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Abstract

In modern medicine endoscopy plays a very important role as it allows physicians to detect
severe diseases in early development stages already. Especially the gastrointestinal tract is ex-
amined routinely in order to detect pre-malignant and possibly malignant diseases. As a con-
sequence, the mortality rate for many diseases, especially different types of cancers, has been
lowered drastically throughout the last years.

In this cumulative thesis we specifically focus on computer-aided decision support systems
targeting the gastrointestinal tract as those may potentially help to save time, lower the cost of
endoscopic procedures, and lower the risk of such procedures for the patients. To underpin the
importance of such systems this thesis includes a detailed overview and discussion of methods
published within the two past decades, targeting this field of research.

Furthermore, we evaluate different types of features and classifiers throughout this work, in
order to obtain a robust system for the classification of endoscopic images. The features used
throughout this work either investigate local texture properties, are based on statistical texture
features, or aim at a shape-based classification.

We also investigate the use of an ensemble classifier, which combines the outcome of different
weak methods in order to stabilize the results of our methods across the different images classes.

To show the feasibility of the methods proposed we carry out numerous experiments on two
distinct image databases. One database contains endoscopic images showing polyps from the
colon, which we aim to classify correctly. The second database contains endoscopic imagery
from celiac disease patients. In the case of the latter database we aim to detect the presence of
celiac disease.

In order to assess real-time capabilities of our methods we also carry out performance tests
and discuss the respective results.

In der modernen Medizin spielt die Endoskopie eine wichtige Rolle, da diese Untersuchungs-
methode einem Mediziner die Möglichkeit gibt, schwerwiegende Erkrankungen frühzeitig zu
erkennen. Vor allem der Gastrointestinaltrakt wird routinemäßig untersucht, um eventuell
bösartige Veränderungen im Darm oder Vorstufen davon rechtzeitig erkennen zu können. Im
Laufe der letzten Jahre ermöglichte dies eine drastische Senkung der Sterblichkeitsrate bei vie-
len verschiedenen Krankheitsbildern – vor allem bei Darmkrebs.

In dieser kumulativen Dissertation widmen wir uns im Speziellen Computer-gestützten Ent-
scheidungssystemen, welche auf die Untersuchung des Gastrointestinaltrakts abzielen. Derar-
tige Systeme können in Zukunft dabei helfen, den Zeitaufwand für Endoskopieuntersuchungen
und die damit verbundenen Risiken für Patienten und Untersuchungskosten zu minimieren.
Um die Wichtigkeit derartiger Systemen zu belegen, beinhaltet diese Dissertation eine aus-
führliche Zusammenfassung und Diskussion von Systemen, welche in den letzten zwei Jahr-
zehnten entwickelt wurden.

Des Weiteren evaluieren wir in dieser Arbeit verschiedene Typen von Merkmalen und Klas-
sifikationsalgorithmen, mit dem Ziel eine robuste Klassifizierung von Endoskopieaufnahmen
zu erreichen. Die dabei verwendeten Merkmale beschreiben Bilder auf verschiedene Art und
Weise. Während manche Merkmale auf lokalen Bildeigenschaften oder statistischen Texturei-
genschaften basieren, zielen andere auf die Beschreibung vom markanten Strukturen in Endo-
skopieaufnahmen ab.



Um die Ergebnisse zu verbessern und über mehrere Bildklassen hinweg zu stabilisieren,
evaluieren wir zudem einen Ensemble-Klassifikationsalgorithmus. Dieser kombiniert die Aus-
gaben von verschiedenen Methoden, um bei der Bildklassifikation noch genauere und stabilere
Ergebnisse zu erreichen.

Um zu prüfen, ob die vorgestellten Methoden im Rahmen einer Klassifikation von Endos-
kopieaufnahmen erfolgreich sind, führen wir zahlreiche Experimente auf Basis von zwei ver-
schiedenen Bilddatenbanken durch. Die erste Datenbank besteht aus Bildern von Polypen im
Dickdarm, welche von den vorgestellten Methoden unterschieden werden sollen. Im Fall der
zweiten Datenbank, welche aus Endoskopieaufnahmen von Zöliakie-Patienten besteht, ist das
Ziel die Erkennung von Zöliakie.

Um auch Aussagen über die Echtzeitfähigkeit unserer Methoden treffen zu können, führen
wir zudem Geschwindigkeitsmessungen bei den vorgestellten Methoden durch und disku-
tieren die entsprechenden Ergebnisse.
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1. Introduction

1.1. Medical and Technical Background

Esophagus

Stomach

Anus
Rectum

Small
intestine

Colon

Figure 1.1.: A schematic illustration of
the human GI tract.

Since medical endoscopy is a minimally invasive and
relatively painless procedure, allowing to inspect the
inner cavities of the human body, endoscopes play an
important role in modern medicine. In clinical prac-
tice different organs such as the respiratory tract, the
urinary tract, and the female reproductive system are
regularly inspected by using an endoscope. Another
important field in medical endoscopy, which this work
focuses at, is the inspection of the gastrointestinal tract
(GI tract). The parts of the human GI tract, which
are most commonly inspected with an endoscope, are
shown in Figure 1.1.

Based on endoscopy of the GI tract, physicians are
able to detect severe diseases already in early develop-
ment stages and therefore the mortality rate for many
diseases, especially different types of cancers, has been
lowered drastically throughout the last years. Some
examples of conditions which are known to be pre-
malignant or to increase the risk of cancer in the GI
tract are adenomas, Barrett’s esophagus, Crohn’s dis-
ease, celiac disease, GI bleeding, and a Helicobacter py-
lori infection.

In general the area of applications for endoscopes is
wide. Besides medical procedures, endoscopes are also used to inspect airplane turbines, pipes
in buildings or industrial machinery, car engines, tanks in ships, and for veterinary endoscopy.
However, throughout this work the terms “endoscope” and “endoscopy” always denote the
medical device and procedure, respectively.

Endoscopy, as we know it today, is performed using a flexible endoscope, sometimes also
referred to as videoscope. This type of endoscope has been introduced in the mid 1960s. While
the first endoscopes used fiber optics and an eyepiece lens to visualize the inner cavities of
the human body, modern endoscopes are very compact devices, including a light source, and
a CCD or CMOS chip for taking pictures. But the basic concept did not change very much
since those days. In addition to the digital imaging chip, modern endoscopes contain a light
source at the distal tip and are equipped with an accessory channel, which allows the entry of
medical instruments for example to take tissue samples, perform cleansing of poorly prepared
areas, perform polypectomies, and perform endoscopic resections without any invasive surgery
involved.

Due to the digital imaging chips used in modern endoscopes such devices are also regularly
used to take digital pictures and record video sequences. These abilities created the whole new
field of computer-aided decision support systems (CADSSs) in medical endoscopy. The aim
of such systems is to predict pathologies and thus to assist a medical expert in improving the

1



Chapter 1. Introduction

accuracy of medical diagnosis [18]. Hence, the development of such systems is motivated by
the following key aspects:

• Saving time and reducing cost
CADSSs usually help to identify regions which may be of particular interest for a medical
expert. Since, in general, such systems are designed to detect abnormal changes within
the GI tract (e.g. neoplastic or metaplastic changes) they are also able to help avoiding
possibly unnecessary biopsies, allowing to perform more targeted biopsies. In the course
of such targeted biopsies the time needed for an endoscopy procedure may be lowered
drastically. As a consequence the procedure gets more comfortable for the patient. Fur-
thermore, since the number of necessary biopsies to be taken can be reduced, the time
needed for the subsequent histopathologic examination can be reduced too.

Reducing the time needed for an endoscopy and the subsequent histopathologic exami-
nation also results in a reduction of costs associated with such procedures.

Considering the fact that re-investigating a video recorded during an endoscopy session
may consume as much time as the endoscopic procedure itself, there is a potential to save
time and costs if CADSSs are able to identify parts of such videos which might be of
interest for a medical expert.

• Enhancing accuracy of diagnosis
Endoscopy is a tedious procedure, demanding a constantly high level of concentration
by an endoscopist. This is mainly due to the fact that missing an abnormality during
endoscopy may be hazardous. Especially lesions which are rather small or only noticeable
for a short fraction of time may be missed easily. This particularly applies to wireless
capsule endoscopy (WCE) [17], where a lesion may show up in a single frame only (out
of more than 50 000 frames in total!). This is due to the rather low frame rate of currently
available capsules which usually is about two frames per second.

The advantage of CADSSs is that computers always exhibit the same level of “concentra-
tion” – no matter how long an endoscopic procedure lasts or how many of such proce-
dures a computer has to analyze in series. Also situations with bad light conditions, poor
image quality, or poor contrast usually pose a problem for a medical expert, increasing
the risk of missed lesions. If designed properly, a computer-based systems may be able
to cope well with such circumstances. The constant level of “concentration” and the re-
sistance against poor image conditions may help to avoid missing lesions, leading to an
enhanced diagnostic accuracy of an endoscopic procedure.

But, as indicated in [14], sometimes there is a more simple reason for missed lesions:
an abnormality may be simply get missed since it is misinterpreted and therefore not
recognized as being abnormal. The likelihood of missing a lesion for this reason heavily
depends on the expertise of the medical expert who performs the endoscopy, leading to a
lowered inter-observer agreement level. CADSSs, on the other hand, do not suffer from
this problem. If the detection of abnormalities is designed in a robust way and there
is sufficient training data available, a CADSS is expected to always deliver roughly the
same level of accuracy.

• Training of experts to new endoscopic imaging modalities
Throughout the past few years there have been many major advances in endoscopy. While
the new imaging modalities have the potential to greatly increase the efficiency of en-
doscopy, medical experts need to get trained on these new techniques. In order to assess
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1.2. Different Types of CADSSs

the skills of a medical expert on new techniques, CADSSs can be used as an expert train-
ing tool to predict pathology, verify the detection or prediction performance of a medical
expert, and serve as an educational resource.

As a consequence, a rising interest in the field of CADSSs targeted at endoscopy in the GI
tract can be observed within approximately the past two decades [71].

1.2. Different Types of CADSSs

Basically CADSSs can be categorized into medical image classification (MIC) systems and sys-
tems which are based on content-based image retrieval (CBIR) strategies. While these two con-
cepts share some basic building blocks, there are also fundamental differences [70]. Classifier-
based approaches provide a second opinion to a medical expert by predicting the pathology in
a fully autonomous manner for an unknown image with unknown pathology. CBIR-based sys-
tems, on the other hand, can be regarded as the digital counterpart of current clinical practice,
where medical experts compare cases with unknown pathology to cases with an already known
and verified diagnosis. Based on a suitable metric the system returns a list of images which are
most similar to the image with unknown pathology. Usually the outcome of such systems can
then be refined by a medical expert by issuing a new image query based on one or more images
which seem to be relevant to the medical expert (commonly termed ”relevance feedback”).

One of the main differences between the different system types is therefore the fact that, while
MIC-systems perform the prediction in a fully autonomous fashion, CBIR-based systems allow
a medical expert to refine the prediction process. In case of CBIR, it is up to the medical expert
to choose the final match (along with the respective known pathology) and therefore make a
judgment on the pathology of the unknown image.

While most of the work found in literature is of MIC-type there also exist a few CBIR-based
approaches (e.g. [6, 79]). The dominance of MIC systems may be attributed to the fact that such
systems are potentially suited for an online diagnosis (performed in real-time during the med-
ical examination already). CBIR systems, on the other hand, are restricted to offline scenarios
mainly due to the interactive nature of such systems.

In addition, CADSSs targeting at endoscopy in the GI tract can also be divided into systems
which aim at the detection of abnormalities (e.g. [46, 25]) and systems which go one steps
further and provide a prediction about the underlying pathology (e.g. [77, 95, 15]). In case of
the latter type abnormalities of interest are either detected implicitly or abnormality candidates
are found using a different method and used as input to the classification system.

1.3. GI Tract Parts and Pathologies Under Investigation

Despite the fact that there exist different types of systems throughout literature, these approaches
also differ in terms of the part of the GI tract they are targeted at. As a consequence there exists
a variety of pathologies which are targeted by different CADSSs.

The vast majority of approaches is targeted at the detection of classification of colonic polyps.
This can be explained by the high prevalence of such polyps and the fact that these may develop
into colon cancer [71]. Systems aiming at the detection or classification of polyps in the colon
have been proposed for example in [77, 46, 95, 39, 54, 48, 29, 25].

Another rather high share of CADSSs-related research aims at distinguishing between nor-
mal and abnormal regions without being specific about the underlying pathology. Besides the
detection of such regions in the colon (e.g. [96, 75]), also the small bowel is targeted by some
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Chapter 1. Introduction

work [10, 56]. In addition there exist quite a few approaches which do not focus on a particular
GI tract part but examine all parts of the GI tract using WCE (e.g. [100, 67, 59]).

Another prominent field of research is the detection of gastrointestinal bleeding since this
pathology may be an indication for many diseases such as, for example, colon cancer, Crohn’s
disease, esophageal cancer, small intestine cancer, or the typhoid fever. Since GI bleeding may
occur in many different parts of the GI tract it is no surprise that related approaches are usually
based on WCE (e.g. [64, 23, 49, 51, 65, 84, 83, 1]).

The remaining work found in literature targets at the detection or classification of other
pathologies such as ulcers (e.g. [66, 92]), celiac disease (e.g. [99, 98, 97]), tumors (e.g. [8]),
Crohn’s disease (e.g. [9, 22]), cancer (e.g. [90]), intestinal dysfunctions (e.g. [87]), Barrett’s
esophagus (e.g. [79]), or Helicobacter pylori (e.g. [45]).

1.4. Different Types of Features

In order to detect or classify different pathologies within the GI tract various different types of
features are commonly used throughout the respective literature. These features can be roughly
grouped into low-level features and high-level features.

1.4.1. Low-level features

Despite the fact that the low-level features presented below all aim at describing textural con-
tent within images, they can be further subdivided into spatial domain features and frequency
domain features.

Spatial domain features

Features in this category are extracted directly in the spatial domain and usually based on the
color information stored in color channels.

The simplest approaches in this category use information such as the pixel color [83] or a
combination of pixel colors with the respective pixel positions [2] with a suitable classifier in
order to perform a classification. Other rather simple approaches just count pixels of certain
colors or color tones and decide upon eventual pathologies by thresholding the pixel counter
[1, 64].

Statistical measures such as for example the mean value or the standard deviation computed
from pixel colors or grayscale images are also frequently used features (e.g. [15, 45, 59, 87]).

Histograms of color channels or images are also features which are found very often through-
out literature. Usually either histograms are computed and used directly for a similarity-based
classification (e.g. [38, 37, 67, 23]) or features like Haralick features [43] or other statistical fea-
tures are extracted from histograms and used for a subsequent classification (e.g. [8, 75, 22, 57,
99, 100]). Sometimes the histogram features are complemented by other features to increase the
classification performance (e.g. [23]).

Other features, which can be found in literature dealing with CADSSs targeting at medical
endoscopy of the GI tract, are based on operators aiming at capturing local texture properties.
Such operators are the Local Binary Patterns (LBP) operator [82] and the Texture spectrum (TS)
operator, originally proposed in [101]. After one of these operators has been applied to an
image, usually histograms (e.g. [3, 47]) or statistical features based on the transformed images
or histograms (e.g. [58, 96, 100, 47]) are extracted and used for classification. In order to capture
local texture features across an image sometimes the Scale Invariant Feature Transform (SIFT)
[74] is used to extract scale invariant features from endoscopic images (e.g. [6, 4, 5, 93]).
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Frequency domain features

Features falling into this category are extracted from an image or color channel after applying
some sort of transformation of the data into the frequency domain.

Throughout literature dealing with CADSSs targeted at endoscopy of the GI tract the Dis-
crete Wavelet Transform (DWT) [76] has been established and is used quite frequently to obtain
image features. Variants of the DWT, such as the Dual-tree Complex Wavelet Transform (DT-
CWT) [88], the Curvelet transform [12], or the Stationary Wavelet Transform (SWT) [85], have
also been used to obtain approximate shift-invariant and rotation-invariant features. While
some approaches construct co-occurrence matrices from wavelet subbands and extract Haral-
ick features from them (e.g. [53, 48, 73, 77, 56, 54]), other approaches extract statistical features
from wavelet subbands (e.g. [45, 40, 99, 63]), approximate coefficient distributions and use the
estimated distribution parameters for the classification (e.g. [62, 28]), or apply another transfor-
mation on the wavelet subbands in order to obtain features (e.g. [66]).

Despite the undisputed dominance of wavelet features, there exists work which uses other
frequency transforms such as the Fast Fourier Transform (FFT) or the Discrete Cosine Transform
(DCT). These approaches usually extract statistical features from the transformation coefficients
in order to obtain features for the classification (e.g. [30, 31, 29, 30]).

1.4.2. High-level features

Features in this category usually describe geometrical properties of shapes extracted from im-
ages. Thus, instead of describing textural properties within an image high-level features de-
scribe an image in a more abstract way. Hence, usually some sort of edge detection algorithm
like the Canny edge detector [13] or the SUSAN edge detector [89] is used to obtain the edge
information for an image. Based on such an edge image features different features describing
shapes may be used for the classification of endoscopic images (e.g. [25, 26, 95, 50, 52, 91, 60, 79]).
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2. Contribution

Our work published throughout the past years can be divided into the following three cate-
gories: overview articles, methods for the classification of colonic polyps, and methods aiming
at the detection of celiac disease.

2.1. Overview Articles

Literature with respect to computer-aided decision support systems targeted at endoscopy of
the GI tract is highly dispersed. Hence, in the past we published an introductory paper, a
technical report, and a book chapter, which summarize and discuss different aspects of this
research topic.

While in [69] we just provide a brief summary of CADSSs targeted at endoscopic images
from the GI tract, the technical report [71] gives a comprehensive overview of research related
to the this topic. Besides presenting facts and figures concerning related work, we also criti-
cally discuss different issues which are inherent to this topic of research (e.g. lack of common
image databases, different evaluation protocols used throughout literature, performance issues,
obtaining ground truth information, and comparison of system accuracies among different pub-
lications).

The chapter published in [70] more specifically explains the different steps which are com-
mon to pathology prediction systems (e.g., obtaining ground truth information, assembling
training image databases, the advantages and disadvantages of different validation protocols
usually used throughout related literature). In addition, this work elaborates on the differences
between CBIR and MIC systems and the respective similarities and differences with respect to
the different processing steps in such prediction systems. This is accompanied by a comparison
of example approaches from literature.

Publications (sorted chronologically)

[69] M. Liedlgruber and A. Uhl. Endoscopic image processing - an overview. In Proceedings of
the 6th International Symposium on Image and Signal Processing and Analysis (ISPA’09), pages
707–712, Salzburg, Austria, Sept. 2009

[70] M. Liedlgruber and A. Uhl. Predicting pathology in medical decision support systems in
endoscopy of the gastrointestinal tract. In C. Jao, editor, Efficient Decision Support Systems –
Practice and Challenges in Biomedical Related Domain, pages 195–214. InTech, Rijeka, Croatia,
2011

[71] M. Liedlgruber and A. Uhl. A summary of research targeted at computer-aided deci-
sion support in endoscopy of the gastrointestinal tract. Technical Report 2011-01, Depart-
ment of Computer Sciences, University of Salzburg, Austria, http://www.cosy.sbg.
ac.at/research/tr.html, 2011
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2.2. Polyp Classification

2.2.1. Medical background

Due to the fact that colonic polyps have a rather high prevalence and are known to either de-
velop into cancer or to be precursors of colon cancer, an early detection of such pathologies can
lower the mortality rate drastically. Hence, throughout the past years we developed various
methods aiming at an assessment of the malignant potential of colonic polyps with the aim of
avoiding random and, probably, unnecessary biopsies. As a consequence such systems could
potentially help to save time, lower the cost for colonoscopy procedures, and reduce the risk of
complications during such procedures.

In order to be able to distinguish between the different types of polyps we based our work
on the pit pattern classification scheme, originally reported by Kudo et al. [61]. Based on the vi-
sual pattern of the mucosal surface this system allows to differentiate between normal mucosa,
hyperplastic lesions (non-neoplastic), adenomas (a pre-malignant condition), and malignant
cancer. Thus this classification it is also a convenient choice for an automated image classifi-
cation. Since the pit pattern classification distinguishes between six different pit pattern types,
which can be grouped into non-neoplastic and neoplastic lesions, a 2-class classification is pos-
sible as well as a 6-class classification.

The images used throughout our publications have been obtained using a zoom-colonoscope
with a magnification factor of 150. In addition, topical staining has been applied in order to
visually enhance mucosal crypt patterns or vascular features.

2.2.2. Our contribution

As already mentioned in Section 1.4, there exists a variety of different features which might
potentially be used for the classification of endoscopic images. Hence, in the past we evalu-
ated different types of features in terms of their discriminative power with respect to polyp
classification.

In [42] we compared the Local Discriminant Bases (LDB) algorithm [86], which has been de-
veloped with discrimination between different image classes in mind, against the pyramidal
DWT in terms of the classification rates, using statistical features based on wavelet coefficients.
We showed, that the LDB algorithm is able to deliver higher classification accuracies as com-
pared to the DWT.

We then presented a larger study in [68] by comparing the classification accuracies of different
types of wavelet-based operators. The main focus of this work, however, was a comparison
of statistical wavelet features and structural features based on the decomposition structures
obtained by the Best-Basis algorithm [16]. The outcome of this work was that in most cases the
statistical features deliver superior classification rates as compared to the structural features.

The impact of combining features from different colors channels on classification accuracies
has been investigated in more detail in [34]. For this purpose we compared the classifica-
tion rates of previously developed wavelet-based features, histogram-based features [38], and
Fourier-based features [31] when extracted from grayscale images or multiple color channels.
We were able to show that extracting features from all color channels available constantly im-
proved the classification rates of the methods compared. This observation lead to the decision
that we exploited color information where possible in all subsequent publications.

In addition, we introduced an ensemble classifier in [34] which combines the prediction out-
comes of different methods in order to improve and stabilize the overall classification rate and
the classification rates across the different image classes. We showed, that, at least in case of
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2.2. Polyp Classification

the more challenging 6-classes case, the ensemble classifier is able to considerably improve the
classification rates.

In [32] we combined the concept of Gaussian Markov Random Fields (GMRF) with the wavelet
transform since wavelet-based features already delivered very promising classification results
in previous work. For this purpose we estimated Markov parameters from subbands resulting
from a DWT. In addition we introduced directional GMRF neighborhoods specifically tailored
to the wavelet domain, exploiting the different directions of the different detail subbands. We
were able to show that moving the Markov parameter estimation to the wavelet domain con-
siderably improves the classification rates. The introduction of the directional neighborhoods
improved the classification rates even more.

In a more recent work we also evaluated a noise-robust version of the LBP operator for a
classification of polyps [33]. We showed that, compared to the original LBP operator, our exten-
sion is able to deliver higher classification accuracies, especially in the 6-classes case. Since we
combined information from different color channels into 2D-histograms this method suffered
in terms of the time needed for image classification. In order to overcome this limitation, we
proposed a novel texture operator based on LBP in a more recent work [41]. With the goal of
developing a compact and fast operator we were able to show that, while delivering roughly
the same classification accuracies, our new operator is up to 7.5 times faster compared to the
method proposed in [33].

Due to the visual nature of the pit pattern classification we also investigated shape-based
features. In [35] we classified the pit pattern images based on the density of pit candidates
found within the images. While the results achieved were very promising, the density of pit
candidates is only suitable for a 2-class classification. To allow a 6-class classification too we
investigated the combination of shape-based and texture-based features in a follow-up work in
[36]. This combination yielded highly competitive results as compared to previously developed
approaches.

Publications (sorted chronologically)

[42] M. Häfner, M. Liedlgruber, F. Wrba, A. Gangl, A. Vécsei, and A. Uhl. Pit pattern classifi-
cation of zoom-endoscopic colon images using wavelet texture features. In W. Sandham,
D. Hamilton, and C. James, editors, Proceedings of the International Conference on Advances in
Medical Signal and Image Processing (MEDSIP’06), pages 1–4, Glasgow, Scotland, UK, July
2006

[68] M. Liedlgruber and A. Uhl. Statistical and structural wavelet packet features for Pit pattern
classification in zoom-endoscopic colon images. In P. Dondon, V. Mladenov, S. Impedovo,
and S. Cepisca, editors, Proceedings of the 7th WSEAS International Conference on Wavelet
Analysis & Multirate Systems (WAMUS’07), pages 147–152, Arcachon, France, Oct. 2007

[34] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba. Pit pattern classifi-
cation using multichannel features and multiclassification. In D. F. T.P. Exarchos, A. Pa-
padopoulos, editor, Handbook of Research on Advanced Techniques in Diagnostic Imaging and
Biomedical Applications, pages 335–350. IGI Global, Hershey, PA, USA, 2009

[32] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba. Combining Gaussian
Markov random fields with the discrete wavelet transform for endoscopic image clas-
sification. In Proceedings of the 17th International Conference on Digital Signal Processing
(DSP’09), pages 177–182, Santorini, Greece, July 2009
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[33] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba. Pit pattern classifi-
cation using extended local binary patterns. In Proceedings of the 9th International Confer-
ence on Information Technology and Applications in Biomedicine (ITAB’09), pages 1–4, Larnaca,
Cyprus, Nov. 2009

[35] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba. Classification of
endoscopic images using Delaunay triangulation-based edge features. In Proceedings of
the International Conference on Image Analysis and Recognition (ICIAR’10), volume 6112 of
Springer LNCS, pages 131–140, Povoa de Varzim, Portugal, June 2010

[36] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba. Endoscopic image
classification using edge-based features. In Proceedings of the 20th International Conference
on Pattern Recognition (ICPR’10), pages 2724–2727, Istanbul, Turkey, Aug. 2010

[41] M. Häfner, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba. Color treatment in endoscopic
image classification using multi-scale local color vector patterns. Medical Image Analysis,
16(1):75–86, 2012

2.3. Celiac Disease Detection

2.3.1. Medical background

Celiac disease, commonly known as gluten intolerance, is a complex autoimmune disorder that
affects the small bowel in genetically predisposed individuals of all age groups after introduc-
tion of food containing gluten. Characteristic for the disease is an inflammatory reaction in the
mucosa of the small intestine. During the course of the disease the mucosa looses its absorp-
tive villi and hyperplasia of the enteric crypts occurs, leading to a diminished ability to absorb
nutrients.

Endoscopy with biopsy is currently considered the gold standard for the diagnosis of celiac
disease. During standard upper endoscopy at least four duodenal biopsies are taken. Micro-
scopic changes within these specimen are then classified in a histological analysis according to
the Marsh classification proposed in 1992 [78]. Subsequently, Oberhuber et al. proposed the
modified Marsh classification [80] which distinguishes between classes Marsh-0 to Marsh-3,
with subclasses Marsh-3a, Marsh-3b, and Marsh-3c, resulting in a total number of six classes.

According to the modified Marsh classification Marsh-0 denotes a healthy mucosa (without
visible changes of the villous structure) and Marsh-3c designates a complete absence of villi (vil-
lous atrophy). Since visible changes in the villi structure can be observed only between classes
Marsh-0 and classes Marsh-3a to Marsh-3c, our work either carries out a 2-class classification or
a 4-class classification.

2.3.2. Our contribution

In [98] we evaluated the Fourier features from [31] and the ensemble classifier proposed in [34]
on celiac disease images. We showed that the results achieved were very promising. In addition
our ensemble classifier slightly improved the classification accuracies as compared to the single
methods.

In [44] we aimed at assessing the impact of different endoscopic image capturing techniques
(i.e. classical method and modified immersion technique) on an automated classification of
celiac disease imagery. For this evaluation we compared the results achieved by previously
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developed methods on different image databases (e.g. [98, 32, 42]). We were able to show that
the capturing technique used has indeed an impact on the classification accuracies achieved.

An image degradation commonly seen in endoscopic images are barrel-type distortions. Since
these distortions are claimed to affect diagnosis [11], we also investigated the impact of such dis-
tortions on the accuracy of an automated diagnosis. While in [27] we investigated the impact of
distortion correction only, we examined the effect of distortions as well as distortion correction
in a more recent work [72]. In addition we provide a more detailed statistical analysis of an
eventual effect of distortions and distortion correction in [72]. From the results obtained in [27]
we were able to show that distortion correction does not automatically lead to higher classifi-
cation accuracies. The results presented in [72] give a hint for this behavior since we showed
that distortion correction introduces interpolation artifacts which have a negative impact on the
classification performance. But we also showed that barrel-type distortions are problematic due
to the distortions introduced farther away from the optical axis.

Since the LBP operator delivered promising results in case of the pit pattern images we inves-
tigated different LBP variants in a recent work [97]. In this work we proposed an adaptive Local
Ternary Patterns (LTP) operator [94], an optimized quantization algorithm for contrast-based
LBP (LBP/C) [81], and a wavelet based LBP operator. The results obtained in [97] indicated
that the operators and extension proposed in this paper deliver classification accuracies which
are highly competitive as compared to other LBP operators and previously developed methods.

Publications (sorted chronologically)

[44] S. Hegenbart, R. Kwitt, M. Liedlgruber, A. Uhl, and A. Vecsei. Impact of duodenal image
capturing techniques and duodenal regions on the performance of automated diagnosis
of celiac disease. In Proceedings of the 6th International Symposium on Image and Signal Pro-
cessing and Analysis (ISPA’09), pages 718–723, Salzburg, Austria, Sept. 2009

[98] A. Vécsei, T. Fuhrmann, M. Liedlgruber, L. Brunauer, H. Payer, and A. Uhl. Automated
classification of duodenal imagery in celiac disease using evolved fourier feature vectors.
Computer Methods and Programs in Biomedicine, 95:S68–S78, 2009

[27] M. Gschwandtner, M. Liedlgruber, A. Uhl, and A. Vécsei. Experimental study on the im-
pact of endoscope distortion correction on computer-assisted celiac disease diagnosis. In
Proceedings of the 10th International Conference on Information Technology and Applications in
Biomedicine (ITAB’10), pages 1–6, Corfu, Greece, Nov. 2010

[97] A. Vécsei, G. Amann, S. Hegenbart, M. Liedlgruber, and A. Uhl. Automated marsh-like
classification of celiac disease in children using an optimized local texture operator. Com-
puters in Biology and Medicine, 41(6):313–325, June 2011

[72] M. Liedlgruber, A. Uhl, and A. Vécsei. Statistical analysis of the impact of distortion (cor-
rection) on an automated classification of celiac disease. In Proceedings of the 17th Interna-
tional Conference on Digital Signal Processing (DSP’11), pages 1–6, Corfu, Greece, July 2011
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Abstract: Wavelet-based techniques for an automated

classification of magnifying endoscope images with re-

spect to pit patterns of colon lesions are discussed and

compared. Algorithms classically used for wavelet-based

classification but developed originally for texture classi-

fication applications provide encouraging results but still

lack of the accuracy required for sensible clinical usage.

Keywords: pit pattern classification, wavelet techniques,

magnifying endoscope, colon cancer.

INTRODUCTION

According to the American Cancer Society colon can-

cer is the the most common type of cancer in males and

fourth in females in western countries. Therefore screen-

ing programs have been established worldwide in order to

detect lesions with a malignant potential or early cancer.

The current gold standard for the detection of lesions

in the colon is flexible video-endoscopy. The colono-

scope allows a physician or surgeon to examine the colon

and the distal part of the ileum and to take tissue sam-

ples. Furthermore, polypoid and flat lesions can be re-

sected endoscopically, therefore leading to reduced inci-

dence of colonic carcinoma in populations screened using

colonoscopy.

Modern colonoscopes are using high resolution CCD

and storage of pictures and video sequences can be done

using additional hardware. Pictures can be used for qual-

ity assurance or for later review. Another possibility aris-

ing from the ability of taking pictures from the colon is

analysis of images or video sequences with the assistance

of computers. This allows computer assisted detection

and classification of lesions.

Recently, magnification endoscopy has been intro-

duced into the market. These special “zoom-endoscopes”

provide images with magnification factors up to 150x

and higher. Current methods include digital and optical

zooms, using adjustable lenses. Additionally, dye spray-

ing is used in order to enhance the contrast of the picture

(chromoendoscopy). In the colon the most common dye

used is indigo carmine, alternatively, methylene blue is

used by some centers. The combination of chromo- and

zoom-endoscopy leads to characteristic mucosal surface

patterns which can be interpreted by an experienced ex-

aminer.

In this work we employ and compare different

wavelet-based techniques for an automated classification

of visual data acquired by a magnifying colonoscope tar-

geted to distinguish different types of lesions. In Sec-

tion 2, we review the classification of pit patterns of

the colonic mucosa. Section 3 gives an overview of

wavelet-based techniques developed for classification ap-

plications. Experimental results and configuration details

of the system proposed in this work are presented and

discussed in Section 4. Section 5 concludes the paper.

PIT PATTERN CLASSIFICATION

Polyps of the colon are a frequent finding and are usu-

ally divided into metaplastic, adenomatous, and malig-

nant. As resection of all polyps is time-consuming, it

is imperative that those polyps which warrant endoscopic

resection can be distinguished: polypectomy of metaplas-

tic lesions is unnecessary and removal of invasive cancer

may be hazardous. For these reasons, assessing the na-

ture of lesions at the time of colonoscopy is important.

Diagnosis of tumorous lesions by endoscopy is always

based on some sort of staging, which is a method used to

evaluate the progress of cancer in a patient and to see to

what extent a tumorous lesion has spread to other parts

of the body. Staging is also very important for a physi-

cian to choose the right treatment of the colorectal cancer

according to the respective stage. A recent classification

system, based on so-called pit patterns of the colonic mu-

cosa, was originally reported by Kudo et al. [11, 12]. As

illustrated in figure 1 this classification differentiates be-

tween five main types according to the mucosal surface of

the colon. The higher the type number the higher is the

risk of a lesion to be malignant: It has been suggested that

type I and II pattern are characteristic of non-neoplastic

lesions, type III and IV are found on adenomatous polyps,

and type V are strongly suggestive of invasive carcinoma

(types III - V are grouped into neoplastic lesions which

allows a coarser grouping of lesions into two instead of

six classes).

Using a magnifying colonoscope together with indigo

carmine dye spraying, the mucosal crypt pattern on the

surface of colonic lesions can be observed [12]. Several

studies found a good correlation between the mucosal

pit pattern and the histological findings, where especially

techniques using magnifying colonoscopes led to excel-

lent results [8, 10, 5].

As depicted in figure 1 pit pattern types I to IV can be
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wavelet packet features for Pit pattern classification in
zoom-endoscopic colon images. In P. Dondon, V. Mladenov,
S. Impedovo, and S. Cepisca, editors, Proceedings of the 7th
WSEAS International Conference on Wavelet Analysis &
Multirate Systems (WAMUS’07), pages 147–152, Arcachon,
France, Oct. 2007.
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Abstract: We discuss features extracted from a wavelet packet decomposition for image classification. Statistical
features computed from wavelet packet coefficients are compared to structural features which are derived from an
image dependent wavelet packet decomposition subband structure. Primary application area is the classification
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1 Introduction

Colonoscopy is a medical procedure, which enables
a physician to examine the colon’s inside appearance.
The ability of taking pictures from inside the colon fa-
cilitates analysis of images or video sequences with the
assistance of computers. This work describes a novel
approach to computer-assisted classification of specific
tumorous lesions (see [6] for previous work).

To get detailed images, a special endoscope - a
magnifying endoscope - is used. A magnifying endo-
scope represents a significant advance in colonoscopic
diagnosis as it provides images which are up to 150-
fold magnified. This magnification is possible through
an individually adjustable lens. Images taken with this
type of endoscope are very detailed as they uncover the
fine surface structure of the mucosa as well as small le-
sions. To visually enhance the structure of the mucosa,
and therefore the structure of a potentially tumorous le-
sion, a common procedure is to spray indigo carmine or
metyhlen blue onto the mucosa.

In this work we compare the use of wavelet packet-
based structural features to traditional statistical wavelet
features for an automated classification of mucosa im-
agery acquired by a magnifying colonoscope corre-
sponding to different types of lesions. In Section 2, we
review the classification of pit patterns of the colonic
mucosa. Section 3 describes the classification approach
and first gives an overview and extension of the tradi-
tional statistical wavelet-based features. In Section 3.2
we describe the alternative structural features used in
more detail. Experimental results and configuration de-
tails are presented and discussed in Section 4. Section
5 concludes the paper.

2 Pit Pattern Classification

Polyps of the colon are a frequent finding and are usu-
ally divided into metaplastic, adenomatous, and malig-
nant. As resection of all polyps is time-consuming, it is
imperative that those polyps which warrant endoscopic
resection can be distinguished: polypectomy of meta-
plastic lesions is unnecessary and removal of invasive
cancer may be hazardous. For these reasons, assessing
the nature of lesions at the time of colonoscopy is im-
portant.

Diagnosis of tumorous lesions by endoscopy is al-
ways based on some sort of staging, which is a method
used to evaluate the progress of cancer in a patient and
to see to what extent a tumorous lesion has spread to
other parts of the body. Staging is also very important
for a physician to choose the right treatment of the col-
orectal cancer according to the respective stage. A re-
cent classification system, based on so-called pit pat-
terns of the colonic mucosa, was originally reported by
Kudo et al. [10].

As illustrated in figure 1 this classification differ-
entiates between five main types according to the mu-
cosal surface of the colon. The higher the type number
the higher is the risk of a lesion to be malignant: It has
been suggested that type I and II pattern are characteris-
tic of non-neoplastic lesions, type III and IV are found
on adenomatous polyps, and type V are strongly sug-
gestive of invasive carcinoma.

While lesions of type I and II are benign, repre-
senting the normal mucosa or hyperplastic tissue, and in
fact are nontumorous, lesions of type III to V in contrast
represent lesions which are malignant. Lesions of type I
and II can be grouped into non-neoplastic lesions, while

M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and
F. Wrba. Pit pattern classification using multichannel
features and multiclassification. In D. F. T.P. Exarchos,
A. Papadopoulos, editor, Handbook of Research on
Advanced Techniques in Diagnostic Imaging and Biomedical
Applications, pages 335–350. IGI Global, Hershey, PA, USA,
2009.
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AbstrAct

Wavelet-, Fourier-, and spatial domain-based texture classification methods have been used success-
fully for classifying zoom-endoscopic colon images according to the pit pattern classification scheme. 
Regarding the wavelet-based methods, statistical features based on the wavelet coefficients as well as 
structural features based on the wavelet packet decomposition structures of the images have been used. 
In the case of the Fourier-based method, statistical features based on the Fourier-coefficients in ring 
filter domains are computed. In the spatial domain, histogram-based techniques are used. After reviewing 
the various methods employed we start by extracting the feature vectors for the methods from one color 
channel only. To enhance the classification results the methods are then extended to utilize multichannel 
features obtained from all three color channels of the respective color model used. Finally, these methods 
are combined into one multiclassifier to stabilize classification results across the image classes. 
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ABSTRACT

In this work we present a method for automated classifica-
tion of endoscopic images according to the pit pattern classi-
fication scheme. Images taken during colonoscopy are trans-
formed to the wavelet domain using the pyramidal discrete
wavelet transform. Then, Gaussian Markov random fields
are used to extract features from the resulting wavelet coef-
ficients. Finally, these features are used for a classification
using the k-NN classifier and the Bayes classifier.

To enhance the classification results feature subset selec-
tion is used to reduce the dimensionality of the features. Apart
from that, directional neighborhoods for the Markov random
fields are introduced. These are exploiting the orientation of
the details within the wavelet detail subbands with the goal of
further improving the classification performance.

The experimental results show that an automated classifi-
cation using the presented method is feasible.

Index Terms— Colonoscopy, colon cancer, wavelet trans-
form, markov random fields, classification

1. INTRODUCTION

Today, the third most common malignant disease in western
countries is colon cancer. Therefore a regular colon exami-
nation is recommended, especially for people at an age of 50
years and older. Such a diagnosis can be done for example
by colonoscopy, which is currently the best test available to
identify colon cancer.

Colonoscopy is a medical procedure which allows a physi-
cian to investigate the inside of the colon. This is done by
using a colonoscope, a flexible instrument equipped with a
CCD chip for visualization of the organ and controlled by the
physician. In case a lesion is detected, tissue samples can
be taken and relevant lesions can be removed, avoiding thus
surgery.

Modern colonoscopes are able to take pictures from inside
the colon, which allows a physician to review the results of
a colonoscopy to document the growth and spreading of an
eventual tumorous lesion. Apart from that the images might
be used for computer-assisted analysis with the goal of de-
tecting tumorous lesions which is the aim of this work.

To get images which are as detailed as possible a special
endoscope (magnifying endoscope) is used. A magnifying
endoscope represents a significant advance in colonoscopic
diagnosis as it provides images which are up to 150-fold mag-
nified. Images taken with this type of endoscope uncover the
fine surface structure of the mucosa as well as small lesions.

In this work we use Gaussian Markov random fields in
conjunction with the pyramidal discrete wavelet transform
(DWT) for an automated classification of visual data acquired
by a magnifying colonoscope corresponding to different types
of lesions. In Section 2 we review the classification of pit pat-
terns of the colonic mucosa. Section 3 gives an introduction to
Markov random fields and describes the types of features ex-
tracted from the wavelet subbands resulting from the DWT by
applying a Gaussian Markov random field to the coefficients.
In Section 4 we introduce a custom set of scalable neighbor-
hoods for the GMRFs. Experimental results and configuration
details of the classification system proposed in this work are
presented and discussed in Section 5. Section 6 concludes the
paper.

2. PIT PATTERN CLASSIFICATION

Polyps of the colon are a frequent finding and are usually di-
vided into metaplastic, adenomatous, and malignant. As re-
section of all polyps is time-consuming, it is imperative that
those polyps which warrant endoscopic resection can be dis-
tinguished: polypectomy of metaplastic lesions is unneces-
sary and removal of invasive cancer may be hazardous. For
these reasons, assessing the malignant potential of lesions at
the time of colonoscopy is important.
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Pit Pattern Classification using Extended Local
Binary Patterns

M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba

Abstract—In this work we present a method for automated
classification of endoscopic images according to the pit pattern
classification scheme. Images taken during colonoscopy are trans-
formed using a modified version of the Local Binary Patterns
operator (LBP). Then, two-dimensional histograms based on the
LBP data from different color channels are created. Finally, the
classification is carried out by employing the nearest-neighbors
(1-NN) classifier in conjunction with the Bhattacharyya distance
metric.

The experimental results show that the extended LBP operator
delivers superior results and an automated classification of
endoscopic images based on the pit pattern classification scheme
is feasible.

Index Terms—Colonoscopy, colon cancer, local binary patterns,
classification

I. INTRODUCTION

TODAY, the third most common malignant disease in
western countries is colon cancer. Therefore a regular

colon examination is recommended, especially for people at
an age of 50 years and older. Such a diagnosis can be done for
example by colonoscopy, which is currently the gold standard
for colon cancer detection.

Colonoscopy allows a physician to investigate the inside of
the colon by using an endoscope, which is a flexible instrument
equipped with a CCD chip for visualization of the organ and
controlled by the physician. In case a lesion is detected, tissue
samples can be taken and relevant lesions can be removed,
avoiding thus surgery.

Modern colonoscopes are able to take pictures from inside
the colon. This allows to obtain images for a computer-assisted
analysis with the goal of detecting tumorous lesions, which
is the aim of this work. To get highly detailed images a
special endoscope (magnifying endoscope) is used [1]. Such
an endoscope represents a significant advance in colonoscopic
diagnosis as it provides images which are up to 150-fold
magnified, thus uncovering the fine surface structure of the
mucosa as well as small lesions.

In this work we use a modified Local binary patterns oper-
ator for an automated classification of visual data acquired by
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12514.
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a magnifying colonoscope corresponding to different types of
lesions. In Section II we review the classification of pit patterns
of the colonic mucosa. Section III gives a short introduction
to the Local binary patterns transform and existing variants.
In Section IV we describe the modified version of LBP and
the histogram creation process. The classification process is
described in Section V. Experimental results and configuration
details of the classification system proposed in this work are
presented and discussed in Section VI. Section VII concludes
the paper.

II. PIT PATTERN CLASSIFICATION

Polyps of the colon are a frequent finding and are usually
divided into metaplastic, adenomatous, and malignant. As
resection of all polyps is time-consuming, it is imperative that
those polyps which warrant endoscopic resection can be dis-
tinguished: polypectomy of metaplastic lesions is unnecessary
and removal of invasive cancer may be hazardous. For these
reasons, assessing the malignant potential of lesions at the time
of colonoscopy is important.

To be able to differentiate between the different types of
lesions a classification method is needed. The most commonly
used classification system for distinguishing between non-
neoplastic and neoplastic lesions in the colon is the pit pattern
classification, originally reported by Kudo et al. [2]. This
system allows a differentiation between normal mucosa, hy-
perplastic lesions (non-neoplastic), adenomas (a pre-malignant
condition), and malignant cancer based on the visual pattern
of the mucosal surface. Hence, this classification scheme is
a convenient tool to decide which lesions need not, which
should, and which most likely can not be removed endoscop-

(a) I (b) II (c) III-S

(d) III-L (e) IV (f) V

Figure 1. Pit pattern classification according to Kudo et al.
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Abstract

Various techniques have been developed for an auto-
mated classification of endoscopic images. Besides the clas-
sical methods for endoscopic image capturing, new meth-
ods like the modified immersion technique have been de-
vised and are in use. The impact of specific image captur-
ing techniques for feature extraction and classification in
automated diagnosis is unclear. This work applies several
well tested methods for feature extraction and classification
on images captured with the conventional and the modified
immersion technique. We compare the classification rates
and the impact on feature extraction of each specific cap-
turing technique. We also compare the classification rates
of different duodenal regions. Finally we advise an opti-
mal combination of image capturing technique, duodenal
region and feature extraction methods for automated celiac
disease diagnosis.

1. Introduction

Esophagogastroduodenoscopy (EGD) followed by mul-
tiple biopsies is currently the gold standard for celiac diag-
nosis. Optimal targeting of duodenal biopsies is not trivial.
Automated Classification in a medical context can be used
as a support tool for the physician. Methods that help indi-
cating specific areas for biopsy might improve the reliability
of celiac disease diagnosis.

Multiple types of endoscopic image capturing tech-
niques exist. We compare the efficiency of classification
of images captured by two major imaging techniques, the
modified immersion and the conventional technique. Be-
sides the difference through capturing, the images also vary,
depending on the region of the duodenum that is shown.
This work uses multiple well tested feature extraction and
classification methods that proved feasible in medical pat-
tern recognition. The efficiency of classification of the two
image capturing techniques and the two duodenal regions is
compared. Also a discussion of possible problems related to
the different image types is given. Additionally we define
celiac markers within images that worked best for feature
extraction and classification.

1.1 Automated classification

When implemented as a support tool for the physician,
the classification process has to be fully automated. The
automated process consists of three major steps. The first
vital step is deciding on one or more image regions for ex-
traction that are most representative for the specific classi-
fication problem. We discuss this step in further detail in
Section 2.3. The next step deals with improving the ex-
tracted region’s quality by applying image processing tech-
niques. We discuss preprocessing options in Section 3. In
the last step the discriminative information of the extracted
region for each image is encoded as a numerical feature vec-
tor. Using these feature vectors, each classifier’s optimal
parameters are then estimated. Any unknown feature vector
is finally classified by using the estimated parameters.

2. Image acquisition and preparation

The data set we used for testing consists of images from
two distinct regions of the duodenum (the bulbus duodeni
and pars descendes). The images were taken at the St.
Anna’s Children Hospital using a standard duodenoscope
without magnification. The celiac state of the images was
determined by visual inspection during the endoscopy ses-
sion followed by a biopsy of suspicious areas. Through
a histological examination of the mucosal state of the ex-
tracted tissue the severity of the villous atrophy was de-
fined according to Marsh classification. For each patient,
beside the classical endoscopy technique a new endoscopic
approach, the modified immersion technique, for diagnos-
ing celiac disease was applied.

The captured image data was manually inspected and fil-
tered by several qualitative factors (sharpness, distortions,
visibility of features). As the final step, image regions with
a high specificity for celiac disease, or absence of celiac
disease were extracted. More than half of the images had
to be discarded because they did not satisfy the qualitative
specifications.

2.1 Image capturing techniques

For the endoscopy procedure the patient swallows a
small flexible tube called an endoscope. The endoscope
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Abstract

After a brief introduction to the history of endoscopy we
describe the different techniques which exist to perform en-
doscopic procedures (traditional endoscopy, wireless cap-
sule endoscopy, virtual endoscopy, and confocal endomi-
croscopy). Then we review different medical applications
and decision support systems targeted at endoscopy and
summarize work in this field.

1. Introduction

The first time the term endoscope was used was in 1806,
when Philipp Bozzini developed the first kind of endoscope
which he called “Lichtleiter”. By using this device he al-
ready made the first attempts to examine the inside of the
human body. But endoscopes as we know them today sig-
nificantly differ from the one Bozzini developed. In the
early days of endoscopy the devices were lit by external
light sources (a candle in the case of by Bozzini’s apparatus)
and not flexible. Thus they were somewhat limited in terms
of their usability. Modern endoscopes are very compact de-
vices, including a light source, a CCD or CMOS chip for
taking pictures, and equipment to take tissue samples - all
inside one flexible tube of a rather small diameter.

The ability to take pictures during endoscopy created a
whole new field of research: endoscopic image processing.
Topics in this field of research include but are not limited to
image enhancement, automated decision support systems,
polyp detection, and image segmentation. It is important
to mention, that, while this work is focused on medical en-
doscopy, endoscopes are also used in other areas, such as
inspection of airplanes turbines, pipes in buildings or in-
dustrial machinery, car engines, tanks in ships, and for vet-
erinary endoscopy. The list of areas where endoscopes are
used is just too long to mention them all.

In Section 2 we start with a brief historical review of
the beginnings of endoscopy, followed by an overview of
the technological advances in this area. In Section 3 we re-
view various medical applications for decision support sys-
tems targeted at endoscopy and techniques used in the past
throughout such systems. Section 4 concludes this review.

2 Technological advances in endoscopy

Medical endoscopy, as we know it today, is performed
using an endoscope, sometimes also referred to as video-
scope. It is made up of a CCD or CMOS chip and a flexi-
ble tube, which contains a light source at its tip. The tube
also contains an additional channel, which allows the en-
try of medical instruments (e.g. for taking tissue samples
or remove polyps). This type of endoscope has been in-
troduced in the mid 1960s. Those endoscopes were not
equipped with a digital imaging chip, but with fiber optics
and an eyepiece lens. Since these days the basic concept
of endoscopes did not change very much. However, mod-
ern endoscopes may be used to take digital pictures and,
possibly, video sequences. Some endoscopes also offer
the possibility to zoom in at interesting regions (so-called
zoom-endoscopes). These devices offer a significant ad-
vance since smaller and finer details in the region to be
examined get uncovered [7, 21]. If topical staining is ap-
plied to enhance the structural appearance of the mucosa,
the procedure is referred to as chromoscopy. Depending on
the region within the body to be examined there exist dif-
ferent types of endoscopic procedures such as for example
colonoscopy for the colon, bronchoscopy for the airways of
the respiratory system, colposcopy for the cervix, and hys-
teroscopy for the uterus.

But using an endoscope to inspect the inside of the hu-
man body is a rather uncomfortable procedure for a patient.
Apart from that by using a traditional endoscope there are
potential side effects such as perforation of organs, infec-
tion, and hemorrhage. As a consequence there has been
much research to cope with these problems. Especially the
small intestine is problematic since it is very long and con-
voluted. Therefore an endoscope can not be used to inspect
the entire length of the small intestine.

One recent advance, initially developed as a better di-
agnosis tool for the small intestine, is the wireless capsule
endoscopy (WCE) [2, 18]. While WCE is limited to the in-
vestigation of the gastrointestinal tract (GI tract), it has be-
come a valuable tool, especially for detecting the cause of
gastrointestinal bleeding [13, 3]. Although initially targeted
at the examination of the small intestine, there are also other
areas of interest for examination, for example the colon [8].

To perform WCE the patient swallows a small capsule,
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Feature extraction techniques based on selection of highly discriminant Fourier filters have

been developed for an automated classification of magnifying endoscope images with

respect to pit patterns of colon lesions. These are applied to duodenal imagery for diagnosis

of celiac disease. Features are extracted from the Fourier domain by selecting the most dis-

criminant features using an evolutionary algorithm. Subsequent classification is performed

with various standard algorithms (KNN, SVM, Bayes classifier) and combination of several

Fourier filters and classifiers which is called multiclassifier. The obtained results are promis-

ing, due to a high specificity for the detection of mucosal damage typical of untreated celiac

disease.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Celiac disease is a complex autoimmune disorder that affects
the small bowel in genetically predisposed individuals of all
age groups after introduction of gluten containing food. Com-
monly known as gluten intolerance, this disease has several
other names in literature, including cœliac disease, c(o)eliac
sprue, non-tropical sprue, endemic sprue, gluten enteropathy
or gluten-sensitive enteropathy. Characteristic for the disease
is an inflammatory reaction in the mucosa of the small intes-
tine caused by a dysregulated immune response triggered by
ingested gluten proteins of certain cereals (wheat, rye, and
barley), especially against gliadine. During the course of the
disease the mucosa looses its absorptive villi and hyperplasia
of the enteric crypts occurs leading to a diminished ability to
absorb nutrients.

Endoscopy with biopsy is currently considered the gold
standard for the diagnosis of celiac disease. Besides stan-

∗ Corresponding author.
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dard upper endoscopy, several new endoscopic approaches for
diagnosing celiac disease have been applied [7].

The modified immersion technique described in [1] is based
on the instillation of water into the duodenal lumen for better
visualization of the villi. Furthermore magnifying endoscopy
(standard endoscopy with additional magnification) has been
investigated [2]. For the performance of capsule endoscopy
[3] the patient swallows a small capsule equipped with a
camera that takes images of the duodenal mucosa during its
passage through the intestine. All these techniques aim for
detection of total or partial villous atrophy and other specific
markers. These specific markers show a high specificity for
celiac disease in adult patients if all of them are found during
endoscopy: scalloping of the small bowel folds, reduction in
the number or loss of Kerkring’s folds, mosaic patterns, and
visualization of the underlying blood vessels [4].

Figs. 1 and 2 show examples for duodenal images with pos-
itive and negative indications for celiac disease.

0169-2607/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
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Abstract. In this work we present a method for an automated classification of en-
doscopic images according to the pit pattern classification scheme. Images taken
during colonoscopy are transformed using an extended and rotation invariant ver-
sion of the Local Binary Patterns operator (LBP). The result of the transforms
is then used to extract polygons from the images. Based on these polygons we
compute the regularity of the polygon positions by using the Delaunay triangu-
lation and constructing histograms from the edge lengths of the Delaunay trian-
gles. Using these histograms, the classification is carried out by employing the
k-nearest-neighbors (k-NN) classifier in conjunction with the histogram intersec-
tion distance metric.
While, compared to previously published results, the performance of the pro-
posed approach is lower, the results achieved are yet promising and show that a
pit pattern classification is feasible by using the proposed system.

1 Introduction

Today, the third most common malignant disease in western countries is colon cancer.
Therefore a regular colon examination is recommended, especially for people at an age
of 50 years and older. Currently the gold standard for colon examination is colonoscopy,
which is performed by using a colonoscope. Modern colonoscopes are able to take
pictures from inside the colon which allows to obtain images for a computer-assisted
analysis with the goal of detecting tumorous lesions. To get highly detailed images a
magnifying endoscope is used [1]. Such an endoscope represents a significant advance
in colonoscopy as it provides images which are up to 150-fold magnified, thus uncov-
ering the fine surface structure of the mucosa as well as small lesions.

In Sect. 2 we review the classification of pit patterns of the colonic mucosa. Sec-
tion 3 describes the feature extraction process, including image transformation using
a LBP extension, polygon extraction, Delaunay-based feature computation, histogram
creation, and the classification. Experimental results and configuration details of the
classification system proposed are given in Sect. 4. Section 5 concludes the paper.
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Abstract

We present a system for an automated colon cancer
detection based on the pit pattern classification. In con-
trast to previous work we exploit the visual nature of the
underlying classification scheme by extracting features
based on detected edges. To focus on the most discrim-
inative subset of features we use a greedy forward fea-
ture subset selection. The classification is then carried
out using the k-nearest neighbors (k-NN) classifier.

The results obtained are very promising and show
that an automated classification of the given imagery is
feasible by using the proposed method.

1 Introduction

Today the gold standard for colon examination is
colonoscopy which is performed by using a colono-
scope. Modern colonoscopes are able to take pictures
from inside the colon which allows to obtain images for
a computer-assisted analysis with the goal of detecting
tumorous lesions. To get highly detailed images a mag-
nifying endoscope is used [1], which represents a major
advance as it provides images which are up to 150-fold
magnified, thus uncovering the fine surface structure of
the mucosa as well as small lesions.

In this work we present an automated classification
system aiming at colon cancer detection. While in pre-
vious work we mainly focused on general-purpose tex-
ture features, we now aim at exploiting the visual nature
of the cancer classification scheme used.

This work is partially funded by the Austrian Science Fund
(FWF) under Project No. L366-N15 and by the Austrian National
Bank “Jubiläumsfonds” Project No. 12514

In Section 2 we review the classification of pit pat-
terns of the colonic mucosa. Section 3 describes the
feature extraction process and the classification used in
our proposed method. Experimental results and con-
figuration details of our system are given in Section 4.
Section 5 concludes the paper.

2 Pit Pattern Classification

Polyps of the colon are a frequent finding and are
usually divided into metaplastic, adenomatous, and ma-
lignant. As resection of all polyps is time-consuming,
it is imperative that those polyps which warrant endo-
scopic resection can be distinguished: polypectomy of
metaplastic lesions is unnecessary and removal of inva-
sive cancer may be hazardous. For these reasons, as-
sessing the malignant potential of lesions at the time of
colonoscopy is important.

The pit pattern classification, originally reported by
Kudo et al. [6], is the most commonly used classifica-
tion system to distinguish between non-neoplastic and
neoplastic lesions in the colon. It differentiates between
six different types according to the mucosal surface of
the colon, as shown in Figure 3 (type 3 is divided into
3S and 3L designating the size of the pit structure). This
classification system allows to assess the malignant po-
tential of a lesion based on the visual pattern of the mu-
cosal surface. Thus, it is a convenient tool to decide
which lesions need not, which should, and which most
likely can not be removed endoscopically.

Lesions of type 1 and 2 can be grouped into non-
neoplastic lesions and types 3 to 5 can be grouped into
neoplastic lesions, where type 5 is highly indicative for
cancer. This allows a grouping into two classes, which
is more relevant in clinical practice [5].
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Experimental Study on the Impact of Endoscope Distortion Correction
on Computer-assisted Celiac Disease Diagnosis

Michael Gschwandtner, Michael Liedlgruber, Andreas Uhl, and Andreas Vécsei

Abstract— The impact of applying barrel distortion cor-
rection to endoscopic imagery in the context of automated
celiac disease diagnosis is experimentally investigated. For a
large set of feature extraction techniques, it is found that
contrasting to intuition, no improvement but even significant
result degradation of classification accuracy can be observed.
For techniques relying on geometrical properties of the image
material (“shape”), moderate improvements of classification
accuracy can be achieved. Reasons for this somewhat unex-
pected results are discussed and ways how to exploit potential
distortion correction benefits are sketched.

I. INTRODUCTION

Several medical fields and applications exist, in which
automated decision support systems and other types of
computer-aided technologies based on the analysis of en-
doscopic imagery have been proposed [1]. Since each en-
doscopic procedure generates images which exhibit specific
characteristics depending on the technique used, the com-
puter systems employed for automated technologies must
be designed accordingly. Due to the fact that images taken
using a traditional endoscope often suffer from various kinds
of degradations [2], in many cases various preprocessing
techniques are applied to the imagery (to cope with sensor
noise, focus and motion blur, specular reflections, etc. [1]).

A different type of degradation present in endoscopical
imagery is a barrel-type distortion due to the wide-angle or
fisheye nature of the endoscopic optics’. Since the seminal
work on distortion correction for endoscopic images by
Haneishi et al. [3], several distortion correction procedures
have been applied and developed for this application domain
(e.g. [4], [5], [6]).

The aim of distortion correction in endoscopy is manifold.
Barrel type distortion is claimed to affect diagnosis [7],
since it introduces nonlinear changes in the image, due
to which the outer areas of the image look significantly
smaller than their actual size. Therefore, the estimation of
area or perimeter of observed lesions can be significantly
incorrect depending on the position in the image [4], [6].
Another issue arises in virtual endoscopy [5], where the
endoscope’s position is calculated based on an alignment
of the corrected endoscopic video to a rendered 3-D CT

Manuscript received June 16, 2010.
Michael Gschwandtner, Michael Liedlgruber and Andreas Uhl are with

the Department of Computer Sciences, University of Salzburg, Salzburg,
Austria uhl@cosy.sbg.ac.at

Andreas Vécsei is with the St. Anna Children’s Hospital, Vienna, Austria
This work is partially supported by the Austrian National Bank ”Ju-
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image. Any other type of geometrical analysis of the image
material such as building 3D models also requires an exact
camera calibration [8]. Kallemeyn et al. [9] use distortion
corrected arthroscopic images to measure the cyclic cartilage
compression during knee movement, where it is absolutely
necessary to correct the distortion in order to accurately
quantify distances between objects. Finally, it has been
mentioned that barrel distortion might “lead to corrupted
feature values in texture analysis due to the inhomogeneous
magnification” [3] and might also lead to “complications
using token matching techniques for pattern recognition”
[4]. However, no experimental evidence has ever been given
with respect to these latter two assumptions, and also no
positive effect of distortion correction with respect to the
latter problems has been reported so far. The rationale behind
this assumption is illustrated in Fig. 1. Texture patches close
to the center of distortion (CoD) matched against patches far
away from the CoD might exhibit low similarity due to the
compression of the features in the patch close to the edge
of the image even though the texture content is similar in
reality.

(a) GIF-Q165 (b) GIF-N180

Fig. 1. Texture patches with unequal distance to the CoD

To the authors’ knowledge, the potential impact of distor-
tion correction on the analysis of mucosal texture, specifi-
cally on the accuracy of corresponding classification tech-
niques has not been addressed so far. In this paper, we apply
a classical distortion correction technique described in liter-
ature to endoscopic imagery. We compare the classification
results achieved in the context of celiac disease diagnosis
when classification is applied to duodenal texture patches
extracted from original (distorted) images and from distortion
corrected images. Section 2 describes the background of
applying duodenal mucosa texture classification for diagnosis
and staging of celiac disease. In section 3, we describe the
experimental setup by first explaining the image database
used and the corresponding ground truth. Subsequently, we
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1. Introduction
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Fig. 1. A schematic illustration of the
human GI tract.

Since medical endoscopy is a minimally invasive and
relatively painless procedure, allowing to inspect the
inner cavities of the human body, endoscopes play
an important role in modern medicine. In medical
practice different organs such as the respiratory tract,
the urinary tract, and the female reproductive sys-
tem are regularly inspected by using an endoscope.
Another important field in medical endoscopy, which
this chapter focuses at, is the inspection of the gas-
trointestinal tract (GI tract).
Based on endoscopy of the GI tract, physicians are
able to detect severe diseases already in early de-
velopment stages and therefore the mortality rate
for many diseases, especially different types of can-
cers, has been lowered drastically throughout the last
years. Some examples of conditions which are known
to be pre-malignant or to increase the risk of can-
cer in the GI tract are adenomas, Barrett’s esophagus,
Crohn’s disease, celiac disease, GI bleeding, and a He-
licobacter pylori infection. The parts of the human GI
tract, which are most commonly inspected with an en-
doscope, are shown in Figure 1.
In general the area of applications for endoscopes is wide. Besides medical procedures, endo-
scopes are also used to inspect airplane turbines, pipes in buildings or industrial machinery,
car engines, tanks in ships, and for veterinary endoscopy. However, throughout this work
the terms “endoscope” and “endoscopy” always denote the medical device and procedure,
respectively.

1.1 Technological Advances in Endoscopy
The first time the term endoscope was used was in 1806, when Philipp Bozzini developed the
first kind of endoscope which he called “Lichtleiter”. By using this device he already made
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Abstract

Automated classification of duodenal texture patches with histological
ground truth in case of pediatric celiac disease is proposed. The classical
focus of classification in this context is a two-class problem: mucosa affected
by celiac disease and unaffected duodenal tissue. We extend this focus and
apply classification according to a modified Marsh scheme into four classes.
In addition to other techniques used previously for classification of endoscopic
imagery, we apply Local Binary Patterns (LBP) operators and propose two
new operator types, one of which adapts to the different properties of Wavelet
transform subbands. The achieved results are promising in that operators
based on LBP turn out to achieve better results compared to many other
texture classification techniques as used in earlier work. Specifically, the
proposed wavelet-based LBP scheme achieved the best overall accuracy of all
feature extraction techniques considered in the two-class case and was among
the best in the four-class scheme. Results also show that a classification into
four classes is feasible in principle, however, when compared to the two-class
case we note that there is still room for improvement due to various reasons
discussed.

Keywords: celiac disease, computer-aided classification, endoscopy, LBP,
Marsh classification, children

1. Introduction

Celiac disease is a complex autoimmune disorder in genetically predis-
posed individuals of all age groups after introduction of gluten containing
food. Commonly known as gluten intolerance, this disease has several other
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ABSTRACT

In this work we investigate the impact of barrel-type distortions and
distortion correction on an automated classification of endoscopic
imagery. For this purpose we use a set of methods from earlier
work along with the nearest neighbor classifier on endoscopic im-
ages which are distorted in a barrel-type fashion. In addition we
classify images after applying distortion correction to them.

Depending on the distance of a patch to the center of distortion
a patch is more or less distorted. Hence, we analyze the impact of
this distance on the classification accuracy and show that it has an
influence on the classification accuracy.

We further investigate whether there is a relationship between
the levels of distortion of a patch and the respective nearest neigh-
bor patch. We show that a patch and the respective nearest neighbor
patch rather often exhibit the same amount of distortion. We further
show that higher distortion differences also have an impact on the
probability of misclassification for a patch. The results indicate that
for higher distortion differences a patch is more likely to be misclas-
sified.

Index Terms— Celiac disease, barrel-type distortion, distortion
correction, medical image classification

1. INTRODUCTION

Today, medical endoscopy is a widely used procedure to inspect the
inner cavities of the human body. As a consequence different medi-
cal fields exist for which automated decision-support systems based
on endoscopic imagery have been proposed [1]. Since images taken
with traditional endoscopes often suffer from various kinds of degra-
dations, a pre-processing of the imagery is often necessary [2] (to
cope with e.g. sensor noise, focus and motion blur, and specular
reflections [1]).

A different type of degradation, present in all endoscopic im-
ages, is a barrel-type distortion. This type of degradation is caused
by the wide-angle (fish eye) nature of the optics used in endoscopes
(although the strength of the distortion varies depending on the en-
doscope used). Such a distortion is also claimed to affect diagnosis
since it introduces non-linear changes in the image, due to which the
outer areas of the image look significant smaller than they actually
are [3]. Due to an inhomogeneous magnification such distortions
are also suspected to lead to corrupted features [4]. Since the semi-
nal work on distortion correction for endoscopic images [4] several
distortion correction procedures have been developed for this appli-
cation domain [5, 6, 7].
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In a recent study the impact of distortion correction on the clas-
sification accuracy regarding celiac disease images has been inves-
tigated [8]. Gschwandtner et al. showed that most feature extrac-
tion methods evaluated failed to take advantage of applying distor-
tion correction as a pre-processing step to the endoscopic images,
resulting in a decreased classification accuracy. To the best of our
knowledge, besides the study presented in [8], the potential impact
of distortion correction on the analysis of mucosal texture, specifi-
cally on the accuracy of corresponding classification techniques, has
not been addressed so far.

The focus of the work presented in [8] was an experimental as-
sessment of the impact of distortion correction on the automated
classification of celiac disease. This work, in contrast, investigates a
potential impact of barrel-type distortions and distortion correction
on the automated classification of endoscopic images in the course
of a statistical analysis. For this purpose we analyze the impact of
the distance of an image patch to the center of distortion (CoD) on
the classification accuracy using the nearest neighbor (NN) classi-
fier. We further investigate whether there is a relationship between
the distortion of a patch and the distortion of its closest patch (in
the sense of the NN classifier). Finally, we study the effect of the
distortion difference between a patch and its closest patch on the
probability of misclassification of the respective patch.

The remaining part of this work is structured as follows: In Sec-
tion 2 we describe the background of celiac disease and the staging
system commonly used to diagnose this disorder. After a discussion
of barrel-type distortions and the problems inherent to this type of
degradations in Section 3, we describe the feature extraction meth-
ods the results in this work are based on in Section 4. A thorough
analysis of experiments carried out and the respective analysis re-
sults are given in Section 5. In Section 6 we conclude this work.

2. CELIAC DISEASE

Celiac disease, commonly known as gluten intolerance, is a com-
plex autoimmune disorder that affects the small bowel in genetically
predisposed individuals of all age groups after introduction of food
containing gluten. Characteristic for the disease is an inflammatory
reaction in the mucosa of the small intestine. During the course of
the disease the mucosa looses its absorptive villi and hyperplasia of
the enteric crypts occurs, leading to a diminished ability to absorb
nutrients.

Endoscopy with biopsy is currently considered the gold stan-
dard for the diagnosis of celiac disease. During standard upper
endoscopy at least four duodenal biopsies are taken. Microscopic
changes within these specimen are then classified in a histological
analysis according to the Marsh classification proposed in 1992
[9]. Subsequently, Oberhuber et al. proposed the modified Marsh
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Abstract

In this work we propose a novel method to describe local texture properties
within color images with the aim of automated classification of endoscopic im-
ages. In contrast to comparable Local Binary Patterns operator approaches,
where the respective texture operator is almost always applied to each color
channel separately, we construct a color vector field from an image. Based on
this field the proposed operator computes the similarity between neighboring
pixels. The resulting image descriptor is a compact 1D-histogram which we use
for a classification using the k-nearest neighbors classifier.

To show the usability of this operator we use it to classify magnification-
endoscopic images according to the pit pattern classification scheme. Apart
from that, we also show that compared to previously proposed operators we are
not only able to get competitive classification results in our application scenario,
but that the proposed operator is also able to outperform the other methods
either in terms of speed, feature compactness, or both.

Keywords: Colonoscopy, colon cancer, local binary patterns, multi-scale,
color, classification
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Abstract

Today, medical endoscopy is a widely used procedure to inspect the inner cavi-
ties of the human body. The advent of endoscopic imaging techniques – allowing
the acquisition of images or videos – created the possibility for the development
of the whole new branch of computer-aided decision support systems. Such
systems aim at helping physicians to identify possibly malignant abnormalities
more accurately. At the beginning of this work we give a brief introduction to
the history of endoscopy, followed by introducing the main types of endoscopes
which emerged so far (flexible endoscope, wireless capsule endoscope, and con-
focal laser endomicroscope), followed by an overview of systems developed to
assist medical experts but not aiming at diagnosis support. We then give a brief
introduction to computer-aided decision support systems specifically targeted
at endoscopy in the gastrointestinal tract. Then, after presenting general facts
and figures concerning computer-aided decision support systems, we summarize
work specifically targeted at computer-aided decision support in the gastroin-
testinal tract. For this purpose we present the research activities grouped into
coarse categories with respect to the the part of the gastrointestinal tract and
the pathology the respective approach is targeted at. This summary is followed
by a discussion of some common issues concerning the approaches reviewed and
suggestions of possible ways to resolve them.

Keywords: Endoscopy, Wireless Capsule Endoscopy, Confocal Laser
Endomicroscopy, Gastrointestinal Tract, Computer-aided Decision Support

1. Introduction

The first time the term endoscope was used was in 1806, when Philipp
Bozzini developed the first kind of medical endoscope which he called “Licht-
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4. Experiments and Discussion

Throughout the past years the image databases used in our work have been extended on a quite
regular basis. This accounts to the pit pattern images as well as to the celiac disease images. As
a consequence, our publications are based on different image databases which hardly allows a
direct comparison of the classification results obtained by the different methods.

We therefore decided to repeat selected experiments on the most recent image databases. The
respective set of methods which should be used for the new set of experiments was chosen
based on two criteria: first, the methods used must have been originally reported in one of
the publications listed in sections 2.2 or 2.3 to ensure a certain level of contribution from the
author of this work. Second, we decided to only use methods which delivered promising results
already in the respective earlier publications.

In the following we list and briefly describe the methods which fulfilled these two criteria
and are therefore used for a set of new experiments.

WT-LDB [42] The Local Discriminant Basis algorithm (LDB) [86] has been developed in order
to facilitate finding an optimal wavelet packet decomposition basis with respect to dis-
crimination between different classes of images. We use the LDB algorithm to find an
optimal basis into which all images are transformed to. Based on the resulting wavelet
decompositions for each subband we use the variance of the coefficients contained within
a subband as feature. Instead of using all subbands available for feature extraction we
select a subset of S subbands which exhibit the highest discriminative power. The feature
values computed from these subbands make up the feature vector.

When applied to color images, this operator is applied to each color channel separately
and the final feature vector for an image is obtained by concatenating the feature vectors
from the single channels.

WPC [42] This method applies the DWT to the input images. Based on the resulting wavelet
decomposition structures, we compute the energy or the l-norm from the coefficients of a
subband to obtain the feature for the respective subband. Similar to WT-LDB, this method
also selects a subset of subbands S for feature extraction (chosen based on the l-norm
computed from the coefficients within a subband). The feature values computed from
these subbands make up the feature vector.

When applied to color images, this operator is applied to each color channel separately
and the final feature vector for an image is obtained by concatenating the feature vectors
from the single channels.

WT-BBC [68] The Best Basis Centroids method uses the Best-Basis algorithm [16] to find an
optimal basis for each image in a training set and computes a centroid over all resulting
Wavelet packet decomposition structures. After transforming all images into this basis,
the most informative subset of S subbands is selected to compute a feature from all co-
efficients within each subband (energy, variance, or l-norm). The selection of the subset
of subbands is based on a cost-function computed on all coefficients within a subband
(log-energy, entropy, or l-norm). The feature values computed from the most informative
subbands form the feature vector.
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When applied to color images, this operator is applied to each color channel separately
and the final feature vector for an image is obtained by concatenating the feature vectors
from the single channels.

DELAUNAY [35] In this method the first step is to apply a block-based LBP operator [33] to an
image, followed by making the transformation result rotation invariant. After perform-
ing a thresholding and applying a set of morphological operators, the resulting binary
image is used to extract edges and compute the polygon centers for all objects found. Af-
ter computing the Delaunay triangulation [7] based on these object centers, we construct
histograms from the edge lengths of the Delaunay triangles.

To incorporate information from different color channels the edge-length histograms from
different channels are concatenated to obtain the final histogram for an image.

This method has originally been developed with the aim of pit pattern classification of the
colonic mucosa.

EDGEFEATURES [36] After applying the Canny Edge detector in order to detect edge-enclosed
regions, different shape features and texture features based on the regions found are ex-
tracted. To find the best performing set of features a greedy forward feature selection is
used.

In order to account for color information in the input images the feature selection consid-
ers features from all different channels.

Similar to the DELAUNAY-method this method has originally been developed with the
aim of pit pattern classification of the colonic mucosa.

GMRF [32] In this method the different color channels of an input image are subject to a pa-
rameter estimation of a GMRF, using neighborhoods of Geman-type [21]. To obtain the
final feature vector for classification the Markov parameters estimated along with the ap-
proximation error for each color channel are concatenated.

WT-GMRF [32] This method is an extension to the GMRF method. While the GMRF method
operates in the spatial domain, the WT-GMRF method is based on wavelet-transformed
color channels in order to be able to capture texture details at different resolutions. For
this purpose each color channel of an input image is transformed using the DWT. Then
the Markov parameters are estimated for each resulting subband (except for the approxi-
mation subband). In order to obtain the final feature vector for classification, the param-
eter vectors (again containing the approximation errors too) from all subbands and color
channels are concatenated. The rather time-consuming feature selection used in [32] is
neglected in this work.

WT-GMRF-CNH [32] In order to be able to better capture details from the different wavelet
subbands (horizontal, vertical, and diagonal) we extended the WT-GMRF method by re-
placing the Geman-type neighborhoods by neighborhoods specifically tailored to the dif-
ferently orientated subbands. The rather time-consuming feature selection used in [32] is
neglected in this work.

JC-MB-LBP [33] Due to the noise-sensitive nature of the LBP operator we developed an op-
erator which is less sensitive to noise by computing LBP numbers from averaged pixel
blocks instead of single pixels. In addition, the resulting features also consider inter-
channel relationships between different color channels by construction joint-histograms
across multiple color channels.
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4.1. Experimental Setup and Ground Truth Information

LCVP [41] The LCVP operator is based on the idea of the JC-MB-LBP operator. But instead
of computing the LBP transform for each color channel separately or computing joint-
histograms, this operator treats an image as a color vector field. Based on suitable similar-
ity measures between two color vectors, a compact histogram descriptor, incorporating all
color information available, is computed for an input image. Similar to the idea of block
averaging in the JC-MB-LBP operator the LCVP operator also uses a parameter which al-
lows to investigate an image at different scales, which is the basis for the LCVP multi-scale
operator.

While it is quite possible that some parameter combinations used throughout earlier work
were not optimal we decided to stick to the parameters used in the publications where the
respective methods are introduced. This way we are able to compare the methods as published
in terms of the classification rates obtained on the new image databases.

4.1. Experimental Setup and Ground Truth Information

In this section we provide details about the experimental setup used for our new set of exper-
iments and a detailed ground truth information for the pit pattern images as well as for the
celiac disease images.

As already stated above, we decided to not again optimize the parameter configurations.
This also accounts to an eventual pre-processing of the imagery prior to feature extraction and
classification. Hence, some methods use pre-processing (e.g. Gaussian smoothing, Laplace
sharpening [24], or an adaptive contrast enhancement [102]) while other methods rely on the
unaltered images. Details on eventual pre-processing steps for a certain method can be gathered
from the respective publication.

From our publications one also notices that throughout the years we employed different types
of classifiers in order to evaluate our methods. The set of classifiers used consists of the k-NN
classifier, the Bayes classifier, and Support Vector Machines (SVM) [19]. In the experiments
presented in Section 4.2 we decided to use the same set of classifiers for each method as used
in the original publication. However, because of the additional amount of time needed to carry
out the experiments in case of the SVM classifier we decided to neglect this classifier completely.

Since in case of the pit pattern images the image database is quite limited in terms of the num-
ber of images available per class we are not able to assemble separate training and validation
sets for this image database. While in case of the celiac disease images the number of available
images would have allowed this we decided to employ cross-validation strategies in both cases
in order to estimate the accuracy of the different methods. While we used the Leave-One-Out
Cross-Validation (LOO-CV) protocol in most of our earlier work, in [41] the more meaningful
and reliable Leave-One-Patient-Out Cross-Validation (LOPO-CV) protocol has been used. For
the experiments presented in this thesis we carry out all experiments using both cross-validation
protocol, which allows us to compare those. However, it must be noted that, at least in case of
the pit pattern images, LOPO-CV is too restrictive, since it would be sufficient to exclude im-
ages of the same polyp from the training database in order to avoid overfitting. But since we do
not have the information at hand on how many images have been taken from each polyp in the
image database, we decided to go with the more restricted but safe option.

In order to be able to obtain meaningful numbers concerning the runtime performance of the
different methods all timing tests have been carried out on a machine equipped with an Intel
Core2Quad CPU at 2.83 GHz (single-threaded), running Linux.
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Histology Pit Pattern 6 classes [61] 3 classes [55] 2 classes
NO NE NP NO NE NP NO NE NP

Normal I 30 124 11 72 198 14 72 198 14Hyperplasia II 33 74 8
Tubular adenoma III-L 48 120 9

212 420 27

255 518 32

Tubulovillous adenoma 1 4
Serrated adenoma III-S 6 8 4Tubular adenoma 8 12
Adenoma

IV
2 3

20Tubular adenoma 3 5
Tubulovillous adenoma 144 268
Adenocarcinoma

V
31 73

6 43 98 6Carcinoma 6 16
Lymphoma 6 9

Total 327 716 58 327 716 47 327 716 46

Table 4.1.: The detailed ground truth information for the pit pattern image database used
throughout our experiments.

4.1.1. Pit Pattern Images Ground Truth

The pit pattern image database used throughout our experiments is based on 327 endoscopic
color images (either of size 624×533 pixels or 586×502 pixels) acquired between the years 2005
and 2009 at the Department of Gastroenterology and Hepatology (Medical University of Vi-
enna) using a zoom-colonoscope (Olympus Evis Exera CF-Q160ZI/L) with a magnification fac-
tor of 150. In order to acquire the images 40 patients underwent colonoscopy. To obtain a larger
set of images we extracted subimages with a size of 256×256 pixels from the original images,
which resulted in an extended image set containing 716 images in total.

Lesions found during colonoscopy have been examined after application of dye-spraying
with indigocarmine, as routinely performed in colonoscopy. Biopsies or mucosal resection have
been performed in order to get a histopathological diagnosis. Biopsies have been taken from
type I, II, and type V lesions, as those lesions need not to be removed or cannot be removed
endoscopically. Type III and IV lesions have been removed endoscopically. Out of all images
from the extended set, histopathological classification resulted in 198 non-neoplastic and 518
neoplastic cases.

While in previously published work we focused on the 2-classes and 6-classes case only, we
now also perform a 3-class classification according to [55], which groups the six different pit
pattern types into normal lesions (pit pattern types I and II), non-invasive lesions (pit pattern
types III-S, III-L, and IV), and invasive lesions (pit pattern type V). This classification scheme is
of particular importance since normal mucosa needs not to be removed, non-invasive lesions
must be removed endoscopically, and invasive lesions must not be removed endoscopically.

Table 4.1 shows the detailed ground truth information used for our experiments where NO,
NE, NP denote the number of original images, the number of images in the extended image
set, and the number of patients in each class, respectively. Since different types of lesions may
develop inside the colon of a single patient such a patient may appear in more than one class.
Hence, the number of patients is slightly higher as compared to the total number of patients
who underwent colonoscopy.
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4.2. Results and Discussion

Modified Marsh type [80] 4 classes 2 classes
NO NE NP NO NE NP

Marsh-0 260 306 131 260 306 131
Marsh-3A 55 95 11

184 306 40Marsh-3B 64 114 13
Marsh-3C 65 97 16

Total 444 612 171 444 612 171

Table 4.2.: The detailed ground truth information for the celiac disease image database used
throughout our experiments.

4.1.2. Celiac Disease Images Ground Truth

The celiac disease database used throughout this work is based on 444 endoscopic images taken
during duodenoscopies at the St. Anna Children’s Hospital using gastroscopes without mag-
nification (two Olympus GIF-Q165 endoscopes with an image resolution of 768×576 pixels and
one Olympus GIF-N180 endoscope with an image resolution of 528×522 pixels). In order to
acquire the images 171 patients underwent duodenoscopy. To obtain a larger set of images
and focus on image regions with a higher image quality, we extracted subimages with a size of
128×128 pixels from the original images, which resulted in an extended image set containing
612 images in total.

The main indications for endoscopy were the diagnostic evaluation of dyspeptic symptoms,
positive celiac serology, anemia, malabsorption syndromes, inflammatory bowel disease, and
gastrointestinal bleeding. Images have been recorded using the modified immersion technique,
which is based on the instillation of water into the duodenal lumen for better visibility of the
villi. The tip of the gastroscope is inserted into the water and images of interesting areas are
taken.

In order to generate ground truth for the texture patches used in experimentation, the con-
dition of the mucosal areas covered by the images was determined by histological examination
of biopsies from the corresponding regions. Severity of villous atrophy was classified accord-
ing to the modified Marsh classification. The detailed ground truth information used in our
experiments is shown in Table 4.2.

4.2. Results and Discussion

4.2.1. Runtime Performance

In order to be able to properly compare the different methods developed in the past in terms
of the runtime performance we fixed certain parameters across different methods to match the
parameters best which on average lead to the best overall classification rates:

WPC, WT-LDB, and WT-BBC These methods have been configured to use either a wavelet de-
composition depth of 3 levels (WT-LDB and WPC) or 4 (WT-BBC). Moreover, each of these
methods is configured to return feature vectors containing 10 features per color channel.

WT-GMRF and WT-GMRF-CNH Each of these methods uses a wavelet decomposition depth
of 2 in order to ensure a stable parameter estimation in case of the celiac disease images
(which, compared to the pit pattern images, are smaller). The neighborhood order was set
to 1.
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GMRF All tests carried out with this method use Geman neighborhoods of order 4.

JC-MB-LBP, LCVP In accordance to previous experiments the block width for the block aver-
aging has been fixed to 5 pixels. The multi-scale experiments (denoted by MR) use the
filter kernel widths 3, 5, and 7. While for these methods we carried out experiments in the
RGB color space as well as in the LAB color space, the performance measurements have
been obtained for the RGB experiments only. Since color space conversions are already
carried out as pre-processing steps there is no impact on the runtime performance.

DELAUNAY The number of bins for the edge length histograms has been fixed to 101 and the
k-NN classifier used considers 13 neighbors.

EDGEFEATURES The number of features used has been fixed to 7 (we always use the same
set of features) and the k-NN classifier used considers 5 neighbors.

Except for the DELAUNAY method and the EDGEFEATURES method the experiments based
on the k-NN classifier have always been carried out with k = 9 .

Since the number of classes has no measurable impact on the runtime measurements the tim-
ing tests have always been carried out for the 2-classes cases only. In addition the measurements
have always been performed for the LOO-CV protocol since the choice for the cross-validation
protocol has no influence on the timing measurements.

In order to compare the computational demand between different methods we measured the
time needed to extract the respective features from an image (TO). In addition we measured
the time needed for the classification (TC). Figures 4.1 and 4.2 show the results of these mea-
surements.

A detailed presentation of the timing measurements carried out is given in Table 4.3, where
we also present the total time needed by a method for a complete classification of a single image
(TT). All these values have been obtained by extracting and classifying all images contained
within the respective image databases and dividing the time needed by the number of images
contained in each image database. This way the measurements are assumed to be way more
stable as compared to measuring the time needed for one image only.

As we notice from Figures 4.1 and 4.2 JC-MB-LBP is clearly the slowest method in terms
of the classification. This can be attributed to the fact that this method is based on 2D his-
tograms which considerably slows down the histogram comparison used. In addition we see
that the EDGEFEATURES method is faster in terms of the classification, this method is clearly
the slowest method in terms of the time needed to extract features which is due to the rather
high amount of different shape-based features extracted in this method. While the DELAUNAY
method needs only about a fifth of the time needed to extract features in case of EDGEFEA-
TURES this method nevertheless belongs to the most time-consuming methods in terms of the
feature extraction. This is mainly due to the need to apply the Canny edge detector and the
Delaunay triangulation.

The remaining methods (wavelet-based methods, GMRF-based methods, and the LCVP meth-
ods) roughly deliver an equal performance. An exception are the multi-scale extensions to
LCVP (LCVP MR A(1) and LCVP MR A(2)) which are slower as compared to their single scale
counterparts. However, this is quite logical since the feature extraction is carried out for three
different scales in case of the multi-scale experiments.

In order to be able to compare the time measurements among different methods more easily
we provide the rough indicator SF in Table 4.3. This value is a multiplicative factor denoting the
total time consumed for a complete classification of an image as compared to the fastest method
(which is LCVP MR A(2) in case of both image databases). As we notice, most methods are up
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Figure 4.1.: Performance measurement results for the pit pattern images (256×256 pixels, RGB,
2 classes)

Figure 4.2.: Performance measurement results for the celiac disease images (128×128 pixels,
RGB, 2 classes)
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Pit Pattern Celiac Disease
Method TO TC TT SF TO TC TT SF Q

WT-LDB k-NN 106 2 108 2.1 47 2 49 3.1 2.2
WT-LDB Bayes 107 < 1 107 2.0 46 < 1 46 2.9 2.3
WPC k-NN 65 2 67 1.3 34 2 36 2.3 1.9
WPC Bayes 66 < 1 66 1.3 34 < 1 34 2.2 1.9
WT-BBC k-NN 83 2 85 1.6 44 2 45 2.9 1.9
WT-BBC Bayes 84 < 1 84 1.6 43 < 1 43 2.8 1.9
DELAUNAY 325 1 326 6.2 102 1 103 6.6 3.2
EDGEFEATURES 1768 1 1769 33.8 839 1 840 53.9 2.1
JC-MB-LBP 22 336 358 6.8 6 277 283 18.2 1.3
JC-MB-LBP MR 75 1289 1363 26.0 21 920 941 60.4 1.4
LCVP A(1) 74 4 79 1.5 19 4 22 1.4 3.5
LCVP A(2) 48 4 52 1.0 12 3 16 1.0 3.4
LCVP MR A(1) 236 14 250 4.8 60 12 71 4.6 3.5
LCVP MR A(2) 157 14 171 3.3 40 12 52 3.3 3.3
GMRF k-NN 124 2 127 2.4 42 2 43 2.8 2.9
GMRF Bayes 125 < 1 125 2.4 40 < 1 40 2.6 3.1
WT-GMRF k-NN 106 2 108 2.1 36 2 38 2.4 2.8
WT-GMRF Bayes 106 < 1 106 2.0 37 < 1 37 2.4 2.9
WT-GMRF-CNH k-NN 92 2 94 1.8 33 2 35 2.2 2.7
WT-GMRF-CNH Bayes 92 < 1 92 1.8 33 < 1 33 2.1 2.8

Table 4.3.: Comparison of time measurements given in milliseconds (feature extraction time TO,
classification time TC , and total time TT ) for the different methods evaluated on two
different image sets (pit pattern images – 256 × 256 pixels and celiac disease images
– 128 × 128 pixels).

to approximately 5 times slower as compared to the fastest method. But, as already indicated
earlier, in case of JC-MB-LBP, DELAUNAY, and EDGEFEATURES SF is quite high.

In Figure 4.3 we compare the performance measurements for the different methods between
the pit pattern images and the celiac disease images. We notice that the methods mostly perform
significantly faster in case of the celiac disease images, which is no surprise considering the
different image dimensions. This difference gets also obvious when looking at the values for
Q in Table 4.3. Based on the values of TO, this multiplicative value roughly indicates how
much faster the methods perform in case of the celiac disease images (e.g. Q = 3.1 means that
the methods are about 3.1 times faster in case of celiac disease images as compared to the pit
pattern images). The values for Q show that the methods are at least 1.3 times faster when using
images of size 128 × 128 pixels instead of 256 × 256 pixels. Since, as already discussed above,
in case of JC-MB-LBP the share of the feature extraction time is rather small it is clear that this is
also the method which is affected the least by the image dimensions (in case of multi-scale the
picture is rather similar). Due to the compact and efficient nature of LCVP this method shows
the highest dependence on the image resolution.

From Figure 4.3 we also immediately see that the degree of contribution to the total image
classification time differs significantly between feature extraction and classification. While for
most methods the share of time needed for classification can be neglected, the picture is quite
different for JC-MB-LBP. For this method the time needed for classification is about 16 times
higher as compared to the feature extraction time (in the single scale case as well as in the
multi-scale case). From Table 4.3 we can also easily see that, in case of the Bayes classifier, the
time needed for the classification of an image (TC) is always considerably lower.
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Figure 4.3.: Comparison of performance measurements between the pit pattern images
(256×256) and the celiac disease images (128×128).

If we assume an endoscopy video to be captured at a frame rate of 25 frames per second a
real-time application demands processing times of at most 40 milliseconds for a single frame.
In order to be able to assess which of the different methods used are capable of performing
a real-time diagnosis we sketched the respective real-time area in figures 4.1 and 4.2. As we
quickly notice form Figure 4.1, in case of the pit pattern images there is no method which at the
moment is suited for a real-time diagnosis, although LCVP MR (2) gets really close to meet the
respective runtime constraints. While the overall picture looks quite similar in case of the celiac
disease images all methods are shifted towards the real-time area and quite a few methods
already meet the real-time constraints, as we notice from Figure 4.2. But since the celiac disease
images are only a quarter in size as compared to the pit pattern images, this is not surprising at
all. Furthermore it must be noted that by optimizing the respective implementations or using
a faster machine for the experiments even more methods would meet the real-time constraints,
also in case of the pit pattern images.

4.2.2. Classification Results

In the following we present the classification results achieved by the different methods on our
image databases. The configurations used for the different methods are the ones which lead to
the highest overall classification results. To find these values we conducted a large variety of
differently configured tests, evaluating a large pool of parameter configurations.

In order to be able to make an assessment about whether the classification outcome of two
methods is statistically significant different we employ McNemar’s test [20]. For two methods
M1 and M2 this test statistic keeps track of the number of images which are misclassified by
method M1 but classified correctly by method M2 (denoted by n01) and vice versa (denoted

27



Chapter 4. Experiments and Discussion

Figure 4.4.: Comparison of the overall classification rates for the pit pattern images where the
blue and red bars denote the LOO-CV results and LOPO-CV results respectively (2
classes).

by n10). The test statistic, which is approximately Chi Square distributed (with one degree of
freedom), is then computed as

T =
(|n01 − n10| − 0.5)2

n01 + n10
. (4.1)

From T the p-value can be computed as

p = 1− Fχ2
1
(T ) (4.2)

where Fχ2
1

denotes the cumulative distribution function of the Chi Square distribution with
one degree of freedom. The null-hypothesis H0 for McNemar’s test is that the outcomes of
M1 and M2 lead to equal error rates. Given a fixed significance level α, there is evidence that
the methods M1 and M2 produce significantly different results if p < α. As a consequence we
can reject the null-hypothesisH0. For the discussion in the next sections we chose a significance
level of α = 0.05. This implies that, ifM1 andM2 are significantly different, there is a confidence
level of 95% that the differences between the outcomes of the methods are not caused by random
variation.

Pit Pattern Images

Figures 4.4, 4.5, and 4.6 show the overall classification rates obtained with the different meth-
ods on the pit pattern image database. In each of this figures the blue bars denote the results
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Figure 4.5.: Comparison of the overall classification rates for the pit pattern images where the
blue and red bars denote the LOO-CV results and LOPO-CV results respectively (3
classes).

obtained with LOO-CV, while the the red bars denote the results obtained using LOPO-CV. The
numbers on top of each pair of bars indicate the result drop when switching from LOO-CV to
LOPO-CV. In addition we provide an indicator next to the method names, which – if filled gray
– shows that an eventual result drop is statistically significant according to McNemar’s test.

The detailed classification rates for the 2-classes case, the 3-classes case, and the 6-classes case
can be found in tables 4.4, 4.5, and 4.6, respectively. In these tables we provide the detailed
classification rates for the single classes in case of LOO-CV. In addition we provide the result
drop when using LOPO-CV instead of LOO-CV for each result in brackets.

The column SCV indicates whether an eventual result difference between the observed over-
all rates of LOO-CV and LOPO-CV is statistically significant according to McNemar’s test or
not (statistical significance is shown by a 3). If the differences between the overall rates are sta-
tistically significant we also provide an indicator which shows if in case of LOPO-CV the results
dropped (shown by a “−”) or have been improved (shown by a “+”).

From figures 4.4, 4.5, and 4.6 we notice that in case of LOO-CV the best overall classification
rates have always been achieved by the JC-MB-LBP method, followed by the LCVP method,
and EDGEFEATURES. In case of LOPO-CV the picture is rather similar. Again the best overall
classification rates are obtained by one of these methods. From these figures we also notice that,
compared to the other methods, the DELAUNAY method constantly performs worse the higher
the number of classes used gets. This can be explained by the fact that, as also mentioned in [35],
this method has originally been developed with a 2-class classification based on different the pit
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Figure 4.6.: Comparison of the overall classification rates for the pit pattern images where the
blue and red bars denote the LOO-CV results and LOPO-CV results respectively (6
classes).

densities within the two classes in mind. In case of higher class counts, however, the different
classes can not be distinguished that easy by such a feature since the difference in pit density
is only clearly noticeable between non-neoplastic and neoplastic images. Within each of these
two classes the densities are rather similar, hence, a finer classification scheme is problematic.

Nevertheless, as we notice from figures 4.4, 4.5, and 4.6 as well as from tables 4.4, 4.5, and
4.6, the overall classification accuracies always drop. This is especially noticeable for higher
class counts. In addition, in case of the pit pattern images the result differences are always
statistically significant. While in the 2-classes case the results drop by approximately 4% to 20
%, the decrease is rather huge in case of the 3-classes and 6-classes experiments with a loss
of approximately 7% to 28% and 6% to 54%, respectively. One explanation for this behavior
is that in order to obtain our extended image database we quite often had to cut out more
than one subimage from one original endoscopic image (which shows one certain polyp from
one specific patient). This however, in turn lead to an overfitting in case of LOO-CV since
the training set very often contained an image which exhibited a high similarity to the one
classified. In addition, as already pointed out in Section 4.1, LOPO-CV is very restrictive in case
of the pit pattern images. Since each patient may be present in more than one class, it quite
often happens, that leaving out images from a certain patient from the training set also results
in the unnecessary reduction of training sets for other image classes. As a consequence it is
quite likely that the training set for certain classes often is simply too small in order to allow a
proper training and classification.
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Method Non-Neoplastic Neoplastic Total SCV

WT-LDB k-NN 68.7 (-24.7) 88.4 (1.4) 83.0 (-5.9) 3 (−)
WT-LDB Bayes 71.7 (-37.4) 92.9 (6.9) 87.0 (-5.3) 3 (−)
WT-BBC k-NN 65.2 (-22.2) 94.2 (-3.5) 86.2 (-8.7) 3 (−)
WT-BBC Bayes 90.9 (-18.2) 95.0 (-1.4) 93.9 (-6.0) 3 (−)
WPC k-NN 37.9 (-15.2) 94.0 (-0.2) 78.5 (-4.3) 3 (−)
WPC Bayes 91.9 (-12.6) 95.8 (-4.1) 94.7 (-6.4) 3 (−)
DELAUNAY 67.2 (-12.1) 98.1 (-2.7) 89.5 (-5.3) 3 (−)
EDGEFEATURES 88.4 (-12.1) 98.1 (-2.5) 95.4 (-5.2) 3 (−)
JC-MB-LBP RGB 96.0 (-31.3) 99.6 (-5.2) 98.6 (-12.4) 3 (−)
JC-MB-LBP LAB 98.0 (-22.7) 99.2 (-2.9) 98.9 (-8.4) 3 (−)
JC-MB-LBP MR RGB 98.5 (-34.3) 99.4 (-4.8) 99.2 (-13.0) 3 (−)
JC-MB-LBP MR LAB 98.5 (-15.2) 99.4 (-8.1) 99.2 (-10.1) 3 (−)
LCVP A(1) RGB 89.4 (-45.5) 98.6 (-6.8) 96.1 (-17.5) 3 (−)
LCVP A(2) RGB 91.4 (-60.1) 98.6 (-3.5) 96.6 (-19.1) 3 (−)
LCVP A(1) LAB 89.4 (-45.5) 99.0 (-7.1) 96.4 (-17.7) 3 (−)
LCVP A(2) LAB 86.4 (-33.8) 97.1 (-1.2) 94.1 (-10.2) 3 (−)
LCVP MR A(1) RGB 93.4 (-51.0) 99.0 (-4.4) 97.5 (-17.3) 3 (−)
LCVP MR A(2) RGB 92.4 (-36.4) 98.3 (-8.3) 96.6 (-16.1) 3 (−)
LCVP MR A(1) LAB 91.9 (-43.4) 99.0 (-5.6) 97.1 (-16.1) 3 (−)
LCVP MR A(2) LAB 89.9 (-32.3) 98.6 (-1.7) 96.2 (-10.2) 3 (−)
GMRF k-NN 81.8 (-44.9) 90.0 (-1.2) 87.7 (-13.3) 3 (−)
GMRF Bayes 82.3 (-2.0) 93.6 (-13.1) 90.5 (-10.1) 3 (−)
WT-GMRF k-NN 93.4 (-48.0) 97.9 (-4.8) 96.6 (-16.8) 3 (−)
WT-GMRF Bayes 86.4 (-37.9) 95.9 (-1.9) 93.3 (-11.9) 3 (−)
WT-GMRF-CNH k-NN 93.4 (-53.0) 98.1 (-3.5) 96.8 (-17.2) 3 (−)
WT-GMRF-CNH Bayes 85.9 (-48.0) 98.5 (-3.7) 95.0 (-15.9) 3 (−)

Table 4.4.: The detailed classification results obtained with the different methods evaluated on
the pit pattern images (2 classes).

A more detailed look at the results for the different classes in tables 4.4, 4.5, and 4.6 reveals
that for each class count there is one specific class, which mostly exhibits the highest result
drops when using LOPO-CV instead of LOO-CV. While in case of the 2-classes experiments this
is the class containing the non-neoplastic images, in the 3-classes case this is the class showing
invasive lesions. For the 6-classes case the most significant result drops can be observed for pit
pattern type III-S. An explanation for this behaviour is the fact that in all these cases the affected
image classes contain a significantly lower number of images as compared to the other classes.
This especially applies to class III-S in case of the 6-classes case. As a consequence, when using
LOPO-CV, a rather high number of images per patient gets removed from the training set which
has a negative impact on the learning ability of the classifier used.

When comparing the result of JC-MB-LBP as well as the result for LCVP in terms of the color
space used, we can see from tables 4.4, 4.5, and 4.6 that the observed differences in terms of the
overall classification accuracies are mostly only marginal. Apart from that, there is no obvious
tendency noticeable whether these methods perform clearly better in either the RGB or the
LAB color space. But the drops in case of LOPO-CV are most times lower in case of the LAB
experiments compared to the result drops in case of the RGB experiments.

In figures 4.7 to 4.12 we provide some sort of method ranking in order to give a different
view on the overall classification rates achieved by the different methods when applied to the
pit pattern image database. These figures show the various methods sorted by the overall ac-
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Method Normal Non-Invasive Invasive Total SCV

WT-LDB k-NN 70.7 (-19.7) 81.9 (-0.2) 54.1 (-54.1) 75.0 (-13.0) 3 (−)
WT-LDB Bayes 67.7 (-12.6) 91.2 (-12.6) 17.3 (-5.1) 74.6 (-11.6) 3 (−)
WT-BBC k-NN 63.1 (-14.1) 89.0 (-3.3) 39.8 (-39.8) 75.1 (-11.3) 3 (−)
WT-BBC Bayes 89.9 (-19.2) 87.9 (0.0) 58.2 (-58.2) 84.4 (-13.3) 3 (−)
WPC k-NN 44.9 (-19.2) 89.8 (1.0) 15.3 (-15.3) 67.2 (-6.8) 3 (−)
WPC Bayes 93.4 (-13.6) 91.7 (-11.0) 54.1 (-54.1) 87.0 (-17.6) 3 (−)
DELAUNAY 72.7 (-4.0) 90.7 (-0.7) 41.8 (-39.8) 79.1 (-7.0) 3 (−)
EDGEFEATURES 90.4 (-20.2) 96.2 (-4.3) 84.7 (-35.7) 93.0 (-13.0) 3 (−)
JC-MB-LBP RGB 96.0 (-29.3) 99.3 (-16.4) 90.8 (-71.4) 97.2 (-27.5) 3 (−)
JC-MB-LBP LAB 98.0 (-22.2) 98.8 (-10.0) 95.9 (-72.4) 98.2 (-21.9) 3 (−)
JC-MB-LBP MR RGB 96.0 (-34.3) 99.5 (-10.7) 92.9 (-90.8) 97.6 (-28.2) 3 (−)
JC-MB-LBP MR LAB 98.5 (-15.2) 98.8 (-19.5) 96.9 (-54.1) 98.5 (-23.0) 3 (−)
LCVP A(1) RGB 89.4 (-39.4) 93.1 (-6.4) 74.5 (-65.3) 89.5 (-23.6) 3 (−)
LCVP A(2) RGB 91.4 (-50.0) 94.8 (-1.4) 72.4 (-63.3) 90.8 (-23.3) 3 (−)
LCVP A(1) LAB 89.4 (-41.4) 94.3 (-9.0) 81.6 (-71.4) 91.2 (-26.5) 3 (−)
LCVP A(2) LAB 86.4 (-37.4) 91.9 (-6.2) 72.4 (-49.0) 87.7 (-20.7) 3 (−)
LCVP MR A(1) RGB 93.4 (-39.9) 95.2 (-9.5) 85.7 (-73.5) 93.4 (-26.7) 3 (−)
LCVP MR A(2) RGB 92.4 (-46.0) 95.0 (-6.7) 79.6 (-57.1) 92.2 (-24.4) 3 (−)
LCVP MR A(1) LAB 91.9 (-38.4) 96.0 (-13.3) 85.7 (-67.3) 93.4 (-27.7) 3 (−)
LCVP MR A(2) LAB 89.9 (-30.3) 95.0 (-14.0) 76.5 (-35.7) 91.1 (-21.5) 3 (−)
GMRF k-NN 81.8 (-42.4) 81.0 (-0.2) 69.4 (-59.2) 79.6 (-20.0) 3 (−)
GMRF Bayes 90.4 (-23.2) 80.7 (-8.6) 83.7 (-62.2) 83.8 (-20.0) 3 (−)
WT-GMRF k-NN 93.4 (-47.0) 95.5 (-10.0) 87.8 (-67.3) 93.9 (-28.1) 3 (−)
WT-GMRF Bayes 84.8 (-10.6) 92.9 (-0.2) 54.1 (-54.1) 85.3 (-10.5) 3 (−)
WT-GMRF-CNH k-NN 93.4 (-51.5) 95.0 (-8.3) 80.6 (-66.3) 92.6 (-28.2) 3 (−)
WT-GMRF-CNH Bayes 87.4 (-43.4) 97.9 (-5.2) 28.6 (-28.6) 85.5 (-19.0) 3 (−)

Table 4.5.: The detailed classification results obtained with the different methods evaluated on
the pit pattern images (3 classes).

curacies reached (sorted ascending from left to right). In addition, we evaluated the statistical
significance of eventual differences between each method and the worst performing (left-most
method) and best performing method (right-most method) in terms of the overall classification
accuracies for these figures. This resulted in three differently colored regions into which each
method evaluated belongs to, according to the following rules:

Red area
Methods falling into this region achieve an overall classification accuracy which is sig-
nificantly lower as compared to the best performing method. In addition these methods
differ insignificantly only from the worst performing method.

Orange area
Methods falling into this category differ significantly from the best performing method as
well as from the worst performing method in terms of the overall classification accuracies
achieved.

Green area
Methods falling into this region achieve an overall classification accuracy which are not
significantly different as compared to the best performing method. In addition these
methods differ significantly from the worst performing method.
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Figure 4.7.: Method ranking for the methods when applied to the pit pattern image database (2
classes, LOO-CV).

Figure 4.8.: Method ranking for the methods when applied to the pit pattern image database (2
classes, LOPO-CV).

Figure 4.9.: Method ranking for the methods when applied to the pit pattern image database (3
classes, LOO-CV).
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Figure 4.10.: Method ranking for the methods when applied to the pit pattern image database
(3 classes, LOPO-CV).

Figure 4.11.: Method ranking for the methods when applied to the pit pattern image database
(6 classes, LOO-CV).

Figure 4.12.: Method ranking for the methods when applied to the pit pattern image database
(6 classes, LOPO-CV).

34



4.2. Results and Discussion

It must be noted, that the borders between the differently colored regions have been intro-
duced artificially. This means that the borders have been computed as the midpoint between
the classification rate of the right-most method from the left region and the left-most method of
the right region (for the red-orange and orange-green region pairs).

Hence, while for example Figure 4.15 implies that a method having an overall classification
accuracy of 80% would automatically fall into the red region, this is not necessarily the case,
since the membership to a region is only dependent on the statistical significance between a
method and the best and worst performing methods. Thus, if the outcome of such a method is
significantly different from WPC (k-NN), the border between the red and orange region would
be shifted to the left, to lie in the middle between the new method and WPC (k-NN). If the
outcome of such a method is not significantly different from WPC (k-NN), the border would be
shifted to the right to lie between the new method and WT-LDB (k-NN).

The figures 4.7 to 4.12 clearly show, that for the pit pattern images most of the methods belong
to the orange region in case of the different class counts as well as in the case of the different
cross-validation protocols, which indicates that most methods perform significantly worse as
compared to the best performing method. In addition we also notice that the methods get
shifted to the left when using LOPO-CV. Hence, while most methods perform significantly bet-
ter when compared to the worst method, the shift clearly shows that the pit pattern experiments
tend to yield worse results when using LOPO-CV.

We also notice that the green regions are dominated by the JC-MB-LBP method, which un-
derpins the superiority of this method. Only in case of the 3-classes case and LOPO-CV (see
Figure 4.10) the EDGEFEATURES method delivers significantly higher results as compared to
all other methods. One reason for this behavior is the fact that the EDGEFEATURES method
delivers competitive results in case of LOO-CV already. When using LOPO-CV this method
is able to better adapt to the missing training data due to the feature optimization employed.
While other methods exhibit a similar or even lower result drop when switching from LOO-CV
to LOPO-CV (e.g. WT-BBC Bayes and WPC k-NN) those methods perform rather poor in case
of LOO-CV already.

From these figures we also notice that the ordering of the methods is similar, no matter
whether we carry out a 2-class, 3-class, or 6-class classification. But when comparing the rank-
ing plots for LOO-CV and LOPO-CV we notice that the ordering of the methods changes. This
indicates that there are indeed methods in our method set which profited from the overfitting
in case of LOO-CV and, hence, perform worse in case of LOPO-CV as compared to other meth-
ods (e.g. LCVP MR A(1) or WT-GMRF-CNH k-NN). Some methods prove to be rather stable as
compared to other methods (e.g. JC-MB-LBP MR or WT-LDB k-NN). But there are also meth-
ods which seem to suffer from the overfitting and thus deliver a higher classification accuracy
as compared to the other methods (e.g. WT-BBC Bayes or the DELAUNAY method).
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4.2. Results and Discussion

Celiac Disease Images

Figures 4.13 and 4.14 show the overall classification rates obtained with the different methods
on the celiac disease image database. Again, the blue bars denote the results obtained with
LOO-CV, while the the red bars denote the results obtained using LOPO-CV. The numbers on
top of each pair of bars indicate the result drop when switching from LOO-CV to LOPO-CV. In
addition we provide an indicator next to the method names, which – if filled gray – shows that
an eventual result drop is statistically significant according to McNemar’s test.

The detailed classification rates for the 2-classes case and the 4-classes case can be found in
tables 4.7 and 4.8, respectively. In these tables we provide the detailed classification rates for the
single classes in case of LOO-CV. In addition we provide the result drop when using LOPO-CV
instead of LOO-CV for each result in brackets.

From figures 4.13 and 4.14 we notice that in case of LOO-CV the best overall classification
rates in the 2-classes case has been achieved by the LCVP method when using multiple scales,
followed by the WT-BBC method. When using four classes, again LCVP MR yields the highest
overall classification rate. But the second-best method is JC-MB-LBP MR method this time. In
case of LOPO-CV the picture is rather similar. Again the best overall classification rate in case
of 2 classes is obtained by LCVP MR, followed by WT-BBC. In case of four classes there are two
methods which perform equally well, LCVP MR and EDGEFEATURES, followed by WT-BBC.

As already observed in case of the pit pattern images, we also notice from figures 4.13 and
4.14 as well as from tables 4.7 and 4.8, that also in case of the celiac disease images the overall

Figure 4.13.: Comparison of the overall classification rates for the celiac disease images where
the blue and red bars denote the LOO-CV results and LOPO-CV results respec-
tively (2 classes).
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Chapter 4. Experiments and Discussion

Figure 4.14.: Comparison of the overall classification rates for the celiac disease images where
the blue and red bars denote the LOO-CV results and LOPO-CV results respec-
tively (4 classes).

classification accuracies always drop, although the result drops are considerably lower as com-
pared to the pit pattern image database. Moreover, in contrast to the pit pattern experiments,
the result differences are sometimes statistically insignificant, which can be noticed clearly in
the 2-classes case. As we also notice, the result drop when using LOPO-CV instead of LOO-CV
is rather moderate, as compared to the pit pattern images, with values between less than 1% and
5% in the 2-classes case and between less than 1% and 12% in the 4-classes case. One reason
for such moderate result drops is that the celiac disease image database uses about 3.6 images
on average per patient, while in case of the pit pattern images we used about 17.9 images on
average per patient. In addition, as already indicated in Section 4.2.2, in case of the pit pattern
images LOPO-CV is very likely to unnecessarily reduce the training sets for different classes
when classifying images from one specific class. This, however, is not possible in case of the
celiac disease images, since in this database a patient is represented in a single class only.

Tables 4.7 and 4.8 reveal that in the 2-classes case none of both classes clearly exhibits the
most result drops among the different methods when switching from LOO-CV to LOPO-CV.
In the 4-classes case, however, class Marsh-0 seams to suffer least from LOPO-CV, while the
remaining classes show result drops in roughly the same range. This may be attributed to the
fact that in the 4-classes case class Marsh-0 contains significantly more images as compared to
the classes Marsh-3A to Marsh-3C.

In figures 4.15 to 4.18 we again provide the method ranking for the different class counts
as well as for the different cross-validation protocols used. As we notice, similar to the pit
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4.2. Results and Discussion

Method Marsh-0 Marsh-3 Total SCV

WT-LDB k-NN 88.2 (1.6) 85.6 (-3.6) 86.9 (-1.0)
WT-LDB Bayes 73.9 (-0.7) 89.5 (0.0) 81.7 (-0.3)
WT-BBC k-NN 89.2 (3.3) 86.9 (-7.2) 88.1 (-2.0)
WT-BBC Bayes 78.1 (0.0) 87.3 (-0.7) 82.7 (-0.3)
WPC k-NN 91.2 (-1.0) 82.4 (-2.0) 86.8 (-1.5) 3 (−)
WPC Bayes 73.9 (-0.7) 89.5 (0.0) 81.7 (-0.3)
DELAUNAY 75.2 (0.0) 64.7 (-4.2) 69.9 (-2.1)
EDGEFEATURES 85.3 (-0.7) 88.9 (-2.3) 87.1 (-1.5)
JC-MB-LBP RGB 90.2 (-0.3) 69.0 (-8.5) 79.6 (-4.4) 3 (−)
JC-MB-LBP LAB 83.0 (-5.6) 82.4 (-3.3) 82.7 (-4.4) 3 (−)
JC-MB-LBP MR RGB 94.8 (3.3) 65.7 (-13.7) 80.2 (-5.2) 3 (−)
JC-MB-LBP MR LAB 89.5 (-1.0) 81.0 (-6.5) 85.3 (-3.8) 3 (−)
LCVP A(1) RGB 82.7 (1.3) 77.8 (-4.9) 80.2 (-1.8)
LCVP A(2) RGB 79.1 (-0.7) 80.4 (-4.6) 79.7 (-2.6) 3 (−)
LCVP A(1) LAB 77.5 (-4.2) 78.4 (0.0) 77.9 (-2.1)
LCVP A(2) LAB 58.5 (-1.6) 76.5 (-5.9) 67.5 (-3.8) 3 (−)
LCVP MR A(1) RGB 83.7 (-3.3) 91.2 (-1.0) 87.4 (-2.1) 3 (−)
LCVP MR A(2) RGB 83.3 (-2.0) 94.4 (-2.6) 88.9 (-2.3) 3 (−)
LCVP MR A(1) LAB 82.0 (-3.6) 91.2 (-0.7) 86.6 (-2.1)
LCVP MR A(2) LAB 66.3 (-6.9) 87.6 (-1.3) 77.0 (-4.1) 3 (−)
GMRF k-NN 82.7 (-0.3) 78.4 (-1.3) 80.6 (-0.8) 3 (−)
GMRF Bayes 77.1 (-7.2) 84.6 (0.7) 80.9 (-3.3)
WT-GMRF k-NN 90.8 (-3.3) 78.8 (1.3) 84.8 (-1.0)
WT-GMRF Bayes 69.0 (-2.6) 87.3 (-2.6) 78.1 (-2.6)
WT-GMRF-CNH k-NN 86.6 (-1.3) 83.3 (0.7) 85.0 (-0.3)
WT-GMRF-CNH Bayes 32.7 (0.0) 87.9 (-1.3) 60.3 (-0.7)

Table 4.7.: The detailed classification results obtained with the different methods evaluated on
the celiac disease images (2 classes).

pattern images, most methods are contained within the orange regions. This indicates that
most methods perform significantly worse as compared to the best performing method. But,
while in case of the pit pattern images the methods get shifted to the left when using LOPO-CV,
for the celiac disease image database we notice that the methods get slightly shifted to the right.
The fact that there is only a noticeable shift indicates that, as already pointed out above, the
methods perform more stable as compared to the other methods when using LOPO-CV instead
of LOO-CV.

While there is no method which clearly dominates the green regions, we notice that all meth-
ods contained within the green regions are based on the k-NN classifier. This suggests that
in case of the celiac disease images the k-NN classifier mostly performs significantly better as
compared to the Bayes classifier.

From these figures we also notice that the ordering of the methods is very similar, no matter
whether we carry out a 2-class or 4-class classification. When comparing the plots for LOO-CV
and LOPO-CV we notice that the ordering of the methods again is rather similar in both cases.
This however is not surprising. Since, as we already saw above, switching from LOO-CV to
LOPO-CV does not affect the results too much. Hence a similar ordering of the methods can
be expected too. Nevertheless, at least in the 4-classes cases there are methods which seem to
have profited from the overfitting in case of LOO-CV and, hence, perform considerably worse
in case of LOPO-CV as compared to other methods (e.g. WPC Bayes in case of the 4-classes).
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Chapter 4. Experiments and Discussion

Method Mars-0 Marsh-3A Marsh-3B Marsh-3C Total SCV

WT-LDB k-NN 92.8 (-0.3) 42.1 (-5.3) 46.5 (-27.2) 43.3 (-13.4) 68.5 (-8.2) 3 (−)
WT-LDB Bayes 83.7 (-9.5) 26.3 (33.7) 43.9 (-28.9) 24.7 (10.3) 58.0 (-3.3)
WT-BBC k-NN 92.2 (-1.6) 38.9 (-15.8) 42.1 (-9.6) 58.8 (-19.6) 69.3 (-8.2) 3 (−)
WT-BBC Bayes 82.4 (2.0) 34.7 (-17.9) 57.0 (-32.5) 23.7 (-4.1) 60.9 (-8.5) 3 (−)
WPC k-NN 91.8 (0.7) 43.2 (-11.6) 42.1 (-11.4) 46.4 (-21.6) 67.8 (-7.0) 3 (−)
WPC Bayes 74.5 (-4.6) 52.6 (-20.0) 65.8 (-22.8) 26.8 (-17.5) 61.9 (-12.4) 3 (−)
DELAUNAY 92.8 (4.9) 7.4 (-6.3) 12.3 (-7.0) 16.5 (-4.1) 52.5 (-0.5)
EDGEFEATURES 87.6 (3.3) 12.6 (-3.2) 62.3 (-14.0) 35.1 (1.0) 62.9 (-1.3)
JC-MB-LBP RGB 90.2 (-0.3) 43.2 (-15.8) 49.1 (-14.0) 30.9 (-15.5) 65.8 (-7.7) 3 (−)
JC-MB-LBP LAB 87.3 (-0.7) 61.1 (-20.0) 56.1 (-19.3) 26.8 (-20.6) 67.8 (-10.3) 3 (−)
JC-MB-LBP MR RGB 96.4 (-4.9) 42.1 (-11.6) 43.0 (-14.0) 20.6 (-7.2) 66.0 (-8.0) 3 (−)
JC-MB-LBP MR LAB 91.8 (0.0) 62.1 (-23.2) 57.0 (-23.7) 28.9 (-22.7) 70.8 (-11.6) 3 (−)
LCVP A(1) RGB 87.6 (7.5) 32.6 (-11.6) 51.8 (-28.9) 24.7 (-19.6) 62.4 (-6.5) 3 (−)
LCVP A(2) RGB 88.6 (1.0) 33.7 (-15.8) 41.2 (-17.5) 30.9 (-17.5) 62.1 (-8.0) 3 (−)
LCVP A(1) LAB 89.2 (0.3) 30.5 (-8.4) 45.6 (-20.2) 23.7 (-17.5) 61.6 (-7.7) 3 (−)
LCVP A(2) LAB 88.6 (0.0) 23.2 (-6.3) 28.9 (-7.9) 5.2 (-4.1) 54.1 (-3.1) 3 (−)
LCVP MR A(1) RGB 91.2 (2.6) 48.4 (-27.4) 51.8 (-14.9) 34.0 (-24.7) 68.1 (-9.6) 3 (−)
LCVP MR A(2) RGB 93.5 (-2.3) 49.5 (-22.1) 50.9 (-17.5) 53.6 (-18.6) 72.4 (-10.8) 3 (−)
LCVP MR A(1) LAB 88.6 (2.3) 36.8 (-7.4) 64.0 (-36.8) 37.1 (-24.7) 67.8 (-10.8) 3 (−)
LCVP MR A(2) LAB 80.1 (5.9) 33.7 (-20.0) 49.1 (-24.6) 34.0 (-28.9) 59.8 (-9.3) 3 (−)
GMRF k-NN 88.9 (0.7) 22.1 (-4.2) 43.0 (-10.5) 14.4 (-9.3) 58.2 (-3.8) 3 (−)
GMRF Bayes 96.7 (-1.6) 8.4 (-8.4) 36.0 (-24.6) 9.3 (-6.2) 57.8 (-7.7) 3 (−)
WT-GMRF k-NN 91.8 (0.7) 43.2 (-14.7) 52.6 (-26.3) 25.8 (-6.2) 66.5 (-7.8) 3 (−)
WT-GMRF Bayes 80.4 (19.3) 29.5 (-29.5) 43.9 (-43.0) 17.5 (-14.4) 55.7 (-5.2) 3 (−)
WT-GMRF-CNH k-NN 91.8 (-1.6) 41.1 (-17.9) 35.1 (-7.9) 22.7 (-2.1) 62.4 (-5.4) 3 (−)
WT-GMRF-CNH Bayes 17.3 (0.0) 71.6 (-1.1) 22.8 (-8.8) 14.4 (-2.1) 26.3 (-2.1) 3 (−)

Table 4.8.: The detailed classification results obtained with the different methods evaluated on
the celiac disease images (4 classes).

While in the 4-classes case there are also methods which seem to suffer from the overfitting
and thus deliver a higher classification accuracy as compared to the other methods (e.g. the
EDGEFEATURES method), most methods prove to be rather stable.

4.2.3. Ensemble Classification

In the previous sections we presented the results obtained with the different methods. In this
section we present and discuss results obtained with our ensemble classifier as presented in
[34].

An important issue in terms of the classifier ensemble is the combination of weak classifiers
in order to obtain a combination performing better as compared to the weak methods. Since
in our case we have 26 different method candidates at hand a manual selection would be a
tedious task due to the high number of potential combinations (226 − 1 = 67.108.863). Hence,
we implemented a rather simple algorithm which, based on the overall classification rates of
the single methods, determines a combination to be used for the classifier ensemble.

This algorithm starts by adding the method yielding the best overall classification rate to the
ensemble method set. Then, based on a rating, new methods are added successively. After
a new method has been added to the method set, the new set is rated according to a rating
function. If the rating is below the rating without the newly added method, this method is
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4.2. Results and Discussion

Figure 4.15.: Method ranking for the methods when applied to the celiac disease image database
(2 classes, LOO-CV).

Figure 4.16.: Method ranking for the methods when applied to the celiac disease image database
(2 classes, LOPO-CV).

removed from the set. The rating function compares the number of misclassifications for each
image using the methods in the ensemble method set. If this number is below (above) the
number of methods in the set divided by 2, the rating value is decremented (incremented). In
other words, if more than half of the methods classify an image correctly, this is rewarded by
incrementing the rating. Otherwise, a penalty is used to decrement the rating. If, however, the
number of misclassifications is equal to the number of methods divided by 2 the rating remains
untouched.

Since it is possible that, after the ensemble method set has been created by testing all methods
available, adding an already tested method increases the rating, the algorithm carries out N
iterations, where N corresponds to the total number of methods available for inclusion.

The method selection algorithm can be outlined as follows:
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Figure 4.17.: Method ranking for the methods when applied to the celiac disease image database
(4 classes, LOO-CV).

Figure 4.18.: Method ranking for the methods when applied to the celiac disease image database
(4 classes, LOPO-CV).

1. Initialize the set of method candidates as S = {B}, where B denotes the method which
yielded the highest overall classification rate.

2. Set ensemble set rating R = 0.

3. Set iteration counter to I = 0.

4. Initialize set of available methods as T with T ∩ S = {}.

5. Set S = S ∪M with M ∈ T and T = T\M (in other words, M denotes the next available
method which has not been added to S already).

6. Compute the rating value Rnew by carrying out the following steps:

a) Initialize new rating value with Rnew = 0.

b) For an image out of the image set compute the number of correct classifications
among all methods in S as C.

c) If C < |S|/2 then Rnew = Rnew − 1
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d) If C > |S|/2 then Rnew = Rnew + 1

e) Continue with step 6b for each image in the image database.

7. If Rnew < R then S = S\M .

8. If Rnew ≥ R then R = Rnew.

9. If T 6= {} continue with step 5.

10. Increment iteration counter by setting I = I + 1.

11. If I < N continue with step 4.

The results for the ensemble classification are shown in Table 4.9. The columns RBest, REnsemble,
and SE denote the overall classification rate obtained with the best performing method within
the method set S, the overall classification rate obtained with the ensemble classifier, and an
indicator for statistical significance (according to McNemar’s test with α = 0.05) between the
outcome of the best performing method in S and the ensemble (denoted by a 3), respectively. In
addition, we provide a “(+)” (“(-)”) if the ensemble classifier achieved a higher (lower) overall
classification accuracy as compared to the best performing method in S.

As we notice from this table in most cases the ensemble classifier yields at least slightly higher
results as compared to the result achieved with the best performing method within the method
set S. But we also see that the ensemble classifier performs significantly better only in one case
(Pit pattern images, 2 classes, LOPO-CV). There also exist cases where the ensemble classifier
performs equally well (Pit pattern images, 2 classes and 3 classes, LOO-CV) or even worse (Pit
pattern images, 3 classes, LOPO-CV) as compared to the best single method in S.

The behavior that the ensemble classifier is in most cases not able to perform significantly
better as compared to the methods in S can be explained by the fact that the selection algo-
rithm outlined above always adds the best performing single method already in the first step.
All other methods subsequently added usually yield an accuracy noticeably below the high-
est overall classification rate or a similar rate but with only insignificantly different method
outcomes. As a consequence, either the poorly performing methods force down the ensemble
classifier or the diversity between the methods in S is low.

Concerning the selected methods it is worthwhile to mention that the selection algorithm
always picks out 3 methods for S. In all cases either the LCVP method or the JC-MB-LBP (both
methods using multiple scales) has been chosen at least once. However, this is not surprising

Pit Pattern Images
LOO-CV LOPO-CV

RBest REnsemble SE RBest REnsemble SE

2 classes 99.16 99.16 90.50 91.48 3 (+)
3 classes 98.46 98.46 80.03 79.61 (−)
6 classes 97.77 98.18 (+) 51.26 52.23 (+)

Celiac Disease Images
LOO-CV LOPO-CV

RBest REnsemble SE RBest REnsemble SE

2 classes 88.89 90.36 (+) 86.60 87.25 (+)
4 classes 72.39 75.00 (+) 61.60 62.09 (+)

Table 4.9.: Results of the ensemble classification compared to the best methods for each image
database (LOO-CV and LOPO-CV).

43



Chapter 4. Experiments and Discussion

since these methods are always performing best as we notice from tables 4.4 to 4.6 and tables
4.7 and 4.8.

In addition, in the case of the pit pattern images using LOPO-CV, the algorithm always selects
methods based on different types of features (EDGEFEATURES method and the JC-MB-LBP
method – either using a single scale or multiple scales). But also in case of the celiac disease
images features from different domains are used (combinations of LCVP, JC-MB-LBP, EDGE-
FEATURES, and WT-BBC).
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5. Conclusion and Future Outlook

As we have seen in the last chapters, throughout the last years we developed a set of different
methods yielding different types of features (e.g. shape features or statistical features). We
mainly evaluated these methods on endoscopic images in order to classify polyps, with the
ultimate goal of detecting colon cancer. But we also evaluated these methods on endoscopic
imagery with the aim of detecting celiac disease.

While the classification accuracies are very promising already, we noticed that at least in
the case of the pit pattern images the classification accuracies heavily depend on the cross-
validation method used. As a consequence, in case of LOO-CV the classification rates are com-
parable to the rates achieved by physicians [55]. However, in case of LOPO-CV the rates quite
frequently significantly drop. For the celiac disease images the differences between these two
cross-validation methods are not that pronounced. This must mainly be attributed to the fact
that this image database contains far less subimages per original image, hence, the effect of
overfitting is not that noticeable.

But there is also a potential to evaluate better suited features or optimize features developed
in the past. In case of the DELAUNAY method, for example, we still suffer from ridges, as these
are supposed to have a negative impact on the feature extraction process. Especially in case of
this method it is necessary to make the pit candidate detection more robust in order to eliminate
pit regions which are resulting from image noise.

In the past we also suffered from the imbalance in the pit pattern image database in terms of
the images available per image class. This issue was also suspected to influence the recognition
rates in a negative way. To alleviate this problem we have to emphasize a more well-balanced
image set. This however could get problematic due to the difference prevalences of the different
types of colonic lesions. In addition we have to evaluate ways to be able to deal better with im-
balanced sets. It will also be important to collect enough images to be able to assemble different
sets of images – one for the training and for the validation. This will also greatly improve the
stability and explanatory power of the classification results achieved. In this course it would be
interesting too – for pit pattern images as well as for celiac disease images – to use images cap-
tured using NBI in contrast to traditional chromo-endoscopy as NBI will replace the traditional
technique more and more in future.

Another issue concerns the computational demand of the methods evaluated. While in our
current scenario real-time capabilities were not the goal this might be of particular interest for
future applications. Since for our work up to now we manually extracted regions of interest
from the original endoscopic images, we nevertheless were restricted to an offline processing of
the images. If, however, in future work we want to automatically extract regions of interest it
will be imperative to lower the computation demand of the methods in order to be able to use
them for a real-time scenario. Especially when considering that modern endoscopes provide
HD resolution, this task gets even more challenging. There exist different potential options
in order to lower the computational burden of our methods. Future research in this direction
could therefore be to implement the methods with the help of GPUs on modern graphics cards.
By utilizing the capabilities of GPUs in terms of massively parallel computing a considerable
speed-up for our methods could be achieved (e.g. k-NN classifier for JC-MB-LBP or the edge
extraction in case of our shape-based methods).

45





Bibliography

[1] A. A. Al-Rahayfeh and A. A. Abuzneid. Detection of bleeding in wireless capsule en-
doscopy images using range ratio color. International Journal of Multimedia & Its Applica-
tions, 2(2):1–10, May 2010.

[2] L. Alexandre, J. Casteleiro, and N. Nobre. Polyp detection in endoscopic video using
SVMs. In Knowledge Discovery in Databases: PKDD 2007, pages 358–365. Springer Berlin,
2007.

[3] S. Ameling, S. Wirth, D. Paulus, G. Lacey, and F. Vilariño. Texture-based polyp detection
in colonoscopy. In W. Brauer, H.-P. Meinzer, T. M. Deserno, H. Handels, and T. Tolxdorff,
editors, Bildverarbeitung für die Medizin 2009, Informatik aktuell, pages 346–350. Springer
Berlin, 2009.
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[29] M. Häfner, L. Brunauer, H. Payer, R. Resch, A. Gangl, A. Uhl, A. Vécsei, and F. Wrba.
Computer-aided classification of zoom-endoscopical images using fourier filters. IEEE
Transactions on Information Technology in Biomedicine, 14(5):958–970, July 2010.
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[33] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, and F. Wrba. Pit pattern classifica-
tion using extended local binary patterns. In Proceedings of the 9th International Conference
on Information Technology and Applications in Biomedicine (ITAB’09), pages 1–4, Larnaca,
Cyprus, Nov. 2009.
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[42] M. Häfner, M. Liedlgruber, F. Wrba, A. Gangl, A. Vécsei, and A. Uhl. Pit pattern classifi-
cation of zoom-endoscopic colon images using wavelet texture features. In W. Sandham,
D. Hamilton, and C. James, editors, Proceedings of the International Conference on Advances
in Medical Signal and Image Processing (MEDSIP’06), pages 1–4, Glasgow, Scotland, UK,
July 2006.

[43] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification.
IEEE Transactions on Systems, Man, and Cybernetics, 3:610–621, 1973.

[44] S. Hegenbart, R. Kwitt, M. Liedlgruber, A. Uhl, and A. Vecsei. Impact of duodenal image
capturing techniques and duodenal regions on the performance of automated diagno-
sis of celiac disease. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA’09), pages 718–723, Salzburg, Austria, Sept. 2009.

[45] C.-R. Huang, P.-C. Chung, B.-S. Sheu, H.-J. Kuo, and M. Popper. Helicobacter pylori-
related gastric histology classification using support-vector-machine-based feature selec-
tion. IEEE Transactions Information Technology in Biomedicine, 12(4):523–531, July 2008.

[46] D. K. Iakovidis, D. E. Maroulis, and S. A. Karkanis. An intelligent system for auto-
matic detection of gastrointestinal adenomas in video endoscopy. Computers in Biology
and Medicine, 36(10):1084–1103, Oct. 2006.

[47] D. K. Iakovidis, D. E. Maroulis, S. A. Karkanis, and A. Brokos. A comparative study of tex-
ture features for the discrimination of gastric polyps in endoscopic video. In Proceedings
of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05), pages 575–580,
Dublin, Ireland, June 2005.

[48] D. K. Iakovidis, D. E. Maroulis, S. A. Karkanis, P. Papageorgas, and M. Tzivras. Texture
multichannel measurements for cancer precursors’ identification using support vector
machines. Measurement, 36(3-4):297–313, Oct. 2004.

[49] Y. S. Jung, Y. H. Kim, D. H. Lee, and J. H. Kim. Active blood detection in a high reso-
lution capsule endoscopy using color spectrum transformation. In Proceedings of the In-
ternational Conference on BioMedical Engineering and Informatics (BMEI’08), pages 859–862,
Sanya, Hainan, China, May 2008.

50



Bibliography

[50] J. Kang and R. Doraiswami. Real-time image processing system for endoscopic appli-
cations. In Proceedings of the Canadian Conference on Electrical and Computer Engineering
(CCECE’03), volume 3, pages 1469–1472, Niagara Falls, Ontario, Canada, May 2003.

[51] A. Karargyris and N. Bourbakis. A methodology for detecting blood-based abnormalities
in wireless capsule endoscopy videos. In Proceedings of the 8th IEEE International Conference
on BioInformatics and BioEngineering (BIBE’08), pages 1–6, Athens, Greece, Oct. 2008.

[52] A. Karargyris and N. Bourbakis. Identification of polyps in wireless capsule endoscopy
videos using log gabor filters. In Proceedings of the Life Science Systems and Applications
Workshop (LiSSA’09), pages 143–147, Bethesda, MD, USA, Apr. 2009.

[53] S. A. Karkanis, D. Iakovidis, D. Karras, and D. Maroulis. Detection of lesions in endo-
scopic video using textural descriptors on wavelet domain supported by artificial neural
network architectures. In Proceedings of the IEEE International Conference in Image Processing
(ICIP’01), pages 833–836, Thessaloniki, Greece, Oct. 2001.

[54] S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras, and M. Tzivras. Computer-
aided tumor detection in endoscopic video using color wavelet features. IEEE Transactions
on Information Technology in Biomedicine, 7(3):141–152, Sept. 2003.

[55] S. Kato, K.-I. Fu, Y. Sano, T. Fujii, Y. Saito, T. Matsuda, I. Koba, S. Yoshida, and T. Fu-
jimori. Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of
non-neoplastic and neoplastic lesions. World Journal of Gastroenterology, 12(9):1416–1420,
Mar. 2006.

[56] A. Khademi and S. Krishnan. Multiresolution analysis and classification of small bowel
medical images. In Proceedings of the 29th Annual Int Conf of the IEEE Engineering in
Medicine and Biology Society (EMBS’07), volume 2007, pages 4524–4527, Vancouver, British
Columbia, Canada, Aug. 2007.

[57] V. Kodogiannis. Computer-aided diagnosis in clinical endoscopy using neurofuzzy sys-
tems. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’04),
pages 1425–1429, Budapest, Hungary, 2004.

[58] V. Kodogiannis, M. Boulougoura, J. Lygouras, and I. Petrounias. A neuro-fuzzy-based
system for detecting abnormal patterns in wireless-capsule endoscopic images. Neuro-
computing, 70:704–717, Jan. 2007.

[59] V. Kodogiannis and J. Lygouras. Neuro-fuzzy classification system for wireless-capsule
endoscopic images. International Journal of Electrical, Computer, and Systems Engineering,
2:55–63, 2008.

[60] S. M. Krishnan, X. Yang, K. L.Chan, S. Kumar, and P. M. Y. Goh. Intestinal abnormality
detection from endoscopic images. In Proceedings of the 20th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBS’98), pages 895–898, Hong
Kong, China, Oct. 1998.

[61] S. Kudo, S. Hirota, T. Nakajima, S. Hosobe, H. Kusaka, T. Kobayashi, M. Himori, and
A. Yagyuu. Colorectal tumours and pit pattern. Journal of Clinical Pathology, 47:880–885,
Oct. 1994.

51



Bibliography

[62] R. Kwitt and A. Uhl. Modeling the marginal distributions of complex wavelet coeffi-
cient magnitudes for the classification of zoom-endoscopy images. In Proceedings of the
IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MM-
BIA’07), pages 1–8, Rio de Janeiro, Brasil, Oct. 2007.

[63] R. Kwitt and A. Uhl. Color eigen-subband features for endoscopy image classification. In
Proceedings of the 33rd IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP’08), pages 589–592, Las Vegas, Nevada, United States, Apr. 2008.

[64] P. Y. Lau and P. Correia. Detection of bleeding patterns in WCE video using multiple
features. In Proceedings of the 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBS’07), pages 5601–5604, Vancouver, British Columbia,
Canada, Aug. 2007.

[65] B. Li and M. Q. Meng. Computer-based detection of bleeding and ulcer in wireless cap-
sule endoscopy images by chromaticity moments. Computers in Biology and Medicine,
39(2):141–147, Feb. 2009.

[66] B. Li and M. Q. Meng. Texture analysis for ulcer detection in capsule endoscopy images.
Image and Vision Computing, 27(9):1336–1342, Aug. 2009.

[67] B. Li and M. Q.-H. Meng. Analysis of the gastrointestinal status from wireless capsule
endoscopy images using local color feature. In Proceedings of the International Conference
on Information Acquisition (ICIA’07), pages 553–557, Jeju City, Korea, July 2007.

[68] M. Liedlgruber and A. Uhl. Statistical and structural wavelet packet features for Pit pat-
tern classification in zoom-endoscopic colon images. In P. Dondon, V. Mladenov, S. Impe-
dovo, and S. Cepisca, editors, Proceedings of the 7th WSEAS International Conference on
Wavelet Analysis & Multirate Systems (WAMUS’07), pages 147–152, Arcachon, France, Oct.
2007.

[69] M. Liedlgruber and A. Uhl. Endoscopic image processing - an overview. In Proceedings of
the 6th International Symposium on Image and Signal Processing and Analysis (ISPA’09), pages
707–712, Salzburg, Austria, Sept. 2009.

[70] M. Liedlgruber and A. Uhl. Predicting pathology in medical decision support systems in
endoscopy of the gastrointestinal tract. In C. Jao, editor, Efficient Decision Support Systems –
Practice and Challenges in Biomedical Related Domain, pages 195–214. InTech, Rijeka, Croatia,
2011.

[71] M. Liedlgruber and A. Uhl. A summary of research targeted at computer-aided decision
support in endoscopy of the gastrointestinal tract. Technical Report 2011-01, Department
of Computer Sciences, University of Salzburg, Austria, http://www.cosy.sbg.ac.
at/research/tr.html, 2011.

[72] M. Liedlgruber, A. Uhl, and A. Vécsei. Statistical analysis of the impact of distortion
(correction) on an automated classification of celiac disease. In Proceedings of the 17th
International Conference on Digital Signal Processing (DSP’11), pages 1–6, Corfu, Greece,
July 2011.

[73] C. S. Lima, D. Barbosa, J. R. A. Tavares, L. Monteiro, and L. Carvalho. Classification of
endoscopic capsule images by using color wavelet features, higher order statistics and
radial basis functions. In Proceedings of the 30th Annual International Conference of the IEEE

52

http://www.cosy.sbg.ac.at/research/tr.html
http://www.cosy.sbg.ac.at/research/tr.html


Bibliography

Engineering in Medicine and Biology Society (EMBS’08), pages 1242–1245, Vancouver, British
Columbia, Canada, 2008.

[74] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Jour-
nal of Computer Vision, 60(2):91–110, Nov. 2004.

[75] G. D. Magoulas, V. P. Plagianakos, and M. N. Vrahatis. Neural network-based colono-
scopic diagnosis using on-line learning and differential evolution. Applied Soft Computing,
4(4):369–379, Apr. 2004.

[76] S. Mallat. A Wavelet Tour Of Signal Processing. Academic Press, 2nd edition, 1999.

[77] D. E. Maroulis, D. K. Iakovidis, S. A. Karkanis, and D. A. Karras. CoLD: a versatile de-
tection system for colorectal lesions in endoscopy video-frames. Computer Methods and
Programs in Biomedicine, 70(2):151–66, Feb. 2003.

[78] M. Marsh. Gluten, major histocompatibility complex, and the small intestine. a molec-
ular and immunobiologic approach to the spectrum of gluten sensitivity (’celiac sprue’).
Gastroenterology, 102(1):330–354, Jan. 1992.

[79] C. Münzenmayer, A. Kage, T. Wittenberg, and S. Mühldorfer. Computer-assisted diagno-
sis for precancerous lesions in the esophagus. Methods of Information in Medicine, 48:324–
330, June 2009.

[80] G. Oberhuber, G. Granditsch, and H. Vogelsang. The histopathology of coeliac disease:
time for a standardized report scheme for pathologists. European Journal of Gastroenterology
and Hepatology, 11:1185–1194, Nov. 1999.
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