. Next, we get to the tests that,
as mentioned before, affect the shape and orientation of the finger imprints. Accord-
ingly henceforward, compared to all the other matchers, the Phase Only Correlations
matcher constantly displays the greatest amount of perturbations-related influence in
its matching results – with one exception: the Rotations test, where again the GrFinger
configuration GF20 appears clearly more sensitive to the deliberately rotated finger-
print images, than any other matcher. As for the FingerCode matcher, in the Remove
Lines test, together with VeriFinger, it exhibits the comparatively highest robustness
to the perturbations. For the remaining tests though (with exception of the Rotations
test) the relative level of impairment in its matching results lies generally between that
of the minutiae-based matchers and that of the POC matcher.

DB3 Already for the first StirMark test, Additive Noise, the overall situation presents itself
somewhat different, than we witnessed it for fingerprint images of DB1 and DB2: The
matcher, the least affected by the additional random noise in the images of DB3 is
VeriFinger, followed by the Phase Only Correlation matcher. FingerCode, on the other
hand, turns out to be the matcher, whose matching results are the strongest impaired.
In the next two StirMark tests, Median Cut Filtering and Mean Filtering, FingerCode
stays the matcher, the most influenced by the perturbations, while POC’s matching
results once exhibit the highest level of robustness and once a rather average one. In
all of the following StirMark tests though, the Phase Only Correlation matcher shows
clearly the highest sensitivity to the perturbation-related influences of all matchers re-
garded – with exception of the Rotations test, where once again GF20 appears the most
influenced. Like was the case for fingerprint images of DB1 and DB2, FingerCode’s
matching results for the Remove Lines test are, like those of VeriFinger, only slightly
affected by the perturbations in the fingerprint images. For the tests Modified Gauss
Filtering and Rotations then, FingerCode’s level of robustness is generally compara-
ble to that of the minutiae-based matchers (except, of course, GF20 in the Rotations
test). However, for the last six perturbation types then – the four, generated using
affine transformations and the two “original” StirMark tests – FingerCode’s sensitiv-
ity to the perturbations lies again between the levels witnessed in the minutiae-based
fingerprint matchers and that witnessed in the Phase Only Correlation matcher.

One thing, that we can state in regard to both non-minutiae-based matchers: In those test-
sets, where they appear more susceptible to the image perturbations, than the entirety of
the minutiae-based matchers, the differences in the respective impairment, found in the
matching results, are almost always very distinct – for the Phase Only Correlation matcher
even more so, than for the FingerCode matcher. For example the degradation observed in the
respective EER rates for the non-minutiae-based matchers is up to several times stronger,
than that in the EER rates for the minutiae-bases matchers. Also in the related ROC plots,
the differences in the relative separations of the ROC curves, which correspond to the various
test-levels, is clearly perceptible.

Another observation, that we can make in the experimental results, concerns the two con-
figurations of the fingerprint matcher GrFinger, that we regarded in this thesis - GF20,
which only considers a limited angular range of ±20◦for its rotational alignment procedure
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and GF180, which considers an angular range of ±180◦. When comparing the matching
performances, both configurations exhibited in the 36 individual test-sets employed in the
experiments (12 perturbation types × 3 fingerprint data sets), we find, that in 29 cases GF20
turns out, to be more robust to the influences of the image-perturbations than GF180. As for
the remaining 7 cases, there is just one single perturbations type, for which GF180 appears
less influenced than GF20 for all three fingerprint image types: the Rotations tests – which
does not come as a big surprise. One thing, that is also interesting in respect to GF20’s
performance in the Rotations tests though, is, how clearly more impaired GF20’s matching
results are, in comparison to those of any other matcher regarded – especially to those of
the non-minutiae-based matchers, as their rotational alignment functionality was likewise
limited to the angular range of ±20◦(for details please refer to section 5.8).

As to why GF20 performs so different from GF180 and especially, in most of the cases per-
forms better than GF180, I can merely make assumptions, as no declarative information
concerning this matter could be found in GrFinger’s documentation nor do the results gath-
ered in present experiments suffice, to draw significant-enough conclusions about the specific
functionalities of the matcher. One plausible explanation for GF20 behavior would be, that
with the limitation of the angular range, that GF20 inspects, to find the best matching set of
minutiae, it is also less prone (“has less chances”), to find misleading minutiae-combinations,
that it might ultimately identify as actual match.

A further interesting observation, that we can make in individual matching performances in
most of the employed StirMark test-sets, is, that occasionally fingerprint matchers achieve
better matching results for perturbed images, than they initially do for the corresponding
original, unperturbed fingerprint images. For certain perturbation types, this behavior is
quite easily understandable – for example, when regarding the Modified Gaussian Filtering
tests on fingerprint images of database DB3: As noted in the corresponding discussion of
the results on page 119, for this particular type of fingerprint images, the Modified Gaus-
sian Filtering perturbations lead to a certain “clearing” of the finger imprints, making the
ridge-structure better perceptible. Hence one would expect, that it should be easier for the
fingerprint matchers to match such “perturbed” images and at least the results of VeriFinger,
both GrFinger configurations and FingerCode clearly confirm this assumption. On the other
hand, there are several examples, for which the observed improvement in matching perfor-
mance is definitely harder to comprehend. A quite explicit example therefor, that was also
mentioned earlier, can be found in VeriFinger’s matching performance in the Additive Noise
test for fingerprint images of DB3: For almost all test levels VeriFinger produces better
matching results than for the unperturbed images. Even thought the relative differences are
comparatively small – regarding the corresponding equal error rates in Table 5.5, we find,
that differences between the EER relating to the individual noise levels and the EER for the
unperturbed images range between 0.06% and 0.7% – per se it seems to be against logic,
that random noise introduced into fingerprint images, improves the results of a fingerprint
matcher. At this point further experiments would be necessary, in order to find the reasons
for this matching behavior.

Overall, in the results of the experiment of present work, we are able to observe a broad vari-
ety of aspects, regarding the reactions of the diverse fingerprint matchers and matcher types
in respect to the individual kinds of perturbations in the different types of fingerprint im-
ages. However, I have to state, that a genuine understanding, of why a particular fingerprint
matcher or matcher type reacts to a certain test-setup (fingerprint image type, perturbation
type and perturbation intensity) the way it does, is beyond of what can be establish in the
experimental results and thus would be subject for further in-depth investigations.
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Now let us consider the next goal defined in present thesis: Evaluate in general, if the experi-
ment procedures applied, could form the basis for a common fingerprint matcher comparison
and analysis benchmark.

When inspecting the experimental results, we find, that already with this first try for a
benchmark setup, we are actually able to identify differences in how the individual finger-
print matchers respond to the various types of perturbations – as already noted on several
occasions, we can observe, how for a single perturbation type, the respective amount of in-
fluence in a matcher’s results changes with increasing perturbation-intensity, we can further
compare these observations between the various regarded fingerprint matchers and we are
even able to derive certain statements concerning the specific types of fingerprint matchers.
So overall it is possible to gather a broad range of information, at various levels of detail.

Thus I can state, that yes, I am very convinced, that the experimental approach, employed
in present thesis, would serve well as basis for a common generic benchmark architecture for
comparison and analysis of fingerprint matchers. A benchmark, that to my believe, would
enable a user, to systematically examine the matching performances of individual fingerprint
matchers and further establish their particular strong points and weaknesses in regard to
their ability to cope with certain kinds of perturbations in fingerprint images.

The results, generated with this benchmark, could then, for example, be used to make
informed decisions about which fingerprint matcher best suites the specific needs of par-
ticular application scenarios. Further, one might also think about combining two different
types of matching algorithms to compensate specific weaknesses - one could choose two
matchers/matcher-types as such, that one is robust to those perturbation types, to which
the other one is sensitive and vice versa.

Finally, let us now turn to the last remaining goal, defined for the experiments of present
thesis: Determine the applicability of the well-known digital image watermarking robustness-
testing tool StirMark Benchmark for simulation and induction of natural perturbations.

The particular reasons for employing the StirMark Benchmark in present studies have al-
ready been stated on several occasions and are further summarized in section 2.3.

As the StirMark Benchmark itself was developed with the intention, to establish a standard
for robustness-tests in the field of digital image watermarking and to provide the architecture
for a corresponding generic benchmark, as such it already features a broad range of aspects,
that make it very well suited for a benchmark architecture compliant to our requirements
(please refer to section 2.3 for details). Further the StirMark Benchmark provides a series
of image manipulation operations, that, as is also established in the individual StirMark
test related sections in chapter 5, can very well be employed to simulate a variety of image-
altering effects, that can be related to perturbations actually occurring in fingerprint images
of real-life application scenarios. Moreover, via the set of given parameters we are able to
precisely determine individual characteristics and the intensity of the perturbations to be
simulated and thus have the possibility, to tailor the generated perturbed fingerprint images,
to match the specific objectives we would like to investigate.

Still, ultimately I deem the StirMark Benchmark unfit for application in connection with a
benchmark for evaluating fingerprint matching performances. This verdict is due to a single
reason, which, as important as it is for the original purpose of the StirMark Benchmark,
is as troublesome to our intended application: Its function, which automatically embeds
a certain pre-defined watermark into the processed images. As established in section 5.2,
the watermark itself, introduced in the fingerprint images, most likely does not have any
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effect on our experimental results (despite the fact, that we could actually nullify the wa-
termark of even adjust it to our needs). However, as we determined, said functionality also
slightly increases the brightness of the processed images. Thereby it not only severely limits
the possibility to combine several perturbation types, by repeated application of individual
StirMark operations to the fingerprint images, but more important, this also influences the
actual matching results of the individual fingerprint matchers. The effect is comparatively
small (see results in section 5.2), still it distorts the perception of the effectively achievable
matching performances in a very unpredictable manner, thus it can not be tolerated in the
intended common fingerprint matching benchmark.

Thus for the simulation of natural perturbations in fingerprint images, in our case we would
need a tool, that for the most part provides the same functionalities as the StirMark Bench-
mark, yet takes great precautions, to avoid introducing any unintended effects into the
processed images.

Further it would be very interesting, to extend the amount of available image manipulation
operations by perturbations, that have been specifically designed, to simulate fingerprint-
application typical challenges in a given set of fingerprint images – for example a test, that
simulates residues from ridge-lines of “previously” scanned fingerprints.Thereby it might be
possible, to establish even more distinct, even more application-specific differences in the
matching performances of various fingerprint matchers. Which particular problems these
perturbation types should cover and how to simulates the desired effect, is of course subject
to further investigations.
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