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ABSTRACT

This paper links two a priori different topics, group testing
and traitor tracing. Group testing, as an instantiation of a
compressed sensing problem over binary data, is indeed eas-
ier than traitor tracing because the mixing model is far sim-
pler. State-of-the-art algorithms for traitor tracing, including
the celebrated probabilistic Tardos code, are applied to the
group testing problem. They yield better than or competitive
performance when compared to state-of-the-art algorithms.

Index Terms— Compressed sensing, Fingerprinting.

1. INTRODUCTION

Group testing and traitor tracing aim at the same goal: re-
trieving the identity of very few people in a huge popula-
tion. In group testing, these few people are contaminated by a
given disease while in traitor tracing, these people are dishon-
est users illegally distributing copyrighted material. This sec-
tion briefly introduces both subjects and motivates that both
are indeed similar instantiations of a noisy compressed sens-
ing problem over binary data, the remaining part of the paper
proposes a design of the contact matrix and reconstruction al-
gorithms inspired by traitor tracing techniques.

1.1. Group testing

Group testing is usually introduced as the epidemiology prob-
lem (many other applications are listed for instance in [1, Sec.
1]) where we need to identify a small set of virally-infected
people in a large population. Typically, blood samples are
tested to screen out the infected persons. If the size N of the
population is large, the cost of individual tests is prohibitive
and a group testing strategy is deployed. It consists in per-
forming T � N tests on several pools of blood samples. The
contact matrix M is the binary T×N matrix indicating which
blood sample is involved in a given test: Mij = 1 means that
test i uses the blood of individual j, Mij = 0 otherwise. The
results of the test are stored in a binary vector y (yi = 1 if the
i-th test is positive, 0 otherwise). Infected persons are to be
identified from y and M. K denotes the set of the indices of
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theseK persons, and theN -bit long vector x the unknown in-
dicating vector (i.e. xi = 1 if individual i is infected). From
a compressed sensing viewpoint, the goal is to recover the
sparse input vector x explaining the output y = M⊗ x (⊗
denotes binary matrix multiplication). In words, the output
vector y solely depends on the K columns of the restriction
of M to K.

Many papers have proposed bounds on the minimal num-
ber of tests or practical designs (creation of M and recon-
struction of x) based on combinatorics. The pool design is
usually based on a disjunct or separable contact matrix. How-
ever, a recent trend is to look at this problem from a proba-
bilistic point of view [1, 2]. The result of a test should be seen
as a random variable Y reflecting the fact that the test may
not be perfect. Cheraghchi et al. introduced the concept of
activation: one infected person in the pool will independently
trigger the test with probability Π [1]. Atia and Saligrama
preferred to speak of a probability of dilution u = 1−Π; they
also envisaged another setup with additive noise (q is the false
positive test probability) [2]. Sejdinovic and Johnson recently
considered both dilution and additive noise [3].

The introduction of randomness gives birth to an informa-
tion theoretical study which states the asymptotical scaling of
the number of tests T as a function of (N,K, u, q) [2, 3]. A
random construction of M has also been proposed in [1, 3].
However, this construction must know in advance K.

1.2. Traitor tracing

An application of traitor tracing, a.k.a. passive fingerprint-
ing, is the Video-on-Demand scenario where a movie is dis-
tributed toN users. During the purchase, each user indeed re-
ceives a personal copy of the movie. The versioning process
usually divides the movie into T video blocks, and it hides
a bit into each block thanks to a watermarking technique.
Therefore, a unique codeword Mj = (M1j , . . . ,MTj)t is
sequentially hidden in the copy of the j-th user. A collusion
of size K is a group of dishonest users K = {j1, . . . , jK}
mixing their versions to forge a pirated copy. Since the par-
tition of the movie is a priori not secret, the pirates can ex-
change video blocks. The T -bit long vector y decoded from
the pirated content is thus a mix of theK codewords such that
yi ∈ {Mij |j ∈ K},∀i ∈ [T ] ([T ] , {1, . . . , T}). Therefore,



like in the group testing field, the output vector y depends on
the K columns of the restriction of M to K, and the goal of
the accusation process is to identify these K dishonest users.

Similar to the work of Atia & Saligrama, Moulin has
bounded the performance of a traitor tracing scheme from an
information theoretic viewpoint [4]. In particular, he proved
that the single decoder is outperformed by joint decoders.
The first type of accusation takes a decision on a user-by-user
basis whereas the latter type works on groups of users.

As for a practical construction of a traitor tracing code,
Tardos was the first to exhibit an optimum solution [5], nowa-
days celebrated as the Tardos code, in the sense that its
length T has the optimum scaling in O(K2 log(N/ε)), where
ε is the probability of accusing an innocent user. The code
construction is fully probabilistic.

1.3. Similarities and differences

The similarity between the two fields lies in the mathe-
matical model capturing how y depends on the K code-
words {Mj |j ∈ K}. This is usually done in traitor trac-
ing by the collusion strategy θ ∈ [0, 1]K+1 with θσ ,
PYi

[1|∑j∈KMij = σ], 0 ≤ σ ≤ K. Translated into group
testing terminology, a test result is a binary r.v. whose dis-
tribution depends on the number of infected involved in the
test. For instance, applied to Sejdinovic’s setup [3], we have
θσ = 1− (1− q)uσ . If (q, u) = (0, 0), then this θ is known,
in the field of traitor tracing, as the all-one collusion strategy.

In group testing, parameters (u, q) are known because
they depend on the biological nature of the test. The problem
then solely depends on the numbers of infected: the number
of tests has been shown to be scaling as O(K logN) [2].
However, in traitor tracing, the colluders are free to choose
their collusion strategy provided it complies with the marking
assumption: θ0 = 0 and θK = 1. In words, when they all
have the i-th video block containing the same hidden symbol,
this symbol is decoded in the pirated movie since they can’t
modify the embedded symbol. The performance of the traitor
tracing code must be guaranteed whatever the collusion strat-
egy. This is achieved by focusing on the worst case attack [6]
or resorting to an accusation process statistically orthogonal
to θ as originally proposed by Tardos [5]. The optimum code
length T has been shown to be scaling as O(K2 logN/ε),
where ε is the probability of accusing an innocent, due to this
nuisance parameter θ [4]. This renders traitor tracing more
difficult than group testing. On the other hand, traitor tracing
aims at finding some colluders, whereas the goal of group
testing is the exact recovery of the K infected.

2. THE CONTACT MATRIX

2.1. Generation

The population is composed of N individuals, among them
K infected persons. There will be T tests. The contact matrix

is constructed like a Tardos fingerprinting code. Vector p =
(p1, . . . , pT )t are instances of i.i.d. r.vs drawn according to
f(p) s.t. 0 < pi < 1, ∀i ∈ [T ]. The goal of this section is to
determine an appropriate distribution. Then, elements of the
contact matrix are independently drawn s.t. PMij [1] = pi.

2.2. Probabilities

As already mentioned, the assumptions of [3] lead to model
θσ = 1 − (1 − q)uσ . We now focus on a test with pi = p
and drop the index i. Thanks to the probabilistic construction
of the contact matrix, the probability that σ infected are in-
volved in this particular test is PΣ[σ|p] =

(
K
σ

)
pσ(1− p)K−σ .

PA[a] denotes the probability that r.v. A takes the value a.
Therefore, the probability that this test is positive is

PY [1|p,K] =
K∑
σ=0

θσ

(
K

σ

)
pσ(1− p)K−σ (1)

which nicely simplifies to 1−(1−q)(1−p+up)K . In the same
way, assume we know the identity of L < K infected, and
among them, ρ < L are involved in this test. The probability
that the test is positive given this extra information is

PY [1|p, ρ, L,K] =
K−L+ρ∑
σ=ρ

θσ

(
K − L
σ − ρ

)
pσ−ρ(1−p)K−L−σ+ρ

which simplifies to 1 − (1 − q)(1 − p + up)K−Luρ. In par-
ticular, for L = 1, we have:

PY [1|p, 0, 1,K] = 1− (1− q)(1− p+ up)K−1 (2)
PY [1|p, 1, 1,K] = 1− (1− q)(1− p+ up)K−1u (3)

2.3. Analysis of the single decoder

Thanks to (1), (2) and (3), we compute the amount of infor-
mation I(Y ;X|p) that this test result brings about the identity
of one infected person. This figure bounds the performance
of the single decoder. Since the first step of our reconstruc-
tion algorithm (see next section) relies on this decoder, it is
of utmost importance to maximize this figure of merit. Fig. 1
shows the typical behavior of this quantity as a function of p
for the setups of [1](top) and [3](bottom) . Define p?(K) ,
arg maxp∈(0,1) I(Y ;X|p). We were not able to find a close
form expression of its maximum but a good approximation
is I(Y ;X|p?(K)) ∝ K−1. This is a strong difference w.r.t.
traitor tracing where maxp∈(0,1) I(Y ;X|p) ∝ K−2 for the
worst attack [7]. Since we do not a priori know the value ofK
at the generation of M, we cannot set pi = p?(K), ∀i ∈ [T ].
However, given a range K ∈ [K,K], we choose f(p) as the
uniform distribution over [p?(K), p?(K)].

3. THE RECONSTRUCTION ALGORITHM

Once vector y is observed, the reconstruction algorithm aims
at identifying theK infected. In traitor tracing, the decoder of
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Fig. 1. I(Y ;X|p) in nats as a function of p for different values
of K. (top) Setup of [1]: q = 0 and u = 0.2 ; (bottom) Setup
of [3]: q = 0.01 and u = 0.05.

a Tardos code computes a score for each codewords. It then
accuses people whose score is above a threshold. Originally,
Tardos proposed a pivotal quantity with respect to θ, in the
sense that the distribution of the scores does not depend on
this nuisance parameter [5]. In group testing, there is little
ambiguity on θ because it only depends onK (we assume that
(u, q) is known). Therefore, we prefer a ‘learn and match’
strategy which consists of estimating K first and then use an
optimal detector. This has been tested for traitor tracing with
some difficulties because identifiability issues appear: ∃θ1 6=
θ2 s.t. PY [1|p,θ1] = PY [1|p,θ2], ∀p ∈ (0, 1) [7, Prop. 4].
Here, it is not the case provided u 6= 1 and q 6= 1.

3.1. Estimation of K

The maximum likelihood estimator is given by:

K̂ = arg max
K

T∑
i=1

log PY [yi|pi,K].

There is no close form expression, but since pi are distributed
over a short interval, an approximation is K̂0 = log(∆/(1 +
∆)/(1−q))/ log(1−E(p)(1−u)), with ∆ =

∑
yi=0 log(1−

pi(1−u))/
∑
yi=1 log(1−pi(1−u)). We then refine this by

looking for a maximum K̂ of the likelihood around K̂0.

3.2. Single decoder with likelihood ratio test

Once K has been estimated, the score of each individual j is
indeed a test between the hypotheses:

• H0: This individual is not infected. The test results are
independent of her blood sample: PY,Mj

= PYPMj
.

• H1: This individual is infected. The test results depend
on her blood sample: PY,Mj

= PY|Mj
PMj

.

The score of individual j is then the log-likelihood ratio com-
puted thanks to (1), (2) and (3):

sj =
T∑
i=1

log
PY [yi|pi,Mij , 1, K̂]

PY [yi|pi, K̂]
. (4)

This decoder is more complex than the distance decoder pro-
posed in [1], but a careful implementation takes one second
to yield 106 scores on a regular computer. Yet, this decoder
allows exact recovery only if the K infected get ranked first.

3.3. Advanced decoders

We propose two improvements of the single decoder. The
first idea is to go for a joint decoder which computes scores
for τ -tuples. This has never been done, as far as we know, due
to the prohibitive complexity of browsing all the

(
N
τ

)
combi-

nations. We will tend to this gradually. In the first step, we
use the previous single decoder and isolate in the set S(2) the
|S(2)| = d√2!Ne persons having the highest scores. There
are

(|S(2)|
2

)
= O(N) pairs in S(2) so that the computation

of their scores is ‘affordable’. After having sorted these pair
scores in decreasing order, we include in S(3) individuals in-
volved in the pairs having the highest scores, and stop when
the size |S(3)| equals d 3

√
3!Ne. Denote by r(3) the number of

pairs we had to browse to fill set S(3). The idea is to grad-
ually discard the less likely people while maintaining a list
S(k) of suspects short enough to allow the computation of(|S(k)|

k

)
= O(N) scores over bigger k-tuples in the next step.

For a given k-tuples K`, define ρi` ,
∑
j∈K`

Mij , ∀i ∈ [T ]
to compute the score as the following log-likelihood ratio:

s
(k)
` =

T∑
i=1

log
PY [yi|pi, ρi`, k, K̂]

PY [yi|pi, K̂]
. (5)

Exact recovery implies that no infected is discarded at any
step, which is a weaker condition than for the single decoder.

The second idea consists in deeming as infected the most
likely individuals. It is then possible to include this side in-
formation in the computation of the new scores. At the end
of the (k − 1)-th iteration of the joint decoder, |S(k)| persons
are suspected because they belong to the first r(k) (k − 1)-
tuples (Note that we fix |S(k)| so that r(k) is indeed a ran-
dom variable). While filling the set S(k) we also count the
number of times individuals in this set appear in the r(k) first
(k − 1)-tuples. Usually these tuples are hybrid, i.e. com-
posed of infected and sound persons. But whereas we always
find the same K infected, the identities of the sound persons
are very different from a hybrid tuple to another. Therefore,
infected people have a high number of appearances whereas
sound people have low figures. In our algorithm, we accuse



only one individual j(k) if the number of appearances are suf-
ficiently unevenly distributed. Denote I(k) the set of deemed
infected at iteration k. We have I(1) = I(2) = ∅ (no side
information is available for the single and the pair decoder)
and I(k+1) = I(k) ∪ {j(k)} if someone is accused at round
k ≥ 2. Define σ(k)

i =
∑
j∈I(k) Mij , ∀i ∈ [T ]. Then the score

for k-tuple K` with this side information is:

s
(k)
` =

T∑
i=1

log
PY [yi|pi, ρi` + σ

(k)
i , k + |I(k)|, K̂]

PY [yi|pi, σ(k)
i , |I(k)|, K̂]

(6)

Exact recovery implies that only truly infected are included in
the side information.

4. EXPERIMENTS

In this section we compare our proposed Tardos single and
joint, side-informed decoders with two group testing setups
reported by Cheraghchi et al. ([1], N = 100000, K = 10,
u = 0.2 and q = 0) and Sejdinovic & Johnson ([3, 2], N =
5000, K = 50, u = 0.05, q = 0.01).

Fig. 2 shows the probabilities for exact recovery of all
K infected individuals depending on the number of tests T
for the Cheraghchi setup (top) and Sejdinovic setup (bottom).
Here, the ‘Tardos’ contact matrix is constructed using the op-
timum p? = 0.0684 and p? = 0.0138, resp. At least 1000
trials have been performed at the various numbers of tests.

For the Cheraghchi setup, our decoders outperform the
distance decoder [1], reducing the number of tests for exact
recovery from 3000 to about 1200 tests using the single, and
about 700 tests using the joint, side-informed Tardos decoder.
In the Sejdinovic setup, the joint, side-informed Tardos de-
coder is competitive with the belief propagation reconstruc-
tion approach [3]; about the same number of tests are required
for exact recovery.

We remark that both previous experimental setups assume
K to be known which is unrealistic in practice. Experiments
confirm that the performance of our decoders indeed degrades
only slightly relying on the proposed estimate K̂. For the
sake of fair comparison, however, we stick to the scenarios
reported in the literature.

5. CONCLUSION

This paper makes for the first time the connection between
traitor tracing and group testing stressing their similarities
and differences. Traitor tracing accusation processes are used
for the identification of infected person and are shown to be
competitive to previous reconstruction algorithm. Our future
work aims at creating a measure of confidence about this re-
construction, associating each individual with an estimation
of the probability that she is infected.
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Fig. 2. Comparison of our single and joint, side-informed
decoders with two group testing setups.
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