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Abstract

Watermarks can be used in digital rights management as an answer to the
recent developments in this sector. Digital media can be duplicated with-
out loss of quality. Cheap mass storage devices and the ongoing advances
in internet connection bandwith make the reproduction and distribution of
multimedia data like images, music or video an ease. With the help of water-
marks ownership information can be inseparably embedded into multimedia
data to resolve copyright issues. Some applications like distribution chain
tracking require the embedding of multiple watermarks.

This work is dealing with the benchmarking and improvement of the mul-
tiple watermarking abilities of watermarking algorithms. The first chapter
starts with a short introduction into digital watermarking and especially mul-
tiple watermarking and some topics of wavelet analysis. In the second and
third chapter all watermarking algorithms selected for our experiments are
described in detail. Implementation details and their suitability for multi-
ple watermarking and also possibilities for improvements are discussed and
experimental results on the general performance and multiple watermarking
are presented. The fourth chapter deals with the improvement techniques
we have implemented. We show the idea behind the improvement techniques
study the results when applied on the different watermarking algorithms. A
new assessment criterion is introduced in chapter five, and results for selected
algorithms with this new criterion are presented. In the last chapter a sum-
mary of our work on multiple watermarking improvements and the different
assessment criterions is given.



ii



Contents

1 Introduction 1
1.1 Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Multiple watermarking . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Why multiple watermarking? . . . . . . . . . . . . . . 4
1.2.2 How to embed multiple watermarks . . . . . . . . . . . 4

1.3 Scope of our work . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Discrete wavelet transform . . . . . . . . . . . . . . . . 7
1.5.2 Wavelet packet transform . . . . . . . . . . . . . . . . 11
1.5.3 Redundant wavelet transform . . . . . . . . . . . . . . 11

2 Algorithms 13
2.1 Algorithm by Mauro Barni . . . . . . . . . . . . . . . . . . . . 13

2.1.1 embedding . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 extraction . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 multiple watermarking . . . . . . . . . . . . . . . . . . 16

2.2 Broken Arrows . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 embedding . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 extraction . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 multiple watermarking . . . . . . . . . . . . . . . . . . 20

2.3 Algorithm by Jian-Guo Cao . . . . . . . . . . . . . . . . . . . 21
2.3.1 embedding . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 extraction . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 multiple watermarking . . . . . . . . . . . . . . . . . . 22

2.4 Algorithm by Tung-Shou Chen . . . . . . . . . . . . . . . . . 22
2.4.1 embedding . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 extraction . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 multiple watermarking . . . . . . . . . . . . . . . . . . 24

2.5 Algorithm by Oriol Guitart Pla . . . . . . . . . . . . . . . . . 24
2.5.1 embedding . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



iv CONTENTS

2.5.2 extraction . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 multiple watermarking . . . . . . . . . . . . . . . . . . 27

2.6 Algorithm by Gin-Der Wu . . . . . . . . . . . . . . . . . . . . 27

2.6.1 embedding . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 extraction . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.3 multiple watermarking . . . . . . . . . . . . . . . . . . 30

3 Implementation and general performance 31

3.1 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Barni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Multiple watermarking . . . . . . . . . . . . . . . . . . 36

3.3 Broken Arrows . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Multiple watermarking . . . . . . . . . . . . . . . . . . 43

3.4 Cao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 Multiple embedding . . . . . . . . . . . . . . . . . . . . 54

3.5 Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.2 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.4 Multiple embedding . . . . . . . . . . . . . . . . . . . . 59

3.6 Pla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.2 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.4 Multiple Watermarking . . . . . . . . . . . . . . . . . . 64

3.7 Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.2 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7.4 Multiple Watermarking . . . . . . . . . . . . . . . . . . 71



CONTENTS v

4 Multiple watermarking improvements 75
4.1 Improvement techniques . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 parametrized filters . . . . . . . . . . . . . . . . . . . . 76
4.1.2 random coefficient selection . . . . . . . . . . . . . . . 77
4.1.3 random carriers . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 random wavelet packet trees . . . . . . . . . . . . . . . 79

4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Barni . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Broken Arrows . . . . . . . . . . . . . . . . . . . . . . 90
4.2.3 Cao . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.4 Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.5 Pla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.6 Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 New assessment criterion 129
5.1 How to evaluate the performance of a watermark detector . . 129
5.2 experimental results . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1 experiment setup . . . . . . . . . . . . . . . . . . . . . 132
5.2.2 Pla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.3 Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.4 Barni . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Conclusion 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.4 Conclusion 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Summary 147
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Software tools 151

B Pywmtk 153
B.1 Prerequisites and limitations . . . . . . . . . . . . . . . . . . . 153
B.2 Usage - Python . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.3 Usage - Command line . . . . . . . . . . . . . . . . . . . . . . 155
B.4 Legal Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C attacked images 157
C.1 jpeg compression . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.2 jpeg2000 compression . . . . . . . . . . . . . . . . . . . . . . . 159
C.3 median filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.4 moise adding . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.5 gamma correction . . . . . . . . . . . . . . . . . . . . . . . . . 162



vi CONTENTS

C.6 translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.7 rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



List of Figures

1.1 wavelet decomposition and reconstruction step . . . . . . . . . 8
1.2 wavelet decomposition and reconstruction steps . . . . . . . . 8
1.3 wavelet structure . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 2D wavelet transformation . . . . . . . . . . . . . . . . . . . . 10
1.5 2D wavelet decomposition structure . . . . . . . . . . . . . . . 10
1.6 sample wavelet decomposition . . . . . . . . . . . . . . . . . . 10
1.7 example wavelet packet decomposition . . . . . . . . . . . . . 11
1.8 swt decomposition structure . . . . . . . . . . . . . . . . . . . 12

3.1 Barni visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Barni difference . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Barni compression attacks . . . . . . . . . . . . . . . . . . . . 36
3.4 Barni image processing attacks . . . . . . . . . . . . . . . . . 37
3.5 noise effect on decomposition tree . . . . . . . . . . . . . . . . 38
3.6 Barni multiple watermarking . . . . . . . . . . . . . . . . . . . 38
3.7 Barni multiple watermarking PSNR . . . . . . . . . . . . . . . 39
3.8 Barni multiple watermarking 2 . . . . . . . . . . . . . . . . . . 40
3.9 Broken Arrows visibility . . . . . . . . . . . . . . . . . . . . . 42
3.10 Broken Arrows difference . . . . . . . . . . . . . . . . . . . . . 42
3.11 Broken Arrows attacks . . . . . . . . . . . . . . . . . . . . . . 44
3.12 Broken Arrows multiple watermarking . . . . . . . . . . . . . 45
3.13 Broken Arrows multiple watermarking PSNR . . . . . . . . . . 45
3.14 Broken Arrows multiple watermarking 2 . . . . . . . . . . . . 46
3.15 Cao detection values with different masks . . . . . . . . . . . . 48
3.16 Cao normalized detection values with different masks . . . . . 50
3.17 Cao visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.18 Cao difference . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.19 Cao attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.20 Cao multiple watermarking . . . . . . . . . . . . . . . . . . . 54
3.21 Cao: development of the detection values with rising number

of embedding runs . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



viii LIST OF FIGURES

3.22 Chen difference . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.23 Chen visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.24 Chen false positive . . . . . . . . . . . . . . . . . . . . . . . . 59
3.25 Chen attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.26 Chen multiple watermarking . . . . . . . . . . . . . . . . . . . 61
3.27 Pla capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.28 Pla difference . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.29 Pla visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.30 Pla attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.31 Pla multiple watermarking . . . . . . . . . . . . . . . . . . . . 66
3.32 Pla multiple watermarking 2 . . . . . . . . . . . . . . . . . . . 67
3.33 Wu difference . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.34 Wu embedding area . . . . . . . . . . . . . . . . . . . . . . . . 70
3.35 Wu visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.36 Wu false positive . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.37 Wu attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.38 Wu multiple watermarking . . . . . . . . . . . . . . . . . . . . 73

4.1 random coefficient selection . . . . . . . . . . . . . . . . . . . 78
4.2 wavelet packet decomposition strategies . . . . . . . . . . . . . 80
4.3 Barni multiple watermarking without improvement . . . . . . 82
4.4 Barni multiple watermarking with parametrized filters . . . . 83
4.5 Barni multiple watermarking with random coefficient selection 85
4.6 Barni multiple watermarking with random carriers . . . . . . . 86
4.7 Barni wavelet packet embedding tree . . . . . . . . . . . . . . 87
4.8 Barni multiple watermarking with random wavelet packets . . 88
4.9 Barni improvement techniques comparison . . . . . . . . . . . 89
4.10 Barni improvement techniques comparison 2 . . . . . . . . . . 89
4.11 Broken Arrows multiple watermarking without improvement . 90
4.12 Broken Arrows multiple watermarking with parametrized filters 92
4.13 Broken Arrows multiple watermarking with random coefficients 93
4.14 Broken Arrows multiple watermarking with random wavelet

packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.15 Broken Arrows improvement techniques comparison . . . . . . 95
4.16 Cao multiple watermarking without improvement . . . . . . . 97
4.17 Cao multiple watermarking with parametrized filters . . . . . 98
4.18 Cao multiple watermarking with random coefficient selection . 100
4.19 Cao multiple watermarking with random carriers . . . . . . . 101
4.20 Cao improvement techniques comparison . . . . . . . . . . . . 102
4.21 Chen multiple watermarking without improvement . . . . . . 103
4.22 Chen multiple watermarking with parametrized filters . . . . . 104



LIST OF FIGURES ix

4.23 Chen multiple watermarking with random coefficients . . . . . 106
4.24 Chen multiple watermarking with random wavelet packets . . 107
4.25 Chen wavelet packet embedding position . . . . . . . . . . . . 108
4.26 Chen improvement techniques comparison . . . . . . . . . . . 108
4.27 Pla multiple watermarking without improvement . . . . . . . 110
4.28 Pla multiple watermarking with parametrized filters . . . . . . 111
4.29 Pla multiple watermarking with random coefficients . . . . . . 113
4.30 Pla multiple watermarking with random carriers . . . . . . . . 115
4.31 rules for creating a hvd tree . . . . . . . . . . . . . . . . . . . 117
4.32 hvd base tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.33 hvd rule c example . . . . . . . . . . . . . . . . . . . . . . . . 119
4.34 rule e alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.35 Pla multiple watermarking with random wavelet packets . . . 121
4.36 Pla improvement techniques comparison . . . . . . . . . . . . 122
4.37 Wu multiple watermarking without improvement . . . . . . . 124
4.38 Wu multiple watermarking with parametrized filters . . . . . . 125
4.39 Wu multiple watermarking with random coefficients . . . . . . 126
4.40 Wu improvement techniques comparison . . . . . . . . . . . . 127

5.1 Detection value distribution . . . . . . . . . . . . . . . . . . . 130
5.2 Higher Mean but worse error rate . . . . . . . . . . . . . . . . 131
5.3 Detection value selection . . . . . . . . . . . . . . . . . . . . . 132
5.4 Distribution-Histogram comparison . . . . . . . . . . . . . . . 133
5.5 Pla results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.6 Pla results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7 Wu results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.8 Wu results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.9 Barni results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.10 Barni results 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.11 Barni results 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C.1 jpeg compression . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.2 jpeg2000 compression . . . . . . . . . . . . . . . . . . . . . . . 159
C.3 median filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.4 moise adding . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.5 gamma correction . . . . . . . . . . . . . . . . . . . . . . . . . 162
C.6 translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.7 rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



Chapter 1

Introduction

1.1 Watermarking

Watermarking is the insertion of information into a cover media.

Watermarking can be used for many different purposes with partly op-
posed and maybe even conflicting properties. This makes a more precise
definition of watermarking hardly possible. For many applications and also
for our topic another definition could be:

Watermarking is the inseparable, imperceptible insertion of information about
the cover media into the cover media.

Watermarking is a subfield of information hiding. Watermarking has its
roots in the paper industry, where small logos or numbers have been inserted
into paper. In digital watermarking, the cover media is most often images,
videos, audio but can also be any other digital media like text, polygons or
source code.

While watermarking on paper is a already old practice, which dates back
to 1282 in Italy, digital watermarking has become a topic of research around
1995. With the upcome of digital recording devices, cheap high capacity
storage and the Internet as a distribution medium, watermarking has been
even more promoted. Classic cryptography can protect the data during the
transmission to a trusted party. But for the transmission to an untrusted
receiver classic cryptography fails to protect the data since the receiver can
decrypt the data and then make copies of the unencrypted data. This is where
watermarking comes into play. The watermark is inseparably embedded into
the data and also stays there while consumption, i.e. viewing or listening.
This means, unlike with cryptography, no key or other possibility to remove
the watermark has to be provided to the customer.

1



2 CHAPTER 1. INTRODUCTION

Traditional watermarking was used to identify the producer of the paper
or the production date. Digital watermarks can be used for many different
purposes (see also [11] chap 2.1 or [25]):

Copyright protection a watermark is inserted, either visible or invisible,
to identify the copyright holder or owner.

Fingerprinting here each distributed copy of the data is watermarked with
a custom watermark identifying the receiver of the copy.

Broadcast monitoring a watermark is embedded into a video (e.g. an
advertising clip) which contains identification information for the clip.
So later on a watermark detection system can check whether the spot
has been broadcasted or not.

Tamper detection for tamper detection a fragile watermark, i.e. a water-
mark which gets destroyed if the host media undergoes tampering, is
inserted an so the integrity of the host can be checked.

Annotation here the embedded watermark contains meta information about
the media.

Copy control the idea is, that each player has a watermark detector and
the media contains standardized watermarks which encode messages
like DO NOT COPY and every player should obey this messages. Also
pay-per-view models would be implementable with this method.

Depending on the application, different properties are required. Water-
marking algorithms can be characterized by their properties. These proper-
ties are sometimes conflicting with each other and there is often no general
“best” value because this also depends on the application. The main prop-
erties are:

Perceptibility describes the perceptible difference between the watermarked
and unwatermarked data. For most applications the watermark should
disturb to cover data as little as possible. For visual watermarking,
as the name already suggests, it is explicitly desired to induce some
amount of distortions (e.g. [23]).

Robustness refers to the ability to withstand common signal processing
operations, i.e. the watermark is still detectable in spite of the cover
medium modifications. For images common signal processing oper-
ations are for instance compression, blurring, printing and scanning,
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format conversion or geometrical transformations like translation, crop-
ping or scaling. For applications like copyright protection the water-
mark should be as robust as possible. On the other hand for tamper
detection the watermark may not be robust to indicate manipulations,
such watermarks are called fragile watermarks.

Security denotes the property to withstand intentional attacks. These are
attacks which sole aim is to remove the watermark, where removing
does not necessarily mean the inversion of the watermarking process
but to damage the watermark that much that it is not detectable any
more while preserving as much image quality as possible. Another
possibility to remove the watermark is to bring the detector out of
synchronization, e.g. through small geometrical transforms, so that
the watermark is still in the image but the detector can not “find”
it. An intentional attack can also be the unauthorized embedding of a
watermark. Especially with tamper detection this is a concern.

Blind or non blind detection if a watermark detector needs the original
image to detect the watermark it is called a non-blind detector and
a detector which does not need access to the original image is called
blind. There is also a category called semi-blind detectors. They do
not need the original image, but some other information e.g. a secret
key. Usually non-blind detectors are more robust but impractical for
some applications.

Capacity is the amount of data which can be embedded into the cover
media. For this property generally the more is the better. However
some applications do not need a high capacity, so it is the better choice
to sacrifice some capacity in favor of other properties.

Embedding domain Watermarking algorithms can also be characterized
by the domain in which they embed. The first watermarking algo-
rithms embedded directly in the signal domain. For instance in the
LSB of the data points. This technique has very low complexity and is
easy to implement and we have a direct localization of the watermark,
allowing special treatment for regions of interrest, but they are not very
robust for a given embedding strength. But the watermark can also
be embedded after transformation of the cover media into some other
domain. This can for instance be the Fourier- or the DCT-domain like
used in the JPEG compression standard or the wavelet domain like
used in JPEG2000. The advantage in using a transformation domain
is that the watermark is usually more robust by spreading it over the
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whole asset, but on the other hand sacrificing some or all localization
abilities. Another advantage is that, especially in case of the wavelet
transform, the HVS can be exploited to achieve better invisibility or
better robustness through perceptual masking techniques. If the image
is given in the signal domain, additional computational effort is nec-
essary to perform the transformation and inverse transformation. Or
if the signal should be converted to some other format (e.g. JPEG),
watermarking can be applied during or immediately after the conver-
sion in that domain. Or the image is already available in the transform
domain then, of course the watermarking algorithm in the signal do-
main has the additional effort of the transformations and the transform
domain algorithms come cheaper.

An in depth introduction and further reading can be found in [11] and
[1].

1.2 Multiple watermarking

1.2.1 Why multiple watermarking?

Why would someone want to embed multiple watermarks? There are differ-
ent possible scenarios. As we have seen above, watermarks can be used for
different applications. So the first scenario is to embed multiple watermarks
for different purposes, e.g. one for copyright protection, one for integrity veri-
fication and an annotation watermark. Another scenario is to embed multiple
watermarks for a single purpose. This can for instance be one watermark for
the copyright holder and one for the consumer or in the case where there are
multiple owners. A third scenario is distribution chain tracking. Like with
fingerprinting a watermark identifying the receiver of the media is embedded.
If the media gets sold/transmitted multiple times, a watermark is embedded
for every receiver and maybe also for the original owner of the media. (see
also [24])

1.2.2 How to embed multiple watermarks

Sheppard et al. describe several possibilities to embed multiple watermarks
in [33].

Composite watermarking Multiple watermarks are not embedded sepa-
rately but combined to form a single (composite) watermark which
gets embedded. This approach has the need for a trusted party which
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does the composition and embedding of the single watermarks and all
watermarks have to be present at once.

Segmented watermarking The cover media gets partitioned into several
blocks and every single watermark is embedded into one block. Disad-
vantage is, that the maximum number of watermarks has to be known
in advance. Furthermore the location of the embedding blocks have
to be open to the embedders and each embedder has to know which
blocks are already occupied or as an alternative like with the composite
watermarking approach a trusted embedder which records all occupied
blocks has to do the embedding.

Re-watermarking is a very straight forward approach. The watermarks
are simply embedded one after the other. The problem which arises
is that the watermarks interfere with each other earlier embedded wa-
termarks possibly get erased by later embedded ones. The advantage
is that no central party for embedding is necessary and the embedder
parties do not need to know each other and also the number of water-
marks to embed does not need to be known in advance. If multiple
watermarks for multiple purposes are embedded the watermarks have
different robustness. Copyright protection has to be very robust and
on the other side integrity verification watermarks have to be fragile.
Therefore the most robust watermark has to be embedded first and
the watermarks with less robustness later. Otherwise the copyright
protection watermark would erase the integrity verification watermark.

1.3 Scope of our work

Our work is dealing with the benchmarking and improvement of different
watermarking algorithms with respect to their suitability for multiple water-
marking. All algorithms in the test are embedding in the wavelet domain. We
limit our test on the benchmarking and improvement of the re-watermarking
approach. Our assumed scenario is the distribution chain tracking, so we
only use copyright protection watermarks, i.e. robust watermarks. For rea-
sons we give in section 1.4 we concentrate on blind watermarking algorithms,
i.e. without refering to the original image.

We use grey level images as the cover medium.
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1.4 Previous work

Hartmut Wernisch studied multiple watermarking in his master thesis [36].
His studies included blind and non-blind algorithms. But there are several
problems when using non-blind algorithms. First, if we want to use exactly
the image before embedding as the original image in the detection stage, all
intermediate images have to be stored. This means if we want to extract the
fourth embedded watermark we need the image with the first three water-
marks embedded for the extraction. Another possibility Wernisch examined
is the usage of the original image, i.e. the image without watermarks, but it
turned out that this approach does not work very well. Independently of that
in some applications there is no way of implementing non-blind watermark-
ing, e.g. if a DVD-Recorder has to read a watermark there is no possibility
to support the detector with the original data. Therefore we concentrate on
blind algorithms only in our work.

Wernisch applies two improvement techniques to selected algorithms in
his work (parametrized filters and random wavelet packet structures). We
extend the improvement studies with two other techniques (random carrier
modulation and random coefficient selection).

1.5 Wavelet transform

Because all algorithms we use are working in the wavelet domain we want
to give a short introduction into wavelet transform. This introduction is
far from complete, in fact we only cover basic topics of the discrete wavelet
transform (DWT). For a (more) complete introduction on wavelet analysis
and informations on special topics of wavelets see [13, 19, 38, 37, 34, 9].

The wavelet transform has been developed to overcome certain limitations
of the Fourier transform. These are first, the Fourier transformation assumes
the signal to be periodic (which is not the case for most signal processing
applications, especially in image processing) and therefore is inappropriate
for signals which are localized in space. The second limitation is that the
Fourier transform does not preserve any information of the localization of
the signal in space.

Unlike the Fourier transform the wavelet transform does not use sine and
cosine functions, but so called wavelets which are localized in space.

The wavelet transform is also used in the JPEG2000 compression stan-
dard [8]. This codec has better image quality, especially with low bit rates
than the established JPEG codec which uses the discrete cosine transform
(DCT). The benefit of the wavelet transform over the Fourier transform or
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also the DCT is first the complexity. The fast wavelet transform (FWT)
has a complexity of O(n) where as the fast fourier transform (FFT) and also
the (fast) DCT have a complexity of O(n log(n)). Furthermore, as we will
later see in this section, the wavelet transform is a multi resolution transform
where the different resolutions split the signal into frequency octaves, very
similar as the human eye does and the DWT also provides information about
edges and textures which can also be used in human visual system (HVS)
considerations.

1.5.1 Discrete wavelet transform

In the discrete wavelet transform the wavelet functions are implemented by
quadrature mirror filter (QMF) banks which provide perfect reconstruction
of the signal. One filterbank consists of a low-pass filter (usually denoted
as h) and a high-pass filter (usually denoted as g). The signal is convolved
with the filters and thereby is split into a low frequency and a high frequency
part. Both parts are decimated by 2, i.e. every other value is discarded. The
low frequency part can be seen as an approximation of the signal (a) and the
high frequency part can be seen as the residual details of the image (d).

a(n) =
∑
m

h(m) · x(2n−m)

d(n) =
∑
m

g(m) · x(2n−m)

where x is the signal, n is half the number of values of x and m is the number
of values in h or g.

To reconstruct the signal the same operations are carried out in inverse
direction. First the approximation and the detail component is upsampled
by the factor 2, this is done by inserting a 0 after every coefficient. Then the
upsampled signals are convolved with the reconstruction filterpair g′ and h′

and the reconstructed signal is obtained by the addition of these two signals.
The basic structure is visualized in figure 1.1.

The above procedure is one decomposition step and the according re-
construction. This procedure is recursively applied on the approximation
component. This leads to several detail components called detail subbands
and one approximation component called approximation subband or approx-
imation image when dealing with image processing. Because of the resulting
structure this is also called the pyramidal wavelet transform (in opposition
to the wavelet packet transform, see section 1.5.2). The procedure for three
decomposition and reconstruction steps is shown in figure 1.2. In figure 1.3
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Figure 1.1: one wavelet decomposition and reconstruction step
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Figure 1.2: the wavelet decomposition and reconstruction steps of a three
level wavelet transformation



1.5. WAVELET TRANSFORM 9

x

d1

d2

d3a

a d3 d2 d1

Figure 1.3: the resulting wavelet decomposition structure for one dimensional
data

the resulting wavelet decomposition structure is sketched. We can observe
the property, that the source signal x and the sum of the resulting subbands
a, d3, d2, d1 have the same length.

The extension to the two dimensional case is pretty simple. First the
lines are filtered and afterwards the columns or vice versa. The resulting
structure is shown in figure 1.4. L denotes the low pass filtering and H the
high pass filtering. Accordingly LL is the approximation subband which is
low pass filtered in both directions, horizontal and vertical. HL is the sub-
band containing the horizontal details (therefore this subband is also denoted
as h) which are obtained by horizontal high pass filtering and vertical low
pass filtering. The HL subband are the vertical details (also denoted as v).
The coefficients in this subband are obtained by low pass filtering the rows
and high pass filtering the columns. The last subband HH are the diago-
nal details (d), which are high pass filtered in both directions. For a multi
level two dimensional wavelet decomposition the LL subband is recursively
decomposed.

The resulting structure of a three level two dimensional wavelet trans-
formation is shown in figure 1.5. The index of the detail subbands is the
level of the decomposition. The higher detail level, the coarser the image ele-
ments. A decomposed image is shown in figure 1.6. The subbands are scaled
to fit the grey level range. Otherwise the detail subband would be mostly
black and the approximation image would be plain white. This is because
in natural images most energy is contained in the low frequency parts and
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L H

LL HL
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Figure 1.4: the two filtering steps of a two dimensional wavelet transform
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LH3

HL3

HH3

LH2 HH2

HL2
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HL1

Figure 1.5: the resulting structure of a two dimensional, three level wavelet
decomposition

Figure 1.6: the wavelet tree of a 3 level decomposition of the Lena image
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Figure 1.7: example wavelet packet decomposition structure

therefore the energy packed in the higher decomposition levels, especially in
the approximation image.

1.5.2 Wavelet packet transform

In contrast to the usual (pyramidal) wavelet transform where only the LL
subband is further decomposed, all subbands can be further decomposed in
the wavelet packet transform. We use the wavelet packet transform for our
improvement technique described in section 4.1.4. For our improvement we
only use isotropic wavelet packets, this is every subband which gets decom-
posed is decomposed like described in the previous section. In opposite in
the anisotropic wavelet packet transformation there is also the possibility to
decompose only the lines and not the columns of one subband or vice versa.

An example (isotropic) wavelet packet tree can be seen in figure 1.7. The
tree has a maximum decomposition decomposition level of 5 and the structure
is randomly generated.

As described in section 4.1.4 we only use key dependent random generated
wavelet packet structures. In most other applications the structure is not
randomly generated. Also the complete decomposition of all subbands up
to a specific level is not practical. One often used decomposition strategy is
the best basis algorithm of Coifman et al. [10]. The reader is redirected to
this resource. We do not go into details on different decomposition strategies
since we do not use them in our work.

1.5.3 Redundant wavelet transform

Another form of the wavelet transform we use in our work (see section 2.3)
is the redundant discrete wavelet transform (RDWT), also called stationary
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LL
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LH2 HH2 HL1

LH1 HH1

HL3

LH3 HH3

Figure 1.8: the resulting structure of a three level stationary wavelet decom-
position

wavelet transform (SWT) or undecimated wavelet transform. It is basically
the same as the DWT but with the difference that there is no subsampling
step. This includes that each subband has the same size as the original image.
The resulting structure can be visualized like in figure 1.8.

Therefore the multiresolution analysis is not done by the subsampling of
the signal but through upsampling of the filters which are used in each step.
This algorithm is called “algorithme à trous”, because of the “holes” in the
resulting filters.



Chapter 2

Algorithms

In this chapter selected watermarking algorithms are presented. All algo-
rithms embed the watermark in the wavelet domain and the watermark can
be detected without refering to the original image (blind algorithms). For
each algorithm a summary of the embedding and extraction process is given.
Furthermore initial considerations about the suitability for the use with mul-
tiple watermarking are made and the applicability of several improvements
for multiple watermarking are investigated.

2.1 Algorithm by Mauro Barni

In “Improved wavelet based watermarking through Pixel-wise masking” [2]
Barni et al. present an algorithm that embeds a watermark in the wavelet do-
main and takes special care about HVS modeling. The embedding strength
is controlled by a mask in order to keep the watermark invisible. Mask gen-
eration is based on the work of Lewis and Knowles [18]. The authors state
that the proposed system is resistant to JPEG and wavelet-based compres-
sion, median filtering, Gaussian noise addition, cropping plus zero padding,
morphing and multiple marking.

2.1.1 embedding

In the embedding stage the image is first decomposed by a four level DWT.
However, the watermark is only embedded in the detail-subbands of the first
decomposition level. The other levels are needed for mask generation. The
watermark is then embedded as follows:

Ĩθ0 (i, j) = Iθ0 (i, j) + αwθ(i, j)xθ(i, j)

13
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where Ĩθ0 (i, j) is the modified coefficient, Iθ0 (i, j) is the unmarked coefficient,
θ ∈ {0, 1, 2, 3} denotes the orientation of the subband i.e. the hl, hh, lh and ll
subband, α is a global parameter accounting for watermark strength (Barni
et. al use a α of 1.5 for their experiments), wθ(i, j) is a weighting function
described later on and xθ(i, j) ∈ {+1,−1} is the watermark consisting of a
pseudorandom binary sequence arranged in 2-D to scan the subbands to be
marked. The arrangement can be done by

xθ(i, j) = m(θMN+iN+j)

with m being the pseudorandom sequence of the watermark, 2M × 2N as
the image size and θ ∈ {0, 1, 2}.

The weighting function is calculated by

wθ(i, j) = qθ0(i, j)/2

where
qθl = Θ(l, θ) Λ(l, i, j) Ξ(l, i, j)0.2

Each of the three terms models a HVS consideration. The first term Θ(l, θ)
takes account of the fact that the eye is less sensitive to noise in high resolu-
tion bands and noise in the diagonal band.

Θ(l, θ) =

{ √
2 if θ = 1

1 otherwise

}
·


1.00 if l = 0
0.32 if l = 1
0.16 if l = 2
0.10 if l = 3


The second Λ(l, i, j) is used to model that the eye is less sensitive to noise in
areas where the brightness is very low or very high. This is expressed with

Λ(l, i, j) = 1 + L′(l, i, j)

with

L′(l, i, j) =

{
1− L(l, i, j) if L(l, i, j) < 0.5
L(l, i, j) otherwise

}
and

L(l, i, j) =
1

256
I3

3

(
1 +

⌊
i

23−l

⌋
, 1 +

⌊
j

23−l

⌋)
The last term Ξ(l, i, j) gives a measure of the texture activity in the neigh-
borhood of the pixel considering that the eye is more noise-sensitive near
edges but less in highly textured areas. This is computed with

Ξ(l, i, j) =
3−l∑
k=0

1

16k

2∑
θ=0

1∑
x=0

1∑
y=0

[
Iθk+l

(
y +

i

2k
, x+

j

2k

)]2

·
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·V ar
{
I3

3

(
1 + y +

i

23−l , 1 + x+
j

23−l

)}
x = 0, 1
y = 0, 1

where the first part is the local mean square value of all detail subbands at
position (i, j) calculating the proximity to edges and the second value is the
variance of the approximation image at the position corresponding to (i, j)
giving the measure for the local texture activity.

2.1.2 extraction

The watermark extraction process is blind and done via the computation
of the correlation between the marked coefficients and the watermark to be
extracted.

ρ =
1

3MN

2∑
θ=0

M−1∑
i=0

N−1∑
j=0

Ĩθ0 (i, j)xθ(i, j)

The watermark is said to be present if the correlation is above a specific
threshold Tρ. Tρ is chosen in a way to grant a given probability of false
positive detection. The threshold can be calculated with the help of the
Neyman-Pearson criterion

Pf ≤
1

2
erfc

 Tρ√
2σ2

ρB


with erfc being the complementary error function defined as:

erfc(z) = 1− erf(z) =
2√
π

∫ ∞
z

e−t
2

dt.

For a false detection probability of less than 10−8, Tρ would be

Tρ = 3.97
√

2σ2
ρB

where σ2
ρB can be estimated with

σ2
ρB =

1

(3MN)2

2∑
θ=0

M−1∑
i=0

N−1∑
j=0

(Ĩθ0 (i, j))2
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2.1.3 multiple watermarking

In the basic algorithm as proposed in the paper filter parametrization can be
applied but will only have limited impact because only the first decomposition
level is used for embedding. Wavelet packets can not be used because the
mask generation can not be done and moreover makes no difference when
only the first decomposition-level is marked. Usage of random coefficients is
also a possibility of improvement.

As an straight forward approach to make the watermarking algorithm
more suitable to the multiple watermarking enhancements, more decompo-
sition levels can be used for watermarking. This will most likely improve
the performance of the filter parametrization- and the random coefficient-
approach directly. The usage of wavelet packets instead of the pyramidal
decomposition requires the adaption of the visual mask. Therefore in the
first term Θ the amplification due to the orientation of the subband has to
be changed in a way that it not only amplifies every hh-subband but every
subband which represents diagonal image components. The second term Λ
can be left unchanged. In the last term Ξ the variance-factor of the ap-
proximation subband can be kept while the local mean square-factor has
to be modified, to reflect the proximity to edges in the image. This could
for instance be done by first taking the pyramidal decomposition, calculat-
ing the factor and then further decompose the pyramidal tree into wavelet
packets. Because embedding in more subbands will increase distortions, the
watermark strength parameter α has to be adapted to the new embedding
scheme.

Another approach to make the algorithm suitable for the use with wavelet
packets is to only mark the three detail subbands of the first decomposition
level of the pyramidal decomposition but decompose these subband further
into wavelet packets. The same changes to the visual mask as in the last
approach have to be made.

2.2 Broken Arrows

“Broken Arrows” [17] is the watermarking algorithm used in the BOWS2-
Contest. Influenced by different fields [20, 26, 21, 3] the authors make up a
proportional-embedding, zero-bit algorithm, that means no message is em-
bedded and one can only say the image is marked or not. Embedding takes
place in the wavelet domain, although two more subspaces are used for wa-
termark creation. The major part of the algorithm is done in these two
subspaces.
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2.2.1 embedding

First a 3 level wavelet decomposition of the image is taken. All subbands
except the approximation image are used for the watermarking process.

But first the watermark is created, therefore the signal is transformed in
the, what the authors call, secret- or correlation-subspace. The transforma-
tion is done by first generating Nv secret carrier signals(SC,j) of size Ns. The
authors choose a value of 256 for Nv and Ns is given by

Ns = WiHi(1− 1/64)

where Wi and Hi is the width and height of the image and 1 − 1/64 is the
factor for subtracting the approximation-subband. For a 512x512 image Ns

would be 258048. The secret carriers have the form

SC,j ∈ {−1/
√
Ns, 1/

√
Ns}Ns

These carriers are produced by a PRNG seeded with the secret key K. The
authors assume that the carriers are (pseudo-)orthogonal. This could be
ensured by a Gram-Schmidt orthogonalization but this step was skipped
because it would be too time consuming for the contest. The signal is now
projected on these carriers via

vX(j) = STC,jsX

with vX(j) as a coefficient in the secret subspace and sX as the signal in the
wavelet subspace.

Next the signal is transformed in the MCB-plane. The name MCB comes
from the authors of [22], which is the first paper suggesting that host, water-
mark and secret should belong to one plane. The basis of this plane is given
by (v1, v2) such that

v1 = v∗C

and

v2 =
vX − (vTXv1)v1

||vX − (vTXv1)v1||
with v∗C as a vector in the secret subspace. Later on we will see, that this
vector is the axis of a cone, this cone is the detection area.

To improve the security through adding diversity, v∗C is taken out of a set
of possible vectors (cones). The authors choose a number of 30 cones and
because the subspace is already secret they take the first 30 elements of the
canonical basis of the subspace. Out of these vectors the “nearest” to the
host signal is taken:

v∗C = sign(vTCvX)vC
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with
vC = arg max

k∈[1,Nc]
|vTXvC,k|

where Nc is the number of cones i.e. 30, vC,k is the kth vector out of the set
of possible vectors and vX is the host signal. In this subspace the host is
represented as

cX =

(
cX(1)
cX(2)

)
with

cX(1) = vTX v1

and
cX(2) = vTX v2

This subspace offers a clear representation of the original signal, the water-
marked signal and the detection boundary.

As said before, the original signal is given by cX and the cone-shaped
detection area is given by its axis v1 = v∗C and its angle θ. θ is calculated
to provide a given false-positive ratio. The authors choose a false-positive
probability of at most 3 · 10−6. The equation to calculate the false-positive
probability is [21]:

Pfa ≤ Nc
INv−2(θ)

INv−2(π/2)

where INv−2(θ) is the solid angle associated to θ in the Nv-dimensional space.
The authors calculated a θ of about 1,2154.

Embedding is done by moving the original signal as deep as possible inside
the cone. Therefore we have to distinguish two cases:
cX(2) ≤ ρcosθ: this case means the host signal is so close to the cone, that
the marked signal is put on the axis of the cone and as far away as possible
along the axis. In this case embedding is done by

cY =

(
cX(1) +

√
ρ2 − cX(2)2

0

)
The other case is that cX(2) > ρ cosθ and the host is moved orthogonally to
the edge of the cone:

cY = cX + ρ

(
sin(θ)
−cos(θ)

)
ρ denotes the radius of the embedding circle, that means the the distortion
through the embedding process may not exceed ρ. With a chosen PSNR the
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radius can be calculated with:

ρ =
|SX |√
S2
X

255
√
WiHi10−PSNR/20

The authors chose a target PSNR of 43dB for their implementation for the
contest. Finally the watermark signal in the MCB-plane is

cW = cY − cX .

The watermark signal has now to be projected back in the secret subspace
and subsequently in the wavelet space where embedding takes place. This is
done via

sW = SC(cW (1)v1 + cW (2)v2) = SC(v1, v2)cW

Now, having the watermark signal and the host signal in the wavelet
space, the host is watermarked by:

SY = SX + SWp

where
SWp(i) = |SX(i)|sw(i)

2.2.2 extraction

To decide whether or not the image is watermarked, the image has to be
transformed into the MCB-plane (see 2.2.1). Basically a vector c is considered
to be marked if

|c(1)|
||c||

> cos(θ)

with θ as the angle of the cone.
The authors propose some improvements for the extraction to better with-

stand some attacks. First they randomize the detection boundary in the
range [cos((θmax + θmin)/2), cos(θmax)] according to the idea of [7]. θmax and
θmin are the angles according to a false-positive probability of 3 · 10−6 and
3 · 10−7. This should interfere with sensitivity attacks, because it is harder
to obtain the “sensitive vector” when there is no clear detection border.

Secondly they implement an improvement the authors call “snake traps”,
because the improvement is a counter measure to a form of oracle attack
which is called “snake” [12]. For this counter measure the detection- border
is altered in the following way:
If |cY (1)−∆b cY (1)

∆
c| < r then detection is positive if

cY (1) > ||cY ||cos(θmin)
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else, the watermark is detected if

cY (1) > ||cY ||cos(θ)

This makes some “notches” in the detection border, where the width of these
notches is given by r and the periodicity is given by ∆. θ is the angle obtained
from the first improvement. The authors choose r = 4.5 and ∆ = 30.

The last improvement concerning the algorithm itself is the “camouflage
of the cone” where the tip of the cone is truncated, that means if ||cY || < λ
the detection is alway negative. Since only specific kinds of detectors are
completely resistant to valuemetric scaling (e.g. manipulating the brightness
of the image), the truncation is done to leave less clues on the detector which
can be exploited like in [12]. The authors use a λ of 10.

Improvements concerning the BOWS-Contest but not directly the algo-
rithm are not mentioned here.

2.2.3 multiple watermarking

Since the algorithm is a zero-bit algorithm it is not possible to embed differ-
ent messages, but the algorithm can be applied multiple times. This means
it can not be used for identification (fingerprinting) but for verification pur-
poses. The algorithm spreads the watermark in an unpredictable (in wavelet-
and spatial-domain) way across the image. One the one hand this makes dif-
ferent watermarks overwrite itself at least partially, on the other hand the
embedding is key dependent and different embedders will embed into differ-
ent coefficients.

Theoretically, parametrized wavelets can be used to improve multiple
watermarking abilities, but it has to be tested if this leads to more robust-
ness against watermark interference than only using different keys for the
creation of the secret-subspace. Also wavelet packets could be used, result-
ing in a different wavelet-space-vector. But again it has to be tested if the
approach gives an additional advantage. Using randomized coefficients can
be combined with the standard technique by only passing a subset of the
wavelet coefficients to the secret space projection and adaption of the secret-
space-carriers to the new size. The authors describe a problem, that due
to proportional embedding and the distortion limit, the algorithm does not
spread the watermark all over the image when there are uniform areas in it,
but force it on a few large coefficients. This problem could be intensified by
this approach.
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2.3 Algorithm by Jian-Guo Cao

“An image-adaptive watermark based on a redundant wavelet transform”
[5] describes an watermarking algorithm that exploits the special ability of
the redundant discrete wavelet transform (RDWT) in extracting significant
features of an image. The authors assume, that salient features have rather
big coefficients across all scales and make use of the fact, that the RDWT
has the same sampling rate over all decomposition levels. So they build
a “significance mask” by multiplying coefficients at adjacent decomposition
levels. The strength of the watermark is then adjusted according to this
mask.

2.3.1 embedding

Embedding of the watermark is basically done as:

f ′{V,H,D}(x, y) = f{V,H,D}(x, y) + αv{V,H,D}(x, y)w{V,H,D}(x, y)

where f ′{V,H,D}(x, y) is the watermarked coefficient in the vertical, horizon-

tal or diagonal subband at position (x, y). f{V,H,D}(x, y) is the according
unmarked coefficient, α is a global strength parameter of the watermark,
v{V,H,D}(x, y) is the watermark value to embed and w{V,H,D} is the significance
mask for the different detail subbands. The authors embed the watermark in
the detailsubbands of the first decomposition level and use a white gaussian
noise sequence as the watermark. α is chosen to achieve a given PSNR.

Although the authors embed the watermark only in the highest level,
they use the first two decomposition levels to calculate the significance mask.
Mask generation is done by

wi{V,H,D}(x, y) =
i∏

j=1

f ∗j{V,H,D}(x, y)

with f ∗j{V,H,D}(x, y) denoting the normalized coefficients at scale j given as

f ∗j{V,H,D}(x, y) =
fj{V,H,D}(x, y)2

M−1∑
x=0

N−1∑
y=0

fj{V,H,D}(x, y)2

The scaling of the watermark values by this mask puts more watermark en-
ergy in the visually significant coefficients in order to improve the robustness
of the watermark.
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2.3.2 extraction

To detect the watermark, the RDWT is taken and a correlation value for
each watermarked detail subband is calculated

ρs =
M−1∑
x=0

N−1∑
y=0

f ′s(x, y)vs(x, y)

with f ′s(x, y) being the wavelet coefficient of the received image and vs(x, y)
is the watermark-value to detect. The final detection value is the maximum
of the per-subband-detection values.

ρ = max{s=V,H,D}(ρs)

By taking the maximum detection value of each direction the algorithm
should get more robust against attacks that affect only a specific direction.

2.3.3 multiple watermarking

To improve multiple watermarking capabilities parametrized wavelets can
be applied and also choosing random coefficients could result in better re-
sults. To be able to use wavelet-packet decomposition an appropriate way of
generating the visual mask has to be found.

2.4 Algorithm by Tung-Shou Chen

In the paper of Chen et al. “A simple and efficient watermarking tech-
nique based on JPEG2000 Codec” [6] an algorithm that can be applied in
the JPEG2000 coding process is proposed. Watermarking takes place after
quantization and before the entropy coding stage. The authors state, that
the algorithm has low computational cost although has a high capacity and
low visual distortions of the cover image.

2.4.1 embedding

The algorithm uses a black/white image as watermark (the authors use an
image of size 32x32). First the watermark is scattered through a torus auto-
morphism [35]. This is done by applying(

x1

y1

)
=

(
1 1
k k + 1

)n(
x0

y0

)
mod N
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where

(
x0

y0

)
are the coordinates of the original watermark bit,

(
x1

y1

)
are

the coordinates of the scattered watermark bit, k is the torus automorphism
parameter, N is the width of the watermark image and n is the private
scatter key. This step makes the watermark visually undetectable. The
scattered watermark is first embedded the LL subband then in LH,HL,HH of
the smallest detail, then in the detail subbands of the next stage and so on,
depending on the size of the watermark. To embed a bit of the watermark
one coefficient from these subbands is taken. This coefficient consists of a
sign-bit, an integer part and a decimal part. For embedding the integer part
of the coefficient is used and

Mb = bIn × αbc
is calculated. Mb denotes the bit in which the watermark will be embedded,
In is the number of bits of the integer part in the coefficient and αb ∈ [0, 1] is
the weighting factor for the embedding strength. The Mb bit will be replaced
by the bit to be embedded. The authors describe a method called distortion
reduction. This method is applied after embedding the watermark bit and is
done by altering the other bits in the coefficient in a way, that the difference
between the original coefficient and the marked coefficient is kept low. In
their work the authors use 3 (random) alteration possibilities and choose the
one with the least distortion.

2.4.2 extraction

To extract the watermark, the same order of coefficients as in the embedding
stage has to be chosen. The single bits are extracted using the same formula
as in the embedding stage. The watermark-image is restored by applying
the torus automorphism with the private restore key as n obtained from
the scattering process in the embedding stage. The private restore key is
calculated by subtracting the private scatter key from the recurrence time of
the torus automorphism. The recurrence time is a value <= N and depends
on k and N .

Besides visual decision if the watermark is present or not, the authors
use the normalized correlation (NC) as a measure for the presence of the
watermark.

NC =

∑
i

∑
j

w(i, j)w
′
(i, j)∑

i

∑
j

[w(i, j)]2

where w(i, j) is the original watermark coefficient and w
′
(i, j) is the extracted

one. The authors do not define a threshold for the decision if the watermark
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is present or not but make the decision by comparing the correlation from
different watermarks and watch for a single high peak.

2.4.3 multiple watermarking

Since the algorithm relies on single bits in the codestream and the watermark
is directly written into these bits it is most likely that a subsequently embed-
ded watermark will erase the preceding, especially when distortion reduction
is applied. Embedding into random coefficient is a very straightforward ap-
proach to reduce watermark interference. Parametrized wavelets could also
work well, but wavelet packets are a less promising approach, because the
algorithm always starts with embedding in the approximation image which is
the same for every wavelet packet decomposition. A very easy modification
of the algorithm is to start embedding in the detail subbands instead of the
approximation image. This makes the adoption of wavelet packets promising.

2.5 Algorithm by Oriol Guitart Pla

Pla et al. propose a blind watermarking scheme in “A wavelet watermarking
algorithm based on a tree structure” [29], which is based on the work of
Dugad [15]. Their scheme embeds a watermark value not only in a single
coefficient but rather in a tree of coefficients depending on the significance.
Additionally a synchronization template is embedded to be able to estimate
and compensate geometric attacks.

2.5.1 embedding

First the image is wavelet transformed. The authors perform a three level
DWT. The smallest detail subbands are used to embed the watermark. All
coefficients grater than a threshold T1 are used for embedding. The authors
use a T1 = 40. A coefficient is represented as

sk = (bk, xk, yk, vk)

where bk denotes the subband, xk and yk are the coordinates in the subband
and vk is the value of the coefficient. Then for each coefficient a PRNG is
seeded with

seed = f(KE, bk, xk, yk)

Because the PRNG is reseeded with every coefficient and the seed is only
dependent on the embedding Key KE and the position of the coefficient it is
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possible for the detector to resynchronize at each coefficient. This gives the
algorithm more robustness against attacks. The coefficient sk is marked by

v′k = vk + αk|vk|pk,0

where v′k is the marked coefficient, vk is the unmarked coefficient, αk is a
scaling factor for visual masking described later on and pk,0 is the first ran-
dom number obtained from the PRNG. After marking a coefficient all direct
children of this coefficient are also marked

v′k,i = vk,i + αk|vk,i|pk,i

with vk,i being the unmarked coefficient of the ith child of sk, v
′
k,i is the

marked version of the aforementioned coefficient and pk,i is another value
from the PRNG. If one of these children is greater than T1/2 the children of
this coefficient are also marked with the same rule as above. The threshold
is halved with every step and watermarking is continued until none of the
children are above the threshold or the biggest subband is reached.
When all significant coefficients and their significant children are marked, the
inverse wavelet transformation is applied. As the last step in the embedding
procedure the authors describe embedding a synchronization template in the
DFT domain.

The template embedding scheme is based on the work of Pereira et al. [27]
and Caldelli et al. [4]. The template consists of 2 sets of 4 points arranged
in a line (collinear), intersecting the origin. The cross-ratio is calculated
and passed to the detector. The detector uses the cross-ratio to distinguish
between the template peaks and peaks from the original image. We are not
going closer into the detail because the authors concede, that the template
scheme does not work well, because sometimes, through the discretization
of the peak positions, it is not possible to find the 4 strictly collinear points
again.

The authors use a visual model, that controls the embedding strength via
the scaling factor αk. The visual model increases the embedding strength in
high textured or edge regions of the image. To determine αk an activity
image A has to be created. The activity image has the same dimensions as
the smallest subband and is obtained by

a(x, y) =

{
1 if |v2(x, y)| > T1 or |v3(x, y)| > T1 or |v4(x, y)| > T1

0 otherwise

where a(x, y) is a pixel of the activity image at position (x, y) and vn(x, y)
is a coefficient of one of the smallest detail subbands n at position (x, y). To
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calculate the scaling factor αk a N × N window W (the authors suggest N
to be 3 or 5) is slid over the activity image and

Zk =
∑

a(x,y)∈W

a(x, y)

is calculated. αk is then obtained by

αk =

{
γα if Zk = 1 or Zk ≥ N2 − 1
α otherwise

where α is a global scaling factor and γ > 1 is the amplification factor when
an edge or high textured area is detected. The authors use α = 0.2 and
γ = 2.

2.5.2 extraction

As the first step of the extraction process the authors describe the detection of
the synchronization template and the reversal of a possible geometric trans-
formation. Again we will not go into details because of the aforementioned
weaknesses of the approach.

Like in the embedding stage the wavelet transformation of the received
image is applied. Afterwards, all significant coefficient of the smallest detail
subbands are determined using a threshold T2 ≥ T1. The authors use a
T2 = 50. The watermark values according to the determined coefficients and
their significant children are generated using the PRNG with the detection
key KD. Now the correlation between the selected coefficients of the received
image and the watermark values of the last step can be calculated

Z =
1

M

M∑
i=1

V̂iyi

where V̂i is the ith significant coefficient, yi is the corresponding watermark
value and M is the number of coefficients. The correlation value is then
compared to a threshold S

S =
α

2M

M∑
i=1

|V̂i|

The watermark is said to be present if Z ≥ S.
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2.5.3 multiple watermarking

The only possibility to improve the algorithm without constraints is to use
parametrized wavelets. To enable the usage of wavelet packets an adapted
parent-child relationship has to be introduced, for example like in [30], to
build up the tree. Random wavelet coefficient selection can be applied in
principle. A problem can arise from the rather small capacity of the algo-
rithm. Only the large (> T1) coefficients of the smallest detail subbands
are used as root elements to embed the watermark values. Sharing these
coefficients will amplify this shortage. As a workaround the threshold T1 can
be lowered or the watermark could be embedded in multiple passes, where
the first pass embeds the watermark like proposed by the authors and ev-
ery following pass embeds in the subbands at the next finer scale where not
all coefficients came into consideration by comparison with T1. In this pass
all coefficients in the selected subbands are compared with the threshold for
the according scale and if they are above, they are marked with the same
procedure as in the first pass.

2.6 Algorithm by Gin-Der Wu

In “Image watermarking using structure based wavelet tree quantization” [39]
Wu et al. propose a blind quantization based watermarking algorithm. They
group coefficients in trees and quantize these trees into a specific structure
that reflects an embedded 1 or an embedded 0. The authors claim that the
algorithm is robust against multiple watermarking and confirm this assertion
with experiments.

2.6.1 embedding

The authors employ a three level wavelet transformation and use the six
smallest detail subbands. The coefficients in these subbands are grouped
into trees where a tree is formed from one coefficient of the smallest sub-
band and his four direct descendants. These trees are combined to super
trees where 2x2 coefficients from the smallest subband and the associated
child-coefficients are grouped together. The 2x2 coefficients from the small-
est subband form a subblock of the supertree and the four descendants from
each of these coefficients form the other subblocks. These supertrees are
denoted by ζn,m(i) where 1 ≤ n ≤ 3072 (for a 512x512 image) is the index
of the super tree, 1 ≤ m ≤ 5 is the index of the subblock and 1 ≤ i ≤ 4
is the index of the coefficient in the subblock. A supertree is quantized by
quantizing all subblocks in the supertree.
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To quantize a single subblock the average of the upper two coefficients
ζn,m(1), ζn,m(2) denoted as σn,m(up) and the lower two coefficients ζn,m(3),
ζn,m(4) denoted as σn,m(lo) is calculated and the difference between the two
is

dif = |σn,m(up)− σn,m(lo)|

Furthermore a quantization step ∆ is chosen. The goal is to quantize the
coefficients so that

σ′n,m(up) > σ′n,m(lo) if Wn = −1
σ′n,m(up) < σ′n,m(lo) if Wn = 1

where Wn is the watermark value to embed. Now the authors distingushed
some cases. First assumption is that Wn = −1.
First case is that σn,m(up) = σn,m(lo) then

ζ ′n,m(i) = ζn,m(i) + ∆/2 if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i)−∆/2 if i ∈ [3, 4]

If σn,m(up) > σn,m(lo) and dif ≥ ∆

ζ ′n,m(i) = ζn,m(i) if i ∈ [1, 2, 3, 4]

If σn,m(up) > σn,m(lo) and dif < ∆

ζ ′n,m(i) = ζn,m(i) + (∆− dif)/2 if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i)− (∆− dif)/2 if i ∈ [3, 4]

In case that σn,m(up) < σn,m(lo) and dif ≥ ∆

ζ ′n,m(i) = ζn,m(i) + dif if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i)− dif if i ∈ [3, 4]

and if σn,m(up) < σn,m(lo) and dif < ∆

ζ ′n,m(i) = ζn,m(i) + (∆ + dif)/2 if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i)− (∆ + dif)/2 if i ∈ [3, 4]

Now in case that a 1 is embedded Wn = 1
and σn,m(up) = σn,m(lo) then

ζ ′n,m(i) = ζn,m(i)−∆/2 if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i) + ∆/2 if i ∈ [3, 4]
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Next case is σn,m(up) > σn,m(lo) and dif ≥ ∆

ζ ′n,m(i) = ζn,m(i)− dif if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i) + dif if i ∈ [3, 4]

If σn,m(up) > σn,m(lo) and dif < ∆

ζ ′n,m(i) = ζn,m(i)− (∆ + dif)/2 if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i) + (∆ + dif)/2 if i ∈ [3, 4]

if σn,m(up) < σn,m(lo) and dif ≥ ∆

ζ ′n,m(i) = ζn,m(i) if i ∈ [1, 2, 3, 4]

Last case is that σn,m(up) < σn,m(lo) and dif < ∆ then

ζ ′n,m(i) = ζn,m(i)− (∆− dif)/2 if i ∈ [1, 2]
ζ ′n,m(i) = ζn,m(i) + (∆− dif)/2 if i ∈ [3, 4]

2.6.2 extraction

To detect the watermark in a single subblock the ratio between the upper
average value and the lower average value is considered. The detector differ-
entiates 3 states

D[ζ ′n,m] =


−1 if σ′n,m(up) > σ′n,m(lo)
1 if σ′n,m(up) < σ′n,m(lo)
0 if σ′n,m(up) = σ′n,m(lo)

The watermark from a supertree is extracted by

Sn =
5∑

m=1

D[ζ ′n,m]

where m is the number of the subblock in the supertree. The extracted value
is obtained through

W ′
n =

{
−1 if Sn ≥ γ
1 if Sn < γ

where γ is a threshold and γ = 0. Finally to decide whether the watermark
is detected or not the normalized correlation is calculated

Φ(W,W ′) =

L∑
n=1

WnW
′
n√

L∑
n=1

W 2
n

L∑
n=1

W ′2
n

and compared to a threshold ΦT . If Φ > ΦT the watermark is said to be
present, otherwise not.
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2.6.3 multiple watermarking

Like the last tree-based algorithm, there are only few coefficients in the small-
est detail subbands. This makes the approach of the random wavelet coeffi-
cient selection less adequate because of the drawback that sharing the coeffi-
cient increases this shortage. Also wavelet packet decomposition can not be
applied because when strictly following the proposed method only the coef-
ficients of the smallest detail subbands and their direct children are marked.
Wavelet parametrization is a possibility to enhance the algorithm and can be
directly applied. A possible modification is to not embed the watermark in
the smallest subbands and the direct descendants but in bigger ones, which
will increase the capacity of the algorithm. Additionally several decomposi-
tion levels can be used for embedding, this will increase the capacity even
more. This can ease the situation with random wavelet coefficient selection
and enable the usage of wavelet packets. For the usage of wavelet packets a
parent-child relationship has to be defined. Like for the last algorithm [30]
can be used.



Chapter 3

Implementation and general
performance

For the experiments with the Broken Arrows algorithm we used the imple-
mentation of Teddy Furon and Patrick Bas which was used in the BOWS2-
Contest. All other algorithms and the experiment testbed was developed in
Python using the “numpy” package for array manipulations and the “pywt”
package for wavelet transforms and reconstructions. The attacks were carried
out either in the (Python) source code or with the help of ImageMagick.

Because not all details are covered in the according papers of the algo-
rithms this chapter covers the assumptions that had to be made concerning
the implementation and the parameters. Furthermore the test setups are
described including procedure and chosen parameters.

3.1 Tests

The general performance of the algorithms is evaluated by the following cri-
teria:

• Capacity: Amount of information that can be embedded.

• Visibility: Amount of visual distortion the embedding process causes
to the cover image.

• Robustness: Resistance of the watermark against modification of the
host image.

These criteria will in most cases conflict with each other. So almost always
making the watermark less visible will lower the robustness at the same time
or embedding more information makes the watermark more visible.

31
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For capacity analysis the maximum capacity and the interrelationship to
visibility are considered.

All algorithms in the test have one or more parameters which control the
embedding strength. The visibility analysis tests how good the distortion
of the host image can be controlled with these parameters. Therefore, the
watermark is embedded with different embedding strengths and the PSNR
is evaluated.

Robustness studies are carried out by embedding the watermark with
standardized strength, then different attacks on the image are executed and
finally the watermark is extracted and the detection value is calculated. The
target of an attacker is to remove the watermark i.e. make it undetectable
while preserving as much image quality as possible. In the experiments
the embedding parameters are chosen to obtain a distortion of about 42dB
PSNR. The following attacks are executed:

• Compression:
Compression is not necessarily an attack on the watermark but wa-
termarked images can undergo compression in everyday use. So it is
crucial for a watermark not to be erased when compression is applied.
For compression studies the two most common lossy image compression
techniques are used.

– jpeg compression: the watermarked image is jpeg compressed
with decreasing quality and the detection values are evaluated.

– jpeg2000 compression: the watermarked image is jpeg2000
compressed with decreasing rate and the detection values are eval-
uated.

• Image processing: Image processing is another group of operations
that can be applied to an image without the intention to remove the
watermark. For the tests three image processing operations are chosen
that are very common.

– Median filtering: blurs the image. This can be especially dam-
aging to watermarks since many algorithms use HVS considera-
tions to select the areas where to embed the watermark. Because
the human eye is less sensitive to distortions in textured regions
of the image the watermark is often embedded into these regions.
For the experiments the image is median filtered with increasing
radius of the filter mask.

– Noise adding: this is done by adding gaussian noise with µ=0
and increasing sigma to every pixel of the image.
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– Gamma correction: This operation was chosen to be part of the
experiments because gamma correction often improves the image
quality in a certain range. So watermark algorithms should be
able to cope with a large range of gamma values.

• Geometric transforms:
Most watermarking algorithms are very sensitive when it comes to geo-
metrical transforms. Although the PSNR values are rapidly decreasing
when applying geometrical transforms the visual distortion is rather
low. This kind of attack brings the watermark quickly out of synchro-
nization and makes it undetectable.

– translation: the translation attack is implemented by a rolling of
the image to the right. This means the rightmost x pixel columns
are cut and inserted at the very left of the image to keep the
dimensions of the image.

– rotation: for this attack the image is rotated by an given angle
and afterward scaled to the dimensions of the original image.

Lastly the multiple watermarking capabilities of the algorithms are tested.
Therefor a number of watermarks are embedded and afterwards the water-
marks are extracted again and the detection values are evaluated. For the
sake of comparability to the previous experiments the same parameters as in
the other experiments are used in the watermarking process. In most cases
this will lead to a bad image quality when many watermarks are embedded.
Experiments with adjusted parameters for multiple watermarking are carried
out in the next chapter (chap. 4).
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3.2 Barni

Some changes had to be made to the algorithm. For the calcultion of Λ the
approximation image was scaled to fit in the range of 0-255 and the division
was changed from 256 to 255. Most probably this was intended by the
authors. Without the scaling, the divisor 256 seems a little motiveless to me.
Another small change is the insertion of floor operators for the calculation of
the indices in the Ξ term:

Ξ(l, i, j) =
3−l∑
k=0

1

16k

2∑
θ=0

1∑
x=0

1∑
y=0

[
Iθk+l

(
by +

i

2k
c, bx+

j

2k
c
)]2

·

·V ar
{
I3

3

(
b1 + y +

i

23−l c, b1 + x+
j

23−l c
)}

x = 0, 1
y = 0, 1

Self-evident there are only integer indices. Furthermore the authors use an
α of 1.5 in their experiments, but this is far too high in our implementation.
So for most experiments an alpha of 0.08 was used. After these changes the
difference image of the watermarked and the original image still looks a little
bit different (Fig. 3.2) to the one in the paper of Barni et al. [2]. But one
can see, that the basic principle of the visual mask generation is the same,
so the implementation is sufficiently close the the proposed algorithm.

3.2.1 Capacity

The algorithm uses the three biggest detail subbands for embedding, hence
for a 512x512 image there are 196608 marked coefficients.

3.2.2 Visibility

Visibility can be controlled by a weighting factor (α). In Figure 3.1 we can see
that the detection value is rising much faster than the detection threshold.
For the detectability a high α would be the best. But as said before the
suggested value of 1.5 for α is too high and would result in a PSNR of
approximately 16dB. A value of 0.08 gives a PSNR of around 42dB.

Figure 3.2 shows the watermarked image and the difference to the original
where the effect of the visual mask can be seen. The watermark is embedded
around edges and in textured areas of the image.
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Figure 3.1: Barni: visibility

Figure 3.2: watermarked image and difference image after embedding, dif-
ference image is amplified 14.17 times; watermarked image: Lena, alpha:
0.08



36CHAPTER 3. IMPLEMENTATION AND GENERAL PERFORMANCE

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100
 24

 26

 28

 30

 32

 34

 36

 38

 40

 42
de

te
ct

io
n 

va
lu

e

ps
nr

 [d
B]

quality

detection value
threshold

psnr

(a) jpeg compression

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 15

 20

 25

 30

 35

 40

 45

de
te

ct
io

n 
va

lu
e

ps
nr

 [d
B]

rate

detection value
threshold

psnr

(b) jpeg2000 compression

Figure 3.3: Compression attacks on the algorithm of Barni et al.; water-
marked image: Lena, alpha=0.08

3.2.3 Robustness

Robustness experiment results can be seen in Figure 3.3. Under jpeg com-
pression the watermark can be detected ultimately with quality=13%, this
is a PSNR of 31.4dB and jpeg2000 compression can be resisted to a rate of
0.023 (PSNR=31.8dB).

Figure 3.4 shows the results of the image processing attacks. Under me-
dian filtering the watermark can be detected until the filtering radius is above
3 (PSNR=29.2dB). The resistance against noise adding is very high. The
watermark is still detectable with a sigma of 143 (PSNR=8.6dB). Curiously
the threshold is rising with increasing sigma, but this can be explained by
the fact, that the adding of noise produces many rather high coefficients in
the detail subbands which are normally relatively sparse and this causes the
threshold to go up. The effect of noise adding on the decomposition tree can
be seen in Figure 3.5. Gamma correction removes the watermark if gamma
is below 0.022 (PSNR=5.7dB) or above 622 (PSNR=5.3dB).

The algorithm can not withstand any of the tested geometric transforms.
Already a roll of 1px or rotation of 1◦ removes watermark.

3.2.4 Multiple watermarking

For the first test on multiple watermarking, the algorithm was carried out 30
times with different watermarks. As we can see in Figure 3.6 all 30 water-
marks can be detected whereas the detection value of the first watermarks is
a little lower because of the re-watermarking, but even the detection value
of the first watermark is clearly above the threshold.
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Figure 3.4: Image processing attacks on the algorithm of Barni et al.; water-
marked image: Lena, alpha=0.08



38CHAPTER 3. IMPLEMENTATION AND GENERAL PERFORMANCE

(a) wavelet tree (b) wavelet tree after noise adding with
sigma=30

Figure 3.5: wavelet decomposition trees of the plain image (3.5a) and the
image after noise adding (3.5b)
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Figure 3.6: Barni: multiple watermarking



3.2. BARNI 39

 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42

 0  5  10  15  20  25  30

ps
nr

 [d
B]

watermark

psnr

Figure 3.7: Barni: PSNR with increasing number of embedded watermarks

When using the same parameters as in the previous experiments (α =
0.08) the PSNR is rapidly dropping as shown in Figure 3.7.

Like with the last algorithm we test the distinguishability between em-
bedded and not embedded watermarks. Up to 50 watermarks are embedded
and in every step all embedded watermarks and 50 not embedded water-
marks are extracted. The result in Figure 3.8 show that for any number of
embedded watermarks the worst correct detection value is clearly above the
detection threshold and even more is not decreasing when more watermarks
are embedded. The highest detection value of the not embedded watermarks
is increasing with every embedded watermark, but the also increasing thresh-
old compensates that.

An explanation attempt for the not decreasing worst detection value is
that the visual mask “avoids” the previous embedded watermarks, but exper-
iments, where the same visual mask is used for every embedding step, showed
that the worst detection value also stays constant whereas the best detection
value does not rise any more with the number of embedded watermarks. The
explanation must be, that embedding the same watermark bit (either -1 or
1) twice into one coefficient exactly outweighs the embedding of a different
watermark bit in case of a single visual mask and when using separate visual
masks for each embedding turn (this is the normal procedure because an em-
bedder does not necessarily know its previous embedders and therefore does
not have the visual mask of previous embedding steps) previous watermarks
alter the image in a way that the visual mask of subsequent turns makes the
watermark be embedded stronger while the positive and negative impacts on
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Figure 3.8: Barni: detection values of embedded watermarks compared to
false watermarks

the other watermarks still outweigh each other.
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3.3 Broken Arrows

I modified the algorithm to process some command line arguments for the
embedding and detection parameters to enable batch processing. The ex-
periment parameters were controlled by the Python testbed and passed to
Broken Arrows via operating-system calls. Results are a returned to the
testbed via files.

Since the detection threshold is a random value in this algorithm there
is no definite value for it. In the experiments three different threshold are
recorded. This is tmin, tmax and threshold. If the detection value is above
tmin the watermark is detected anyway. If the detection value is below tmax
the watermark is said to be not detected. Threshold is always between tmin
and tmax and is randomly chosen. The detection value has to be above this
threshold and in addition not in a snake trap (see 2.2.1). The snake traps
are not illustrated in the charts.

3.3.1 Capacity

Since Broken Arrows is a zero-bit algorithm it does not carry any information
except the fact that the watermark is present or not. But as we will see
later on, some information can be “encoded” in the keys used for the secret
projection.

3.3.2 Visibility

The algorithm offers the possibility to give a target PSNR value. Figure
3.9 shows that the achieved PSNR differs less than 1dB from the target
PSNR value in the range from 17 to 65dB. We can also see that when the
watermark is embedded with a PSNR of 40dB or less the detection reaches the
maximum detection value. On the other end if the watermark is embedded
with a PSNR of approximately 59dB or above the watermark is too weak
to be detected. Figure 3.10 shows a watermarked image and the difference
image after embedding with a target PSNR of 42dB.

3.3.3 Robustness

The algorithm shows excellent performance with respect to the resistance
to compression attacks. Figure 3.11a shows that jpeg compression can not
destroy the watermark even with a jpeg-quality of only 1%. Although the
detection value is decreasing with lowering quality it always stays above the
threshold. Also the resistance against jpeg2000 compression is very good. In
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Figure 3.9: Broken Arrows: visibility

Figure 3.10: watermarked image and difference image after embedding, differ-
ence image is amplified 9.44 times; watermarked image: Lena, target PSNR:
42dB
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figure 3.11b we can see that the watermark can be detected until a rate of
0.004 where the PSNR is 24.7dB.

In figures 3.11c, 3.11d and 3.11e the results for the next group of attacks
can be seen. That is median filtering (3.11c), where the watermark can
be detected up to a radius of 4, that results in a PSNR of 27.8dB. Noise
adding (3.11d) can be resisted till sigma is above 61, PSNR=13.1dB. In case
of gamma correction (3.11e) the watermark is detectable when gamma is
between 0.032 (PSNR=5.7dB) and 589 (PSNR=5.3dB).

The authors state in their paper [17] that they did not care about re-
sistance agains geometric attacks because they always result in a low PSNR
and therefor are not applicable in the BOWS2 contest. Figure 3.11f show the
results of the translation attack and we can see that the watermark can only
be detected when translation is not more than 1px. Rotation immediately
removes the watermark already with an angle of 1◦.

3.3.4 Multiple watermarking

To assess the suitability for multiple watermark embedding the algorithm
was applied multiple times with different Key K. This key is the 128 bit
long seed for the PRNG that produces the carriers for the projection in the
secret subspace. Figure 3.12 shows the results where 30 watermarks were
embedded and afterwards the detection value for each of the 30 watermarks
was calculated. As we can see the detection values slightly decrease with
every rewatermarking but all 30 watermarks are clearly above the threshold.

If watermark embedding is done with 42dB as the target PSNR for each
watermark. The PSNR value to the original, unwatermarked image is rapidly
decreasing as can be seen in figure 3.13.

Another eventuality could be, that the multiple embedding makes the
algorithm more prone to false positive detection. For the next test an in-
creasing number of watermarks has been embedded and afterwards extracted
again. Additionally 50 false (not embedded) watermarks are extracted and
the worst detection value of one of the correct watermarks is compared to
the best detection value of the false watermarks. The results can be seen in
figure 3.14. The worst detection value of the correct watermarks is contin-
uously decreasing with rising number of embedded watermarks and at the
same time the best detection value of the false watermarks is slightly increas-
ing. The test was carried out with up to 50 watermarks and even with 50
embedded watermarks there is no problem in distinguishing between correct
and false watermarks. The worst detection value of a correct watermark is
well above the threshold while the best false watermark has only a negligibly
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Figure 3.11: Attacks on the Broken Arrows algorithm; watermarked image:
Lena, target PSNR: 42dB
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Figure 3.12: Broken Arrows: multiple watermarking
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Figure 3.13: Broken Arrows: PSNR with increasing number of embedded
watermarks
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Figure 3.14: Broken Arrows: detection values of embedded watermarks com-
pared to false watermarks

higher detection value than with only one embedded watermark.
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3.4 Cao

For the algorithm of Cao et al. we use our own implementation of the RDWT,
since the one in the pywt-package is not complete.

In our implementation we could not reproduce the proposed results. The
detector response has a completely different characteristic. The problem is
the correlation mask and especially the normalization of the RDWT coeffi-
cients. The parameter α is very hard to guess and is highly dependent on
the image size. For our tests with the 512x512 Lena image and an embed-
ding strength of 42dB α is 2400000000. Further more, the watermark is
embedded in only very few coefficients. We tested some different approaches
to calculate a correlation mask. The detector responses are printed in figure
3.15. Watermark number 500 is the correct one, all others are randomly cho-
sen false watermarks. Cao et al. use the peak-response gain (prg) as quality
measure. They define this value as:

G =
N ·max(ρ(n))2∑N

n=1 ρ(n)2

where ρ(n) is the detector response for trial n and N is the number of trials.
Cao et al. do not give a threshold but use this value as a measure how
difficult it is to find a threshold that safely separates the correct from the
false watermarks. The measure can also be seen in the figure. Cao has a prg
of 996.4 in his results. Our result with the original mask, this is the mask as
proposed by Cao, shows an prg of only 24. Even worse is the situation when
we look at the second highest, or in other words the highest false, detection
value. There is almost no difference between the first and the second. When
we modify the prg to be the relation between the first and the second highest
detection value, we will call this the peak-second gain (psg), we have only
1.2 (fig. 3.15a). A psg of 1 means, the highest false watermark response is as
high as the detector response for the correct watermark, just for clarification.
We can say that this mask is totally unsuitable. Our other approaches are:

• no visual mask (fig. 3.15b): all elements in the visual mask are 1. So
the watermark is constantly embedded into the whole image.

• no normalization (fig. 3.15c): since we suspect the normalization to
be the problem we test the visual mask as proposed but without the
normalization.

• alternative normalization (fig. 3.15d): we normalize the range from the
smallest coefficient to the biggest coefficient to be [0,1].
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(f) 30% pla mask, prg=882

Figure 3.15: Detector response comparison of the Cao algorithm with differ-
ent masks
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• 10% Pla mask (fig. 3.15e): Because the constant visual mask has the
best results so far, we will now test to incorporate the idea of Pla et
al. (sec. 2.5). We basically embed the watermark with a constant
embedding strength into the whole image, but amplify the embedding
strength with a certain factor in significant regions. To decide where the
significant regions are we use the approach Cao uses in his algorithm.
This is, we multiply all coefficients according to a specific orientation
and the same spatial position. We amplify the embedding strength by
the factor 2 in the 10% with the highest product.

• 30% Pla mask (fig. 3.15f): This is the same mask as the previous,
except that we amplify the highest 30%.

We can see, that in terms of the prg the version without mask or the two
versions with the Pla-mask reach the best results by far. The mask with
alternative normalization is clearly behind the first three algorithms but still
has good values. The mask without normalization has a rather low prg with
99, but still is acceptable. The original version of the mask is definitely the
worst and not usable.

One can observe that the detection values have huge differences in their
value. We tested if the normalized correlation can also be used for watermark
detection and not only that the detector responses are better comparable,
also the prg is higher for all versions except for the version without coefficient
normalization. Results are printed in figure 3.16. All plots use the same range
on the y axis to better reflect the prg.

In our experiments we will focus on the algorithm with the 30% Pla-
mask because it has the best results in terms of prg and also keeps the idea
of the visual mask of the original algorithm in some way. We also will use
the normalized correlation instead of the not normalized one because of the
results above.

3.4.1 Capacity

The algorithm embeds the watermark in the three finest detail subbands.
Since the RDWT is used, every subband is in the size of the original image.
So the number of coefficients used for watermarking is three times the number
of pixels in the image. For the 512x512 image in our experiments this are
786432 coefficients.
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Figure 3.16: Detector response comparison of the Cao algorithm with differ-
ent masks and detection value normalization
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Figure 3.17: Cao: visibility

3.4.2 Visibility

The embedding strength can be controlled with a strength factor α. Figure
3.17 shows the relation between α and the embedding PSNR.

Figure 3.18 shows a watermarked image and the according difference im-
age. The 30% Pla-mask was used for embedding and the embedding strength
was chosen to get a PSNR of 42dB. The image shows the intended distri-
bution of the watermark. The watermark is constantly embedded into the
whole image and stronger around the edges.

3.4.3 Robustness

In the experiments printed in figure 3.16 no false watermark was above 0.008.
The authors give no threshold, so we will use 0.008 as the detection threshold
for the robustness experiments.

The results on the robustness experiments are shown in figure 3.19. With
JPEG resistance to a quality of 15% (PSNR=31.9dB) and JPEG200 resis-
tance to a rate of 0.025 (PSNR=32.2dB) the robustness against compression
is in the mid-field of the tested algorithms. Under median filtering the wa-
termark can be detected up to a radius of 4 (PSNR=27.9dB). The additive
white gaussian noise robustness is the best of all the algorithms in the test,
the watermark is lastly detectable with a sigma of 187 (PSNR=7.8dB). When
gamma correction is applied the watermark can be detected when gamma
is between 0.021 (PSNR=5.7dB) and 198 (PSNR=5.3dB). Like most other
algorithms this one can not resist geometric attacks, so only a shift of 1px
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Figure 3.18: watermarked image and difference image after embedding, dif-
ference image is amplified 17 times; watermarked image: Lena, alpha: 3.4;
30% Pla-mask

Mask jpeg j2000 median awgn gamma roll rotation

cao mask 77 0.047 0 7 0.033 - 22 0 0
alt norm 27 0.022 3 33 0.028 - >100 1 0
no mask 18 0.027 4 >200 0.02 - >100 1 0
pla 10% 17 0.025 4 194 0.02 - >100 1 0
pla 30% 15 0.025 4 187 0.021 - >100 1 0

Table 3.1: robustness comparison of the different masks

can be coped with and rotation immediately removes the watermark.

We also tested the algorithm with the other masks to see if the different
masks influence the robustness of the algorithm. A summary of the results
is printed in table 3.1. The table shows where the watermark could lastly
be detected. Our first thought was, that using no mask will lead to poor
robustness, since the watermark is not embedded into the significant parts
of the image. But as the table shows using no mask is only slightly inferior
to the results of the pla mask in compression and even outperforms all other
masks in median filtering- and noise adding-resistance. Not only in prg terms
but also in terms of robustness the mask proposed by Cao et al. is the worst.
The results of the mask with alternative normalization are in between the
Cao mask and the other three. The fact that the algorithm used without a
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Figure 3.19: Attacks on the Cao algorithm; watermarked image: Lena, al-
pha=3.4, mask=Pla 30%
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Figure 3.20: Cao: detection value and PSNR when embedding multiple wa-
termarks

mask is only slightly worse in some robustness tests and even outperforms
all others in the remaining robustness tests calls the usefulness of a mask for
this algorithm in question. Another idea behind the mask proposed by Cao
et al. could be, that it visually masks the watermark, meaning that with
the same PSNR the watermark is less visible to the human eye when using
such a mask, but this is not described by the authors. Since the evaluation
of visual distortion, with respect to the HVS, is a topic of current research
and no general accepted measure exists and first experiments by us showed
no noticeable difference in the image quality, we will not go into detail on
this subject. To keep the mask idea of the author of the algorithm we will
carry on using a mask for further experiments.

3.4.4 Multiple embedding

In figure 3.20a we see that when embedding 30 watermarks, all of them can
be extracted. We can further see a curious effect where later embedded
watermarks have worse detection values than previous ones. This is not the
case when we use the version without mask. This leads to the conclusion, that
the decreasing detection values is a effect caused by the visual mask. Like
with all other additive algorithms in the test the PSNR is quickly decreasing
with every other embedded watermark (see fig. 3.20b).

In further experiments we could show that the decrease from the first
to the last watermark is only a local trend. Figure 3.21a shows a develop-
ment that has much more impact on the detection performance. This is the
decrease of the average detection value when more watermarks are embed-
ded. The worst detection value of the correct watermarks and the highest
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Figure 3.21: Cao: development of the detection values with rising number of
embedding runs

detection value of the false watermarks is plotted in figure 3.21b. The figure
shows that the detection values of the false watermarks do not depend on
the number of embedded watermarks and the correct and false watermarks
can safely be distinguished.
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3.5 Chen

Additionally to the paper [6] has to be said that the choice of the watermark is
crucial for the algorithm since the recurrence time of the torus automorphism
(see [35]) strongly depends on the size of the watermark and the parameter k.
The recurrence time is the number n where the original matrix (the original
watermark) is restored if the torus automorphism is applied n times. For
some combinations there is no recurrence time at all.

The description of the distortion reduction is very loose in the paper. In
the implementation a distortion limit can be passed to the distortion reduc-
tion algorithm. If the distortion introduced by watermark embedding exceeds
the distortion limit, distortion reduction is applied. The algorithm sets the
distortion exactly to the desired value if possible or if not to the least possible
distortion. The latter is always less or equal as half of the distortion induced
by watermark embedding except for the case that distortion reduction would
change the number of significant bits. In this case the coefficient is set to the
value giving the least distortion without changing the number of significant
bits. This can result in the distortion being up to the distortion induced by
watermark embedding.

The bit selection was changed to

Mb = b(In − 1)× αbc

so that αb can be in [0, 1]. The original selection embeds the watermark in
a bit higher than the msb if αb is close to 1. Maybe an even better solution
would be

Mb = max(0, b(In − 2)× αbc)

because when αb ∈ [0, 1] then the embedding will at most embed the water-
mark in the bit one position lower than the msb and hence not change the
number of significant bits. But since the second is a subset of possible em-
bedding positions of the first version, the first one is used in the experiments.

3.5.1 Capacity

The authors propose to use an N×N image as the watermark. This restricts
the watermark size to be 2N with N ∈ N. But it is not necessary to have
a watermark of this shape. The watermark could also be a vector of any
size. In any case the maximum capacity is the number of coefficients in the
wavelet domain or in other words the number of pixel of the image.
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Figure 3.22: watermarked image and difference image after embedding, dif-
ference image is amplified 28.33 times; watermarked image: Lena, alpha: 0.6,
distortion limit: 100, watermark size:1024

3.5.2 Visibility

The visibility depends on the strength factor αb, on the distortion limit and on
the size of the watermark. Figure 3.22 shows the image Lena with a 32×32
watermark image embedded and the difference image. The watermark is
spread all over the image, because a 5 level wavelet transformation has been
applied hence the watermark size exceeds the size of the approximation image
and therefore the whole approximation image was used for embedding.

Figure 3.23 shows the effect of the different parameters on the visibil-
ity. In Figure 3.23a the impact of α can be seen. The stepwise decrease in
the PSNR is because the distortion is only increased when embedding into
the next higher bitplane and since the number of significant bits (number
of bitplanes) is not very high, the PSNR jumps from one value to the next.
When embedding with α = 1 then the number of significant bits changes
when a 0 is embedded. In this case the watermark can not be detected cor-
rectly and therefore the detection value is dropping at α = 1. Figure 3.23b
shows the effect of the distortion limit. We can see that, if the distortion
limit is sufficiently small, the PSNR value increases. With rising alpha the
maximum possible increase rises and also the range of distortion limit val-
ues that have an effect. This comes from the fact, that for small α-values
the introduced distortion is low, keeping it inside of a small distortion range
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Figure 3.23: effect of the different parameters on the visibility

(distortion limit) and thus distortion reduction is not applied when the dis-
tortion limit is high. The biggest effect can be obtained with an alpha of 0.6
closely followed by 0.5 and 0.4. Higher values of α can not be compensated
by the distortion reduction because the distortion reduction algorithm can
not always bring the coefficients in the desired distortion range and this is
more often the case with a large α. In the case of α = 0.6, this is the value
the authors use in their experiment and also will be used in the robustness
tests, the introduced distortion never exceeds 128 and the PSNR can be con-
trolled in a range of 40.7 to 50dB. In Figure 3.23c the effect of the watermark
length can be seen, where the PSNR drops from initially 66dB to 41dB and
stays at this level. This is because when all coefficients in the approximation
subband are marked the PSNR does not decrease any more. In our case this
is at width 16 because we make a 5-level wavelet transform of a 512×512
image.
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Figure 3.24: Chen: detection values of embedded watermarks compared to
false watermarks

3.5.3 Robustness

The authors give no threshold for watermark detection. In Figure 3.24 we
can see that the detection values of all false watermarks do not exceed 0.6.
Therefore the watermark is said to be present if the detection value is above
0.6 in the following experiments.

In case of jpeg compression the watermark can be detected as long as
the quality does not go below 16% (PSNR=31.8dB). JPEG2000 compression
removes the watermark when rate is smaller than 0.07 (PSNR=35.8dB). Me-
dian filtering can be resisted up to a radius of 4 (PSNR=27.7). Noise adding
already removes the watermark when sigma is more than 19 (PSNR=22.5).
The algorithm is very sensitive when gamma correction is applied. A gamma
of less than 0.938 (PSNR=32.9dB) or more than 1.1 (PSNR=30.6dB) makes
the watermark undetectable. Also the tested geometric transforms immedi-
ately remove the watermark.

3.5.4 Multiple embedding

The basic algorithm is not suited for multiple embedding, as can be seen
in Figure 3.26a. Only the last embedded watermark can be extracted, all
others are completely deleted. This is the expected result because in every
consequent embedding run exactly the same embedding positions are selected
and the old watermark is overwritten. In Figure 3.26b we can see that the
PSNR stays constant independent of the number of embedded watermarks.
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Figure 3.25: Attacks on the Chen algorithm; watermarked image: Lena,
alpha=0.6, distortion limit: 100, watermark length:1024
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Figure 3.26: Chen: detection value and PSNR when embedding multiple
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This result is also clear for the same reason. All embedding steps select
the same embedding positions and so no new distortion is introduced with
consequent embedding runs.
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3.6 Pla

The template embedding scheme was not implemented because of the reasons
mentioned in section 2.5. The authors give no closer explanation of the
function for calculating the PRNG seed. The only requirement is that it
should only depend on the embedding key and the subband and the position
of the coefficient. In the implementation the seed is calculated by adding the
md5 values of all terms and again computing the md5 value of the sum.

3.6.1 Capacity

The capacity of the algorithm depends on the threshold T1. Figure 3.27
shows the relation between the capacity and T1. Because the children of a
coefficient of the third level (smallest subband) are used for embedding at
all times, the number of marked coefficients in level 2 is always 4 times the
number of marked coefficients in level 3. The number of marked coefficients in
the first level is faster decreasing than the one in the third and consequently
the second level because the wavelet transform compacts the energy in the
lower levels.

3.6.2 Visibility

Figure 3.28 shows a watermarked image and the difference image. Embedding
was done with α=0.1, γ=2 and T1=40.
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Figure 3.28: Pla: watermarked image and difference image after embedding,
difference image is amplified 7.29 times; watermarked image: Lena, alpha:
0.1, T1=40, gamma=2

Visibility experiments were carried out by varying the global scaling fac-
tor α and the threshold T1. The results can be seen in Figure 3.29. Figure
3.29a shows the expected result for the relation between alpha and the PSNR.
An unexpected result is that higher alpha does not always result in better
detectability. Because the threshold is faster increasing than the detection
value, the watermark is only detectable with alpha lower than 2. The best
detectability in the meaning of the biggest gap between the detection value
and the threshold is at alpha=0.9, this would result in a embedding PSNR
of 23dB. Figure 3.29b shows the effects of T1 on the detection value and
the PSNR. Bigger T1 values give better PSNR because less coefficients are
marked and also better detection values are reached because of the propor-
tional embedding where bigger coefficients are marked stronger. For detec-
tion T2 is chosen as T1+20%.

3.6.3 Robustness

The results of the robustness tests can be seen in Figure 3.30. The algo-
rithm has good resistance against jpeg compression, down to 3% quality
(PSNR=24.8dB) can not erase the watermark. Also jpeg2000 compression
can be resisted to a rate if 0.004 (PSNR=24.6dB). Under median filtering the
watermark can be detected with a radius of 4. Results on noise adding are
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Figure 3.29: Pla: effects of the different parameters on the visibility

not so good. The watermark is removed when adding noise with sigma=30.
When applying gamma correction the detection value does not drop be-
low the threshold for gamma<1 and the watermark is last detectable with
gamma=30.2 on the gamma>1 side. But gamma correction also increases
the false positive value so that the first false positive detection occurs at
gamma=0.089 and gamma=12.2. Like all other algorithms in the test, the
algorithm of Pla et al. performs very bad when applying geometric attacks.
The watermark is only detectable when a translation of maximal 1px is ap-
plied and rotation immediately removes the watermark.

3.6.4 Multiple Watermarking

In the first tests on multiple watermarking (see Figure 3.31) all 30 embedded
watermarks could be extracted. Furthermore we can see that with the stan-
dard parameters of the algorithm the PSNR quickly decreases with rising
number of embedded watermarks (see 3.31b). Figure 3.31a shows that the
detector response shows an anomaly. Later embedded watermarks have a
lower detection value than older ones. Additional experiments showed that
this results from a combination of two facts. First the visual mask (the
activity image) has a similar effect as the one of Barni et al. (see section
3.2.4). The second fact is that the embedding process can lower a coefficient
below the threshold T1. This decreases the number of coefficient used for
embedding in later embedding steps. So ever other embedding run has less
coefficients to mark.

Further experiments revealed other problems concerning the multiple de-
tection capabilities. Although the minimum detection value decreases with
increasing number of watermarks all 50 watermarks could be detected. But
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Figure 3.30: Attacks on the Pla algorithm; watermarked image: Lena, al-
pha=0.1, gamma=2, T1=40, T2=50
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termarks

also the standard deviation of the false detection values rises while the mean
stays at approximately 0 and thus the biggest false detection value also in-
creases. So, before one of the watermarks can not be detected anymore a
false positive detection occurs when embedding 16 watermarks (see Figure
3.32). Maybe the false positive and false negative border can be deferred if
the calculation of the detection threshold would be modified. In Figure 3.32
the gap between the minimum positive detection value and the maximum
false detection value closes when more than 40 watermarks are embedded.
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3.7 Wu

For the implementation some modifications to the proposed algorithm had
to be made. First of all the two cases in eq. (7) of [39] were flipped to

W ′
n =

{
1 if Sn ≥ γ
−1 if Sn < γ

Next, in our opinion the only reasonable value for γ in the above equation
is 0. In the paper γ is in fact set to 0, but because the threshold γ can not
have any other value than 0 the equation can be changed to

W ′
n =

{
1 if Sn ≥ 0
−1 if Sn < 0

Although the authors state that they use a 512 bit long watermark for
their experiments, the difference image in [39] shows modifications to the
whole image. Maybe the watermark is repeatedly embedded until all su-
pertrees are marked but this is not described in the paper and therefore is
not in our implementation (see section 3.7.2 and fig. 3.34).

Wu et al. give no order in which the subbands have to be marked. In our
implementation first the complete horizontal detail subband is marked, then
the vertical and last the diagonal subband.

In all embedding cases the difference between the upper and the lower
mean is ∆ after embedding. If the difference between the upper and the lower
mean is greater than ∆ and the two mean values have the wrong orienta-
tion the difference stays the same as before the embedding but with different
orientation. This can induce severe distortions if the difference between the
two mean values is large. We have modified these two cases, so that they
also embed to a difference of ∆. This is done by making the same operations
as in the cases where the difference is less than ∆. The simple substitution
of the operations brings up a new problem. The modification is also consid-
ering this emergeing case where one coefficient is very small and the other
coefficient is relatively big (both either in the upper or in the lower half) and
the coefficients would be decreased by embedding (e.g.: block=[[6,0],[1,1]],
watermark=-1, ∆=1). This would cause the small coefficient to go below 0
and so the embedding will not have the desired effect (the absolute value of
the small coefficient will be increased instead of decreased). This will make
the embedding fail when the small coefficient is less than (dif − ∆)/2 or
when the small coefficient is less than (dif + ∆)/2 the embedding will be
successful but not with the desired difference of ∆ between the two means.
This modification brings about 6dB gain in the PSNR.
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Figure 3.33: Wu: watermarked image and difference image after embedding,
difference image is amplified 5.93 times; watermarked image: Lena, delta:
17, watermark length: 512

3.7.1 Capacity

If the algorithm is implemented as proposed by the authors the capacity
depends only on the size of the image. We assume a 512×512 image. A 3-
level wavelet decomposition is applied, thus the smallest subbands are 64×64
resulting in 4096 coefficients. All detail subbands at the smallest level can
be used as root elements for embedding, giving 12288 coefficients. To embed
a bit of watermark information 4 adjacent coefficients from one subband are
needed. So the maximum capacity is 3072 bits for a 512×512 image. The
watermark is also embedded in the children of these coefficients, but this
does not increase the capacity but the robustness.

3.7.2 Visibility

An example of a watermarked image and the associated difference image can
be seen in 3.33. In the difference image we can see that only the upper half
of the image is watermarked. This is because a 512 bit long watermark is
embedded in a 512x512 image and so only one half of one (root-)subband is
marked (see fig. 3.34)

The visibility depends on the watermark length and can be controlled
with the quantization step size ∆. Figure 3.35b shows that the PSNR is
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Figure 3.35: Wu: effect of the different parameters on the visibility

quickly decreasing with an increasing number of embedded watermark bits.
The figure was created using ∆=17 but also with ∆=1 the PSNR is around
38dB when all 3072 trees are marked (this is already with the fixed version
as described in the beginning of the section).

3.7.3 Robustness

To decide whether the watermark is present or not Wu et al. compare the
normalized correlation to a threshold ΦT but they give neither a value for
the threshold nor a way to calculate it. So we compared the detection value
of the embedded watermark to the ones of not embedded watermark. This
can be seen in Figure 3.36. No false detection value is above 0.2. For the
robustness experiments the watermark is said to be present if the detection
value is above 0.2.

For the robustness experiments a 512 bit watermark was embedded and
∆ was set to 17 to give an embedding PSNR of approximately 42dB. The
results are illustrated in Figure 3.37. Compared to the other algorithms the
resistance against jpeg compression is not so good, the watermark can lastly
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Figure 3.36: Wu: detection values of embedded watermarks compared to
false watermarks

be detected with quality=16% (PSNR=32dB). Under jpeg2000 compression
the watermark is detectable until rate is less than 0.031 (PSNR=33dB). Also
the robustness against image processing operations is rather poor. Median fil-
tering with radius more than 2 (PSNR=31.3dB) removes the watermark and
noise can only be added with a sigma of no more than 37 (PSNR=16.9dB).
The results on gamma correction is in the same range as the other algorithms
with gamma between 0.073 (PSNR=5.8dB) and 255 (PSNR=5.3dB) the wa-
termark can be detected. The algorithm of Wu et al. is the only one in the
test which shows significant resistance against geometric attacks. In spite of
11px translation (PSNR=15.3dB) the watermark can still be detected. Ro-
tation again makes the watermark undetectable even with an angle of only
1◦.

3.7.4 Multiple Watermarking

With the algorithm as proposed by the authors it is not possible to embed
multiple watermarks. In Figure 3.38a it can be seen that only the last em-
bedded watermark can be extracted. In Figure 3.38b the PSNR drops from
41.8dB at the first watermark to 38.2dB at the 10th watermark and stays at
this level for the rest of the embedded watermarks. This gradient is because
in the first embedding runs not all coefficients are quantized (the ones which
have the correct orientation and are greater than delta are left unchanged).
In subsequent embedding runs more and more coefficients are quantized and
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Figure 3.37: Attacks on the Wu algorithm; watermarked image: Lena,
delta=17, watermark length=512
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the already quantized coefficients stay quantized and just switch orientation
if the other bit-value is embedded.
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Chapter 4

Multiple watermarking
improvements

In this chapter we want to investigate if the results on multiple watermarking
of the last chapter can be improved. The basic problem is that there are col-
lisions between the different embedded watermarks. Subsequently embedded
watermarks overwrite previous ones partially or even worse in case of the
algorithms of Chen and Wu all previous watermarks are completely erased.
Apparently the reason is that when an algorithm is applied multiple times
the same embedding location will be selected by the algorithm and so if the
selected coefficients are altered the already embedded watermarks are also
altered and this usually lowers the detection value.

We have implemented 4 improvement techniques to mitigate this draw-
back. These are the two methods that Wernisch [36] uses in his work:

• parametrized filters

• wavelet packet trees

and two additional ones:

• random coefficient selection

• random carriers

In the following section we will describe how the improvement techniques
work and what the benefit for the watermarking algorithms should be. After-
wards the experimental results with the improvement approaches integrated
into the watermarking algorithms of the last chapter are presented.

75
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4.1 Improvement techniques

All techniques have in common that each embedder has a unique key which
is used to control the embedding process. This key is used as the seed for a
PRNG and can be generated by mapping a meaningful text e.g. the name
of the embedder or some other (maybe secret) information through a deter-
ministic function. This key is needed in the embedding and in the extraction
stage. This renders all algorithms to be semi-blind. If the only purpose of
the improvement techniques is to protect the watermarks from overwriteing
each other the keys can also be made public. With public available keys the
possibility that watermarks can be extracted by anybody is preserved. On
the other hand if it is not wanted to have public detectable watermarks the
improvement techniques have a second effect. This is watermark hiding and
the resulting enhanced security against hostile attacks (see [14]).

4.1.1 parametrized filters

Instead of using predefined wavelet filter banks like the Daubechies-6 filters,
which are used in the unimproved version, filters depending on a parameter
(the embedder key) are generated. In our experiment the parametrization
of Schneid and Pittner [32] is used. To generate these filters Schneid and
Pittner present a parametrization for the dilation equation

φ(t) =
N∑
k=0

ckφ(2t− k).

This parametrization for the coefficient vector cN = (cN0 , ..., c
N
N)T is done via

c1 = (1, 1)T

and

cN+2
k =

1

2
(cNk−2 + cNk )+

+
1

2
(cNk−2 − cNk )cos(α(N+1)/2)+

+
1

2
cNN−k+2 − cNN−k)(−1)ksin(α(N+1)/2).

for 0 ≤ k ≤ N+2 and where ck = 0 for k < 0 and k > N . α1, ..., α(N−1)/2 ∈ R
are the parameters. From the above equation follows, that the length of the
filters is controlled by the number of alphas.
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The idea behind using parametrized filters is, that every embedder gener-
ates its own embedding space and so the different watermarks do not interfere
with each other or at least have less interferences.

For our experiments we use 2 alphas giving a N of 5 and producing 6-tap
filters. We have chosen to use 2 parameters to have the same filter length
as in the unimproved version. For each embedding run the parameters are
randomly ganerated in the range −π ≤ α < π and stored for later extrac-
tion of the watermark. We use the generated filters for decomposition and
reconstruction in every decomposition level and both directions (horizontal
and vertical). The rest of the algorithms stays completely unchanged. Em-
bedding and extraction is done like in the unimproved version.

4.1.2 random coefficient selection

The basic structure of a watermark embedding process in our experiments
is:

1. watermark generation

2. wavelet transformation

3. coefficient selection (e.g. all coefficients of the 3 largest detail subbands)

4. embedding via Î(x, y) = I(x, y) + αw(x, y)

5. wavelet reconstruction

We omit algorithm specific techniques like visual masking or sophisticated
exploiting of coefficient dependencies in the embedding position selection
process for the explanation of the random coefficient selection. Random
coefficient selection should be compatible with all these techniques and if
special adaptions are required, like for quantization embedding, they are
described in the corresponding section later on.

The essential part in the embedding process is, that two vectors are gen-
erated. The watermark vector w (step 1) and the vector with the coefficients
selected for embedding I (step 3). Random coefficient selection is inserted
after the coefficient selection step and before the embedding (i.e. between
step 3 and 4). Thereby a set of coefficients is randomly selected and form
the new embedding vector İ. This is sketched in figure 4.1. The embedding
step is then carried out with these coefficients.

A clear drawback of this method is, that there are less coefficients avail-
able for embedding in a single embedding run. In case of spread spectrum
embedding this can lead to a worse detection value or in case of quantization
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I0 I2I1 I3 I4 I5 I6 I7

İ1İ0 İ2

Figure 4.1: elements of the plain image vector I are selected and form a new
vector İ

embedding in a reduced payload. The advantage is obviously that there are
less interferences when the watermark is embedded in different coefficients.
This approach is the adaption of segmented watermarking to our scenario,
where there is no central watermarking institution nor are the embedding
positions of the previous watermarks known. The difference is, that this ap-
proach does no perfect segmentation in the meaning of no overlapping, but
therefore every embedder can do the random coefficient selection by himself
and needs no additional information.

In our implementation we have chosen to use 10% of I for embedding.

4.1.3 random carriers

For this approach the watermark is modulated with a random carrier before
embedding. Thus the basic embedding

Î(x, y) = I(x, y) + α w(x, y)

is changed to

Î(x, y) = I(x, y) + α c(x, y) w(x, y).

The carrier is chosen to modify the magnitude of the watermark a little
bit around the original value. In order to keep the distortion low and not
to override visual masking considerations of the algorithm the amount of
modulation has to be limited. An appropriate carrier has to be chosen to
achieve these results. Possible carriers cn could be:

cn = x′(−1yn )
n

where

yn = samples of Y ∼ B(1, 0.5)

and

x′n = samples of X ∼ U(1, 2) (4.1)
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or
x′n = |xn|+ 1

xn = samples of X ∼ N(0, 1)
(4.2)

B denotes a binomial distribution, U a uniform distribution and N denotes
a normal distribution. The carrier created by (4.1) modifies the amplitude of
the watermark to be in the range of w/2 ≤ w′ ≤ 2w and all possible values
of w′ have the same probability. The carrier created by (4.2) modifies the
watermark to have normally distributed shape around the original value and
where the probability that the modulated value w′ is in [w, xw] is the same
as that the value is in [w/x,w] for all x ∈ R.

The idea is to lessen the mutual erasure of the watermarks by using
different embedding strengths, induced by the random carriers, for different
embedding runs. This improvement method can only be reasonably applied
to spread spectrum algorithms.

For our experiments we produce the carriers with (4.2). The embedder
key is used to seed the PSNR from which the samples of the distributions
are taken.

4.1.4 random wavelet packet trees

Like Wernisch did in his work [36] we also want to test the possibility for
improvement by the usage of different wavelet packet tree structures. The
differences between the wavelet packet decomposition and the usual (pyra-
midal) wavelet decomposition are described in section 1.5.2. Depending on
the embedder-key, the image is decomposed into different tree structures.
This can for instance be done by applying a fixed probability for each de-
composition decision. Although all possible trees can be generated with this
method it is more likely to generate lean trees. As Engel suggests in [16],
the probability of decomposition has to be different for each decomposition
level. The decomposition probability of a node in level l is calculated with

p(l) = 1− 1

Qg−l

where g is the maximum decomposition level and Qj is the number of possible
decompositions. The number of possible decompositions can be calculated
with

Qj = Q4
j−1 + 1

as proposed by Xu and Do [40]. The difference between the two embedding
strategies can be seen in figure 4.2. The figure shows two typical decompo-
sition trees. But we also like to note that, when no other restrictions are
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(a) constant probability (b) level adaptive probability

Figure 4.2: illustration of the two different wavelet packet tree decomposition
strategies

enforced, the probability that the image is not decomposed at all is 0.5 when
using the constant decomposition probability strategy. This makes the usage
of some restrictions on minimal decomposition depth absolutely necessary
with this decomposition strategy.

By creating a embedder-key dependent wavelet packet structure each em-
bedder gets his own embedding space. This should improve the multiple
watermarking performance. Unfortunately almost all algorithms have to be,
sometimes even radical, rewritten because often the algorithms make use of
some aspects of the pyramidal structure of the discrete wavelet transform.
The necessary adaptions are described in the appropriate sections in detail.

In our experiments we use the decomposition strategy where all trees have
the same probability to be created.

4.2 Experimental results

In this section implementation details and results for the multiple water-
marking improvements are presented.

In the last chapter the experiments on multiple watermarking were car-
ried out with the same embedding strength as in the single watermark exper-
iments, which gives a PSNR of approximately 42dB after the first embedded
watermark. The embedding strength was chosen to give results which are
comparable to the other experiments in the chapter. But for practical use
the images are pretty valueless after 10 embedded watermarks. Hence we
will change the embedding strength to embed with a PSNR of 42dB after 10
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embedded watermarks. The appropriate embedding strength is found itera-
tively by embedding 10 watermarks, checking the PSNR and adjusting the
embedding strength.

The experimental runs will include the detection performance of the unim-
proved algorithm and the detection values for each applicable improvement.
The embedding strength will be chosen for each improvement method sepa-
rately and is determined experimentally, by embedding multiple watermarks
and the embedding strength is successively adapted.

In the main experiment multiple watermarks are embedded and the de-
tection value of the individual watermarks is calculated. The experiment is
repeated with different embedding strengths, especially with the one found
in the last step, where the PSNR is 42dB after the tenth watermark. If the
usage of a threshold is proposed in the paper of an algorithm, this threshold
is also calculated and collected together with the detection values. The de-
sirable result will be, that the detection values of all watermarks will increase
or that the detection values of the first embedded watermarks will stay high
enough for correct extraction.

Comparison of the different improvement techniques will be done by com-
paring the detection values of 10 watermarks, embedded with the embedding
strength found in the PSNR experiment.
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Figure 4.3: PSNR and detection values when embedding multiple water-
marks with the algorithm of Barni et al. with different embedding strengths.
watermarked image: Lena

4.2.1 Barni

The algorithm of Barni et al. had very good multiple watermarking results in
the experiments with the unimproved version in the last chapter. The prior
task in this chapter will be to test if this results hold, even if the embedding
strength is lowered. Furthermore, all four improvement techniques will be
tested whether they can further improve the results.

no improvement

From Figure 4.3a we can see that the desired embedding strength is at
α = 0.0235, which gives 41.99dB after 10 embedded watermarks. Figure
4.3b shows us that the effect of increasing detection values for later embed-
ded watermarks (see section 3.2.4) is increasing with increasing embedding
strength. But because the embedding strength we use is on the lower end
of the shown results the detection values should almost be constant for all
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Figure 4.4: PSNR and detection values when embedding multiple watermarks
with the algorithm of Barni et al. and parametrized filters improvement with
different embedding strengths. watermarked image: Lena

embedded watermarks. The result for α = 0.0235 is plotted in Figure 4.3c.
When embedding a single watermark with an embedding strength of 42dB
the detection value is 2.2, The average detection value of the 10 embedded
watermarks is clearly below this value, but with an average value of 0.65 still
above the threshold of 0.08.

parametrized filters

For the first improvement almost no changes have to be made to the algo-
rithm. The only modification is, that instad of the Daubechis-6 filter, the
parametrized filter is used for wavelet transformation and reconstruction.

From Figure 4.4a we see that α has to be 0.022 to get the desired embed-
ding strength (40.08dB). The differences to the unimproved version, which
can be observed when we compare figure 4.3c and figure 4.4c, is first the
lower increase of detection values for later embedded watermarks and sec-
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ond the detection values are not as constant as in the unimproved version.
The first fact is because of the different embedding spaces which are created
by the use of the different wavelets. The watermarks have less interferences
and so the difference between the watermarks embedded in different runs
is lower. This is the anticipated effect of the improvement technique, the
impact of the interferrecnce is mitigated. But because of the very special
property of this algorithm in combination with multiple watermarking, that
detection values of the first watermarks are not decreasing but the ones of
the later ones are increasing (see section 3.2.4) with rising number of em-
bedded watermarks, the effect of the parametrized wavelets is not that the
older watermarks are better detectable but that the detection value of later
embedded ones is worse. So, although the interferences of the watermarks
are reduced, the detection performance is not improved. The second fact lets
us assume that the parametrization produces “good” and “poor” wavelets
which lead to higher or lower detection values and higher or lower thresholds
in general. All effects scale with the embedding strength and because our
target embedding strength is very low, the effects are softened and do not
make a big difference (see figure 4.4c).

random coefficient selection

For the random coefficient selection improvement technique the watermark
is embedded in randomly chosen 10% of the detail subbands of the first
decomposition level. The watermark vector is shortened to cover the new
embedding space. PSNR and detection value results can be seen in Figure
4.5. The PSNR after 10 embedded watermarks when embedding with α =
0.075 is 41.9dB. Since only a fraction of the coefficients of the unimproved
algorithm are marked the strength factor can be significantly higher and
therefore the detection value is also higher as figure 4.5b shows. The average
detection value for the target embedding strength over 10 watermarks is 2.08.
At the same time the threshold is also increased to 0.27.

random carriers

First a carrier signal in the same length as the watermark is created with
the technique described in the last section (4.1.3). Then the watermark is
modulated with

wn = wn cn.

The embedding process is carried out like in the unimproved version but with
the modulated watermark w. The strength factor to get the targeted 42dB
is 0.0165. In the detection stage the vector of watermarked coefficients is
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Figure 4.5: PSNR and detection values when embedding multiple water-
marks with the algorithm of Barni et al. and random coefficient selection
improvement with different embedding strengths. watermarked image: Lena
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Figure 4.6: PSNR and detection values when embedding multiple watermarks
with the algorithm of Barni et al. and random carrier improvement with
different embedding strengths. watermarked image: Lena

extracted and the correlation is calculated with the modulated watermark
w. Figure 4.6 shows that the shape of the curves look very similar to the
unimproved ones. The difference to the unimproved version becomes appar-
ent in figure 4.6c, where we can see that the detection value with an average
of 0.92 is higher whereas the threshold stays at 0.08.

random wavelet packet trees

We tried to make least possible modifications to the algorithm as proposed
in the paper to include the improvement techniques. The incorporation of
random wavelet packet trees comes not as cheap as the other improvements.

We first decided to keep the embedding position as in the algorithm as
proposed, this are the three finest detail subbands and further decompose
these three subbands into wavelet packet trees. The wavelet packet trees
have a maximum decomposition depth of 4. The ll-subband is also decom-
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Figure 4.7: sample decomposition tree used for the random wavelet packets
approach with the algorithm of Barni et al.

posed into 4 levels with the pyramidal decomposition strategy. This is needed
for the visual mask generation. A typical decomposition tree is illustrated in
figure 4.7. The watermark has the same length as in the unimproved version
but a new mapping function has to be applied. We assign the watermark ele-
ments to the coefficients by walking through the tree in the order ll, hl, lh, hh
and assign an appropriate number of watermark elements to the coefficients
in the leafs of the tree.

Because the calculation of the visual mask is the key feature of the al-
gorithm (see section 2.1.1) we do not want to change the way it is created.
The best way to adapt the visual mask to wavelet packet trees we found is
to create the visual mask of the pyramidal tree and assign the appropriate
elements of the visual mask to the coefficients of the wavelet packet decom-
position. For the assignment of the mask elements the decomposition depth
of the coefficient and the base orientation is used. The base orientation (hor-
izontal, vertical or diagonal) is the orientation of the decomposition at the
first level. We use the base orientation because the local orientation does not
necessarily reflect the orientation of image elements any more when using
wavelet packet decomposition but the idea of the authors is based on the
orientation of image elements.

The results are shown in Figure 4.8. α is set to 0.26 which gives an em-
bedding PSNR of 41.94dB after 10 watermarks. Like with the parametrized
filters there seem to be “good” and “poor” decomposition structures result-
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Figure 4.8: PSNR and detection values when embedding multiple watermarks
with the algorithm of Barni et al. and random wavelet packets improvement
with different embedding strengths. watermarked image: Lena

ing in unstable detection values. With an average of 0.58 the detection value
is lower than with all other versions of the algorithm.

comparison

First of all, the algorithm could prove its multiple watermarking qualities
even with low embedding strength. When the different improvement tech-
niques are compared by the detection values they achieve, random coeffi-
cient selection clearly outperforms all other approaches and brings a clear
enhancement in watermark detectability. The approach with random carri-
ers also brings a little enhancement but the other two techniques make no
difference compared to the original algorithm. Random wavelet packets even
lower the average detection value a bit. Results are illustrated in Figure
4.9. Taking also the thresholds into consideration we see in Figure 4.10 that
the parametrized filters and the random coefficient selection approach have
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Figure 4.9: comparison of the detection values of the different improvement
techniques on the algorithm of Barni et al.
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Figure 4.10: comparison of the detection values and thresholds of the different
improvement techniques on the algorithm of Barni et al.

higher thresholds than in the unimproved version. Especially in the case of
random coefficient selection the question arises if the higher threshold out-
weighs the higher detection value. This question will be discussed in the
next chapter (chap. 5). For better readability we have abbreviated the im-
provement techniques, no improvement with “ni”, parametrized filters with
“pf”, random coefficients with “rco”, random carriers with “rca” and wavelet
packets with “wp”. An appended “t” denotes the according threshold.
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Figure 4.11: PSNR and detection values when embedding multiple water-
marks with the Broken Arrows algorithm with different embedding strengths.
watermarked image: Lena

4.2.2 Broken Arrows

Like the algorithm of Barni et al. of the last section, Broken Arrows has
excellent multiple watermarking performance without improvements. It is
to test if this performance can be kept up when we target a high image
quality after several embedding steps. Because the algorithm is a zero-bit
algorithm we use the secret projection key to embed multiple watermarks, as
already mentioned in section 3.3.4. The random carrier improvement is not
applicable to this algorithm since there is no watermark vector to modulate.

no improvement

In order to reach 42dB after 10 embedded watermarks the target PSNR has
to be 53 (gives 41.99dB). Figure 4.11b shows that all watermarks can be
extracted as long as the target PSNR stays above 57dB. This result is sim-
ilar to the results for single watermarking (see figure 3.9). With the chosen
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embedding strength almost no decrease from the last to the first watermark
can be observed. As we can see in Figure 4.11c the average detection value
is definitely below 1 but still above the threshold so all watermarks are ex-
tractable.

parametrized filters

As said in section 3.3 we use the C implementation of Furon and Bas for this
algorithm. In order to insert the parametrized filters improvement technique
we implemented an import/export facility in C and Python. The wavelet
transformation is done in the Python part, like for all other algorithms and
is then imported into the Broken Arrows implementation and used as the
vector SX . Then the watermarking process is carried out and the result vector
SY is returned to the Python program where the wavelet reconstruction is
performed. The detection process is the same as the embedding process
except that there is no need to return a wavelet coefficient vector.

From Figure 4.12a we see that we reach a PSNR of 42.06dB after 10 wa-
termarks when we choose 52.5 as the target PSNR for each embedding step.
The detection values results show fluctuations like with the last algorithm
and the parametrized filters approach which confirms the assumption that
there are well- and ill-suited wavelets. The fluctuations increase with de-
creasing embedding strength. From this it follows that a stronger embedded
watermark can compensate the ill-suited wavelet. But because our chosen
embedding strength is on the lower end of possible embedding strengths the
compensation has not much impact. Though, as we can see in Fig. 4.12c, all
watermarks can be detected. In fig. 4.12b we can see the expected tendency
where older watermarks have a lower detection value than newer ones. In
fig. 4.12c the tendency is hard to observe due to the high fluctuations.

random coefficient selection

For this improvement techniques we use the same import/export facility as
for the parametrized filters. The wavelet transformation is done in Python
and a subset of the coefficients (10%) is randomly chosen and passed to the
Broken Arrows algorithm. These coefficients are then watermarked, passed
back and inserted at the corresponding positions in the wavelet subbands.

We choose a target PSNR of 52.4 and reach a PSNR of 41.97dB after
the 10th watermark. The results in fig. 4.13b also show fluctuation like
with the parametrized filters approach, but with smaller amplitude. In the
experiment with 10 embedded watermarks (fig. 4.13c) all watermarks can be
extracted.
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Figure 4.12: PSNR and detection values when embedding multiple water-
marks with the Broken Arrows algorithm and parametrized filters improve-
ment with different embedding strengths. watermarked image: Lena
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Figure 4.13: PSNR and detection values when embedding multiple water-
marks with the Broken Arrows algorithm and random coefficient selection
improvement with different embedding strengths. watermarked image: Lena
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Figure 4.14: PSNR and detection values when embedding multiple water-
marks with the Broken Arrows algorithm and random wavelet packets im-
provement with different embedding strengths. watermarked image: Lena

random wavelet packet trees

The wavelet packet tree generation, transformation and reconstruction is
done in Python, the coefficients are passed to the Broken Arrows algorithm
where they are marked.

Target PSNR=52.8 gives 42.06dB after 10 embedded watermarks. The
detection values are more stable than in the other improvement techniques,
but with random wavelet packets the detection value in general is the lowest
of all. Also with this technique all 10 watermarks can be extracted (fig.
4.14c).

comparison

As we can see in figure 4.15 only random coefficient selection can improve the
original algorithm. Although the detection values are more instable than the
ones from the unimproved algorithm the detection value is higher in general.
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Figure 4.15: comparison of the detection values of the different improvement
techniques on the Broken Arrows algorithm

The explanation for the inability of the other improvement techniques must
be on the one hand the very good multiple watermarking performance of
the original algorithm is hard to improve and on the other hand the secret
projection already disperses the watermarks in the embedding space which
can not be further improved by our techniques.
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4.2.3 Cao

The results of the experiments on multiple watermarking in the last chapter
showed good performance of the algorithm. All watermarks in the test could
be extracted. We want to remind, that the decrease of the average detection
value with rising number of embedded watermarks had a bigger impact than
the local developement, this is the detection value decrease from the first
to the last watermark. Therefore we have to pay attention to the average
height of the detection values and whether this value can be increased by the
improvement approaches.

We do not apply the random wavelet packet decompositions technique
because the wavelet packet decomposition creates a big number of subbands
and in combination with the RDWT where each subband has the size of the
original image the computational costs and memory requirements make this
approach completely unpractical.

no improvement

We use α=1.075 as the strength factor and obtain a embedding strength of
41.99dB.

The decrease from the first to the last embedded watermark is stronger
with higher embedding strength, but because we use a very low embedding
strength this effect almost disappears (see fig. 4.16b). To evaluate the multi-
ple watermarking performance we still stick to the same procedure like for the
other algorithms, allthough this algorithm heavily depends on the number
of embedded watermarks. If an algorithm can detect the last 5 watermarks,
it makes almost no difference for the detectability if 5 or 10 watermarks are
embedded. Unlike the other algorithms this one can fail to detect any water-
mark if 10 are embedded but can be able to detect all watermarks if only 5
are embedded. This dependency can be observed when figure 4.16c and the
according line in figure 4.16b are compared. Although the strength factor
is the same the average detection value when 30 watermarks are embedded
is 0.16 and the one when 10 watermarks are embedded is 0.25, while the
detection values from the first to the last watermark are almost constant.

parametrized filters

Also the RDWT can use the parametrized filters without any changes, since
the only difference is that instead of the subsampling of the data the filters
are upsampled.

Figure 4.17a shows that we can obtain an embedding strength of 41.99dB
when α is chosen to be 1.075.
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Figure 4.16: PSNR and detection values when embedding multiple water-
marks with the algorithm of Cao et al. with different embedding strengths.
watermarked image: Lena
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Figure 4.17: PSNR and detection values when embedding multiple water-
marks with the algorithm of Cao et al. and parametrized filters improvement
with different embedding strengths. watermarked image: Lena
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In contrast to the unimproved version the detection values are more de-
pendent on the embedding strength. Also the detection values are more vary-
ing. We already could see this effect in the experiments with parametrized
filters and other watermarking algorithms, hence the reason for the variations
must be the good or bad suitability of the different paramtrized wavelets.
The strong dependency of the detection value on the number of embedded
watermarks is lowered with this modification (compare figure 4.17b and fig-
ure 4.17c) but the average detection value is clearly below the one of the
original version of the algorithm. Though, all detection values are above the
threshold of 0.008 and so all watermarks can be detected.

random coefficient selection

For the implementation of the random coefficient selection approach we ran-
domly select 10% of the coefficients of one subband and embed the watermark
in these xy-positions in all of the three subbands to mark.

Because of the smaller number of marked coefficients the α can be higher
and for a α of 3.4 we get an embedding PSNR of 41.97dB.

Like in the unimproved version the detection value does not increase
significantly when α is 3 or above. So the detection value can not be much
higher than 0.45 with the 30 embedded watermarks. The average detection
value is clearly higher as in the unimproved version and the detection values
are also more stable for all watermarks. We further can observe that the
tendency of the detection values is like the expected one and not inverted like
in the original version of the algorithm, where later embedded watermarks
have a higher value than previous one (see fig. 4.18b and 4.18c).

random carriers

To integrate the random carrier modulation improvement approach, the wa-
termark vector modulated with the generated carrier before embedding ac-
cording to 4.1.3. Everything else can stay unchanged.

We embed with α=0.75, this results in an embedding PSNR of 42.09dB
(see fig. 4.19a).

The detection values in fig 4.19b look very similar in terms of tendency
and variability, but the average value is lower than with the unmodified
algorithm. This is also the case in the experiment with 10 embedded water-
marks, which is illustrated in fig 4.19c. Using the threshold of section 3.4.3
all watermarks are detectable despite of the reduced detector performance.
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Figure 4.18: PSNR and detection values when embedding multiple water-
marks with the algorithm of Cao et al. and random coefficient selection
improvement with different embedding strengths. watermarked image: Lena
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Figure 4.19: PSNR and detection values when embedding multiple water-
marks with the algorithm of Cao et al. and random carriers improvement
with different embedding strengths. watermarked image: Lena



102 CHAPTER 4. MULTIPLE WATERMARKING IMPROVEMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6  7  8  9
de

te
ct

io
n 

va
lu

e
watermark

no improvement
parametrized filters
random coefficients

random carriers

Figure 4.20: comparison of the detection values of the different improvement
techniques on the algorithm of Cao et al.

comparison

Out of the three improvement approaches in th test, parametrized filters and
random carrier modulation are clearly worse then the unmodified version.
But random coefficient selection achieves a big advantage, the average de-
tection value is more than doubled. However, no algorithm for threshold
calculation is given by Cao et al. and we use an experimentally obtained
threshold, which was determined by looking at the detector response of a
single embedded watermark.
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Figure 4.21: PSNR and detection values when embedding multiple water-
marks with the algorithm of Chen et al. with different embedding strengths.
watermarked image: Lena

4.2.4 Chen

The algorithm of Chen et al. is absolutely unsuited for multiple watermarking
when used as proposed. Only the last embedded watermark can be extracted,
all other watermarks are erased (see section 3.5.4). In this section we will
test if the algorithm can be enabled to detect multiple watermarks. Because
this is a quantization based algorithm the random carriers improvement can
not be applied. Because of the stepwise change in the embedding PSNR it is
not possible to reach an embedding PSNR of 42dB exactly without distortion
reduction. However, we will not use distortion reduction in our experiments
because this changes many bits in the coefficient and thus can reduce the
multiple embedding performance.
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Figure 4.22: PSNR and detection values when embedding multiple water-
marks with the algorithm of Chen et al. and parametrized filters improve-
ment with different embedding strengths. watermarked image: Lena

no improvement

For the sake of completeness we carry out the experiments and confirm the
results of the last chapter. Only the last watermark can be detected indepen-
dent of the embedding strength. The embedding PSNR stays constant for
any number of embedded watermarks (for the explanation see section 3.5.4).

parametrized filters

The parametrized filters improvement implementation is straight forward just
using the generated filters for transformation and reconstruction and the rest
of the algorithm stays the same.

In contrast to the version without modifications the number of embedded
watermarks now influences the image quality. This is because the different
embedding runs do not exactly embed into the same positions due to the
different transformation spaces. With α = 0.45 (PSNR after 10 embedded
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watermarks 42.67dB) the embedding PSNR is closest to 42dB. In Figure
4.22b the α = 1.0 line can be ignored, besides the very low PSNR, the
embedding process is errornous for some coefficients (see section 3.5.2) with
this strength factor. We use the threshold 0.6 of section 3.5.3. In figure 4.22b
the detection value again drops very quickly to below the threshold of 0.6.
Further more the detection value is independent of the embedding strength
in this experiment. Figure 4.22c shows that the last two watermarks can be
detected. This is a small improvement compared to the unmodified version.

random coefficient selection

For the implementation of random coefficient selection a set of coefficients
to choose from has to be defined. In the original algorithm the authors start
embedding in the approximation image and then carry on embedding from
the coarsest detail subbands to the finest ones, depending on the length of
the watermark. To keep the intention to embed in the coarse parts of the
image all subbands except the finest detail subbands are defined as the set
of coefficients for random selection. Then as many coefficients as needed to
embed the whole watermark are selected.

We use α = 0.67 to reach an embedding PSNR of 41.65dB. But as we
can see in fig. 4.23b the detection value is not depending on the embedding
strength. This result is clear because an older value gets overwritten when
the same coefficients are selected and the opposite bit is embedded. This
is independent of α. The only embedding strength which has different de-
tection values is 1, this special case is explained in section 3.5.2. Not only
all watermarks in fig. 4.23c can be detected, even all 30 watermarks of fig.
4.23b. Older watermarks have slightly smaller detection values than newer
ones as expected because of the collisions when choosing a coefficient position
twice. Since only few coefficients (1024 as proposed) have to be marked out
of 65536 there are only very few collisions and this is the reason for the good
results with this improvement technique.

random wavelet packet trees

To implement this improvement technique we first decompose the image into
wavelet packets with a maximum decomposition depth of 7. Then we choose
the embedding subbands according to the original algorithm. We start by
embedding into the approximation image and then in the detail subbands
on the same level. If one of these subbands is decomposed the children of
this subband are marked in the order ll, hl, lh, hh If there are watermark
elements left, the detail subbands of the next level are used for embedding
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Figure 4.23: PSNR and detection values when embedding multiple water-
marks with the algorithm of Chen et al. and random coefficient selection
improvement with different embedding strengths. watermarked image: Lena
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Figure 4.24: PSNR and detection values when embedding multiple water-
marks with the algorithm of Chen et al. and random wavelet packets im-
provement with different embedding strengths. watermarked image: Lena

and so on.

For this improvement approach α is chosen to be 0.5, this gives an em-
bedding PSNR of 41.75dB. The detection results are very similar to the ones
of the unimproved version. Only the last watermark can be detected. The
only difference is, that the detection values of different embedding strengths
are not perfectly the same any more. The reason for the poor results can
be seen in fig. 4.25. The figure shows a level 7 sample decomposition and
the dark grey area is the embedding position. Because of the low number of
marked coefficients compared to the total number of coefficients of the image
there are not many possibilities to decompose them and so the watermark is
embedded in related coefficients. This leads to heavy interferences and the
cancelation of the earlier watermarks. Of course it would be possible to ran-
domly select the subbands to embed, but then the improvement would not
come from the different wavelet packet structures but from the random em-
bedding positions. When the improvement technique relies on the random
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Figure 4.25: embedding positions for the random wavelet packets approach
with the algorithm of Chen et al.

embedding position the random coefficient selection technique is the more
consequent one and even better technique because the marked coefficients
are spread over a bigger part of the coefficients and not be packed together
like it is the case when a whole subband is marked. If a collision occurs,
a bigger part of the watermark is damaged in the case of wavelet packet
embedding.
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Figure 4.26: comparison of the detection values of the different improvement
techniques on the algorithm of Chen et al.
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comparison

Although there was a great improvement potential due to the bad perfor-
mance of the original algorithm, wavelet packets completely miss to improve
the multiple watermarking capability. The parametrized filters approach
achieves a little improvement. The detection value for all of the watermarks
is higher compared to the original version but finally only the last two water-
marks are detectable with respect to the threshold of 0.6. A big improvement
could be achieved with the random coefficient selection technique. All wa-
termarks can be extracted with this modification.
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Figure 4.27: PSNR and detection values when embedding multiple water-
marks with the algorithm of Pla et al. with different embedding strengths.
watermarked image: Lena

4.2.5 Pla

The unmodified algorithm of Pla et al. was able to detect multiple water-
marks as presented in section 3.6.4. We are going to investigate if the results
can be improved with any of the four improvement approaches.

no improvement

The desired embedding PSNR of 42dB can be attained with α = 0.031.
All watermarks are detectable as long as α is 0.3 or greater. Our chosen
embedding strength is slightly above so all watermarks can be extracted.
The detection values are rather strong varying, the higher α is, the stronger
this effect occurs. Te results can be seen in figure 4.27.
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Figure 4.28: PSNR and detection values when embedding multiple water-
marks with the algorithm of Pla et al. and parametrized filters improvement
with different embedding strengths. watermarked image: Lena

parametrized filters

The implementation of the parametrized filters improvement is as simple as
with the other algorithms. Only the utilized wavelet has to be replaced with
the parametrized one and the remaining algorithm stays unchanged.

From fig. 4.28a we deduce that α has to be 0.015 for the desired embed-
ding strength. Using this low embedding strength, not all watermarks can be
extracted. This is illustrated in 4.28c. As already figured out in the experi-
ments with the other algorithms the outliers because of the “bad” wavelets
can again be seen. In figure 4.27 we see the detector response anomaly of de-
creasing detection values for later embedded watermarks, which was already
mentioned in section 3.6.4. With the parametrized filters improvement this
anomaly disapeared and is replaced by the anticipated development. This
is because by the different wavelets the embedding coefficient decimation is
avoided. Also the generation of the activity image does not perfectly include
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the older watermarks (one of the reasons for the inverse trend of the detection
value development) with this modification.

random coefficient selection

With random coefficient selection we want to embed the watermark into ran-
domly chosen 10% of the coefficients. For this approach a few changes had
to be made. The coefficients to mark can not be selected by comparing to a
threshold, like in the original algorithm. The number of selected coefficients
is different in the embedding and the extraction stage. First this is because
two different thresholds are used for embedding (T1) and extraction (T2) and
second the embedding process can change the number of coefficients above
the threshold. This is a problem because a different number of embedding
coefficients gives completely different results when selecting 10% of them by
random. Also the selection of a defined number of the highest coefficients
(e.g. the 10000 highest coefficients) and then from these coefficients choose
the 10% random coefficients does not work, because through the embedding
process the order of the coefficients changes and this again brings different
results when randomly selecting coefficients from them. So first 10% of all
coefficients are randomly chosen and the x highest coefficients are used for
embedding. Because the authors of this algorithm suggest an embedding
threshold (T1) of 40 and this results in 2275 coefficients (for the Lena im-
age when a 3-level decomposition with the Daubechies-6 wavelet is applied),
which equal approximately 18.5%, we choose the 18.5% highest coefficients
for embedding. The same procedure is applied in the extraction and in the
threshold calculation stage.

Due to the lower number of marked coefficients we can choose a higher
α. α = 0.099 gives us a embedding strength of 41.96dB. The drawback with
this high embedding strength is the strong variability of the detection values.
Furthermore, these variations can be amplified by the random selection of
coefficients. When using this improvement approach with the modifications
explained in the beginning of this section a constant number of coefficients in
the smallest detail subbands is selected. In our case where we use a 512x512
image and select 10% of all coefficients in these three subbands and then
the 18.5% biggest coefficients from those we get 227 coefficient to mark.
The detection value now depends on the absolute value of these coefficients.
Nevertheless all 10 watermarks can be extracted as illustrated in fig. 4.29c.
A trend in the detection values is hard to observe due to the high variability.
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Figure 4.29: PSNR and detection values when embedding multiple water-
marks with the algorithm of Pla et al. and random coefficient selection
improvement with different embedding strengths. watermarked image: Lena
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random carriers

Since the watermark is created during the embedding process and the num-
ber of watermark elements can not be determined in advance, the carrier
elements are also created on the fly. The PRNG from which the watermark
elements are drawn is reseeded with every coefficient to mark (see section
2.5.1). This enables the algorithm to resynchronize with every root coeffi-
cient. To preserve this capability the PRNG for the carrier also has to be
reseeded in the same way. We use the same seed creation function but with
the carrier key KC instead of the embedding key KE.

seed = f(KC , bk, xk, yk)

bk is the subband of the actual coefficient and xk and yk are the coordinates
in the subband. The embedding formula is changed to

v′k = vk + αk|vk|ck,ipk,i

where ck,i are the carrier elements and pk,i are the watermark elements. The
detection value is calculated with

Z =
1

M

M∑
i=1

V̂iciyi

With α = 0.021 the PSNR after the first 10 watermarks is 42.15dB. The
trend of the detection values looks very similar to the unmodified algorithm.
But the average detection value is significantly higher, whereas the threshold
as proposed by Pla et al. is even lower. The detection value is still un-
steady but the watermarks can be detected more clearly as with the original
algorithm.

random wavelet packet trees

The integration of wavelet packet trees into this algorithm is a little bit
tricky. Since the algorithm embeds into trees of coefficients a parent-child
relationship has to be created. While this is an easy task for pyramidal
decompositions, where every coefficient has 4 descendants in the next finer
subband of the same orientation, it is more difficult for wavelet packets. Pla
employs ideas of the embedded zerotree wavelet compression technique where
the offspring of a coefficient is said to be significant if the coefficient itself
is significant. The crucial attributes of the related coefficients are that they
have the same orientation and belong to the same spatial location and the
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Figure 4.30: PSNR and detection values when embedding multiple water-
marks with the algorithm of Pla et al. and random carriers improvement
with different embedding strengths. watermarked image: Lena
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children are on a finer level as the parent. So we need to build up a tree
structure on the wavelet packets which makes the same attributes apparent.

To construct the relationship tree we make use of the results of Rajpoot et
al. [30, 31]. As a prerequisite for this approach the approximation image has
to be on the coarsest scale. Because we have three orientations (h, v, d) we
will have three trees with the corresponsding subband on the coarsest level
as the root. To have a single tree we set the approximation image as the root
and the roots of the h,v and d tree as its children. Then for the construction
of the trees for each orientation Rajpoot gives the following rules:

1. Rule A: If a node P at a coarser scale is followed by a node C at the
immediately next finer scale (like in a wavelet transform), the node P
is declared as a parent of C (illustration: fig. 4.31a).

2. Rule B: If a node P is followed by four nodes C1, C2, C3 and C4 (at
the same scale), P is declared to be the parent of all these four nodes
(illustration: fig. 4.31b).

3. Rule C: If four nodes P1, P2, P3 and P4 at a coarser scale are followed by
four nodes C1, C2, C3 and C4 at the immediately next finer scale, then
node Pi is declared to be the parent of Ci (for i=1,2,3,4) (illustration:
fig. 4.31c).

4. Rule D: If a node P is at a finer scale than four of its children, say
C1, C2, C3 and C4, then P is disregarded as being the parent of all
these nodes and all this bunch is moved up in the tree (illustration: fig.
4.31d).

While the first three rules are pretty straight forward, the fourth rule is a
solution for the so called parenting conflict. Another, maybe simpler, solution
would be to just merge the conflicting children until the conflict disappears.
But we will not use this approach since it decreases the number of possible
wavelet packets and therefore reduces the keyspace for the embedding keys.

For our implementation of this approach we discard Rule C, since it is
a special case of Rule A. Furthermore the four given rules do not cover the
case where the offspring of a subband is two or more scales finer than the
subband. The procedure for creating the tree structure used for embedding
(we will call it hvd-tree) is as follows:

1. Begin with the approximation image and set the three associated detail
subbands as the hvd-children.

2. Build the hvd-base tree of the h, v and d orientation. This is the tree
as for the pyramidal decomposition. See figure 4.32.
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Figure 4.31: Rules for creating a hvd tree
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Figure 4.32: tree structure of the decomposition tree and the hvd base tree

3. For each of the three children of the approximation image (the roots
for a orientation) check if the node is a decomposition-leaf.

(a) If yes, no change in the tree structure is necessary and the hvd-
child of this node is checked (there can only be one child in this
stage of the tree creation).

(b) If no, then the node is deleted from the hvd-parents child list and
the decomposition-children of the node are appended to the child
list of the hvd-parent. Afterwards we will check for the case that
Rajpoot et al. [30, 31] do not cover in his approach. We will
call this rule E. This is done by checking if the child of the actual
node (this is the node which is not in the hvd-tree anymore) is
also decomposed.

i. If yes, rule C comes into effect (we use 4 times rule A, Ra-
jpoot would use rule C) and the decomposition-child x of the
hvd-child of the current node is appended to the child list of
decomposition child x of the current node, where x is ∈{a, h,
v, d}. This case is illustrated in figure 4.33 where node 2 is
the actual node to check. The dashed green line is the un-
linking because node 2 is not a leaf and the children of node
2 are linked to the node 1 (parent of node 2). The outgoing
links from the children of node 2 are the rule C links and rule
C comes into effect, because node 3 is also not a leaf. After
the relinking, rule E has to be checked for the hvd-child of the
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Figure 4.33: An example where rule C comes into effect during hvd tree
creation

current node. In the illustration this would be node 3, which
has to be checked.

ii. If no, rule E comes into effect. Then the hvd-child of the
current node has to appended to the hvd-children list of the
parent of the current node.

After the recursive relinking we carry out the leaf check for all the
elements in the hvd-child list of the hvd-parent of the current node
(this would be all children of node 1 in fig. 4.33). Actually only
the relinked children have to be checked, but because there are
rarely more children than the relinked ones we take into account
that we maybe do some redundant work. The alternative is that
we need to journalize all relinked children, what would be a bigger
effort than the first alternative.

4. After all the leaf checking is done, we still have to look out for rule
D occurrences. We recursively run through all nodes and check if the
decomposition level of the hvd-child node is bigger than the level of
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Figure 4.34: The two possible alternatives for rule E

the current node. If such an occurrence is found we climb up the tree
until we find a node with equal decomposition level like the children
and relink the children to this node.

There is also an alternative for rule E, in our case when the rule comes into
effect, the child node and all descendants are moved up in the tree. But it
could be, that a descendant is again compatible with the disregarded parent
node and could again be linked to this node. We take the first approach,
because in the second case the hvd tree has to be ripped up on two points.
Figure 4.34 shows the two alternatives.

For the integration of the wavelet packets into the algorithm of Pla et
al. we do a random wavelet packet decomposition with at most 4 level
decomposition depth and we ensure, that the approximation image is on
the coarsest scale. Then we create the hvd-tree with the method described
above and subsequently we calculate the activity image from the wavelet
packet tree. This is not very different from the original algorithm, since
the activity image has to be in the same size as the approximation image
is and uses the three detail subbands associated with the approximation
image for calculation. Because the approximation image always has to be on
the coarsest scale, the three detail subbands are on the same scale and the
activity image can be calculated with the procedure as proposed by Pla et al.
We embed the watermark into the 3 coarsest detail subbands and recursively
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Figure 4.35: PSNR and detection values when embedding multiple water-
marks with the algorithm of Pla et al. and random wavelet packets improve-
ment with different embedding strengths. watermarked image: Lena

into the children of a coefficient if the coefficient is above a threshold, like in
the original algorithm.

We have to embed with α=0.018 to gain an embedding PSNR of 42.24dB.
Below α=0.05 not all watermarks can be detected. Additionally to the de-
tection value fluctuations caused by the algorithm comes the unsteadyness of
the detection values from the quality of the wavelet packets. Generally the
detection values are lower with this approach compared to the unmodified
algorithm. In our experiment with 10 embedded watermarks (fig. 4.35c) the
detection values are very close to the threshold and even not all watermarks
can be extracted.

comparison

In figure 4.36 we have abbreviated the improvement techniques for better
readability, no improvement with “ni”, parametrized filters with “pf”, ran-
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Figure 4.36: comparison of the detection values of the different improvement
techniques on the algorithm of Pla et al.

dom coefficients with “rco”, random carriers with “rca” and wavelet packets
with “wp”. An appended “t” denotes the according threshold. Viewing
only the detection values random coefficient selection is by far the best solu-
tion. Also the random carrier modulation brings a little improvement. The
other two improvement approaches achieve a worse result than the original
algorithm. But again, very similar to the improvements of the algorithm of
Barni et al., considering also the threshold lowers the benefit of the random
coefficient selection technique because the threshold significantly rises. For
all other improvements the threshold decreases compared to the unmodified
algorithm. This increases the benefit of random carrier modulation. But
parametrized filters and random wabelet packets still fail to improve the
multiple watermarking qualities of the algorithm. We will have a closer look
on the impact of the changing thresholds in the next chapter (chap. 5).
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4.2.6 Wu

Like the other quantization based algorithm (by Chen et al.) we use in our
work, this algorithm is not capable of detecting multiple watermarks at all.
This gives much space for improvement and we will try to enable multiple
watermarking with our improvements. We will implement the parametrized
filters and the random coefficient selection improvement. Random carrier
modulation can not be applied here, because the algorithm is quantization
based. We will also not use the wavelet packets, because the algorithm needs
the child subbands to be at least as big as the parents (just like the hvd
trees, see section 4.2.5). If we adhere strictly to the proposed algorithm, the
child subbands needs to be exactly double the size of the parent subband.
Anyway, this reduces the number of possible wavelet packet decompositions
to a very small number, thus the approach is not applicable.

no improvement

We already know, that multiple watermarking does not work with this algo-
rithm. We carry out the experiments without improvements anyway to have
data for the comparison with the improved versions.

As already mentioned in section 3.7.4 and can again be seen in figure
4.37a the PSNR drops rather quickly in the first few embedding runs and
then, starting from approximately the fifth run, stays at a certain level.
We choose ∆ to be 9.5 and get an embedding PSNR of 40.02dB after the
tenth watermark. The detection value in fig. 4.37b and 4.37c is 1 for the last
embedded watermark but drops to approximately 0 for all other watermarks.
For the same reasons as with the algorithm of Chen et al., this is independent
of the embedding strength.

parametrized filters

For this improvement no changes have to be made to the algorithm, only the
generated filter has to be passed to the wavelet transform.

Figure 4.38a shows some differences to the PSNR characteristics of the
unimproved algorithm. First the PSNR does not stop to decrease when more
watermarks are embedded. This is, because further watermarks do not ex-
actly overwrite previous ones and so induce additional image distortion. Sec-
ond, even with ∆=0.01 it is not possible to keep the image distortion below
42dB when embedding 10 watermarks, the attained distortion is 34.85dB in
this case. In figure 4.38b we see that the average detection value is definitely
higher, but very similar to the improvement in combination with the other
algorithms some detection value glitches make the improvement not reliable.
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Figure 4.37: PSNR and detection values when embedding multiple water-
marks with the algorithm of Wu et al. with different embedding strengths.
watermarked image: Lena
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Figure 4.38: PSNR and detection values when embedding multiple water-
marks with the algorithm of Wu et al. and parametrized filters improvement
with different embedding strengths. watermarked image: Lena
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Figure 4.39: PSNR and detection values when embedding multiple water-
marks with the algorithm of Wu et al. and random coefficient selection
improvement with different embedding strengths. watermarked image: Lena

Another difference to the original algorithm is that the embedding strength
has a little more impact on the detection values. In section 3.7.3 we set the
threshold to 0.2. With this threshold all watermarks can be extracted in
figure 4.38c, although two watermarks are very close to the detection border
and we have to keep in mind, that the image is noticeably damaged because
of the inability of the algorithm to embed the watermark softer.

random coefficient selection

For this improvement technique we use the following procedure. First we
create the supertrees like in the unmodified version. Then we randomly select
as many supertrees as needed to embed the watermark. In our experiments
with a 512x512 image and a 3-level wavelet decomposition we have 3072
supertrees and use 512 of them to embed the watermark.

Like with the parametrized filters improvement the image quality is worse
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Figure 4.40: comparison of the detection values of the different improvement
techniques on the algorithm of Wu et al.

then 42dB after 10 embedded watermarks (see fig. 4.39a). With ∆=0.01 we
achieve an embedding PSNR of 38.22dB after the tenth watermark. The
PSNR is steadily decreasing for the 30 embedding runs, but not as much as
with the parametrized filters. Because the parametrized filters can produce
a large number of different filters and therefore a large number of embedding
spaces, the watermark induces more distortion than with the random coeffi-
cient selection. With the latter only 3072 supertrees are used for embedding.
The detection values in figure 4.39b show a clear improvement to the orig-
inal algorithm. Random coefficient selection also gives a more predictable
result than parametrized filters. With this approach the embedding strength
has no impact on the detection values. This is because when a collision oc-
curs by selecting the same supertree twice the previous watermark gets fully
overwritten and this is independent of the embedding strength. In the exper-
iment with 10 embedded watermarks (fig. 4.39c) the last seven watermarks
can detected and the watermark 3 is slightly below the threshold of 0.2.

comparison

The direct comparison of the original algorithm with the two improvement
techniques brings out that both approaches can significantly improve the
multiple watermarking capabilities. While the random coefficient selection
algorithm produces the more steady results it suffers from the small number
of supertrees to select from. The problem with the parametrized filters are
the “poor” wavelets, these wavelets are not “different” enough and so some
watermarks overwrite their predecessors, this is for example the watermark
29 which overwrites the watermark 28 in figure 4.38b. If we assume that the
different embedders do not know each other and so do not know the embed-
ding parameters there is no way to check if the embedding of a watermark
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overwrites a predecessor. The improvement technique has good potential,
but also a severe drawback with the “poor” wavelets.

We want to repeat that the practical applicability of multiple watermark-
ing with this algorithm is hardly given, because of the inability to maintain
a adequate image quality for a reasonable number of watermarks.



Chapter 5

New assessment criterion

As we have seen in the last chapter (e.g. in section 4.2.1 or section 4.2.5),
there were some ambiguities concerning the benefit of the different improve-
ment approaches in face of the varying threshold. In this chapter we use an
assessment criterion which takes account for this fact. In addition the new
criterion provides the possibility to define a threshold for every watermarking
algorithm independently of their internal structure.

5.1 How to evaluate the performance of a wa-

termark detector

In the previous chapters and also in most literature detection performance
of a watermarking algorithm (most times after some attack) is assessed by
its detector response. Unfortunately there is no common method for calcu-
lating the detector response. In most watermarking systems the correlation
coefficient or the normalized correlation or some form of linear correlation is
used, see [21]. The value of the linear correlation is strongly depending on
the image size and the image content and therefore the other two methods
are to prefer. The other two measures are in the range of -1 and 1.

But also compareing one of these two measures from different watermark-
ing algorithms or different improvements is not unproblematic, since a higher
detection value does not automatically mean that the watermark is “better”
detected. On the one hand if this is done with a single watermark and/or
a single image it could give misleading results because it is possible that a
specific watermark and/or image is well-suited or ill-suited for a watermark-
ing algorithm. Also the comparison of the mean of some detection runs with
different watermarks/images is not absolutely suitable.

Lets have a look on what the aim of a watermark detector is. Basically the

129
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Figure 5.1: Distribution of detection values for negative detections (h0) and
positive detections (h1)

detector should make no or least possible false detections. False detections
can be one of two cases:

• false positive: Here the watermark is detected by the detector whereas
no watermark or a watermark different from the embedded one is
present.

• false negative: In this case the detector can not detect the watermark
allthough the watermark is embedded in the image.

In other words the detector should safely distinguish between the embedded
watermark and other watermarks or no embedded watermark. To do this,
a decision threshold has to be defined. The threshold has to be chosen to
give the least false detection rate. Piva et al.[28] state, that by invoking the
central limit theorem the detection values are normally distributed for the
case where the watermark is embedded in the image and the case where the
watermark is absent or a false watermark is embedded. Piva et al. denote
the fact that the watermark is embedded in the image as hypothesis 1 and an
absent watermark as hypothesis 0. Therefore the distribution of the positive
detection values is called h1 and the distribution of the negative detection
values is called h0. Figure 5.1 shows the distribution of the detection values
and the threshold giving the smallest error rate.

Under this point of view it should be clear, that by only comparing the
mean of some detection runs it can not be said which detector is better
since the variance of the detection values is disregarded and the threshold
has not been taken into account. Figure 5.2 shows an example where one
positive-detection distribution (d2) has a higher mean value than an other
positive-detection distribution (d1) but a worse error rate due to the higher
variance of the distribution. This shows that it should not be the main target
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Figure 5.2: Example distributions where one distribution has a higher mean
value but a worse error rate

to have the detection values very high above the threshold but to have little
detection values below the threshold. For sake of simplicity figure 5.2 shows
one threshold for both distributions. In practice a separate threshold has to
be calculated for each watermarking algorithm.

This leads to the conclusion, that to accurately assess a watermark de-
tector one should not examine the detection value but the error rate.

Piva further states that it is the better choice to set the threshold closer to
the negative detections instead of the middle of the two cases, because attacks
do not affect the distribution of the detection values for negative detections
but the mean of positive-detection values will most likely be lowered while the
variance is increased. This does not give the best error rates under normal
circumstances but more robustness under attacks. In [28] the threshold is
chosen to give a fixed false positive rate and at the same time maximize the
robustness under attacks.

To compare two watermarking algorithms a threshold has to be chosen
e.g. similar to [28] and the overall error probability has to be calculated or if
the false positive rate is fixed the false negative rate can be used to compare
the watermarking algorithms.

5.2 experimental results

In this section we repeat the experiments of the last chapter with some
selected algorithms with the new assessment criterion. We have chosen not
to test the algorithms of Furon and Bas and the algorithm of Chen et al.
because we could achieve no or only little improvement and in the case of the
Broken Arrows algorithm the calculation of the threshold is independent of
the image content and the size of the image or the length of the watermark.
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The algorithm of Cao et al. is also not in the test because of the huge
computational effort. So we are going to test the algorithms of Barni et. al,
Pla et al. and Wu et al.

5.2.1 experiment setup

The detection value for all experiments is the mormalized correlation between
the embedded and the extracted watermark. This is

nc =

∑
i

ai bi∑
i

a2
i

∑
i

b2
i

.

The threshold is calculated to provide a given false positive rate (10−8). If
the overall error rate

err =
fpr + fnr

2

is higher than 10−8 (this is the case when the false negative rate is higher
than the false positive rate), then the threshold is set to have equal fpr
(false positive rate) and fnr (false negative rate). This is usually also the
threshold with the least possible error rate. Figure 5.3 is an illustration of
this case. T1 is the threshold where the false positive rate is 10−8, but the
positive detection values are too low and the threshold is far inside the h1
curve giving a very poor false negative rate. If that happens, the threshold
is shifted to the point indicated by T2, this is the point with equal fpr and
fnr.

The comparison of the different improvement techniques (fig. 5.5b, 5.7b
and 5.9b) is done by averaging the results over over 4 different images (Lena,
Baboon, Peppers, Boat) and 1000 runs each. In each run, different seeds
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for the watermark and for the improvement technique (e.g. seed for creating
parametrized wavelets) are used. The results for the specific improvement
approaches (fig. 5.6b-5.6e, 5.8b-5.8e, 5.10b-5.10c and 5.11) consist also of
1000 runs and a single image (Lena). We assume that the detection values are
normally distributed. Visual investigation of the detection values (see figure
5.4) and the chi-square test confirms this assumption. Figure 5.4 shows the
h1 distribution of a single watermark embedded with the algorithm of Pla et
al. (figure 5.6a). The histogram boxes are normalized to have an area of 1 like
the pdf of the distribution. For the chi-square test we use 20 cells so we get 17
degrees of freedom because we use 2 parameters to estimate the distribution.
For a significance level of 0.01 we get a bound of 33.41. The example from
above (fig. 5.4) has a chi-squared value of 27.1 which is below the bound of
33.41, so we can say the values are normally distributed. We calculate the
mean and the standard deviation of the detection values and use these values
as the parameters for the distribution. With the found distribution we can
now calculate the threshold and the error rate. As described above, we first
calculate the threshold with a given false positive rate. Therefor we calculate
the point where the cumulative distribution function (cdf) of h0 is 1− fpr.
If the false negative rate exceeds the false positive rate at this point, then
we calculate a new threshold. The new threshold is found by calculating
the point where fpr = fnr. Where the false positive rate is calculated by
fpr = 1−cdf(h0) and the false negative rate is calculated by fnr = cdf(h1).
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Figure 5.5: Pla results

5.2.2 Pla

Figure 5.5 shows us the comparison between the results when only the de-
tection value is considered and the new experiments where the improvement
approaches are assessed with the error rate. The abbrevations in figure 5.5a
are, “ni” for no improvement, “pf” for parametrized filters, “rco” for random
coefficients, “rca” for random carriers and “wp” for wavelet packets. An
appended “t” denotes the according threshold. In figure 5.5a it seems that
random coefficient selection is the best improvement technique followed by
the random carrier modulation and the other two, parametrized filters and
random wavelet packets, can not improve the algorithm. Furthermore the
detection values are very instable and no clear trend can be observed. In
figure 5.5b the results look very different. First the detection values are al-
most constant for all watermarks and second the ranking of the algorithms is
also different. Here no improvement approach can achieve better error rates.
Random carriers have the same error rate as the unimproved version, the
error rate of random coefficient selection and parametrized filters is a little
bit higher and wavelet packets have a much worse error rate. This confirms
the assumption that only looking at the detection value is not sufficient to
rate a watermarking algorithm. Altogether the error rate is always pretty
high when embedding 10 watermarks and heading for a PSNR of 42dB after
the 10th watermark.

We will now have a closer look on the case without improvement and the
case with random coefficient selection. This is the one with the best results
in the earlier experiments, but worse results when looking at the error rate.
The first figure (fig 5.6a) shows the distribution of detection values when only
one watermark is embedded. The threshold is set to give a false positive rate
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of 10−8 (t = 0.041) and the false negative rate is 0. To be exact the false
negative rate never reaches 0, but the computation with the precision of
python gives us 0.

In figures 5.6b and 5.6c we see the results when 10 watermarks are em-
bedded with the unimproved algorithm. The mean positive detection value is
very low, so that we can not reach an overall error rate of 10−8, so we choose
to set the threshold on the intersection between the h0 and the h1.10 (posi-
tive detection values for the 10th watermark) line. This gives a threshold of
approximately 0.014. The error rate is then approximately 0.028. Because
we choose to set the threshold to the point where fpr and fnr is equal and
thus the error rate is also equal to the fpr and fnr, only one line in figure 5.6b
is visible besides the threshold. In figures 5.6d and 5.6e, the mean positive
detection value is higher than with the unimproved algorithm, but also the
standard deviation for the false detection values and the positive detection
values. This makes the threshold rise and the error rate also increases. We
got a threshold of approximately 0.04 and an error rate of 0.042.

Both experiments, the one without improvement and the one with ran-
dom coefficient selection show that the error rate of the single watermarks
is almost independent of the order they are embedded. The first watermark
and the last watermark have almost the same error rate.
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Figure 5.6: Pla results
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Figure 5.7: Wu results

5.2.3 Wu

For the algorithm of Wu et al., the results of the experiments where only the
detection values are regarded (figure 5.7a) showed that both implemented
improvement techniques have much better values than the unimproved ver-
sion. This can be confirmed with the error rate experiments in figure 5.7b
and 5.7c. The detection value of the unimproved version is 0 for all but the
last watermark and the error rate is 0.5 in these cases. The detection values
of the two improved versions of the algorithm are higher for all watermarks,
this is reflected in a lower error rate in figures 5.7b and 5.7c.

We go into details for the unimproved version and the random coefficient
selection technique, like for the algorithm of Pla et al. Figure 5.8a shows the
distribution of the detection values for a single embedded watermark. Like
expected for quantization based algorithms, the detection values of the false
watermarks is around zero and the detection value for the correct watermark
is exactly 1. The threshold is set to provide a false positive rate of 10−8 and
the false negative rate is 0.

The results of the unimproved algorithm in figure 5.8b and 5.8c also do
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not give a surprise. The last embedded watermark has a detection value
of 1 and an error rate of 0. All other positive detection values have the
same distribution as the false detection values and an error rate of 0.5. More
interesting are the results in figure 5.8d and 5.8e. In figure 5.8e we can see
that the latest embedded watermark has the highest mean detection value
and this value is constantly decreasing with every further watermark. Figure
5.8d shows, that for the last 5 watermarks the threshold is set to give a
false positive rate of 10−8 and then the error rate can not be kept up, so the
threshold is lowered. The error rate is rather low for all watermarks.
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Figure 5.8: Wu results
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Figure 5.9: Barni results

5.2.4 Barni

In figure 5.9 the comparison between the results of the last chapter and the
results of the experiments on the error rate is shown. Figure 5.9a shows the
random coefficient selection approach to be the best, followed by the random
carrier modulation approach which could also achieve a little improvement.
For better readability we have abbreviated the improvement techniques in
this figure, no improvement with “ni”, parametrized filters with “pf”, random
coefficients with “rco”, random carriers with “rca” and wavelet packets with
“wp”. An appended “t” denotes the according threshold. On the other hand,
the results in figures 5.9b and 5.9c show, that no approach did improve the
detection value, because already the unimproved version had the best possible
error rate for all 10 watermarks. Like in the results of the last chapter,
random wavelet packets and parametrized filters are the worst approaches.
The experiments on the error rate even show, that the parametrized filters
are much worse than the unimproved algorithm and in figure 5.9c we can see
that random wavelet packets bring a little degradation also.

To have the possibility to evaluate different improvement approaches
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Figure 5.10: Barni results 1
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(d) Barni wavelet packets h0h1

Figure 5.11: Barni results 2
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improvement distance

random coefficients 0.227
no improvement 0.088
random carriers 0.085
wavelet packets 0.006
parametrized filters -0.057

Table 5.1: threshold distances for the different improvement approaches

which achieve 0 false negative rate with a given false positive rate we calcu-
late a second threshold with a given false negative rate (10−8) and calculate
the distance between the two thresholds. Both thresholds are shown in fig-
ures 5.10c-5.11d. The false positive threshold (fpt) is the one which provides
the given false positive rate and the false negative threshold (fnt) provides
the given false negative rate. Table 5.1 show the distances of the thresholds.
Detection values and threshold are calculated for the Lena image, like fig-
ures 5.10c-5.11d. Here only the parametrized filters approach has a negative
distance, which means that the error rate is grater than 10−8. The threshold
distance of the wavelet packets approach is positive, unlike in figures 5.9b
and 5.9c where the desired error rate can not be achieved. For figures 5.9b
and 5.9c all 4 images are taken into consideration. We can see that only
the random coefficient selection technique technique achieves better results
than the unimproved algorithm. The random carrier modulation is slightly
inferior to the original algorithm, random wavelet packets and parametrized
filters are much worse.

5.3 Conclusion 1

Our first concerns about the suitability of the error rate as quality measure
disapeared. The effect, that because of the very low standard deviation the
false negative rate is always 0 when the false positive rate is fixed only exists
when a single watermark is embedded. In case of multiple embedding the
differences between the watermarks is clearly observable (see figure 5.8e) and
also the error rate is not jumping from 0 to 0.5 (minimum to maximum) but
has a slope from 0 to some higher value (see figure 5.7c). For the case of
0 false negative rate with fixed false positive rate (e.g. figure 5.10b) we
use the difference between the false negative threshold and the false positive
threshold as a quality measure. This makes the error rate to a practical
quality measure.
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Error rates achieve in fact different results as the experiments only ob-
serving the detection values and in our opinion also the “more correct” ones.
Additionally it is now possible to define a threshold, either for a fixed false
positive rate or for the optimal error rate also for the algorithms which gave
no threshold calculation method in their paper. Due to the usage of a sin-
gle value for all algorithms it is possible to compare different algorithms.
This was problematic when only the correlation was used because different
correlation measures (i.e. linear correlation, normalized correlation, correla-
tion coefficient) were used and also for the same reason as with the different
improvement techniques (detection value variance). Because the detection
value does not always reflect the quality of the detection (this is clearly shown
in section 5.2.2 and figure 5.5 the error rate is to prefer over the detection
value. Furthermore, providing the possibility of setting a threshold in differ-
ent algorithms with the same properties (e.g. same false positive rate) and
in thereby making different algorithms or in our case different improvement
techniques comparable makes the error rate the even better measure.

Disadvantage of this benchmarking approach is the high computational
cost. If we take the Pla algorithm as an example it takes about 42.5 hours
to find the correct embedding strength and about 103 hours to find the h0
and h1 distribution parameters for the different improvement techniques on
a Xeon 2.33GHz. The implementation of the algorithm of Pla et al. is the
second fastest of all tested algorithms. The algorithm of Cao has the slowest
implementation and is approximately 30 times slower than the algorithm of
Pla. This would be a total computation time of approximately 4365 hours
(half a year).

5.4 Conclusion 2

In this chapter we tested 3 algorithms with the error rate as the assessment
criterion. It showed that, unlike in the last chapter, the algorithm of Pla et
al. can not be improved by our techniques. The algorithm of Wu et al., as the
only quantization based algorithm in the test, could greatly be improved. In
its base version the algorithm is not capable of multiple watermarking. With
the parametrized filters improvement the error rate is much better, but only
the last watermark can be extracted with the desired overall error rate of
10−8. With the other improvement approach, random coefficient selection,
the last 5 watermarks are extractable with the an error rate of less than 10−8.
For the algorithm of Barni et al. we had to employ a further quality measure
which can also be deduced from the distribution of the false and the positive
detection values. This is the distance of two threshold where one provides a
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given false positive rate and the other a given false negative rate. This was
necessary because already the unimproved algorithm had excellent multiple
watermarking qualities. The outcome was, that the algorithm can only be
improved by the random coefficient selection approach.
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Chapter 6

Summary

Target of this work was to evaluate the possibility to embed multiple water-
marks in a single image with the use of blind, robust watermaking algorithms.
The assumed scenario was that the watermarks are successively embedded
by different embedders (e.g. for distribution chain tracking) which do not
know each other, i.e. can not exchange information which each other.

We have first chosen some algorithms and tested their basic performance
in terms of robustness and multiple watermarking. For the choice of the
algorithms we took care, that they are fairly different to see the impact
of the improvement approaches on many different watermarking techniques.
The watermarking techniques included additive and quantization based algo-
rithms, embedding in trees of coefficients, embedding in the RDWT domain
and different visual masking techniques. For the robustness tests we em-
ployed jpeg and jpeg200 compression, geometrical transforms and different
image manipulation operations.

The main part was to test the effectiveness of different improvement ap-
proaches. The basic problem with multiple watermark is that the watermarks
interfere with each other, this leads to mutual erasure. The improvement ap-
proaches attempt to mitigate the interferences. We have implemented 4 dif-
ferent improvements: parametrized filters decomposition, random coefficient
selection, random carrier modulation and random wavelet packet structure
decomposition. We carried out the tests by embedding a number of water-
marks and then checking the detection values of the different watermarks.
The result was that random coefficient selection seems to be the best choice
for improvement. Wavelet packets are not an adequate way of improvement
for any algorithm. This is either because in spite of the different wavelet
packet structures the watermark is embedded in the same locations because
of the embedding technique or the wavelet packets are not different enough.
Random carrier modulation and parametrized filters bring small improve-
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ments with some algorithms. We could notice, that for the algorithms which
gave a threshold calculation algorithm, the threshold is not constant over the
different improvement approaches. So we developed a different assessment
criterion which takes this fact into account.

The problem when evaluating the detection value or the mean of some
detection values is that these values can vary more or less. So we estimated
the distribution of the detection value for false detections and the detection
values for correct detections to be normally distributed. From these normal
distributions we can calculate a threshold for a given false positive and a
given false negative rate. For the evaluation of the detection performance we
use the overall error rate or in case of very low error rates we use the distance
of the two thresholds as a measure. Applying this assessment criterion we
reevaluated selected algorithms. The outcome was, that in fact the evaluation
with only the detection values is not very well suited. The result of the
distribution experiments was fairly different to the results with the detection
value of some algorithms. E.g. random carrier modulation turned out to be
ineffective for all algorithms and also the benefit of the random coefficient
selection was lowered for the algorithm of Pla et al. Because the main interest
in watermarking algorithms is the correctness of the algorithm, i.e. a small
error rate and not a high detection value the assessment with the error rate
is the better choice. Additionally the consideration of the distribution of
the detection values allows us to define a threshold for every algorithm. For
this threshold a false positive or false negative rate can be freely chosen and
thus allows the comparison of different algorithms or in our case different
improvement approaches.

Finally it can be said that some algorithms can be used for multiple
embedding without improvement. But none of the quantization based wa-
termarking algorithms are suited for multiple watermarking. Random coeffi-
cient selection turned out to be the best improvement approach of all in our
test. Almost all algorithms could be improved, sometimes even significantly.
Parametrized filters suffer from the ill-suited wavelets and the problem of
“similar” wavelets. Random wavelet packet structures are sometimes diffi-
cult or even impossible to integrate in the algorithm and can not achieve
any improvement in most cases. Also random carrier modulation can not
always be applied and can not provide the desired results. Especially quanti-
zation based algorithms, which are usually completely unsuitable for multiple
watermarking can be improved to a considerable extent by some approaches.
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6.1 Future work

Possible future work can include the research for an algorithm to generate
wavelet packet decomposition structures which have a certain distance to
each other even if the other structures are said to be unknown.

Because the parametrized filters improvement technique has a similar
problem regarding the similarity of the generated wavelets a topic of future
research can be the developement of a distance metric regarding the multiple
watermarking results for the wavelets and based on that metric a selection
rule for the parameters.

A drawback of the error rate assessment criterion is the huge computa-
tional cost. Especially when different images are used and because of the
many runs which are needed to get the parameters for embedding and for
the distributions of the detection values. Investigations on the number of
runs needed to get the correct parameters can mitigate this problem.



150 CHAPTER 6. SUMMARY



Appendix A

Software tools

This chapter lists the software tools I used during my master thesis.

• Python: most of the software I developed for my master thesis is written
in python - http://www.python.org/

– NumPy (http://numpy.scipy.org/): package for array manipula-
tion

– SciPy (http://www.scipy.org/): numerical calculations (and lots
of other stuff I did not use)

– PyWavelets (http://wavelets.scipy.org/): a python package for
wavelet transform

– Psyco (http://psyco.sourceforge.net/): specializing compiler

– Phyton Imaging Library (PIL)
(http://www.pythonware.com/products/pil/): reads, writes and
modifies images

– Epydoc (http://epydoc.sourceforge.net/): Automatic API docu-
mentation generator for Python

• Eclipse (http://www.eclipse.org/): Integrated developement environ-
ment

– Pydev (http://pydev.sourceforge.net/): Eclipse plugin for Python

• Image Magick (http://www.imagemagick.org/): command line image
manipulation tool

• Gnuplot (http://www.gnuplot.info/): command line data plotting util-
ity
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• Ipe (http://tclab.kaist.ac.kr/ipe/): vector graphics editor with the fea-
ture, that text can be entered as TeX code

• TeX Live (http://tug.org/texlive/): a TeX distribution

• Kile (http://kile.sourceforge.net/): TeX editor for KDE

• Gentoo Linux (http://www.gentoo.org/): Linux distribution

• and many more open source software tools
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Pywmtk

Pywmtk (PYthon WaterMarking ToolKit) is a collection of watermarking
algorithms and useful tools around watermarking which I developed during
my master thesis. I used the toolkit as a Python package and so the whole
functionality is only available through python. Although I added a command
line interface from which the implemented watermarking algorithms can be
invoked. The prerequisites (section B.1) applies to both, usage instructions
for the Python interface can be found in section B.2 and the instructions for
the command line interface are in section B.3.

B.1 Prerequisites and limitations

Pywmtk needs the following packages to be installed. The versions in brack-
ets are the ones I used and which definitely work, but others may work too.

• Python (2.5.4) - http://www.python.org/

• NumPy (1.2.1) - http://numpy.scipy.org/

• SciPy (0.7.0) - http://www.scipy.org/

• PyWavelets (0.1.7) - http://wavelets.scipy.org/ - the currently latest
official release (0.1.6) should also work

• Phyton Imaging Library (1.1.6) -
http://www.pythonware.com/products/pil/

You also may want to install

• Psyco - http://psyco.sourceforge.net/
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which is not mandatory but speeds up the execution of the scripts.

All algorithms read and write images through the PIL library, so for a list
of supported image formats, see the documentation of your PIL installation.
You can use portable grey map images (.pgm) for instance. All algorithms
are implemented using only quadratic, grey level images where the side length
is a power of 2.

The toolkit is developed and tested under Linux, I do not know if it
works under other operating systems or what is necessary to make it run
under other operating systems.

B.2 Usage - Python

To use the pywmtk package you have to put the pywmtk folder from the src
directory somewhere in your PYTHONPATH or you put the script you want
to develope into the src directory. You do not need the scripts which are
currently in the src directory, they are only for the command line interface.
To use a watermarking algorithm you need to import the according module.
E.g.:

from pywmtk.watermarkingAlgorithms import pla

and then call some function from it, e.g.:

markedArray = pla.embed(<plainArray>, <watermark>)

The pywmtk package is divided into several subpackages:

• experiments: the experiments I carried out for my master thesis. The
modules herein will probably be of no use for you, but you can inspect
the code to see how the other modules are interfaced.

• test: If you are looking for examples, this is the place to go. water-
markTest.py contains complete embedding and detection examples for
all watermarking algorithms, wavetransTest.py contains examples for
the python implemented wavelet transformation.

• tools: useful stuff for watermarking and wavelet transformation

• watermarkingAlgorithms: contains all implemented watermarking al-
gorithms
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• wavelet: package for wavelet transformation, including wavelet packet
transformation, stationary wavelet transformation and parametrized
filter generation. Be aware, that the dwt and swt are implemented in
pure Python and therefore are rather slow. For the dwt you should
better use the wavelet transformation from the PyWavelets package.

Every watermarking algorithm contains an embed and a detect function,
additionally there can be a generateWatermark and/or a generateThreshold
function. Since many watermarking algorithms need the watermark in a
specific length or shape and the coefficients to be specific numerical values
the generateWatermark function takes a seed which is the information you
can embed. The generateWatermark function can be seen as a mapping
function from your chosen watermark (seed) to the watermark which is finally
embedded. The embed and detect functions need at least the source image as
a numpy array and a watermark (e.g. from the generateWatermark function)
as parameters. If the threshold calculation is described in the according paper
of the algorithm, this is implemented in the generateThreshold function. The
modules can contain some more functions which are used during the embed
or detect procedure or which are improved or alternative versions of the
algorithm or provide specific tools for this algorithm (e.g. statistical analysis
or visualization of parts of the algorithm).

The Broken Arrows algorithm is a modified version of the original algo-
rithm of Teddy Furon and Patrick Bas. The Pywmtk interfaces the algorithm
through os calls and therefore relies on the relative path to the executables.
So the BrokenArrows folder has to be in the same directory as the src direc-
tory or the path has to adapted in the brokenArrows.py module.

For more information consult the API documentation which can be found
in the doc directory.

B.3 Usage - Command line

To run a watermarking algorithm the prerequisites (see section B.1) have to
be satisfied. Then call the appropriate script in the src directory, e.g.:

python pla_embed.py 123 lena.pgm marked.lena.pgm

All scripts belonging to one algorithm start with the algorithm name (e.g.
pla). If the watermarking algorithm needs the watermark in a specific length
or shape and the coefficients to be specific numerical values a script called
<algorithm name> generateWm is available. The generateWm script takes
a seed which is the information you can embed. The generateWm script
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can be seen as a mapping function from your chosen watermark (seed) to
the watermark which is finally embedded. The generated watermark can be
used to be embedded with the <algorithm name> embed script. Watermark
detection is done with the <algorithm name> detect script. If the thresh-
old calculation is described in the according paper of the algorithm, this is
implemented in the <algorithm name> threshold function.

All scripts have a usage description and information on the arguments
and options which can be accessed with the -h option.

The command line interface does not provide the full functionality of the
algorithms and their modifications I implemented, but is capable of embed-
ding and extracting with the most common parameters.

Additional scripts are:

• psycoTest.py: tells you if Psyco is installed and working

• diff image: creates the difference image between two images

B.4 Legal Notice

A modified version of the Broken Arrows algorithm is distributed with the
Pywmtk. This part of the software is governed by the CeCILL license, which
can be obtained from http://www.cecill.info. A copy of the license is also
contained in the BrokenArrows folder (Licence CeCILL V2-en.txt). The li-
cense commits me to say: you should read it, especially articles 8 and 9. So
read it.

The pywmtk package is distributed under the following license:

This material is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any particular
purpose or works at all.

The material is prepared strictly for research use only, commercial use is
prohibited. Do not distribute the material without written permission. If
you publish any work based on this code, please cite the original paper.
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attacked images

This chapter shows some attacked Images to get an impression of which
distortions are added to the images.
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C.1 jpeg compression

(a) original image (b) quality=80%

(c) quality=50% (d) quality=30%

(e) quality=10% (f) quality=5%

Figure C.1: jpeg compressed Lena with different qualities
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C.2 jpeg2000 compression

(a) original image (b) rate=1

(c) rate=0.5 (d) rate=0.2

(e) rate=0.1 (f) rate=0.01

Figure C.2: jpeg2000 compressed Lena with different rates
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C.3 median filtering

(a) original image (b) radius=1

(c) radius=2 (d) radius=3

(e) radius=5 (f) radius=10

Figure C.3: median filtered Lena with different radii
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C.4 moise adding

(a) original image (b) sigma=1

(c) sigma=5 (d) sigma=10

(e) sigma=20 (f) sigma=50

Figure C.4: Lena with added noise with different sigma



162 APPENDIX C. ATTACKED IMAGES

C.5 gamma correction

(a) original image (b) gamma=01

(c) gamma=05 (d) gamma=2

(e) gamma=10 (f) gamma=20

Figure C.5: gamma corrected Lena with different gamma
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C.6 translation

(a) original image (b) length=1

(c) length=5 (d) length=10

(e) length=50 (f) length=100

Figure C.6: translated Lena with different length
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C.7 rotation

(a) original image (b) angle=1

(c) angle=5 (d) angle=10

Figure C.7: rotated Lena with different angles



Bibliography

[1] M. Barni and F. Bartolini. Watermarking Systems Engineering. Marcel
Dekker, 2004.

[2] Mauro Barni, Franco Bartolini, and Alessandro Piva. Improved wavelet-
based watermarking through pixel-wise masking. IEEE Transactions on
Image Processing, 10(5):783–791, May 2001.

[3] Franco Bartolini, Mauro Barni, Vito Cappellini, and Alessandro Piva.
Mask building for perceptually hiding frequency embedded watermarks.
In Proceedings of the IEEE International Conference on Image Process-
ing (ICIP’98), volume 1, pages 450–454, Chicago, IL, USA, October
1998.

[4] Roberto Caldelli, Mauro Barni, Franco Bartolini, and Alessandro Piva.
Geometric-invariant robust watermarking through constellation match-
ing in the frequency domain. In Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP’00), Vancouver, Canada,
September 2000.

[5] J.-G. Cao, J. Fowler, and N. Younan. An image-adaptive watermark
based on a redundant wavelet transform. In Proceedings of the IEEE In-
ternational Conference on Image Processing (ICIP’01), volume 2, pages
277–280, Thessaloniki, Greece, October 2001.

[6] Tung-Shou Chen, Jeanne Chen, and Jian-Guo Chen. A simple and effi-
cient watermark technique based on JPEG2000 codec. ACM Multimedia
Systems Journal, 10(1):16–26, June 2004.

[7] M. El Choubassi and P. Moulin. On the fundamental tradeoff be-
tween watermark detection performance and robustness against sensitiv-
ity analysis attacks. In Edward J. Delp and Ping W. Wong, editors, Se-
curity, Steganography, and Watermarking of Multimedia Contents VIII,
volume 6072 of Proceedings of SPIE, pages 575–586. SPIE, January 2006.

165



166 BIBLIOGRAPHY

[8] Charilaos Christopoulos, Athanassios N. Skodras, and Touradj
Ebrahimi. The JPEG2000 still image coding system: an overwiew.
IEEE Transactions on Consumer Electronics, 46(4):1103–1127, Novem-
ber 2000.

[9] Mac A. Cody. The fast wavelet transform — beyond fourier transforms.
Dr. Dobb’s Journal of Software Tools, 15(4), April 1992.

[10] R. R. Coifman, Y. Meyer, S. Quake, and Mladen Victor Wickerhauser.
Entropy based algorithms for best basis selections. IEEE Transactions
on Information Theory, 38(2):713–718, March 1992.

[11] Ingemar J. Cox, Matthew L. Miller, Jeffrey A. Bloom, Jessica Fridrich,
and Ton Kalker. Digital Watermarking and Steganography. Morgan
Kaufmann, 2007.

[12] S. Craver and J. Yu. Reverse-engineering a detector with false-alarms.
In Edward J. Delp and Ping W. Wong, editors, Security, Steganography,
and Watermarking of Multimedia Contents IX, volume 6505 of Proceed-
ings of SPIE, San Jose, CA, USA, January 2007. SPIE.

[13] Ingrid Daubechies. Ten Lectures on Wavelets. Number 61 in CBMS-
NSF Series in Applied Mathematics. SIAM Press, Philadelphia, PA,
USA, 1992.

[14] Werner Dietl. Improving the security of wavelet-based watermarking
systems. Master’s thesis, University of Salzburg, Department of Scien-
tific Computing, December 2002.

[15] Rakesh Dugad, Krishna Ratakonda, and Narendra Ahuja. A new
wavelet-based scheme for watermarking images. In Proceedings of the
IEEE International Conference on Image Processing (ICIP’98), vol-
ume 2, pages 419–423, Chicago, IL, USA, October 1998.

[16] Dominik Engel. Media Encryption for Still Visual Data – An Analysis
of Selected Techniques for Natural Images and Fingerprint Data in the
Spatial and Wavelet Domain. PhD thesis, Department of Computer
Sciences, University of Salzburg, Austria, June 2008.

[17] Teddy Furon and Patrick Bas. Broken arrows. EURASIP Journal on
Information Security, August 2008. ID 597040.

[18] A.S. Lewis and G. Knowles. Image compression using the 2-D wavelet
transform. IEEE Trans. on Image Process., 1(2):244–250, April 1992.



BIBLIOGRAPHY 167

[19] S. Mallat. A wavelet tour of signal processing. Academic Press, 1997.

[20] Neri Merhav and Erez Sabbag. Optimal watermark embedding and de-
tection strategies under limited detection resources. IEEE Transactions
on Information Theory, 54(1):255–274, January 2008.

[21] Matthew L. Miller and Jeffrey A. Bloom. Computing the probability of
false watermark detection. In Andreas Pfitzmann, editor, Proceedings of
the 3rd Information Hiding Workshop ’99, volume 1768, pages 146–158,
Dresden, Germany, October 1999. Springer.

[22] Matthew L. Miller, Jeffrey A. Bloom, and Ingemar J. Cox. Informed
embedding: exploiting image and detector information during water-
mark insertion. In Proceedings of the IEEE International Conference on
Image Processing (ICIP’00), Vancouver, Canada, October 2000.

[23] Frederick C. Mintzer, L. E. Boyle, A. N. Cazes, B. S. Christian, S. C.
Cox, F. P. Giordano, Henry M. Gladney, Jong Chan Lee, M. L. Kel-
manson, A. C. Lirani, Karen A. Magerlein, A. M. B. Pavani, and Fabio
Schiattarella. Toward on-line, worldwide access to vatican library ma-
terials. IBM Journal of Research & Development, 40(2), 1995.

[24] Frederick C. Mintzer and Gordon W. Braudaway. If one watermark
is good, are more better? In Proceedings of the 1999 International
Conference on Acoustics, Speech and Signal Processing (ICASSP’99),
volume 4, pages 2067–2070, Phoenix, AZ, USA, March 1999.

[25] Frederick C. Mintzer, Gordon W. Braudaway, and Minerva M. Yeung.
Effective and ineffective digital watermarks. In Proceedings of the IEEE
International Conference on Image Processing (ICIP’97), volume 3,
page 9, Santa Barbara, California, USA, October 1997.

[26] Stephane Pateux and Gaetan Le Guelvouit. Practical watermarking
scheme based on wide spread spectrum and game theory. Signal Pro-
cessing: Image Communication, 18(4):283–296, April 2003.

[27] Shelby Pereira and Thierry Pun. Robust template matching for affine
resistant image watermarks. IEEE Transactions on image processing,
9(6):1123–1129, June 2000.

[28] Alessandro Piva, Mauro Barni, Franco Bartolini, and Vito Cappellini.
Threshold selection for correlation-based watermark detection. In Pro-
ceedings of COST International Workshop on Intelligent Communica-
tions, pages 67–72, L’Aquila, Italy, June 1998.



168 BIBLIOGRAPHY

[29] Oriol Guitart Pla, Eugene T. Lin, and Edward J. Delp. A wavelet
watermarking algorithm based on a tree structure. In Edward J. Delp
and Ping W. Wong, editors, Security, Steganography, and Watermarking
of Multimedia Contents VI, volume 5306 of Proceedings of SPIE, pages
571–580, San Jose, CA, USA, January 2004. SPIE.

[30] N. M. Rajpoot, Francois G. Meyer, R. G. Wilson, and R. R. Coifman.
On zerotree quantization for embedded wavelet packet image coding. In
Proceedings of the IEEE International Conference on Image Processing
(ICIP’99), Kobe, Japan, October 1999.

[31] Nasir Rajpoot, Francois Meyer, Roland Wilson, and Ronald Coifman.
Progressive wavelet packet image coding using compatible zerotree quan-
tization. Technical report, Department of Computer Science, Yale Uni-
versity, USA, September 1999.

[32] J. Schneid and S. Pittner. On the parametrization of the coefficients
of dilation equations for compactly supported wavelets. Computing,
51:165–173, May 1993.

[33] Nicholas Paul Sheppard, Reihaneh Safavi-Naini, and Philip Ogunbona.
On multiple watermarking. In Proceedings of the 9th ACM Multimedia
2001 Conference, pages 3–6, Ottawa, Ontario, Canada, September 2001.
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