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ABSTRACT

We present a Copula-based statistical model of complex wavelet co-

efficient magnitudes for color texture image retrieval. Our model

is based on two-parameter Weibull distributions and a multivariate

Student t Copula. For similarity measurement we employ a Monte-

Carlo approach to approximate the Kullback-Leibler divergence be-

tween two models. The experimental retrieval results show that the

incorporation of the dependency structure between subbands signifi-

cantly improves retrieval accuracy compared to previous approaches.

1. MOTIVATION

Content-based image retrieval (CBIR) systems mainly consist of two

building blocks: a feature extraction (FE) block and a similarity mea-

surement (SM) block, illustrated in Fig. 1. According to [1], both

blocks are strongly related to each other. In the feature extraction

block we compute a set of image descriptors, which are subsequently

used for similarity measurement between a given query image and a

number of candidate images in a database. In this paper we present
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Fig. 1. Image Retrieval Framework

an extension of recent work [2] on probabilistic texture image re-

trieval where we have exclusively modeled the marginal distribu-

tions of complex wavelet coefficient magnitudes. Our contribution

is to additionally incorporate the dependency structure across com-

plex wavelet detail subbands of a specific decomposition level and

equal subbands of different color bands. Our approach is based on

multivariate modeling by means of Copulas. Specifically, we show

that a Student t Copula with Weibull margins leads to a significant

improvement in retrieval accuracy. This model is equally conve-

nient for both grayscale and color image processing where we ob-

serve strong dependencies between equal subbands of different color
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bands. In the similarity measurement block we use an artificially

symmetrized version of the Kullback-Leibler (KL) divergence. Due

to the lack of a closed-form solution of the KL divergence between

two of our statistical models, we employ a pragmatic Monte-Carlo

approach. The retrieval experiments on a widely-used texture image

database show superior results compared to previous works [1, 2].

The remainder of this paper is structured as follows: in Section 2

we introduce the proposed statistical model. Section 3 then provides

the experimental results of our work and Section 4 recapitulates the

main contributions together with an outlook on open research prob-

lems.

2. STATISTICAL MODELING & IMAGE SIMILARITY

Statistical modeling resides in the feature extraction block of the

CBIR system and consists of two steps: in the first step, we compute

wavelet transform coefficients of each RGB color band. Second, we

estimate the parameters of our statistical model. In the similarity

measurement block of the CBIR system, the statistical models are

then used to compute a measure of image similarity.

2.1. Image Representation

As in [2], we work with the Dual-Tree Complex Wavelet Transform

(DT-CWT) due to the advantages over the pyramidal DWTw.r.t. im-

age analysis. In contrast to the DWT, the DT-CWT is four-times

redundant in 2-D and has six complex detail subbands per decompo-

sition level, capturing image details oriented along ±15◦,±45◦ and
±75◦. Further, the transform is approximately shift-invariant and is
efficiently implemented by four parallel 2-D DWTs. The schematic

frequency-tiling of the DT-CWT is shown in Fig. 2 for frequencies

w2 ≥ 0 together with our subband enumeration scheme S1, . . . , S6.
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Fig. 2. Schematic frequency tiling of the DT-CWT

In previous works [1, 2], the assumption of subband indepen-

dency has led to both a simple statistical model and a computation-

ally attractive way to measure image similarity. Although we can

argue that the independency assumption is valid for the DWT sub-

bands, it is certainly violated in case of the overcomplete DT-CWT.

In case of RGB color images where each color band is decomposed



separately, assuming independent detail subbands is even more ques-

tionable for both the DWT and DT-CWT.

To quantify the degree of dependency we employ a graphical

tool known as Chi-plot [3], since it is often hard for the human eye

to judge a random scatter plot. Figure 3 shows Chi-plots for a selec-

tion of subband combinations from two example images (see Section

3) on decomposition level two together with the classic Pearson cor-

relation coefficient r, Spearman’s ρ and Kendall’s τ . The subscript
indices c ∈ {R, G, B}, i and j in the subband notation Sc,ij denote

the j-th subband (see Figure 2) of color channel c at decomposition
level i. In case of independence we expect the points to lie in the
central (shaded) region of the plot. The control limits (the width

of the shaded region) are set to enclose ±1.78/
√

n (n denotes the
number of transform coefficients) which is a common choice in lit-

erature (see [4]). As we can see, there are strong deviations from the

shaded region especially for subbands of opposite angle and equal

subbands of different color bands. This behavior can be observed

for all images of our database and confirms our concerns about the

validity of independency assumption. To construct the dataset for

statistical model estimation, we transform each RGB color band by

the DT-CWT and arrange the absolute values of the mid-frequency

subband coefficients (i.e. level two) in a n × p matrixX. Since we

have six subbands per scale and three color bands we obtain p = 18.

2.2. Modeling the Marginal Distributions

In [2] we have shown that the marginal distributions of complex

wavelet coefficient magnitudes of DT-CWT transformed texture im-

ages can be fairly well modeled by two-parameter Weibull distribu-

tions. We recapitulate that the probability density function (PDF) of

a Weibull distribution with shape parameter α and scale parameter β
is given by

p(x;w) =
α

β
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−
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x
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«αff

(1)

with x ≥ 0 andw = (α, β). The parameters can be estimated either
by using the method of moments (MM) or by using Maximum-

Likelihood (ML) estimation. Unfortunately, both the MM and

ML approach require numerical root finding algorithms. Another

approach is to exploit the fact that the logarithm of a Weibull-

distributed random variable follows an Extreme Value distribution

of Type I (Gumbel) [5]. In that case the ML approach still requires

numerical root finding, however there exist closed-form solutions

for the MM estimates. Since the MM estimates can be used as

starting values in a Newton-Raphson iteration for example we favor

this approach due to less computational effort. We note that the

parameter estimates α̂, β̂ are calculated based on the column data in
X (i.e. for each subband).

2.3. Copula Modeling

In multivariate modeling, Copula theory is a very important tool, es-

pecially when the dependency structure of the underlying data is of

particular interest. A Copula is a multivariate distribution with uni-

formmarginals [6]. Given a p-dimensional vectorU = (u1, . . . , up)
on the unit cube [0, 1]p, the Copula function C is defined as

C(u1, . . . , up) = P(U1 ≤ u1, . . . , Up ≤ up). (2)

In [7], Sklar showed that given a p-dimensional distribution function
F with margin distribution functions F1, . . . , Fp, there exists a p-
dimensional Copula C such that

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)), (3)

exploiting the fact that every random variable can be transformed

to a uniform random variable by its probability integral transform.

In our work, we use the Student t Copula, which is a member of

the class of elliptical Copulas, to capture the dependency structure

between the transform coefficients of different subbands. We have

evaluated other Copulas such as the Multivariate Normal or Archi-

median Copulas w.r.t. both Akaike’s and Bayes’ Information Crite-

rion (AIC/BIC) (see [8]). Throughout all of our experiments the Stu-

dent t Copula showed the lowest AIC and BIC for our image data.

The Student t Copula is specified by the multivariate Student t dis-

tribution. Given thatΣ denotes a symmetric positive definite matrix

with diag(Σ) = (1, . . . , 1), then the Multivariate Student t Copula
is defined as

C(u1, . . . , up;Σ, ν) = TΣ,ν(t−1
ν (u1), . . . , t

−1
ν (up)) (4)

where TΣ,ν denotes the standard multivariate Student t distribution

with ν degrees of freedom and t−1
ν (·) denotes the inverse Student t

distribution function. The corresponding PDF is given by
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with ξi = t−1(ui) and ξ = (ξ1, . . . , ξp). Without specifying any
specific copula or margin distribution, the joint PDF f of the whole

Copula model can be written as

f(x1, . . . , xp) = c(F1(x1), . . . , Fp(xp)) ·
p

Y

i=1

fi(xi). (6)

Given a Student t Copula and Weibull margins, the log-likelihood

l(θ) of observing {(xi1, . . . , xip) : i = 1, . . . , n} follows as

l(θ) =
n

X

i=1

log (c(F1(xi1;w1), . . . , Fp(xip;wp);Σ, ν) +

n
X

i=1

p
X

j=1

log pj(xij ;wj)

(7)

with θ = (θC ,w1, . . . ,wp), θC = (Σ, ν) and Fi(·,wi) denot-
ing the cumulative distribution functions of the Weibull distribution.

Regarding parameter estimation issues, direct maximization of the

log-likelihood equation (7) to estimate the model parameters is a

cumbersome procedure. For that reason, we use a two-stage estima-

tion procedure which is known as the Inference from Margins (IFM)

[9] method. The IFM method works as follows: first, we estimate

the shape and scale parameters of the Weibull marginal distributions

using ML estimation as explained in Section 2.2. Second, using the

estimated Weibull parameters ŵi, 1 ≤ i ≤ p we maximize

θ̂C = arg max
Σ,ν

n
X

i=1

log (c(F1(xi1; ŵ1), . . . , Fp(xip; ŵp);Σ, ν) .

(8)

Hence we obtain a joint model for the absolute values of the complex

wavelet coefficient magnitudes on a specific decomposition level for

all three color bands.
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Fig. 3. Chi-plots for different combinations of subband coefficients

2.4. Similarity Measurement

As we have mentioned in Section 1, similarity measurement is the

second integral part of a CBIR system. In the context of statisti-

cal image retrieval, Do and Vetterli [1] introduced the KL diver-

gence as a reasonable similarity measure with theoretical founda-

tion in decision theory. However, in contrast to [1, 2], the KL di-

vergence between two Copula models has no closed-form solution.

Hence, we choose a pragmatic Monte-Carlo (MC) approach and ex-

ploit the fact that the KL divergence between two PDFs f and f̃ can

be written asD(f||̃f) = Ef [log f(x)−log f̃(x)]. We can approximate

D(f||̃f) using Monte-Carlo simulation by drawing a random sample
x1, . . . , xn from the model density f(x) and then calculate

DMC(f ||̃f) ≈ 1

n

n
X

i=1

log f(xi)− log f̃(xi) (9)

which converges to D(f ||̃f) as n → ∞. Unfortunately, the KL
divergence is not a true metric since it is neither symmetric nor

does it satisfy the triangle inequality. The lack of symmetry how-

ever can be eliminated by using the artificially symmetrized version

Ds
MC(f||̃f) := 0.5 ·

“

DMC(f||̃f) + DMC (̃f||f)
”

instead. We fur-

ther note that due to the Monte-Carlo approach, the KL divergence

will differ to a certain extend (depending on n) in each experimen-
tal run. To assess the impact of n on Ds

MC , we use a reference

approximation with n = 106 samples to check the deviation for

n ∈ {102, 103, 104, 105}. As a matter of fact, there is a trade-off
between precision and computation time here, though we accept a

certain degree of deviation in favor of lower computational cost. Our

experiments showed that for n ≥ 103 the variations in the KL diver-

gence due to randomness did not lead to different retrieval results.

Therefor, we use n = 103 in the following section.

3. RETRIEVAL EXPERIMENTS

Our experimental results are based on 40 texture images of the MIT
Vision Texture (VisTex) database [10] which is commonly used for

the evaluation of texture retrieval systems. All images are 512×512

pixel RGB images. To quantify the quality of the retrieval results we

use the common setup of splitting each of the 40 texture images into
B = 16 non-overlapping subimages of size 128 × 128 pixel. Each
subimage is then used as a query once. Before wavelet decompo-

sition we normalize the color bands of each subimage by subtract-

ing its mean and dividing by its standard deviation. Regarding the

choice of DT-CWT filters we use Kingsbury’s Q-Shift (14,14)-tap

filters for decomposition levels ≥ 2 in combination with (13,19)-tap
near-orthogonal filters for decomposition level one.

To conduct a comparative study, we select the approaches of [1]

and [2] which are designed to work with grayscale images. As a

straightforward extension to color images, we separately transform

each color band and sum up the all the KL divergences (i.e. assum-

ing subband independency). Further, we compare against a recent re-

trieval approach [11] where the authors employ a multivariate Power

Exponential Distribution as the statistical model for DWT detail sub-

bands and measure image similarity by using the geodesic distance.1

We remind that in order to obtain comparable results we model only

the DT-CWT/DWT detail subbands on decomposition level two.

In the first part of the experiments we assess the goodness-of-

fit of the Copula model. As it is noted in [4], a reasonable way of

visually judging the goodness-of-fit is by drawing a random sample

from the underlying model and plotting the sample against the true

observations. Since this test is only feasible for bivariate data, we

selected pairs of subband combinations to get an impression of the

model suitability. Figure 4 shows a selection of different subband

combinations for an example (grayscale) texture image, visualizing

different types of dependency. As we can see, the random sample

(gray dots) of size 5 · 103 is actually a good approximation to the

original data (black crosses). Similar results can be observed for all

database images.

As an evaluation criteria, we first count the number of correctly

retrieved images among the top K matches. By correct we un-

derstand the correct texture class (i.e. the parent of the subimage).

Given that set Q := {r1, . . . , rB} denotes the correct set of mem-
bership indices and {q1, . . . , qK} is the set of the top K retrieved

1Thanks to G. Verdoolaege for providing the MATLAB code. Our
MATLAB code will be available under http://www.wavelab.at.
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Fig. 4. Random sample of size 5 · 103 of fitted models (gray points)

together with original transform coefficients (black crosses)

Approaches Retrieval Rate [%]

Do & Vetterli [1] 73.6
Kwitt & Uhl [2] 76.2
Verdoolaege et al. [11] 89.1
Proposed Copula Model 91.6

Table 1. Retrieval rates forK = 16

image indices, we compute the percentage of correctly retrieved im-

ages as

sK = 100 ·B−1
K

X

i=1

1Q(qi) (10)

where 1Q denotes the indicator function of the set Q. Table 1
lists the retrieval rates for all four approaches. As we can see, the

straightforward color extension assuming subband independency

does not lead to a significant increase in retrieval rate compared to

the grayscale case (see original work [1, 2]). The Copula model

achieves the highest overall rate followed by the multivariate model

of [11] which shows quite competitive performance. As a second

evaluation criterion we evaluate the retrieval performance sK w.r.t.

varying values of K. This gives us some kind of receiver operating
characteristic curve (ROC) for each approach. Figure 5 shows the

corresponding ROC curves for K ≥ 16. The ROC curve compari-
son generally provides the same insight as the numbers in Table 1.

We observe the behavior that as K increases the slope of the curves
become more shallow, implying that the performance gap between

the approaches increases. Regarding the behavior of [11] we notice

that although the retrieval rate is lower for small K (i.e. K ≤ 40),
the ROC curve crosses the Copula curve for larger values ofK. Yet,
since the most interesting part for the user is for small values of K,
this effect is negligible.

4. CONCLUSION

We presented a novel statistical model of complex wavelet coeffi-

cient magnitudes for color texture retrieval. By incorporating the de-
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pendency structure between DT-CWT detail subbands we achieved

a significant increase in retrieval accuracy compared to straightfor-

ward color extensions of previous works. Future work includes re-

search w.r.t. the similarity measurement block which might pose

problems in terms of computation time for large image databases.
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