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Abstract

Image alignment or registration is needed for many

tasks. Conventional techniques are based on the image

content. For forensic purposes where the characteristics

of the image sensor itself are investigated, alignment has

to be done based on the pixel grid the sensor used to cap-

ture the images. Biometric sensor analysis is one example

for which this kind of alignment is needed. Our method

utilises the photo response non uniformity (PRNU) finger-

print of the biometric sensor to align the images. At first

the PRNU noise residual is extracted and enhanced. Then

the shifts of the images are corrected by determining peaks

in the normalised cross correlation results of the individual

images. One possible use case where such aligned images

are needed is the detection of sensor ageing related pixel

defects in the scope of the biometric template ageing phe-

nomenon but our approach can be useful for many other

tasks in the field of biometric sensor analysis.

1. Introduction

Image registration or alignment describes the process of

transforming various images into a common coordinate sys-

tem. Alignment of images is needed for many different pur-

poses, not only in 2D but also in 3D. Examples are med-

ical applications, biological imaging, computer vision and

analysing satellite images. Alignment is necessary in order

to be able to compare the data in different images. There

is extensive literature [3, 13, 19] about different image reg-

istration techniques. Image registration algorithms can be

classified into feature-based and intensity-based ones. They

can be further classified into spatial domain and frequency

domain methods. All of these methods have one thing in

common: the alignment is somehow based on the image

content. Image content in this case means the physical

structures which are depicted in the images, e.g. a brain

in medical images or objects in computer vision. Each im-

age registration approach tries to extract features from the

images, representing the image content and match the fea-

ture sets to find the correct correspondences between differ-

ent images. The main purpose for doing image alignment

or registration is analysis of the image data in form of the

image content and thus all these methods are based on the

image content to provide meaningful comparison results.

Image alignment, however, is needed in other applica-

tion domains, e.g. in the context of biometrics if it comes to

biometric sensor analysis, including analysis of the image

sensor’s characteristics with respect to different acquisition

conditions, like stability, linearity of the output signal, etc.

One specific application scenario is image sensor ageing in-

vestigation in the scope of the biometric template ageing

phenomenon. This requires the detection and tracing of de-

fective pixels inside the images. In a more general con-

text image sensor analysis belongs to forensic image analy-

sis which includes e.g. sensor identification/fingerprinting,

forgery detection, tampering detection, device linking and

image source identification [7]. In contrast to the con-

ventional image registration techniques, in forensic image

alignment the common coordinate system is the pixel grid

originally used by the sensor at the time the image was ac-

quired. The information at a certain pixel position inside the

image has to originate from the same physical pixel on the

image sensor grid in every image, which is totally different

to aligning an image based on its content where the absolute

pixel positions are not relevant. As we are working in the

field of image sensor ageing in the context of biometric tem-

plate ageing we needed a method to align images according

to the physical pixel grid of the image sensor. After thor-

ough literature research we were not able to find a suitable

approach thus we decided to design our own one in order to

do our image sensor ageing analysis.

Our image alignment approach is based on the photo-

response non-uniformity (PRNU) which is an intrinsic

property of each image sensor. Goljan and Fridrich pro-

posed an approach for device identification from cropped

and scaled pictures [8]. They use a brute force search to find

the right scaling factor and the normalised cross correlation

(NCC) to find the cropping parameters. We slightly mod-

ified their approach and use it for a different task, namely

to do image alignment in the context of biometric sensor

analysis. After extracting the noise residual from every im-



age, the PRNU fingerprint of the image sensor is estimated.

Based on this estimation all images are aligned according

to one reference image. For alignment we use the NCC be-

tween the PRNU fingerprint of the sensor and the test image

but in contrast to Goljan and Fridrich we use the maximum

correlation value directly instead of the Peak to Correlation

Energy (PCE) measure as it provided better results. PCE

failed in correctly (pixel accurate) detecting the shifts.

The rest of this paper is organised as follows: Section 2

describes our PRNU based image alignment approach. Sec-

tion 3 explains the performance evaluation using different

biometric datasets. Section 4 provides an example use case

- the detection of defective pixels in the images of the ND-

Iris-Template-Aging-2008-2010 DB [1] which required im-

age alignment in advance. Section 5 concludes this work.

2. PRNU Based Image Alignment

At first this section outlines the difference between

conventional image alignment and the type of alignment

needed in sensor forensics. Afterwards our image align-

ment approach based on the PRNU is explained. We follow

the methodology of Goljan and Fridrich [8]. The extrac-

tion of the PRNU noise residuals, the PRNU enhancement

and the estimation of the sensor’s PRNU fingerprint are de-

scribed. Then the estimation of the shifts using normalised

cross correlation and the alignment of the images based on

these estimations are explained.

2.1. Conventional Image Alignment

The main purpose of conventional image alignment or

registration is aligning images based on the image content

in order to be able to analyse data extracted from the im-

age’s content. An example are medical images which have

to be aligned according to the body parts that are depicted in

order to do measurements and comparisons. The alignment

process tries to find some landmarks or feature points in

both images and establish correspondences between these

points. Based on these correspondences the parameters of

a (affine) transformation are estimated and the images are

aligned such that the body part of interest is located at the

same pixel position in each of the images. Another example

from iris recognition can be seen in Figure 1 where the im-

ages are aligned in a way that the centre of the iris is located

approximately in the centre of the image (images fromND-

Iris-Template-Aging-2008-2010 DB [1]).

2.2. Image Alignment for Biometric Sensor Analysis

Image alignment in sensor forensic context is different

from conventional image alignment as it is not based on the

image content but on the physical pixel grid of the image

sensor itself. The aligned images have to be aligned such

that a certain pixel in each image originates from the same

pixel located at the physical sensor grid. Figure 2 shows an

Figure 1. Iris image alignment based on the image content (iris

centered)

(1,1)

(10,10)

Sensor

Grid

(1,1)

(10,10)

Image

Grid

(1,1)

(10,10)

(1,1)

(5,7)

Shift by

(-5,-3)

(6,4)

(6,4) (6,4)

Figure 2. Shifted images with corresponding physical sensor grid

pixel relations

example. In an unshifted image, pixel (1, 1) in the image

corresponds to pixel (1, 1) on the physical sensor grid. If

the image is now shifted 5 pixels to the left and 3 pixels

up, pixel (1, 1) in the image corresponds to pixel (6, 4) on

the sensor grid. (x, y) denotes the x- and y-position of the

pixel, respectively.

Alignment of images based on the physical sensor grid

cannot be done based on the image content as the con-

tent is not intrinsically related to the physical sensor grid.

Suitable features that are inseparably linked to the physi-

cal pixel grid of the sensor and thus to the image sensor it-

self have to be used. The photo-response non-uniformity,

also called PRNU is well known in the context of digi-

tal image forensics [7]. It represents a noise-like pattern

which is an intrinsic property of all digital image sensors

and results from slight variations in the sensitivity of indi-

vidual pixels to photons of the incoming light due to im-



Figure 3. Example PRNU noise residuals

perfections in the manufacturing process. The PRNU is

unique to each sensor, it is universal, i.e. every sensor has

a PRNU, it is stable under a wide range of capturing con-

ditions and it survives typical image processing operations

(i.e. operations preserving the visual image quality) like

lossy compression, filtering and white balance. Compres-

sion, scaling and low-pass filtering attenuate the PRNU but

it does not completely disappear and can still be extracted.

PRNU enhancement for these scenarios has been discussed

thourougly in the PRNU-related forensic literature. The ex-

traction of the PRNU is relatively easy using a denoising fil-

ter and a maximum likelihood approach if several images of

the same sensor are available. PRNU based features can be

utilised to do image alignment based on the physical pixel

grid of the image sensor. Figure 3 shows some example

PRNU noise residuals from two images taken by the same

iris sensor (without shifts).

2.3. PRNU Extraction

The estimation of the PRNU fingerprint (where WI is the

noise residual or PRNU fingerprint of a single image and K
is the PRNU fingerprint of the sensor) is done using the al-

gorithm described by J. Fridrich [7]. The PRNU is basically

noise which is introduced during the image acquisition pro-

cess before the image is quantised or further processed. The

following model describes the image sensor’s output:

I = gγ · [(1 +K)Y +Ω]γ +Q

where I is the quantised sensor output signal, Y is the

incident light intensity, g is the gain factor and γ a correc-

tion factor, typically different for each colour channel. K is

a zero-mean noise-like signal representing the PRNU, Ω in-

corporates noise from other noise sources like dark current,

shot noise and read-out noise and Q is the combined distor-

tion resulting from quantization and/or JPEG compression.

Y is the dominant term. By factoring out and keeping the

first two parts of the Taylor series expansion we get:

I = (gY )γ · (1 + γK + γΩ/Y ) +Q = I(0) + I(0)K +Θ

where we denote I(0) = (gY )γ as the ideal sensor output

if there is neither noise nor any imperfections. I(0)K is the

PRNU term and Θ = γI(0)Ω/Y + Q models the noise.

The SNR of the signal of interest which is the PRNU term

I(0)K and the image I can be improved by suppressing the

noiseless image I(0) through subtracting a denoised version

of I , Î(0) = F (I) from both sides of the above equation

using a suitable denoising filter:

WI = I − F (I)

where F is a denoising filter, filtering out the sensor pat-

tern noise. WI is denoted as the noise residual of an im-

age I . To extract the PRNU fingerprint, at first this noise

residual is estimated. In this work we utilised the BM3D

[5] denoising filter and the Wavelet-based denoising filter

as described in Appendix A of [12] as they operate fast and

produce good results in extracting the PRNU. Due to the na-

ture of the PRNU it mostly covers the high frequency com-

ponents of the image I . Thus it interferes with other high

frequency components resulting from the image content it-

self, e.g. edges and fine structures. These lead to a less ac-

curate estimation of the PRNU. J. Fridrich proposes to use

images with a high luminance and smooth image content to

calculate the PRNU in order to achieve a higher estimation

accuracy. The accuracy also gets higher if not only one im-

age is used to extract the PRNU but several images taken by

the same sensor. The PRNU fingerprint K̂ of a sensor can

then be estimated using the maximum likelihood principle

for images Ii with i = 1...N :

K̂ =

∑N

i=1 W
i
II

i

∑N

i=1(I
i)2

Note that K̂ contains all components that are system-

atically present in every images, i.e. artefacts introduced

by JPEG compression, signal transfer and colour interpo-

lation. While the PRNU is unique these artefacts may be

shared among cameras of the same model. These artefacts

are mainly periodic signals which can be suppressed as orig-

inally described by J. Fridrich [7]. In order to improve the

results, the PRNU noise residual K̂ is then normalised in

respect to the L2-norm and a zero mean operation is ap-

plied. To suppress the periodic artifacts a Wiener filtering

is performed in the Discrete Fourier Transform (DFT) do-

main. To further improve the results we apply a PRNU en-

hancement approach which aims at filtering out scene de-

tails using the following idea: Scene details contribute to

the very strong signal components in the wavelet domain,

so the stronger a signal component in the wavelet domain,

the more it should be attenuated. The PRNU is transformed

into the discrete wavelet transform (DWT) domain, where

the enhancement function ELi, corresponding to the Model

3 proposed in [11] is applied to the coefficients. Afterwards

the resulting coefficients are transformed back into the spa-

tial domain by performing an inverse DWT (IDWT).

2.4. Image Alignment

As mentioned in the introduction the aim of our image

alignment approach is not to align images according to the



image content but according to the original pixel grid as

captured by the sensor. This type of alignment can be used

for forensic purposes, like biometric sensor analysis, in our

presented example the detection of defective pixels caused

by sensor ageing, which is explained in section 4. Let us

assume that we have N shifted images, all acquired using

the same sensor. The images all have the same dimension,

i.e. w × h pixels. The first step is the representation of

each image I by its PRNU fingerprint WI . Therefore the

PRNU noise residual is extracted using the approach de-

scribed above. The next step is the estimation of the sen-

sor’s PRNU fingerprint K̂. As the images are shifted by un-

known shifts in x- and y-direction we cannot simply use all

the images and calculate the maximum likelihood estimate.

We have to find some images which are already aligned and

use them as a starting point. This is done by calculating

the normalised cross correlation (NCC) between the PRNU

fingerprint of the I-th image II and all other images IJ for

J = 1...N, J 6= I:

ρ[J,WI ] = NCC(WJ , JWI)

where ρ is the correlation between the PRNU residual

WJ of image J and the PRNU residual of the I-th image

WI weighted by the image content of J (optionally a win-

dow can be set, restricting the NCC calculation to a certain

area of the PRNU in order to exclude the borders which im-

proves the results in some cases). If ρ is above a predefined

threshold τ then the two images I and J are likely to be

shifted equally. The maximum likelihood estimator for the

sensor’s PRNU fingerprint K̂ is then calculated using all

images where ρ > τ :

K̂ =

∑N

i∈{J|ρ[J,WI ]>τ} W
i
II

i

∑N

i∈{J|ρ[J,WI ]>τ}(I
i)2

If there are at least some hints about the shifts of the im-

ages available, the starting image I should be an image with

minimal shifts since in the next steps all images are aligned

based on this image and the larger the shift differences are,

the larger is the image area that is “lost” due to re-shifting

the images. If no hints are available the first image is taken

as reference image I for simplicity. If there are no or only a

small number of images J for which the correlation value ρ
is above the threshold τ , the next image I = i + 1 is taken

as reference image and again the NCC scores are calculated

(to find a suitable common basis).

After the estimation of K̂, the normalised cross corre-

lation (NCC) of all remaining images (not used during the

estimation of K̂) and the PRNU fingerprint K̂ is calculated.

The NCC calculates the correlation between the reference

and the test image while the test image is circular shifted

for all possible shifts in x- and y-direction. The NCC com-

putes a matrix of correlation values CI for each image I

Read input
images

Extract noise
residual using
denoising filter

Select one im-
age with mini-
mal shifts as ref-
erence image

Find images
which are aligned
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Figure 4. Flowchart of PRNU based image alignment

which has exactly the same size as the image, w × h. The

next step is to find the peak (maximum value) ĉI in the ma-

trix CI . During our experiments it turned out that the maxi-

mum correlation value was more robust against outliers than

the PCE (more images could be aligned correctly) and thus

we decided to use the maximum correlation value instead

of PCE. If the ratio ĉI
mean(c∈CI)

> γ with the pre-defined

threshold γ holds, the correlation is distinguishable enough

to be a valid peak. For images where this condition does not

hold, the shifts cannot be reliably determined. For all other

images the position (xcI , ycI ) in the matrix CI where the

peak ĉI was found is used to re-shift the image:

I ′(x, y) = I((x− xcI )mod(w), (y − ycI )mod(h))

where I ′ is the aligned image (image which is shifted

back to the sensor’s original pixel grid), x and y are the

horizontal and vertical pixel coordinates inside the image,

respectively and mod is the modulus operator. Depending

on the further use of the images, they can either be circular

shifted or the border can be filled up with black pixels.

Our approach is able to correct horizontal and vertical

shifts present in the images. It can be extended to handle

rotation and scaling in a similar way to the approach in [8].

Therefore the NCC calculation step has to be adopted to

incorporate the calculation of the correlation values for ro-

tated and scaled versions of the test image in addition to the

shifted versions as NCC does. Of course this increases the

computational demand depending on the granularity and the

range of the rotations and scaling values.



3. Performance Analysis

To verify the accuracy of our proposed approach we

did some simulations on various biometric datasets. The

datasets and the simulation process are described below:

UTFVP: The University of Twente Vascular Pattern dataset [17]

consists of 1440 near-infrared finger vein images. The images

have a resolution of 672 × 380 pixels, captured with a custom

build scanner.

Vera PalmVein: The Vera PalmVein dataset [16] consists of 1000

near-infrared palm vein images, having a resolution of 480× 640

pixels, captured with a custom build scanner.

Casia CrossSensor Iris: We used a subset of the CASIA cross

sensor iris database [18], consisting of 1500 images, having a res-

olution of 640 × 480 pixels. The subset contains only images

captured with the Irisguard H100 IRT sensor as all images have to

be from the same sensor.

IITD: The IIT Delhi iris dataset [9] consists of 1120 iris images,

having a resolution of 320 × 240 pixels captured with a JIRIS,

JPC1000, digital CMOS camera.

FVC2002 DB1/DB2: DB2 of the FVC2002 dataset [14] consists

of 800 fingerprint images having a resolution of 296× 560 pixels,

captured with an optical fingerprint scanner (Biometrika FX2000).

DB1 consists of 800 images, 388 × 374 pixels, captured with an

optical fingerprint scanner (Identix TouchView II).

All images except the first one are shifted by random

shifts in the range of [−100,+100] pixel in horizontal and

[−60,+60] pixels in vertical direction for UTFVP, Vera

Palmvein and Casia CrossSensor Iris (vice versa for portrait

images) and [−50+50] pixels in horizontal and [−30,+30]
pixels in vertical direction for IITD and FVC2002 DB2,

respectively. Then our PRNU based image alignment ap-

proach is applied to the shifted images. The first image is

selected as reference image during the alignment process.

Afterwards the real shifts are compared with the determined

ones. All simulations are run 10 times on each dataset and

the results in the next section are the mean values of all runs.

The following performance measures are calculated:

Precision: as for forensic purposes a pixel accurate

alignment of the images is needed, this is the ratio of

images which are aligned correctly (±0 pixels) in x- and

y-direction to all images in the dataset.

Correlation: Spearman correlation coefficient calculated

between the actual and the determined shift values.

MeanDeviation: the mean of the Euclidian difference

between the actual and the determined shifts.

Table 1 lists the results of our simulated image shift ex-

periments. The results on the UTFVP, the Vera PalmVein

and the FVC2002 DB2 dataset confirm that our approach is

able to correctly detect the shifts and align all the images

(except 1 for Vera Palm Vein). On the Casia CS iris it is still

usable even if it fails to correctly align some of the images.

For the IITD and the FVC2002 DB1 dataset our approach

Precision Correlation MeanDeviation # failed

UTFVP 1.0 1.0 0.0 0

Vera PalmVein 0.999 0.999 0.1068 0.9

Casia CS Iris 0.981 0.993 3.934 28.3

IITD 0.026 0.172 170.63 2181

FVC2002 DB1 0.014 0.333 212.26 787.1

FVC2002 DB2 1.0 1.0 0.0 0

Table 1. Performance evaluation results on the different datasets

completely fails. The main reason for this effect is assumed

to be the size of the images. Both datasets have rather small

images (less than 400 × 400 pixels). In combination with

the high frequency image content (iris or fingerprint pattern,

respectively) the extracted PRNU is not reliable enough.

The whole alignment process (i.e. reading the images,

computing the PRNU, enhancing the PRNU, calculating the

cross correlation and saving the aligned images) for the UT-

FVP images takes about 3390 s with PRNU enhancement

and and about 960 s without it, respectively. For the smaller

IITD images it takes 1650 s w.E. and 423 s without (assum-

ing that all images except one need to be aligned).

4. Pixel Defect Detection

This section explains one of the possible applications for

our PRNU based image registration approach. Image sen-

sors develop defective pixels while they are in use. The

most prominent defect types are hot and stuck pixels. These

pixel defects are caused by damages in the silicon lattice due

to the impact of cosmic ray radiation [15]. Pixel defects fol-

low the once defective - always defective principle, i.e. once

they appeared they do not heal and also their parameters do

not change. Their locations follow a normal random distri-

bution across the sensor area and inter-defect times follow

an exponential distribution [10].

There are theoretical approaches to estimate the number

of new defects a sensor will develop per year, i.e. the de-

fect growth rate, like the empirical formula of Chapman et

al. [4] but for more accurate estimates images captured by a

sensor at different points in time with a time lapse of several

years in between are needed. The first step is the detection

of the defective pixels inside the images by statistical ap-

proaches, like the Bayesian approach by Dudas et al. [6] or

the one by Bergmüller et al. [2]. After the defect locations

and number of defects are known, the defect growth rate

and the parameters of each single defect can be determined.

The most important requirement for the detection of the

defective pixels is that a certain pixel position inside the im-

age corresponds to the same physical position on the image

sensor in every image. The statistical approaches to detect

the defective pixels examine every image and estimate the

probability, that a pixel at a certain position is defective de-

pending on its characteristics compared to its neighbouring

pixels. If the pixel is now shifted to a different position in

every image, this probability is high for a single image but
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the overall probability across all images is low as the defec-

tive pixel at that position will most likely be a good one in

the other images due to the shifts and thus not being recog-

nised as defective one. Thus it is vital for an accurate and

reliable detection of defective pixels that all the images are

aligned pixel-wise according to the sensor’ aoriginal pixel

grid used during image capturing.

4.1. ND­Iris­Template­Aging­2008­2010

For our experiments regarding image sensor ageing ef-

fects in biometric recognition we evaluated the images of

the ND-Iris-Template-Aging-2008-2010 database [1]. This

database contains 3 sets of images, the first one captured

in 2008, the second one in 2009 and the third one in 2010.

Figure 1 shows some example images (the red lines and the

circle have been added to indicate the centre of the image).

One can clearly see the grey bars at the borders of the image.

We found out that these are introduced by the iris sensor it-

self as it shifts the images (presumably to have the centre of

the iris in the centre of the image), i.e. it takes the image,

shifts it in a certain direction over the image borders and

fills the now emerged missing pixels with grey bars. Fig-

ure 5 shows this process. At first we tested to re-shift the

images by simply detecting the width of these bars and shift

the image in the opposite direction to compensate the shifts.

Afterwards we run the defect detection approach but the de-

tection failed. Thus we assumed that shift compensation is

not that easy and needs a more sophisticated approach.

Image alignment according to our proposed approach

worked well for the 2008 and 2009 images but failed for

some 2010 images. For these images there was no clear

maximum correlation value and they were filtered out by

the ratio threshold. We assume that in 2010, 2 sensors were

used, the old one and an additional iris sensor. Some quick

tests using one of the images where alignment failed as ref-

erence image and trying to align the other images based on

this reference image worked for most of the images which

previously could not been aligned. This is an indicator that

indeed 2 sensors have been used in 2010. Figure 6 shows a

schematic representation of the alignment procedure.

All images for which the alignment failed based on the

2008 reference image are not used to detect the defective

pixels. After aligning the images, we were able to detect 12

hot pixels in the images of 2008, 13 in the images of 2009

and 13 in the 2010 images. 3 of the defects in 2008 were

Extract
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Calculate
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Sensor PRNU

Fingerprint

Calculate

NCC

Find Position of

Peak in NCC

Align Images
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Peak Position

(12,496)
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Figure 6. Image alignment procedure by the example of iris images

matching defects with 2009 and 2010 using the approach of

Bergmüller et al. The approach proposed by Dudas et al.

did not find any hot or stuck pixel defects. We masked out

the inner area (where the iris texture is located) to get more

accurate results. Figure 7 shows the detected defects inside

the iris images for 2008, 2009 and 2010 as red pixels (only

a part of the whole image for better visualisation, thus not

showing all defective pixels). This yields a hot pixel defect

growth rate of (MP denotes Megapixels):

λ = 0.66725 defects/MP/year

which is in accordance to other results reported in the

literature [2, 4, 10]. We used this estimated defect rate as a

basis to analyse the impact of image sensor ageing related

pixel defects on the performance of iris recognition systems

following the approach of Bergmüller et al. by using a sen-

sor ageing simulation algorithm.

5. Conclusion

We propose a new image alignment approach for bio-

metric sensor analysis which aligns the images according to

the physical pixel grid of the sensor. In contrast to the ex-

isting image registration methods, our approach is based on

the PRNU fingerprint of the image sensor. At first the noise

residual of every image is extracted. Then the PRNU finger-

print is estimated based on the noise residuals from images

which are either not misaligned or misaligned in the same

way. Afterwards all other images are aligned based on the

PRNU fingerprint of the reference image(s). This approach

is suitable for forensic image analysis, especially for bio-

metric sensor analysis whenever the exact pixel positions

inside the images have to match. We showed the good per-

formance of our approach utilising artifically shifted images

for 5 biometric datasets. As long as the images are of suf-

ficient size the alignment works well. We also showed the

effectiveness of our approach at the detection of defective

pixels caused by image sensor ageing in the scope of bio-

metric template ageing. Our approach needs at least 2 − 5



Figure 7. Detected hot pixel defects (from top to bottom: 2008,

2009 and 2010)

images for a reliable estimate of the sensor’s PRNU finger-

print and thus to be able to correctly align the images. But

for a reliable detection of defective pixels at least 50 images

are needed to get meaningful results. We were able to align

the images of the ND-Iris-Template-Aging database which

were originally shifted by the iris sensor. This enabled us

to detect the defective pixels in order to calculate the defect

growth rate. This is only one of the possible applications

in the area of biometric sensor analysis for which our ap-

proach has proven useful. As suggested it can be extended

to handle rotation and scale variations in the images too.
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