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Abstract

Just like any other electronic device, image sensors show ageing e�ects over time. The most common e�ects
are hot pixels and stuck pixels which are randomly appearing, permanent defects, increasing in number over
time. These defects have the characteristics of spiky noise and degrade the image quality. The aim of this
thesis is to investigate the impact of these ageing related defects on the performance of �ngerprint, �nger-
and hand vein recognition systems. For this purpose, the recognition accuracy of di�erent types of �ngerprint
(minutiae-based and non-minuatie based, e.g. correlation based), �nger- and hand vein matchers (binarisation
type, keypoint based and LBP based) is evaluated in terms of the EER. As it is not possible to distinguish
the in�uence of sensor ageing related defects from other in�uences like noise, dirt, etc., the pixel defects
are simulated using images containing no or only a negligible number of pixel defects as ground-truth. A
pixel model is introduced and the images are aged using an ageing simulation algorithm. The simulation
parameters (defect growth rate and defect parameters) are estimated using real sensor characteristics. The
di�erent �ngerprint, �nger vein and hand vein feature extraction and matching schemes are evaluated and
compared against each other to �nd out if they are a�ected and how they are a�ected. This should give some
clues about why they are a�ected and also what can be done to make them more robust against these ageing
related defects. According to the experimental results, there is no considerable in�uence on either of the tested
schemes for a realistic number of defective pixels.

Keywords: Image sensor ageing, pixel defects, defect detection, recognition accuracy, performance evaluation,
EER, �ngerprint recognition, �nger vein recognition, hand vein recognition

i



ii



Contents iii

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Image Sensor Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Existing Literature Regarding Sensor Defects . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 In�uence on Biometric Recognition Accuracy . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Acronyms and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Image Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Photodiodes and Photogates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 CCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Digital Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 CFA - Colour Filter Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Sensor Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Material Degradation Related Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 In-Field Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Mechanism Causing the Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Spatial Distribution of Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Temporal Distribution of Defects . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Defect Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Pixel Defect Model (Fridrich) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Pixel Defect Model (Dudas and Leung) . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Comparison of Defect Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.4 Stuck-High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.5 Stuck-Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.6 Stuck-Mid or Fully-Stuck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.7 Partially-Stuck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.8 Abnormal Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.9 Hot Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.10 Partially-Stuck Hot Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Defects in Colour Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Defect Identi�cation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6.1 Dark Field Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6.2 Bright Field Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.3 Defect Identi�cation for PS and Cellphone Cameras . . . . . . . . . . . . . . . 26

3.7 Impact of Sensor Parameters on Defect Growth Rate . . . . . . . . . . . . . . . . . . . 27
3.7.1 Sensor Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7.2 Sensor Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7.3 Pixel Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7.4 ISO Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Defect Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Filters for Defect Identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 n× n Ring Averaging Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 4NN Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 4NN and 8NN Minimum Distance Filter . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Thresholding Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Statistical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Bayesian Inference Based Approach (Dudas) . . . . . . . . . . . . . . . . . . . . . . . . 35



iv Contents

4.4.1 Image Statistics Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Interpolation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3 Extension for Hot Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.4 Correction using Local Region Analysis . . . . . . . . . . . . . . . . . . . . . . 41

5 Ageing Simulation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6 Fingerprint Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1 Biometric Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Fingerprint Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 Fingerprint Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Fingerprint Image Examples captured by Di�erent Sensors . . . . . . . . . . . 51

6.3 Fingerprint Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Feature Extraction and Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4.1 Correlation Based Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.2 Ridge Feature Based Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4.3 Minutiae Based Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Factors In�uencing Recognition Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.1 Acquisition Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.2 Displacement and Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.3 Non-Linear Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.4 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.5 Skin Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.6 Sensor Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5.7 Fingerprint Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Finger and Hand Vein Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1 Finger and Hand Vein Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Finger Vein Scanner from Veldhuis et al. . . . . . . . . . . . . . . . . . . . . . . 61
7.1.2 University of Salzburg Hand Vein Scanner . . . . . . . . . . . . . . . . . . . . 63

7.2 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.1 Detecting Finger Region (LeeRegion [1]) . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Finger Position Normalisation [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.3 CLAHE (Contrast Limited Adaptive Histogram Equalization) . . . . . . . . . . 64
7.2.4 High Frequency Emphasis Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.5 Circular Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.6 Further Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.7 Best Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Feature Extraction and Matching Techniques . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.1 Maximum Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.2 Repeated Line Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.3 Wide Line Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3.4 Matching using Correlation (Miura Matcher) . . . . . . . . . . . . . . . . . . . 70
7.3.5 Local Binary Patterns (LBP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3.6 Template Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3.7 SIFT / SURF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.1 Fingerprint Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.1.1 Casia 2009 and 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.1.2 Sensor Identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.1.3 FVC2004 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents v

8.2 Finger Vein Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.1 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Hand Vein Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.1 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4.1 Defect Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4.2 Hot and Stuck Pixel Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.4.3 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Finger Vein Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.1 Sample Aged Images and Corresponding Feature Extraction . . . . . . . . . . . 86
9.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.2.3 Simulation Results with Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2.4 Interpretation of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2.5 Finger Vein Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.3 Hand Vein Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.3.1 Sample Aged Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.3.3 Interpretation of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.3.4 Simulation Results with Templates Aged . . . . . . . . . . . . . . . . . . . . . . 97
9.3.5 Hand Vein Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.4 Fingerprint Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.4.1 Sample Aged Images and Minutiae Extraction . . . . . . . . . . . . . . . . . . 101
9.4.2 Simulation Results DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.4.3 Simulation Results DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.4.4 Interpretation of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.4.5 Simulation Results with Templates aged . . . . . . . . . . . . . . . . . . . . . . 110
9.4.6 Fingerprint Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



vi Contents



1

1 Introduction

Nowadays each one of us has to authenticate oneself for many di�erent reasons. E.g. if you want to
withdraw money from the cash machine, you have to enter your personal PIN in combination with
your ID card, the same if you switch on your mobile phone. At your home computer you might also
need a password to log in and in other situations you authenticate via your signature. But all these
traditional methods of authentication have some disadvantages. A signature can be forged, a PIN or
password can be forgotten or even worse it can get disclosed and an ID card can get stolen. That
is where biometric identi�cation systems come into place. They all use some kind of biometric trait,
which is unique, stable and cannot get lost or stolen. So there is no longer the need to remember
complex passwords or carry ID cards. Biometric systems are therefore not only more secure but also
more convenient for the users which lead to their widespread use, especially �ngerprint recognition
systems, because they are a mature technology and quite cheap. Usage scenarios include access control
systems, screening at airports, �ngerprint sensor at your home door and also the �ngerprint sweep-
scanners which are embedded into most modern notebook computers as an alternative to password
log on.

If it comes to �ngerprint recognition systems, there are many solutions available on the market
suitable for di�erent application scenarios. These are using di�erent types of scanners, e.g. optical
scanners, silicon based ones or thermal ones from which the optical scanners are the most prominent
type. Also di�erent kinds of feature extraction and matching schemes are used, most commonly
employed are minutiae-based ones but especially for low quality �ngerprint images non-conventional
algorithms like correlation based ones are used.

An important factor regarding the recognition accuracy of a �ngerprint identi�cation system is the
quality of the input �ngerprint image. The quality can be degraded by the skin condition itself, e.g.
dryness, moisture or dirt on the �nger, by improper use, e.g. uneven pressure on the sensor or uneven
sweeping motion but also by sensor related issues like noise and sensor ageing related pixel defects.

Moreover there are some scenarios where a �ngerprint based recognition system cannot be used,
e.g. time tracking for coal mine or construction workers as the dirt on their �ngers and the abrasion of
the �ngers makes the use of �ngerprint scanners practically impossible. A suitable alternative could
be an iris based system, but the more practical and cheaper solutions are �nger- and hand vein based
systems. These systems have several advantages over �ngerprint based ones. The veins are underneath
the skin so the vein pattern is resistant against forgery as the veins are only visible in infrared light.
Also liveness detection is easily possible. Moreover the vein patterns are neither sensitive to abrasion
nor to �nger surface conditions. But there are also some disadvantages. First of all, so far it is
not completely clear whether vein patterns exhibit su�ciently distinctive features to reliably perform
biometric identi�cations in large user groups. As the currently available data sets are limited in
their size, this issue cannot be clearly answered at present state. Another major disadvantage is the
capturing device which is, due to the required transillumination principle, rather big compared to a
�ngerprint sensor. Furthermore, the vein structure is in�uenced by temperature, physical activity and
certain injuries and diseases. While the impact of these e�ects on vein recognition performance has
not been investigated in detail so far, it is clear that suitable feature extraction methods should be
independent of the vein width to compensate for corresponding variations.

There can also be other image distortions which in�uence the image quality. One of these are pixel
defects related to ageing of the image sensor used as mentioned above. These defects are point-like
and appear as spiky shot noise in the images. After thorough search of academic sources it has been
determined that the impact of sensor ageing related pixel defects on the performance of �ngerprint
and �nger- and hand vein based recognition systems, i.e. di�erent feature extraction and matching
schemes, has not yet been studied. Therefore, this evaluation is the topic of the present thesis.



2 1 Introduction

1.1 Image Sensor Ageing

These days digital imagers are everywhere, starting from consumer cameras, mobile phone cameras,
surveillance cameras. But also in biometrics digital imagers are often used to capture the biometric
trait of a subject, e.g. �ngerprints, �nger- and hand vein images, iris images and face images.

The main part of a digital imager is its image sensor, which converts the incoming light into a
digital signal, i.e. the output image. Just like any electronic device, an image sensor shows ageing
related e�ects over time. An image sensor has a much bigger area compared to other electronic parts
inside a digital imager, therefore it is more sensitive to external in�uences and especially to ageing
processes. An image sensor consists of photosensitive cells, called pixels. Image sensor ageing leads to
defective pixels, the main e�ects are so called hot pixels and stuck pixels. Although the probability for
a single pixel to be defective is quite low, defective pixels occur in nearly every image sensor simply due
to the high number of pixels an image sensor contains. These defective pixels are visible in the output
image and if their number increases, the quality of the output image degrades. The e�ect is similar
to spiky noise in the output image. Pixel defects are permanent, their number increases continuously
and linearly with time and they are randomly distributed over the sensor area. A distinction is made
between factory or fabrication time defects and in-�eld defects which are present immediately after
the manufacturing of the image sensor or �rst appear while the sensor is in use, respectively.

These defects can be corrected by a factory calibration, at which the defective pixels are simply
masked out, i.e. their output is not used, instead their value is replaced by an interpolation of
the neighbouring good pixels. Factory mapping is not only expensive but also infeasible in many
application scenarios, like embedded image sensors or extraterrestrial image sensors. Therefore, the
impact of sensor ageing should be reduced to a minimum. The industry has not paid a lot of attention
on the impact of sensor ageing related defects, because most consumer cameras are replaced after 3-4
years and during this time period the number of defects is rather low, except for factory time defects
but these are always masked out in DLSRs and most consumer cameras. But the imaging devices
used in biometrics are rarely replaced so the sensor ageing related defects may have a higher impact
there.

1.2 Existing Literature Regarding Sensor Defects

Albert Theuwissen [3, 4] analysed the source causing the in-�eld sensor defects, mainly hot spots (hot
pixels). He considered terrestrial cosmic ray radiation to be the main source of the pixel defects. So he
did some experiments with sensors stored at ground level, others stored at elevated level and others
were shipped on transatlantic �ights. It is known that the intensity of the terrestrial cosmic rays
is dependent on the altitude so if his assumption is true, there should be some di�erences in defect
development of the 3 groups of sensors. Indeed he found di�erences which let him conclude that the
neutrons of the terrestrial cosmic rays are the main source causing pixel defects in imaging sensors.
Moreover, he performed some experiments at higher temperatures (storage and annealing experiments)
and showed that storing the image sensors at higher temperatures than room temperature has a
positive e�ect on the development of new defects (defects with high amplitudes did not occur any
more). He also showed that it is possible to anneal some existing defects by storing the image sensor
at temperatures of about 110°C for 24h. This reduces the number of hot spots independent of their
amplitudes. The details of his experiments and results are described in section 3.3.

Chapman, Dudas, Leung et al. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] did extensive research on
several commercial cameras, i.e. DSLR, PS (point and shoot) and mobile phone cameras. They looked
for sensor ageing related defects trying to establish cosmic ray radiation as the main causing source
of defects. They searched for defective pixels not only manually by doing a dark-frame calibration on
a regular basis and a manual inspection afterwards but also developed an automated defect tracing
algorithm [14, 13] which is able to determine the date on which the defect �rst showed up using images
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taken by the sensor. This algorithm is explained in section 4.4. They found out that the main type
of defects are hot pixels. Indeed they never found a true stuck pixel. Using the data collected during
the measurements they did an analysis on the spatial and temporal distribution of the defects [16]. It
became apparent that the defects are distributed uniformly over the sensor area and the size of the
fault in the silicon lattice which causes the pixel to be defective is much smaller than the size of a single
pixel (less than 2.3% of its size [13]), which indicates some type of constant stress, which the sensor
is exposed to, rather than material degradation as defect source, else there would be defect clusters.
It also turned out that the number of defects is increasing linearly with time (i.e. the defect rate is
constant over time, implying a Poisson process) which also indicates some kind of causal mechanism
like radiation as defect source rather than a single traumatic event or material degradation related
defects, else the increase would be sudden or exponential, respectively. Thus they concluded that
cosmic ray radiation might be the main source causing image sensor defects. In addition they also
evaluated the in�uence of sensor parameters like sensor area, sensor type (CCD or CMOS), pixel size
and ISO setting on the defect growth rate and found out that the growth rate scales linearly, which
is another evidence for some kind of radiation as the source causing the defects. They also found out
that reducing the pixel size has a great impact on the defect growth rate (smaller pixels lead to more
defects) and that CCD sensors are more sensitive to the defect source than CMOS/APS ones, i.e.
they develop more defects. Furthermore the ISO level has a big in�uence on the number of defects as
the ISO setting is nothing else than a numerical gain factor, which also ampli�es the defective pixel
parameters, thus they become more visible at higher ISO levels and some of them might even be only
detectable at a higher ISO setting. They were �nally able to derive an empirical formula which is a
power law relationship between the defect growth rate and the sensor characteristics. The details are
described in section 3.7.

Jessica Fridrich [18] investigated imperfections of image sensors and how they can be used as a
unique sensor �ngerprint. Among these imperfections are manufacturing time defects, defects caused
by physical processes inside the camera and also defects caused by environmental factors. She focused
on the photo-response non-uniformity (PRNU) and the dark current. The PRNU is essentially a noise
pattern caused by imperfections of the di�erent pixels due to the manufacturing process (physical
dimensions, quantum e�ciency and homogeneity of the silicon may vary), which is overlaid on the
image. Even if there is no exposure, a pixel may contain some free electrons causing a current �ow
due to thermal e�ects, commonly denoted as dark current. This dark current increases with rising
temperature and higher exposure times. Therefore, the e�ect on the output image is dependent on
the temperature, the exposure time but also the ISO setting. If the dark current of a pixel is very
high, the pixel is called a hot pixel. If the pixel has a high additional o�set, which is illumination
independent, it is called stuck pixel. She proposed a pixel output model, which is described in section
3.4.1 and according to this model she derived the defect matrices based on multiple images taken with
the same sensor using the maximum likelihood method. This is done by computing the noise residual
using a custom-designed wavelet and a 3x3 median �lter. She also found out that pixel defects occur
randomly in time and space and are independent from each other. New defects appear with a constant
rate, i.e. it is a Poisson process and once a defect occurs it is permanent. This is again an evidence
of cosmic rays as the source causing defects.

1.3 In�uence on Biometric Recognition Accuracy

Up until today, it is not clear if and how these sensor ageing e�ects in�uence the recognition accuracy
of di�erent biometric systems. To be able to quantify the impact on the recognition accuracy, at
least two identical samples, captured at di�erent points in time, of the same person showing no
other ageing related e�ects than sensor ageing, would be needed. Unfortunately it is impossible to
achieve identical conditions for both captures, as there are other in�uences, e.g. misalignment, human
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ageing and environmental conditions which make the separation of the sensor ageing related impact
impossible. So it is not possible to capture real test data to evaluate the impact of sensor ageing.

This thesis proposes a method to evaluate the impact of sensor ageing on the recognition accuracy
of �nger image based biometric recognition systems, i.e. �ngerprint, �nger vein and hand vein based
systems. To overcome the problem of other in�uences than sensor ageing related defects in the test
data, an algorithm, which is able to simulate sensor ageing e�ects within images, is used to generate
simulatively aged �ngerprint, �nger vein or hand vein images, respectively. Thus a common image
data base can be used as a starting point for the experiments. As �ground-truth� the baseline matching
performance, i.e. recognition accuracy, of the di�erent matchers for this data base is determined �rst.
This data base is then �aged� using the algorithm and the di�erent matching schemes are evaluated
using the aged versions of the images to measure the impact of sensor ageing on the biometric system's
recognition accuracy. The parameters for the simulation (defect growth rate, types and intensities of
the defects) are estimated using an empirical formula based on the biometric sensor's technical data.
Then the results of the di�erent matchers can be evaluated and the impact of the sensor ageing related
defects can be quanti�ed, compared against each other and also the di�erences can be investigated.

So at �rst, it reveals whether a single matcher is in�uenced by the ageing related defects or not,
i.e. is the matching performance decreasing or is the matcher robust against it and the performance
does not change at all. Through comparing to the results of the other matchers also the relation
of these results can be evaluated to determine if all matchers are equally in�uenced or if there are
some that are more robust against it than others. By doing a ranking of the matcher performances
also the question of whether this ranking is in�uenced can be decided, i.e. is the best matcher still
the best one under the in�uence of pixel defects or does the ranking change at some point? This
leads to another important question, do all the matchers react in the same way to the defective
pixels or are there any irregularities? So the main goal of this thesis is to investigate the in�uence of
sensor ageing related pixel defects in �ngerprint, �nger- and hand vein images on the performance of
di�erent feature extraction and matching schemes. For �ngerprint images 2 minutiae-based matchers,
one correlation-based matcher and one ridge feature-based matcher have been evaluated. For �nger-
and hand vein images 5 binarisation-type approaches (trying to extract the vein pattern, creating
a binary vein image and comparing the binary images then) and a keypoint-based approach (SIFT
based) have been investigated.

The rest of this thesis is structured as follows: Section 2 describes the principle of an image sensor
and also the two main sensor types, CCD and APS. Section 3 investigates the cause of sensor defects,
describes the di�erent defect types and gives two di�erent pixel models describing these defects. In
section 4 a defect detection algorithm, which is able to identify defects in conventional images (no
dark-�eld or bright-�eld calibration images) is presented. Section 5 describes the simulation algorithm
which is used to generate aged images by using given defect parameters. In section 6 the di�erent
�ngerprint recognition methods are outlined. Section 7 describes the di�erent feature extraction
and matching methods used for �nger- and hand vein recognition. Section 8 gives an overview of
the experimental setup and the image databases. In section 9 the results of the di�erent ageing
experiments are presented and interpreted. Section 10 �nally summarizes the �ndings of this thesis
and gives an outlook on future work.

Below you will �nd an explanation of several terms and acronyms appearing in this thesis.

1.4 Acronyms and Terminology

APS Active Pixel Sensor, is one of the two major types of image sensors used in digital cameras and
also biometric sensors.

CCD Charge-Coupled Device, is the second type of image sensor commonly used.
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CMOS Complimentary Metal Oxide Semiconductor, is a technology for constructing integrated elec-
tronic circuits. It is also an abbreviation for the APS sensor which is sometimes called CMOS sensor.

DSLR Digital Single Lens Re�ex camera, a digital camera combining the principle of a single-lens
re�ex camera with a digital image sensor.

ISO Level The ISO level or ISO setting originates from analogue photography and describes the
sensitivity of a photographic �lm to the incoming light depending on the characteristics of the �lm.
The ISO level of a digital image sensor is adjusted by setting the signal gain of the sensor. A higher
ISO level means that the sensor is more sensitive to incoming light, i.e. images get brighter at the
same exposure time. But with an higher ISO level also the noise level is increased.

MP Megapixel, a million pixels. Used to indicate the total number of pixels of an image but also
for the maximum possible resolution of an image sensor.

PS Point-and-Shoot camera, the most common type of digital camera used in consumer area. It is
designed for simple and easy to use operation. Due to its simple design compared to DSLR cameras
these cameras are also cheaper than DSLRs.

Fingerprint, Finger- and Hand-Vein Images Digital images captured by a biometric sensor, i.e. a
�ngerprint scanner for �ngerprint images, a �nger vein scanner for �nger vein images and a hand
vein scanner for hand vein images, respectively. As the impact of sensor ageing related pixel defects
should be investigated, only optical scanners are considered in this thesis, because the sensor ageing
e�ects as described in section 3 are only applicable for optical image sensors. Fingerprint sensors are
described in section 6.2.1. Finger- and hand vein scanners use an optical transillumination principle
with which the �nger or hand, respectively is screened using near-infrared light to render the veins
visible. These scanners are explained in section 7.1. During the experiments regarding �ngerprint
matchers, the sample images from the Fingerprint Veri�cation Contest 2004 (FVC2004, please refer
to section 8.1.3 for details) were used. The experiments on �nger vein recognition were conducted
on images of the University of Twente Finger Vascular Pattern Database (UTFVP, details in section
8.2). For the evaluation of hand vein recognition performance a data set captured at the University
of Salzburg (see section 8.3) was utilized.

Recognition Performance The di�erent matchers were evaluated using the sample data mentioned
before. The recognition performance was quanti�ed in terms of the matching performance. Therefore,
the procedure of the FVC2004 was adopted, which is described in section 8. In order to be able
to compute the matching performance, the matching results or matching scores, respectively, were
analysed and the following numbers were calculated:

• False Match Rate (FMR)

• False Non Match Rate (FNMR)

• Equal Error Rate (EER)

Biometric Identi�cation A biometric identi�cation system tries to determine the identity of a sub-
ject. It is given a speci�c kind of biometric trait, e.g. a �ngerprint, and compares this with all the
samples previously enrolled and stored in the data base. It returns the best match including the
matching score and should also return the likelihood that the found match is correct, depending on
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the impostor matching scores and the sole genuine one. Such a system performs an 1 to n match, i.e.
it matches the given input to all other samples stored in the data base.

Biometric Veri�cation Contrasting to identi�cation systems, a veri�cation system is not only given
a biometric trait but also information about the claimed identity. It thus only has to compare the
trait with the one stored in the data base under the same ID. If the matching score is above a preset
threshold, the system con�rms the claimed identity, otherwise not. The �rst one is called a match,
the second case is called non-match. A veri�cation system performs an 1 to 1 match, i.e. it matches
the given input only to the sample stored in the database with the given ID, at least in theory.

Matching Score A biometric recognition system compares two samples of the same biometric trait,
e.g. it gets two �ngerprint images as input and the output of the system is a matching score. This
score indicates either the similarity or the di�erence between the two inputs. Depending on this score
the result of an identi�cation or a veri�cation process, respectively is determined. Using a threshold t
and comparing the matching score s to this threshold, the output can either be a match (s ≥ t) or a
non-match (s < t, vice versa if the score value indicates di�erence instead of similarity). Usually the
matching scores are normalised to be in a range of [0, 1].

Genuine Score A genuine score is a resulting matching score of a comparison in which the given
input corresponds to the sample stored in the data base with the same identity as the claimed input
one.

Impostor Score An impostor score is a resulting matching score of a comparison in which the given
input does not correspond to the sample stored in the data base with claimed input identity.

False Match Rate (FMR) A false match occurs when two samples taken from a di�erent subject
are incorrectly classi�ed as originating from the same subject, e.g. two �ngerprints from di�erent
persons or �ngers are declared to be from the same �nger. Given a whole data set, the false match
rate denotes the number of false matches divided by the total number of performed matches.

False Non Match Rate (FNMR) A false non match occurs when two samples are classi�ed to be
from two di�erent subjects but actually they belong to the same subject, e.g. two �ngerprints taken
from the same �nger are declared to be from di�erent �ngers. The false non match rate denotes the
number of false non matches divided by the total number of performed matches for a given data set.

Equal Error Rate (EER) By adjusting the threshold within a set of matching scores, the matching
scores will either lead to a match or a non-match, both the FMR and FNMR change. The EER
is the point where the FMR and FNMR have the same value. It is a performance indicator for a
biometric recognition system. A low EER corresponds to low FMR and FNMR values and thus to a
high recognition accuracy.

Simulation of Sensor Ageing During this work only the in�uence of sensor ageing related pixel
defects and no other external in�uences should be evaluated. Real �ngerprint �nger vein or hand vein
images will always contain other distortions due to �nger surface conditions, dirt on the sensor area,
subject ageing, etc. Thus, in order to be able to exclude these external in�uences the sensor ageing
e�ects are simulated, i.e. the pixel defects are generated arti�cially and overlaid onto the images using
the algorithm described in section 5. Therefore, the images of the sample data sets mentioned above
were used as a basis, i.e. as unaged images and the algorithm was applied to generate several data
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sets with di�erently aged versions of the images, which were then used to determine the matching
performance.

Test-Run A test-run describes a run of all the matches necessary for determining the EER (genuine
and impostor matches) according to the test protocol adopted from the FVC2004 for a single matcher
and a single aged data set. For the �ngerprint data this results in a total of 7750 matches performed.
For the �nger vein data 12740 matches and for the hand vein data set 5250 ones are performed.
Afterwards, the resulting EER based on the match scores is calculated which is the result of the
test-run.
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2 Image Sensors

For an accurate analysis of the impact of sensor defects, at �rst some of the fundamental principles
of solid-state image sensors should be explained. This section gives a short overview of the basic
working principle of an image sensor from light detection to digital cameras. In short an image sensor
consists of an array of photosensitive cells, called pixels, and converts the incoming light �rst into a
proportional voltage or current which is then converted into a digital value using an analog to digital
converter. Although the rest of the imager system is digital, the sensor is an analog device. In an
ideal image sensor every pixel would be rectangular and have a uni�ed photo-response, which means
each pixel produces the same output at the same level of incoming light. But in reality there are
some pixels that are more sensitive compared to others due to imperfections in the manufacturing
process, these are called manufacturing time defects. Moreover there are also other e�ects, like the
temperature dependent dark current which a�ect the pixels' output. Even worse some of the pixels
may change their photo-response characteristics over time, which are typically called in-�eld defects.
This e�ect is commonly called sensor ageing.

Today there are two main types of image sensors, CCD and CMOS which are di�erent in the way
how they convert the photons from the incoming light into electrical signals. Each of these two has
its advantages but also disadvantages which are described below.

2.1 Photodiodes and Photogates

The light detection mechanism is shared by both CCD and CMOS sensors. At the very low level the
photoelectric e�ect is the basis of light detection. If the energy of a photon from the incoming light
is large enough, its energy is absorbed by the semiconductor material, which leads to the elevation of
an electron into the conduction band, generating a free carrier. On its own this is not su�cient to
convert the incoming light into an electric current as the free carriers recombine after a short time.

The freed electrons have to be captured in an electric �eld such as it is used in a photodiode.
A photodiode is a semiconductor device, much like a regular semiconductor diode, containing a p-n
junction, which converts the incident light into an electric current. By applying a positive voltage it is
operated in the so called photo-conductive mode, generating a depletion layer, which also reduces the
response time. The voltage is then removed and light which reaches through to the depletion region
generates free electron-hole pairs in it. Due to the built-in electric �eld these pairs are separated
and the holes and electrons are pushed to the opposite ends of the photodiode which induces an
electric current. As this current is very small, this process lasts only for a short time, which is called
the integration time. During this time the charge is collected inside the photodiode, which is then
read, followed by a reset phase at which the positive voltage is applied again. Ideally the generated
photocurrent should be dependent on the incident illumination only, but even in an ideal photodiode
there is a so called dark current. The dark current is a thermally generated leakage current due to the
applied reverse bias voltage, which is dependent on the temperature and the junction width, leading
to a discharge even in complete darkness. Due to impurities occurring during the production process,
causing defects in the silicon lattice, this thermally generated current is not uniform and may be
generated more rapidly.

A photogate is used to convert light into an electric current and is a metal oxide semiconductor
capacitor. Its operation is similar to a photodiode, only the construction is di�erent. It consists of a
p-substrate, an oxide layer and a gate electrode above this layer. Again to create a depletion region
underneath the gate, a positive voltage is applied to the electrode. Inside this region the photons
contained in the incident light create the free electron-hole pairs during the integration time and the
current is read out at the end of the integration time.
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2.2 CCD

During early development CCD was the most prominent type of image sensors. A CCD sensor basically
consists of a series of MOS capacitors that convert the incoming photons (illumination) into electron
charges at the semiconductor-oxide interface. These charges are then shifted sequentially between the
capacitive bins inside the device for readout. Due to this shift, which is necessary for readout, CCD
sensors are limited in pixel transfer speed and thus in frame rate. An advantage of CCD sensors is
their good optical response even in low light conditions.

2.3 CMOS

CMOS sensors are also called APS (active pixel sensors) because in contrast to the CCD sensors each
pixel contains of a photodetector (photodiode or photogate) and an active ampli�er, i.e. a transistor.
The additional ampli�er reduces the �ll factor (∼ 25− 30%) but makes faster addressing and readout
possible, thus allowing higher frame speeds. Nowadays so called micro lenses are used which cover the
whole area of a pixel and focus the incoming light onto the photoactive area, therefore the e�ciency
of conversion is nearly the same as with CCD sensors. Another disadvantage is that since a CMOS
sensor captures one row at a time there may be a �rolling shutter� e�ect, which skews the image.
Another issue is ampli�er variation. Each pixel has a built-in ampli�er, these ampli�ers might not all
have the same gain factor and therefore the output of the pixels is di�erent even at an uniform input.

The biggest advantage of APS sensors is that they are CMOS compatible, therefore they can be
seamlessly integrated into embedded devices and are also able to combine the sensor function with
integrated image processing functions. Another advantage is that they are less expensive compared
to CCD sensors. Moreover, CMOS sensors have a lower power consumption.

2.4 Digital Cameras

A digital camera typically consists of an optical system, including a lens and an optics board, an image
processing board containing the image sensor, a housing, a LCD display and some kind of storage
device. There are several types of digital cameras, the most prominent ones are the DSLRs (Digital
Single Lens Re�ex) and the PS (point and shoot) cameras.

2.4.1 CFA - Colour Filter Array

Each pixel is sensitive to light in a speci�c wavelength band, typically from 400 to 700 nm if the
photosensitive cell is made from silicon. Pixels are monochromatic, i.e. they do not generate colour
information, they just convert the incoming light into an electrical representation. As images are
captured in RGB format, a way to make the pixels only sensitive for incoming light in the red, green
and blue wavelength band, respectively has to be found. The most common way to achieve this is the
use of a colour �lter array (CFA). An array of colour sensitive �lters is placed on top of the sensor
in a way that at every pixel only red, green or blue light is able to pass through the �lter. The most
widely used �lter is the so called Bayer pattern, which uses 2 green, 1 red and 1 blue �lter, as shown
in �gure 1.

The problem which now arises is that every pixel now only captures information in one colour band.
To get a whole colour image, i.e. red, green and blue colour information at every pixel, the missing
information of the other colour bands at that pixel has to be interpolated. This colour interpolation
is also known as demosaicing. Current demosaicing algorithms do not handle defective pixels, so the
impact of the ageing related defects on colour images is higher due to demosaicing. Kimmel type
demosaicing algorithms (adaptive) are most commonly used in commercial cameras.
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Fig. 1: Bayer CFA pattern [14]

Another problem with the colour �lter array is the reduction of the overall sensitivity of the sensor.
As with each �lter only one colour band is allowed to pass through and reach the sensor surface, the
remaining components of the incoming illumination are lost. Only 50% of the green and 25% of the
blue and red intensity is retained.
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3 Sensor Defects

Digital image sensors enjoy a widespread use today and become more and more popular. Starting
from consumer cameras to mobile phones, cars and also other consumer electronic devices such as
notebook computers, TV sets, etc. Like every creature also electronic components age over time.
Unlike other electronic components, image sensors show ageing related defects soon after fabrication.
Sensor defects occur in the form of defective pixels, which show a di�erent characteristic than at
manufacturing time. Some are completely insensitive to incoming light, others add an o�set and
are more sensitive to illumination than the other pixels. The accumulation of these defective pixels
degrades the quality of the output image but fortunately they do not prevent the sensor from still
providing useful output data. The main source causing these defective pixels is radiation. Unlike other
devices, at which radiation causes mainly transient soft errors, i.e. errors that recover after a sensor
reset or a certain amount of time, these image sensor ageing related pixel defects are permanent, i.e.
they do not heal over time, their characteristics do not change and their number increases continuously
with time.

In this chapter the di�erent types of pixel defects are explained and a pixel model to describe the
defective pixels is presented. The spatial and temporal distribution of the defects is studied, which
gives some hints indicating the source causing the defects. The e�ect of colour demosaicing on single
pixel faults is analysed, followed by an overview of di�erent defect identi�cation techniques. Finally
the impact of sensor parameters on the defect growth rate is investigated.

3.1 Material Degradation Related Defects

Defects related to material degradation are mainly caused by to limitations and impurities during the
manufacturing process of the sensor. These defects make the sensor more vulnerable and lead to early
material breakdown. There can be minor faults like errors in the output image but also severe faults
like a complete failure of the sensor.

Manufacture time defects are those which occur before the image sensor leaves the factory. Such
defects exist but as the manufacturer does a so called factory calibration, i.e. generating a defect map
and using this map to mask out the defective pixels during the colour interpolation (demosaicing)
step and additionally by performing a dark frame subtraction after each image capture, these defects
are not noticeable.

Defects related to material degradation that occur in-�eld are e.g. gate oxide thinning, hot carriers
and electromigration. These defects are localized in a small area and will usually result in a cluster of
spatially close defects which all develop at around the same time. The number of material degradation
related defects rises exponentially with time and as it is shown in section 3.3.1 and 3.3.2 that both
conditions do not apply for typical in-�eld pixel defects, material degradation cannot be the main
source causing in-�eld defects. Therefore these defects are not explained in more detail here.

3.2 In-Field Defects

In contrast to manufacture time defects, in-�eld defects develop while the sensor is in use. But they
not only develop while it is in use, also while it is stored. The most prominent types of in-�eld
defects are single pixel failures like hot or stuck pixels. The impact of these defects could be overcome
by performing a factory calibration. This is not only expensive but also infeasible for imagers in
embedded devices and in remote sensing applications. Some researchers [13] found exclusively hot
pixels and no other types of defects, which indicates that the source causing hot pixel defects does
not lead to other defect types like stuck and abnormal sensitivity defects. Details of the defect types
are described below.
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There are other types of in-�eld defects related to electrical stress, e.g. �uctuations in the supply
voltage and also electrostatic discharge, which are not discussed here.

3.3 Mechanism Causing the Defects

According to the literature, the main mechanism causing sensor defects is cosmic ray radiation.

Albert Theuwissen [3, 4] studied the in�uence of terrestrial cosmic rays on the number and para-
meters of newly generated pixel defects in image sensors. Terrestrial cosmic rays are the result of high
energy particles originating from space (primary cosmic rays) which hit the atmosphere and produce
secondary particles (secondary cosmic rays). He showed that the main mechanism causing the defects
are neutrons, which are part of the terrestrial cosmic rays, that lead to displacement damage in the
silicon bulk. The energy and density of cosmic rays is dependent on the altitude, the latitude as well
as on the earth's magnetic �eld. During an air plane �ight, the density of neutrons in the cosmic
ray total �ux is about 100-300 times higher compared to ground level. To show that the terrestrial
cosmic rays are the cause of the sensor defects, he evaluated several image sensors which were stored
on-the-shelf, others were kept running and others were shipped around the world in air planes. As
the radiation due to cosmic rays is higher during transatlantic �ights, sensors shipped by air plane
should show a higher defect rate. He indeed showed that there is an increase in the hot spot density of
the shipped sensors compared to the stored ones (about 100 times higher which is in correlation with
the increase in neutron density). Moreover he discovered that the probability to develop hot pixels
with high amplitudes is relatively higher for sensors after the �ights. He also stored some sensors at
elevated altitudes and discovered what was expected, an increase in the number of hot spots compared
to the sensors stored at sea level. In addition he stored some sensors underground, which should lead
to an improvement, i.e. a lower number of hot spots, but the results of his experiment did not con�rm
this, which indicates that cosmic rays are not the only source generating new pixel defects. Leung
et al. [13, 14] also noticed a similar increase in defect growth rate or defect count, respectively, after
transatlantic �ights present at their tested cameras.

Another mechanism causing sensor defects might be the increase of the dark current level over
time. If the dark current increases, also the amplitudes of the hot pixels increase and therefore they
become more visible.

Albert Theuwissen [3] concluded from his experiments that hot pixels with high amplitudes are
mainly created due to the damage in the bulk of the silicon substrate caused by terrestrial cosmic
rays. A high-energy neutron of the cosmic rays may hit a silicon atom right in its centre, which leads
to a displacement of this atom from its rigid crystal structure, creating an interstitial and a vacancy,
which are unstable. They migrate to energetically favourable positions in the lattice and may become
trapped near impurity atoms due to the stress imposed on the lattice by the impurities and remain
in a stable position there, creating a hot spot [4]. Hot pixels with lower amplitudes are most likely
caused due to damage created at the Si-SiO2 interface, which results in an overall increase of the dark
current. He also showed that the creation of new hot pixels is independent of technology, architecture,
sensor type and vendor, but the amplitude of the hot pixels can depend on the sensor parameters.

In the second part of his experiments [4] he showed that also the storage temperature has an
in�uence on the generation of new pixel defects. According to his results storing an image sensor at
higher temperatures than room temperature results in an overall improvement, i.e. a reduction of
the number of hot pixels with a high amplitude and reduces the generation of defects considerably.
At 180° C hot pixels with a high amplitude no longer show up but the number of hot pixels with a
small amplitude increases. The best storage temperature for image sensors is between 60° C and 110°
C. He concludes that there has to be an instant annealing e�ect of hot pixels generated by cosmic
rays but on the other hand another mechanism causing the generation of new hot pixels at higher
temperatures.
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In addition he performed annealing experiments with sensors usually stored at room temperature
and found out that annealing at 100° C for 24 h seems to be very e�cient in reducing the number
of hotspots. This statement is true for hot spots of all amplitudes [4]. Therefore an anneal of 24
h at relatively low temperatures can be a good alternative to the storage at elevated temperatures.
The overall e�ect seems to be the same. After 24h at 110° C most of the hot spots are annealed
[4]. So this means that the hot pixels are not completely permanent as they can be annealed at
higher temperatures. This and the in�uence of higher temperatures can by explained by the fact that
the mobility of the vacancies and interstitial silicon atoms increases with increasing temperature, so
the chance that a vacancy and interstitial recombine becomes higher. Moreover, the energy of the
vacancies becomes larger so that a vacancy is instantly released from the trap again.

3.3.1 Spatial Distribution of Defects

The spatial distribution of the defects across the sensor area follows a normal random distribution
(also true among di�erent ISO levels) which means that the defect source is neither related to the
manufacturing process, e.g. the design of the pixels, nor to material degradation. Material degradation
would lead to defect clusters as described above.

Leung et al. [13, 16] applied statistical analysis to the defect distribution, showing that it is indeed
a random distribution. First they used the defect map and inter-defect distance distribution and
compared it with a normal distribution. They showed that there was no signi�cant bias towards short
or long distances [7], which would be the case for defect clustering. This can be seen in the histograms
for defect distances of APS and CCD image sensors, shown in �gures 3 and 4. This was followed by a
chi-squared goodness of �t test, which also showed that the hypothesis was correct. In addition they
did a distance to the nearest defective neighbour analysis with subsequent statistical tests (Z-score)
and �nally a Monte-Carlo simulation by which they found out that the minimum distance between
two defects is 17 µm (at a pixel size of 6-7 µm) [14], inter-defect distances follow a broad distribution
and the average distance is 10 mm [13]. This again supports the hypothesis that the defects are
indeed randomly distributed. In other words no single event and also no material degradation related
e�ect can be the source causing the defects. They [13] also estimated the size of the defect creating
a hot pixel using statistical methods and found out that it is very small (<0.07 µm [19]/0.2 µm
[13]/<0.04 µm [20]) compared to a usual pixel size of 2.2 µm, i.e. the defects are nearly point like,
which contributes to the hypothesis that the defects are isolated and not clustered and therefore not
caused by material degradation. As the defects are caused by a point like source, the overall dark
current magnitude of the pixel should remain the same independent of the pixel size.

Albert Theuwissen [3] showed that the number of defects is increasing if the camera is exposed
to higher cosmic ray radiation (e.g. transatlantic �ights), which is another indicator that the main
source of the in-�eld defects is cosmic ray radiation. He also found out that the neutrons of the cosmic
ray radiation are causing these defects.

3.3.2 Temporal Distribution of Defects

Leung et al. [14] analysed the temporal distribution of the defects using two di�erent methods. First
they did dark-frame calibrations at regular time intervals (i.e. on a yearly basis) followed by a manual
calibration and second they used an automated defect trace algorithm to determine the point in time
when the defect �rst occurred. This algorithm works with regular scene images and is described in
section 4.4.

If the defects are caused by a causal mechanism, i.e. constant stress to the image sensor, like
cosmic ray radiation, the number of defects should increase linearly with time, contrary to a sudden
increase if they were caused by a single traumatic event, like a shock or an exponential increase, i.e.
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Fig. 2: Defect map APS (left) and CCD (right) [13]

Fig. 3: Defect distance distribution for APS and CCD imagers [16]

Fig. 4: Defect distance distributions for ISO400 (left) and ISO1600 (right) [17]
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Fig. 5: Temporal growth of defects [16]

the time between two consecutive defects gets shorter with increasing age, if they were caused by
material degradation, respectively.

They showed that the defects were indeed increasing in number linearly with time, that the defects
are permanent, which means if a defect is there it will not disappear and the defect parameters do not
change over time. They also analysed the inter-defect times, i.e. the timespan between two consecutive
occurring pixel defects, using statistical methods, which lead to the result that the inter-defect times
are following an exponential distribution. This indicates a constant defect rate which can be modelled
by a Poisson process and is in contradiction to material degradation as defect source because then
the defect rate would increase with time. Another important result is that the sensitivity to defects
does not increase with time [7]. Moreover they calculated the defect growth rate for several types of
imagers and Chapman et al. [9] carried on their work by developing a formula showing the in�uence
of the imager properties on the growth rate, which is explained in section 3.7.

3.4 Defect Types

According to the more recent literature there are several defect types which can be distinguished by
their photoresponse. Table 1 taken from [21] summarizes the most prominent defect types which occur
either in-�eld or during the manufacturing process.

3.4.1 Pixel Defect Model (Fridrich)

A pixel model considers the incoming illumination and the impact of pixel defects on the raw output
of the pixel or the sensor, respectively. Jessica Fridrich [18] used the following pixel model:

Y = I + I ◦K + τD + C + Θ

with Y, I,K,D,C,Θ ∈ Rw×h; τ ∈ R and w, h ∈ Z

where Y is the sensor output, i.e. the image, I is the intensity of the incoming light (incident
illumination), I ◦K is the photo-response non-uniformity PRNU, τD the dark current (with τ being
a multiplicative factor taking into account the exposure setting, sensor temperature, ...), C is a light-
independent o�set and Θ is some additive modelling noise.
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Responsive

to light

Defect type Output function Description

NO
Stuck high f(x) = 1 Appears as a bright pixel at all the time

Stuck low f(x) = 0 Appears as a dark pixel at all the time

YES

Partially-stuck f(x) = x+ b O�set 0 < b < 1

Hot pixel

(standard)

f(x) = x+Rdark · Texp Illumination independent o�set that

increases linearly with exposure time, i.e.

Idark
Hot pixel

(partially-stuck)

f(x) = x+Rdark · Texp + b Has two illumination independet o�sets:
(1) increases with exposure time, Rdark

(2) o�set at all the time, b

Tab. 1: Characteristics of di�erent defect types

Fig. 6: Defective pixel example (left: whole image, right: detail of the defect region) [18]
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According to this model, a pixel with an extremely high dark current value D is called a hot pixel
and is the most common point defect occurring on an image sensor. Another defect type, the stuck
pixel, has a high o�set value C. Both pixel defects occur randomly, are uniformly distributed over
the sensor area and are independent from each other. Coming to sensor defects the interesting thing
are the two defect matrices D and C, which can be estimated using several images taken by the same
sensor. This is done by applying the maximum likelihood method and by working with the noise
residuals W = Y − F (Y ) = I ◦K + τD + C + I − F (Y ) + Θ, obtained using a denoising �lter F , to
improve the signal-to-noise ratio. As hot and stuck pixels are spiky in nature, a non-linear �lter, like
a median �lter is a good choice for extracting the spiky pattern correctly.

Yk, k = 1...d are d images taken from regular scenes at known points in time. Using the noise
residuals and the pixel model above:

Wk(i) = Ik(i) ◦K(i) + τkD(i) + c(i) + Ξk(i)

with Ξk(i) = Ik(i) − F (Yk(i)) + Θk(i), modelled as an i.i.d. Gaussian sequence with zero mean
and variance σ2(i), where k and i are the image and pixel indices, respectively. According to the
maximum likelihood principle, the unknown parameter vector Θ = (K,D, c, σ) for a �xed pixel i can
be estimated using (for details see [18]):

θ̂ = argmax
θ

L(W1, ...,Wd|θ)

Simpli�cation of this Model by Bergmüller et. al For this work I adopted the pixel model of
Bergmüller et al. [22] which is a simpli�ed version of Jessica Fridrich's pixel model and show that it
is similar to the one proposed by Dudas et al. Even if the pixel models of Dudas et al. and Jessica
Fridrich seem quite di�erent at �rst sight, they are not. Dudas et al. simply do not include the PRNU
and the additional modelling noise.

Since all pixels are independent and all operations are done element-wise, the matrix elements
yx,y ∈ Y are denoted as y ∈ Y for simplicity, the same for i ∈ I, k ∈ K, d ∈ D, c ∈ C and
θ ∈ Θ. All age independent e�ects can be eliminated since I am interested in the ageing e�ect of
one speci�c sensor, so the PRNU can be eliminated. As I aim for reproducible tests, modelling noise
and environmental in�uences should be minimized, in fact they can be eliminated completely in a
simulation, therefore k = θ = 0. For all images taken with the sensor the same exposure settings are
used (typically true for �ngerprint, �nger vein and hand vein scanners), therefore τ = const. and τ = 1
for simplicity. According to the literature the dark current level is very low for short exposure times
which are normally used for standard photographs but also for �ngerprint images to avoid motion
blur. Taking all this into account a simpli�ed pixel model can be derived:

y = i+ d+ c with y, i, c, d ∈ R

The most prominent defect types that develop over a sensor's lifetime are hot and stuck pixels. If
the dark current d of a pixel is extremely high it is often denoted as hot pixel, whereas if the o�set c
is high this results in a saturated pixel and is denoted as a stuck pixel then. As the de�nitions in the
literature are not consistent, Bergmüller et al. [22] de�ned the following model for pixel defects:

y = c

y = i+ d

where the �rst one is light independent and has a constant value c, denoted as stuck pixel and
the second one adds an o�set to the incident illumination and is referred either as partially-stuck or
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hot pixel. The cause for hot pixels is a higher dark current at that pixel compared to others. The
dark current level depends on the temperature and exposure time, which are both kept constant in
the experiments, thus the dark current level is constant and therefore there is no di�erence between a
hot and a partially-stuck pixel, thus it is simply denoted as hot pixel. This model for stuck pixels can
be directly compared to the one used by Dudas et al. If one takes their hot pixel model (see Equation
1), set m = 1 , TExp = 1 , RDark = 0 and set IPixel = y , RPhoto = i and b = d (as discussed before),
this reveals the same hot pixel model as it was derived above.

This leads us to the following pixel model for 8 bit grey-scale images:

Y (x, y) =

{
C(x, y) if C(x, y) 6= 0

I(x, y) +D(x, y) otherwise

with Y,C, I,D ∈ (Z : [0; 255]w×h)

where C and D are the defect matrices. A pixel's output Y (x, y) saturates at 0 and 255 if interval
borders are exceeded.

This pixel model is the basis for the ageing simulation algorithm, described in section 5.

3.4.2 Pixel Defect Model (Dudas and Leung)

During their �rst experiments, Dudas et al. [12] modelled several defect types using the following
equations, where the output range of a pixel is 0−1 and x = Iphoto ·Tintegration measures the incident
illumination:

fGood(x) = x

fStuck−Low(x) = 0

fStuck−High(x) = 1

fStuck−Mid(x) = c, 0 < c < 1

fPartially−Stuck(x) = x+ b

fAbnormal−Sensitivity(x) = m · x+ b

fHot−Pixel(x) = m · x+ b+ IHotTIntegration

But afterwards they simpli�ed their model to only include hot pixels and partially-stuck hot pixels.
They [12, 17] modelled the response I of a pixel using the following equation, which also includes the
ISO level:

IPixel(Rphoto, RDark, Texp, b) = m · (Rphoto · Texp +RDark · Texp + b) (1)

where Rphoto measures the incident illumination, RDark is the dark current rate, Texp is the
exposure time, b is the dark o�set and m is the ampli�cation proportional to the ISO setting.
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Fridrich [18] Bergmüller [22] Dudas [12, 17]

IPixel(Rphoto, RDark, Texp, b) =

Model Y = I + I ◦K + τD + C + Θ y = i+ d+ c m · (Rphoto · Texp +RDark · Texp + b)

fStuck−Mid(x) = c, 0 < c < 1

Sensor/Pixel Whole sensor Whole sensor Single pixel

Sensor/Pixel output Y y IPixel

Noise Θ n.a. n.a.

PRNU I ◦K n.a. n.a.

Dark current τD d RDark · Texp
Illumination I i Rphoto · Texp
Hot pixel D >> y = i+ d IPixel = m · (Rphoto · Texp +RDark · Texp)

Stuck pixel C >> y = c fStuck = c, 0 < c < 1

Tab. 2: Comparison of pixel defect models

For an ideal good pixel, both RDark and b are 0 and the output is only proportional to the incident
illumination. A hot pixel now adds a signal on top of the pixel's output, therefore the output of a
defective pixel will appear brighter.

As it can be seen, this pixel model only includes hot pixels and partially-stuck hot pixels. Dudas et
al. did measurements over the last 7 years and they never found a true stuck pixel, even though they
are discussed in the literature. Moreover they did not �nd any abnormal sensitivity pixels. Instead
they found partially-stuck hot pixels with a high o�set, appearing as stuck high pixels. Therefore
they use this simple pixel model, which only considers hot and partially-stuck hot pixels. During their
measurements [5] they also found out that nearly 80% of the hot pixels are of the partially-stuck type.

3.4.3 Comparison of Defect Models

Table 2 compares the defect models of Jessica Fridrich, Bergmüller et al. and Dudas et al. Please
note that some of the entities listed in the table cannot be directly compared, i.e. their units do not
match, but they are a�ecting the output of the sensor or a single pixel in the same way.

3.4.4 Stuck-High

A stuck high defect is a pixel which output always has the same �xed output value, independent from
the incoming illumination. A stuck high pixel will appear always bright in the output, i.e. it is stuck
on a high value, according to the pixel model above this means the value 1. Dudas and Leung et al.
[12, 17] never found a true stuck-high pixel. Instead they found partially-stuck hot pixels with a high
o�set (especially if a high ISO settings is chosen) so they suggest that the development of stuck high
pixels in the �eld may actually be due to the presence of hot pixels with high o�sets.

3.4.5 Stuck-Low

A stuck low defect is basically the same as a stuck high one, except that its �xed output value is 0,
which means this pixel always appears as a dark spot dark in the output image. If cosmic ray radiation
is the main source causing the defects and if the mechanisms are like Albert Theuwissen [3, 4, 23]
described, then a stuck-low pixel cannot be explained by cosmic ray radiation as source causing the
defects. Defective pixels due to radiation damage can only appear brighter in the output image.

According to Dudas et al. [12], stuck-high and stuck-low pixels are solely factory time defects,
which are corrected using factory time mapping. Therefore, they have not found a single stuck defect
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Fig. 7: Stuck low and stuck high pixel [11]

during their tests.

3.4.6 Stuck-Mid or Fully-Stuck

A stuck-mid [12] or also called fully-stuck [13] pixel is a generalised form of stuck-high and stuck-low
pixels, which is stuck at an arbitrary but �xed value c in the range 0 ≤ c ≤ 1. Thus a fully-stuck
pixel will always have the same output under all illuminations. As with the stuck-low and stuck-high
pixels, Dudas and Leung at al. never found a true fully-stuck pixel. A fully-stuck pixel is therefore
also assumed to be a factory time defect, which is corrected by factory mapping.

3.4.7 Partially-Stuck

A partially-stuck pixel has an illumination independent o�set b like a fully stuck one, but also an
illumination dependent component. Therefore the output of a partially-stuck pixel is not always the
same under all illuminations. It depends on the exposure time. Again Dudas et al. [12] found out
that all partially-stuck defects that they described earlier were actually also hot pixels, which suggests
that a common mechanism may lead to both defects.

3.4.8 Abnormal Sensitivity

There are basically two types of abnormal sensitivity pixels, low sensitivity ones, showing only a
fraction of their incident illumination and high sensitivity ones, showing more than the corresponding
incident illumination on the output. This type of defect is identi�ed by comparing the illumination
response of the pixel with its neighbours. As the neighbouring pixels should have the same sensitivity,
variations in sensitivity indicate the presence of an abnormal sensitivity pixel defect. Once more
Dudas et al. [13, 12] never found an abnormal sensitivity defect.

3.4.9 Hot Pixel

A hot pixel is a defect that has an illumination independent component which increases linearly with
exposure time. Whereas the dark response of a good pixel should be close to 0 (due to sensor noise
it is not exactly 0), the dark response of a hot pixel increases with the exposure time. The output of
a hot pixel is di�erent from noise and it appears as a bright spot with a �xed location in the output
image. The added dark response limits the light collection capacity of the pixel, causing it to saturate
at a lower illumination level, which reduces the pixel's dynamic range. As a hot pixel results from
non-light generated charge at the pixel, i.e. an increased dark current, it is also called gain enhanced
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Fig. 8: Abnormal sensitivity pixel [11]

Fig. 9: Hot pixel response [15]

defect. According to Leung et al. [17], the majority of hot pixel defects found in larger sensor area
DSLRs are low impact defects with a low dark current level. Therefore, these defects are almost
invisible in images captured under normal conditions (short exposure time and low ISO level) and
have only little in�uence on the image quality.

A typical method to compensate hot pixels used by many camera manufacturers is to capture a
dark frame of the same exposure time right after the image is captured and subtract this one from
the original image, which should eliminate the dark signal then. An interesting fact is that hot pixels
become more visible if many images are captured in rapid succession while the response of good pixels
remains the same. This might be due to heating of the image sensor, which leads to an increased dark
current and therefore a higher hot pixel amplitude. Thus the automatic detection of hot pixels gets
even more challenging because of the varying dark signal and therefore varying hot pixel amplitude.
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3.4.10 Partially-Stuck Hot Pixel

The literature is not completely clear about how to name this defect. According to Leung et al.
[14], a partially stuck hot pixel has an additional component (o�set) that is independent from the
illumination and exposure time. Therefore, it can even be observed at no exposure (0 exposure time)
and will in general appear brighter than a standard hot pixel. Thus it has a higher impact on the
image quality because the pixel goes into saturation at a lower illumination level, which further reduces
the dynamic range of the pixel. In addition partially-stuck hot pixels cannot be compensated by the
simple method described above for standard hot pixels, because if the combined illumination and dark
signal causes the pixel to saturate, just by subtracting the dark response will not recover the original
signal. Jessica Fridrich [18] does not explicitly mention partially stuck hot pixels.

3.5 Defects in Colour Images

Unless images are captured in RAW mode, several imaging functions are applied to the output images
captured in colour mode, which is the usual mode used in photography. These imaging functions
include demosaicing, noise reduction, white balance etc. Although they are intended to improve the
image quality, they ignore the presence of defects, i.e. defective pixels are treated as good ones, so they
might not only amplify but also spread the impact of a defective pixel to its neighbouring good pixels.
Especially demosaicing, which is the �rst function applied in the imaging pipeline, has a signi�cant
impact on the appearance of defective pixels. It is needed for every CFA image sensor to recover the
missing two colour channels at each pixel. This is done by interpolation using the neighbouring pixels
but ignoring the presence of defects, which will lead to incorrect interpolation values. Depending on
the type of interpolation used, it will distort the defective pixel, causing a singe defect to appear as
a virtual cluster. Such a defect cluster is more visible than a single pixel defect. Thus sensor defects
are highly undesirable in colour images. Nowadays the most widely used demosaicing algorithms are
adaptive ones, taking the characteristics of the image into account, similar to the Kimmel algorithm,
which reduces the Moire pattern. But these more advanced demosaicing algorithms also have a higher
impact on the defect appearance compared to simple bilinear interpolation and may even spread
defects into other colour channels. To be able to detect the defect location, each local cluster is
considered as one defective pixel and the peak of the defect cluster appearing in the output image is
used as defect location.

Most cameras use JPEG compression for colour images. This compression reduces the peak error,
but may spread a single defective pixel or a virtual defect cluster even wider, which of course has a
negative e�ect on the output image. JPEG compression also suppresses colour variations of all the
three colour planes which lowers the impact of the defective pixels.

All these imaging functions applied to colour images have an irreversible impact on the pixel defects
in colour images, in the way that they further degrade the quality of output images and make the
determination of the exact defect location more di�cult, but the defect itself may be easier to detect
because its higher impact. Therefore, a suitable defect detection algorithm has to be adopted to be
able to handle colour images correctly.

3.6 Defect Identi�cation Techniques

There are di�erent techniques which can be used to identify the di�erent types of defective pixels.
With DSLR cameras all of these techniques can be used, because these cameras do not only provide
the RAW format, but also manual control of camera parameters, especially exposure control. If PS
(point-and-shoot) or mobile phone cameras should be investigated some of these techniques cannot
be used at all or have to be adopted.
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Fig. 10: Defect cluster after demosaicing [14]

Fig. 11: Red hot pixel in RAW image (left) and after processing (right) (from: http://www.

pixelfixer.org/faq.html)

3.6.1 Dark Field Calibration

The dark �eld calibration can be used to identify stuck-high, fully-stuck, hot and partially-stuck hot
pixels. Standard dark �eld calibration uses a dark �eld exposure, i.e. taking an image with no incident
illumination. Therefore the output image should be completely black and a stuck high or hot pixel
would appear as bright dot. Dark �eld calibration can be easily done even with digital cameras not
having a shutter. A stuck high or a hot pixel's location can be identi�ed using a simple threshold test
to distinguish a sensor defect from random noise, e.g. if the output of the suspect pixel is 3 times
higher than the noise signal it is declared as defective. Figure 12 shows an example of a dark �eld
calibration image.

The distinction between stuck high and hot pixels can be made by capturing several dark �eld
images with increasing exposure times. According to the pixel model of Leung et al. [13, 14], a hot
pixel has an illumination-independent component that increases linearly with exposure time, so it will
appear brighter if the exposure time is increased, while a stuck pixel does not change its intensity
value.

The dark response Ioffset of a hot pixel, also called combined dark o�set, can be estimated by
setting Rphoto = 0 in the pixel model (section 3.4.2), then it becomes

Ioffset(RDark, Texp, b) = m · (RDark · Texp + b)

which is independent of the incident illumination. A linear function can be used to estimate the
defect parameters RDark (slope of the pixel's response) and b (o�set along the y-axis of the pixel's
response), see �gure 9 for details. For a standard hot pixel b = 0 while for a partially-stuck hot pixel
an additional, illumination and exposure independent o�set is added and b 6= 0. Standard hot pixels

http://www.pixelfixer.org/faq.html
http://www.pixelfixer.org/faq.html
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Fig. 12: Dark �eld capture example [18]

are most visible in images taken with long exposure times, while partially-stuck ones are visible in all
images depending on the o�set value b. The hot pixels are then identi�ed using a threshold test to
eliminate sensor noise.

3.6.2 Bright Field Calibration

Similar to the dark �eld calibration, in bright �eld calibration a bright �eld exposure is used. This
technique can be used to identify stuck-low defects and also fully-stuck defects. Dudas et al. [12]
capture an image with uniform illumination near saturation. In the output image all good pixels
should have the same intensity value, whereas stuck low pixels would appear darker. Like in a dark
�eld image, also here the pixel defects can be detected using a simple threshold test. According to
Leung et al. [16] they never found a single stuck low pixel (except for manufacturing time defects
which are normally masked out). Jessica Fridrich [18] suggests to capture an image of a partly
cloudy sky instead. In such an image also stuck high pixels are visible if they are stuck on a very
high value near saturation. Especially for bright �eld calibration a set of calibrated equipment is
necessary to reproduce a uniform illumination at a known intensity, which is necessary to estimate
the defect parameters in addition to the defect location. So the complexity and high costs make
these defect detection method impractical for in-�eld use and thus it is typically used by image sensor
manufacturers only.

3.6.3 Defect Identi�cation for PS and Cellphone Cameras

Leung et al. [14] pointed out that the dark �eld calibration procedure as described above cannot
be used for PS and mobile phone cameras due to the limited exposure control. In fact the camera
exposure system has to be tricked to give maximum exposure time, which is necessary to be able to do
a dark frame calibration at all, but there is no ability to use increasing exposure times. Thus it cannot
be distinguished between a stuck-high and a hot pixel. Moreover these cameras do not provide the
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RAW format, therefore the calibration images are captured in colour mode. As described in section
3.5, in colour mode several imaging functions are applied (main problem is the colour demosaicing),
therefore a single defect will appear as a virtual cluster. Thus each local cluster has to be considered
as one defective pixel using its peak output as the defect location. Each time they captured a series
of 3 images and used the common result to eliminate false detection due to noise.

Another problem regarding mobile phone cameras is that for cost reasons there is no factory
calibration done. Therefore it cannot be distinguished between factory time and in-�eld defects at the
�rst measurement (initial number of defects may include factory time defects) but only on subsequent
measurements. This is also the reason why there might not only be hot pixel defects but also stuck
and low sensitivity pixel defects found across these types of cameras.

3.7 Impact of Sensor Parameters on Defect Growth Rate

Chapman et al. [9, 6, 7] showed by continued empirical measurements of several imagers with di�erent
characteristics (DSLRs, PS cameras and mobile phone cameras) that the rate of newly generated pixel
defects depends on the sensor technology (CCD or APS) and on sensor design parameters like sensor
area, pixel size and gain (which is adjusted using the ISO value), pointing out important trends in
defect development. They showed that the defect rates scale linearly with the sensor area, so they
introduced a metric called defect density measured in defects/year/mm². The dependence of the
defect density on pixel size and ISO is not linear. Instead they found the best �t by using a power
law relationship, according to:

D = A · SB · ISOC (2)

where D is the defect density (defects/year/mm²), A is the number of defects/year/mm² if the pixel
size is 1µm, S is the pixel size in µm, ISO is the ISO level and B and C are constants depending
on the sensor type. For a CCD sensor A = 0.0141, B = −2.25 and C = 0.69 and for an APS sensor
A = 0.0742, B = −3.07 and C = 0.5.

3.7.1 Sensor Type

In general, CCD sensors tend to have a higher defect count than APS ones of the same age (∼ 3x
higher than APS for DSLR sensors with the same size at all ISO levels). If cosmic ray radiation
is the main source of the defects, then an explanation why CCD sensors are more sensitive to the
development of in-�eld defects is that on the one hand the size of a CCD sensor pixel is 2x larger
than the size of an APS pixel and on the other hand CCD sensors have a higher �ll factor (70-90%)
than APS sensors (∼ 25 − 30%). This means that at the same pixel size, the photosensitive area of
each pixel is only about 25% for an APS sensor compared to about 80% for an CCD sensor. As the
photosensitive area increases and because the cosmic ray total �ux is constant per area, the defect
rate is also increased.

But this is only true for pixel sizes of about 6 − 7µm. For a pixel size of 2.1µm, APS and CCD
sensors would have the same defect density. For even smaller pixels, APS sensors would have a higher
defect rate than CCD ones. This means that CCD pixels are not as sensitive to a shrinkage in pixel
size as APS ones, which can also be seen from the value of B in the formula. The impact of the pixel
size on the defect density is described below.

3.7.2 Sensor Area

The linear increase in the defect density with increasing sensor area can also be explained based on
cosmic ray radiation as the main source causing the defects. According to [3, 4] the cosmic ray total
�ux per area is a random process with only minimal changes over time in a given location, i.e. it
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scales with the area and therefore a larger photosensitive area increases the exposure to the radiation.
But the defect rate only scales linearly with the area if the pixel size remains the same. Otherwise
the change in the defect density also depends on the change in pixel size as described below.

3.7.3 Pixel Size

The pixel size has a high impact on the defect density. In the last few years the sensor sizes have
remained the same, but the number of pixels increased. This can only be achieved by reducing the
pixel size. Especially sensors equipped in mobile phones have very small pixel sizes (side length of 1-2
µm). If the pixel size would have no impact, one would expect the sensor with the highest area to
develop the most defects if the pixel size is kept constant. But instead the expected rate from scaling
up the defect rates of PS and cellphone cameras by the sensor area is much higher than the observed
rates for the DSLRs. As the equation 2 shows, the defect density increases rapidly with decreasing
pixel size. It scales approximately inverse linear with the pixel area for CCD sensors and much more
than inverse linear with the pixel area for APS sensors, which means that sensors with smaller pixels
are more sensitive to developing defects. As the relationship between pixel size and defect rate is
exponential, the impact of reducing the pixel size is much higher than increasing the sensor size. As
most of the smaller sensors are APS ones, this has a great impact on the quality of the output images.
If the pixel size shrinks down to 1 µm the increasing defect rate will require a signi�cant amount of
defect suppression and even the usual mapping done by the manufacturers to ignore the output of
hot pixels and replace their values by interpolation from other pixels may fail as a defect correction
strategy.

According to Chapman et al. [5] one reason for this much higher defect rate might be that due
to the smaller area per pixel only a smaller fraction of the incoming light (about 10% compared to
DSLRs) is collected. Therefore to create a similar output, the scaling factor m in the pixel model
has to be increased. This is similar to increasing the ISO level as described below, therefore also the
impact of the defects, especially IOffset increases. This means that hot pixels which would have a low
in�uence on a sensor having a larger pixel size are much more visible at this small pixel size. Another
reason is that the dark current of a hot pixel, which is caused by the defect source, remains the same
as the pixel size shrinks, but the sensitivity of the pixel to each electron increases and therefore even
a small hot pixel damage will cause a signi�cant e�ect on a smaller pixel. Currently the reason for
the di�erence in sensitivity between CCD and APS sensors if it comes to pixel size is not completely
clear and needs to be explored.

3.7.4 ISO Level

In previous times the usable ISO range was limited by the sensor noise. But as sensors got better,
the noise level decreased and in addition noise suppression algorithms are utilized, pushing the usable
ISO ranges for modern DSLR cameras up to 25600 now. Capturing images at high ISO levels enables
natural light photography without the need for a �ash or resorting to long exposure times which is
a great bene�t for photographers. But unfortunately the pixel defects are increasing in their number
with higher ISO values. Leung et al. [17] showed this by performing the dark frame calibration at
various ISO levels. The reason is that the ISO setting is nothing else than a numerical gain (see the
pixel model in equation 1), thus also the defect parameters (o�set and dark current) are ampli�ed
(scaling linearly with the ISO level), enhancing the brightness of a hot pixel. As the o�set is ampli�ed,
partially-stuck hot pixels are going into saturation even at short exposure times, making them appear
like a stuck high defect. This is also a major drawback for the pixel's operation, because this high
o�set reduces the dynamic range of the pixel. Of course the threshold for determining a defect also
has to be increased as the sensor noise increases. But the brightness of the defects increases at a
much higher rate than the background noise signal, therefore at higher ISO levels more defects can be
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Fig. 13: Dark response at various ISO levels [9]

found, because they are more distinguishable from the noise. Leung et al. [19] noticed a substantial
increase in the number of defects detected at ISO 3200 compared to ISO 100. The reason for this
increase is that many of the defects are barely visible at lower ISO settings due to low RDark and b
values, i.e. they cannot be distinguished from the noise signal, so they may not pass the threshold
test. The defects present at higher ISO levels a�ect a wider range of exposure times and are visible
even at short exposure times (due to their high o�set). According to the quantitative values, CCD
sensors are more sensitive to an increase in the ISO level than the APS ones.
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Each image is a snapshot of the sensor's state at a given time, i.e. of all of its pixels, including the
defective ones. As described above, defects are usually detected using special calibration images (dark
and bright �eld exposure). Unfortunately such images were not available for the type of �ngerprint,
�nger vein and hand vein sensors utilised to capture the databases I worked with during my evaluations.
Using calibration images the incident illumination is uniform and known, therefore the defects can
be easily detected and their parameters can be estimated. If only �ngerprint, �nger- or hand vein
images, respectively, captured by a speci�c sensor are available, the illumination is neither uniform
nor known. Moreover, factors like the ISO level, exposure time and the complexity of the image scene
will a�ect the visibility of the defects. In this case, some kind of statistical approach using a sequence
of images has to be used to identify the defects.

Of course all of the methods described below are only heuristics and will never achieve an accuracy
of 100%, i.e. identify each defect correctly. Thus the number of defects and their parameters detected
by these methods can only be an approximation of the real values. The majority of photographs
are taken at short exposure times (∼ 1/30 s) and low ISO settings (<ISO800) [17], thus low impact
defects, especially hot pixels with a low dark current magnitude, are barely visible in these images
and might not be detected at all. Long exposure times are not used often, because camera motion
will cause blur in the image unless a tripod is used.

The EXIF data provides additional information (exposure time, ISO setting, capture date), which
can be used to estimate the parameters of the defects (dark current amplitude, o�set, etc.) but
unfortunately this information is not available for most �ngerprint, �nger vein and hand vein images,
because these are usually stored in lossless formats like Bitmap (bmp), Portable Network Graphics
(png) or TIFF which do not contain EXIF data.

4.1 Filters for Defect Identi�cation

Sensor ageing related defects occur in the form of single pixel, point like defects as discussed above.
Therefore �lters like median, ring averaging and 4NN and 8NN minimum distance are suitable to
detect the defects. The image is �ltered, then the actual pixel value is compared with the one in the
�ltered image. The probability for the centre pixel to be defective corresponds to the di�erence of the
pixel values.

4.1.1 Median Filter

The median �lter is de�ned by:

y(i, j) = median
(m,n)∈G(i,j)

{I(m,n)}

where the pixel (i, j) is the centre pixel which is under examination, y(i, j) is the output of the
�lter, G(i, j) denotes the locations of pixels within a neighbourhood around the centre pixel. This can
be any type of neighbourhood. I(m,n) are the outputs of the neighbouring pixels.

4.1.2 n× n Ring Averaging Filter

In contrast to the standard averaging �lter, which takes the average of all the pixels inside a square
or rectangular neighbourhood around the centre pixel, this �lter only takes the average of all pixels
inside a ring, centred at the centre pixel as output value. This mitigates the e�ect of defect spreading
due to colour demosaicing, which mostly a�ects pixels directly neighbouring the defective centre pixel,
as only pixels on an outer ring are considered for the calculation of the interpolation value.
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Fig. 14: n× n ring averaging �lter [16]

Fig. 15: 4NN �lter [16]

4.1.3 4NN Filter

This �lter basically takes the mean of the centre pixel's north, south, east and west neighbour as
output value.

4.1.4 4NN and 8NN Minimum Distance Filter

The minimum neighbouring pixel di�erence �lter can be de�ned by:

y(i, j) = min
(m,n)∈G(i,j)

{|I(i, j)− I(m,n)|}

where the pixel (i, j) is the centre pixel which is under examination, G(i, j) denotes the locations of
pixels within a neighbourhood around the centre pixel. This can be an 8 neighbourhood (3x3 window
centred at the pixel and using all pixels without the centre one) or a 4 neighbourhood (using only
the pixel directly south, north, west and east of the centre one) or any other type of neighbourhood.
I(i, j) is the output of the centre pixel and I(m,n) are the outputs of the neighbouring pixels.

4.2 Thresholding Based Approach

This is a two step approach. At �rst the stuck pixels are identi�ed using the same property as in
the statistical approach proposed by Bergmüller et. al [22], which is described below, but no hard
comparison (a stuck pixel is supposed to have exactly the same value in all images) is used. Instead a
certain threshold can be set (in percent of the maximum pixel value) to account for sensor, analog to
digital conversion and transmission noise, respectively, which means a stuck pixel might not always
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have exactly the same pixel value. The second threshold de�nes in how many images (also in percent
of the total number of images) the pixel must have the same value within the tolerance to be identi�ed
as stuck pixel.

In [24] a pixel is identi�ed as low sensitivity pixel if:

|
∑N
k=1 P (k)

N
− P (0)| ≥ C, C = 10%

where P (k) describes the value (output) of a pixel, the pixels k = 1...N describing a neighbourhood
(e.g. window centred at the pixel) around the pixel and P (0) is the output of the centre pixel. C = 10%
means 10% of the maximum possible output value of a pixel. A pixel is identi�ed as stuck low, i.e. it
has a value of 0 if:

|
∑N
k=1 P (k)

N
| ≥ C011

P (0) ≤ C012

where C011 and C012 are 50% and 10% of the maximum possible output value of a pixel, re-
spectively. This means that a pixel is only identi�ed as stuck low if it has a value near zero and its
neighbouring pixels have a value greater than or equal to127 (for 8 bit images) on average. A pixel is
identi�ed as stuck high if:

|
∑N
k=1 P (k)

N
| ≤ C101

P (0) ≥ C102

where C101 and C102 are 90% and 50% of the maximum pixel value, respectively. This means that
similar to stuck low pixels, a pixel is only identi�ed as stuck high if its value is near the maximum
value and its neighbouring pixel values are below or equal to 127 on average. Of course the threshold
values C can be adjusted according to the input images. In the original paper only a single image is
used, not an image sequence. This approach was also tested for the implementation with an image
sequence but did not improve the result, so the simple method using the two thresholds was used.

The next step is the identi�cation of the hot pixels. A hot pixel is a point defect, i.e. a single pixel,
which appears brighter than its neighbouring pixels, so it can be identi�ed by comparing the pixel's
value to the value of its neighbouring pixels. Therefore, the �lters described above can be used to
generate an interpolation (prediction) image and compare the prediction with the actual pixel value
then. If the error is above a certain threshold, the pixel is identi�ed as hot pixel in the current image
and again if this pixel is identi�ed as hot one in a certain percentage of all images (above the second
threshold) it is �nally identi�ed as hot pixel. This approach is only able to estimate the number of
hot pixels but not their parameters.

4.3 Statistical Approach

This approach was proposed by Bergmüller et. al [22] to estimate the defect growth rates and amp-
litudes using two image sets, taken with the same sensor at di�erent points in time. Y0...YK is a
sequence of K images taken in a very short period of time. A stuck pixel has the same value in each
image of this sequence, therefore a pixel at a given position is stuck if:

y0 = y1 = ... = yK
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A partially stuck pixel1 at position (x, y) adds a light independent o�set to the pixel's output at
that position yk = Yk(x, y). First the pixel's mean ȳ is computed from the whole image sequence.
The mean is then substituted using the pixel model from section 3.4.1. Because stuck pixels can be
detected using the above method, the possibility of a pixel being stuck can be ruled out, thus c is not
considered here. To take impredictable impacts during acquisition into account, some modelling noise
is added, leading to the following equations:

ȳ =
1

K

K∑
k=1

yk

ȳ =
1

K

K∑
k=1

(ik + d+ θk)

If K is su�ciently large, the mean of a uniformly distributed modelling noise θ cancels out. Under
the assumption that there are no pixel defects present, the o�set d = 0 which is denoted as d′. Under
this assumption ik = yk can be substituted and the pixel's mean ȳ is denoted as ȳ′. The partially-
stuck (I denote it as hot pixels) defect matrix d contributes to each pixel's output uniformly, thus
it is independent of k. If there are no pixel defects and if the pixel means ȳ mostly have identical
values in a q × q neighbourhood, the identity ȳ′ ≡ median(ȳ, q) holds. This is the case if only pixel
means of image regions with mostly uniform brightness and texture, e.g.. outside the �nger area in
�ngerprint images, are considered. Thus regions covered by the �nger area have to be masked out
(Bergmüller et al. [22] originally masked out the area where the iris texture is). As the defects are
distributed uniformly across the sensor area (i.e. inside the image) it is su�cient to use only a certain
part of the image, search for defects in this area and derive the total number of defects inside the
whole image based on the percentage of the whole image area which is covered by the part used to
search for defects.

Sparse outliers within the q × q region are �ltered out due to the non-linear nature of the median
�lter. Such outliers occur if there is a pixel defect. Thus the median is able to compute a pixel's
mean ȳ′ disregarding the in�uence of pixel defects. Using this relation, ȳ′ → median(y, q) is set and

thus d′ → d̂ can be used as an estimator for the o�set, which is added to the incident illumination ik,
leading to the pixel's output yk.

ȳ′ = d′ +
1

K

K∑
k=1

(yk)

d̂ =
1

K

K∑
k=1

yk −median(ȳ, q)

Not only information about the partially-stuck pixels but also information about the PRNU is
contained in d̂. The PRNU is likely to be normally distributed, therefore the size of the median kernel
q has to be chosen large enough to minimize this in�uence on the median(ȳ, q), which is the case if a
normal distribution in the logarithmic histogram is observed inside the q× q neighbourhood, like it is
the case for the whole image.

A pixel is identi�ed as partially-stuck if d̂ is an outlier with respect to the normal distribution,
i.e. it has a much higher sensitivity than expected from the PRNU. This is done using a decision
threshold d̂ > τps which is chosen manually.

1 It is usually denoted as hot pixel during this thesis. But to comply with their original explanation it is called
partially stuck pixel in the following.
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4.4 Bayesian Inference Based Approach (Dudas)

This is another statistical approach but in contrast to the one above it uses Bayesian inferences to
calculate the probability of each state for each pixel separately from a series of images taken by the
sensor within a short timespan. It is based on the defect model described in section 3.4.2, which
models an imager as an array of W ×H pixels where the illumination present at a pixel at position
(i, j) is denoted as xi,j . The output (response) of each pixel is denoted as yi,j , is in the range of [0, 1]
and can be written as a linear function of the incident illumination:

yi,j = mi,j · xi,j + bi,j

where the subscripts are omitted for simplicity. m is the sensitivity or gain and b is the bias or
o�set, both having characteristic values for speci�c defect types (see pixel model in section 3.4.2). An
ideal, non-defective pixel would have m = 1 and b = 0. Each defect type can therefore be described by
a combination of gain m and o�set b and is referred as D = (m, b). A stuck high pixel can be described
by (0, 1) and a stuck low one by (0, 0). The probability of the occurrence of a speci�c defect type
(m, b) is denoted as p(m,b) and the total probability of any defect occurring, i.e. the defect density,
can be calculated by ptotal =

∑
{D} p(m,b). To completely calibrate an image sensor, the parameters

m and b, i.e. the sensitivity and bias of each pixel has to be determined.
As the defects cannot be reliably determined solely based on one image, a sequence of images

has to be used. These are images captured in the �eld under normal operation conditions which are
analysed and the statistics of each image and defect type are accumulated using Bayesian inferences.
The details of the algorithm are described in [10, 11]. After capturing T + 1 images the samples

Y = y
(0)
i,j , y

(1)
i,j , ..., y

(T )
i,j from a speci�c pixel at position (i, j) are available. Using Bayesian inferences

the probability of each defect type D at each pixel position (i, j) can be estimated based on the
collected evidence (image samples) using (subscripts are omitted for simplicity):

P (D|Y = y(0), y(1), ..., y(T )) =
P (Y |D) · P (D)∑

D′={allD}
P (Y |D′) · P (D′)

where the conditional probability P (Y |D) is the most important term, which encapsulates the
probability of observing the data Y under the assumption that the given defect type D is present at
that pixel. This likelihood has to be evaluated within the context of the image being processed. The
Bayesian function accumulates the statistics over a sequence of images to estimate the probability of
a pixel to be of a certain defect type D. There are two schemes for the evaluation of this data based
on statistical metrics calculated from the image, which are described in the following subsections.
P (D) denotes prior knowledge of the occurrence probability of each defect type and can be obtained
from manufacturing test data. These calculations are done recursively, such that each image in the
sequence is processed individually. The previous iterations lead to the a priori probability at iteration
k. This is expressed by the following formula for the k-th iteration:

P (D|Y = y(0), y(1), ..., y(k)) =
P (y(k)|D) · P (D|y(0), y(1), ..., y(k−1))∑

D′={allD}
P (y(k)|D′) · P (D′|y(0), y(1), ..., y(k−1))

This conditional likelihood term is evaluated for the whole sequence of T images and after that, the
defect type with the highest likelihood at a given pixel is taken as resulting defect type. Of course the
set of all defect types should also include good pixels to be complete. The parameter T is set before
the testing begins. T should not simply be chosen to use all available images, because long sequences
may cause the statistics to saturate. Other termination criteria, like a pre-determined con�dence
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level, i.e. likelihood threshold are also possible. Then the convergence speed is strongly a�ected by
the content of the images in the sequence. A �owchart of this approach is shown in �gure 17.

Especially if not only the defect location but also the earliest date in time where the defect showed
up should be determined (which can be done if the image sequence covers a longer timespan), a sliding
window approach should be used, at which only the n most recent images are used to calculate the
accumulation. According to Leung et al. [15], a window length of 3 is best for accurate temporal
detection of low visibility defects. For an accurate detection of the date when the defect occurred
�rst in time, a dark-frame calibration image is essential, from which the �rst prior probabilities P (D)
for each pixel and defect type can be derived. Changes in the accumulated probability indicate the
presence or absence of defects. Therefore, the date when a pixel �rst got defective can be either
determined using a simple threshold test, i.e. if P (Good|y(x)) falls below a certain threshold or using
a probability ratio threshold test: P (Good|y(x))/P (Good|y(k−1)) > threshold.

A problem regarding this approach might occur if only a certain type of images, e.g. landscape
scenes with large black and underexposed areas are used. Then defects like stuck low pixels cannot be
detected. In �ngerprint images where the outer image regions are rather bright all the time, defects
like hot pixels might remain undetected if their amplitude is rather low. Finger-vein images are usually
dark grey to black outside the �nger region, consequently the detection of stuck low pixels may not
be possible. Also hand vein images may exhibit such low brightness regions if not only a ROI but
the whole image of the hand including the surrounding areas is used. According to Dudas et al. [12]
this method can only be used to detect hot pixels if images with su�ciently long exposure times are
available.

4.4.1 Image Statistics Method

This technique relies on image wide statistics to derive the probability for each defect type and is
therefore called image statistics method [25]. It relies on the image-wide distribution of pixel values in
the form of the density function PX(x), which is estimated for each image using the image histogram
PY (y). E.g. the likelihood P (y(k)|D) for a pixel to be stuck at a value c simply is:

P (y(k)|D(0, c)) =

{
1 y(k) = c

0 otherwise

and for a pixel with half sensitivity it is:

P (y(k)|D(0.5, 0)) = PX(2y(k))

The problem of this simple approach is that a stuck pixel might not always have the same output
due to noise. Thus the conditional probability models have to be adjusted in a way that the statist-
ical distributions do not represent a single impulse function but a smooth function, like a Gaussian
distribution with its mean value at the stuck pixel value and a small variance. The likelihood for
a pixel being good is given by P (y(k)|D(1, 0)) = PX(y(k)). If the output for a speci�c defect type
gives unlikely values after testing many images, that defect type is not very likely to be present at
that pixel. Therefore, pixels that are consistently having an output of 0 or 1 are not very likely to be
good, because these extreme values are not likely to occur very often in typical images. But if only
global information is used and local information around the pixel of interest is not taken into account,
this may lead to false identi�cations depending on the images contained in the sequence. E.g. in the
context of �ngerprint images the outer region might always be rather bright depending on the type of
sensor, which might lead to the false identi�cation of stuck high pixels. Finger- and hand vein images
show rather large bright parts and only little dark parts where the veins actually are. Outside the
hand or �nger region there are some quite dark parts. This may lead to both, the false detection of
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stuck-low and stuck-high pixels inside the respective parts. If the information of neighbouring pixels
is additionally used, these false identi�cations can be avoided, because it is unlikely that not only a
single pixel is stuck high but also all of its neighbours are. In a photograph saturated white areas
are undesirable, therefore the dynamic range of the image is limited by the image processing chain
of many cameras, which could a�ect the image statistics PX(x) and PY (y) in undesirable ways. This
leads us to the interpolation technique which is described next.

4.4.2 Interpolation Method

The more successful technique for calculating P (Y |D) or P (y(k)|D), respectively uses information
from the pixel's neighbourhood. The details of this approach are described in [11]. The output of
each pixel is compared to its neighbours and the probability that this pixel is faulty is calculated,
assuming that most of the pixels in the neighbourhood of a defective pixel are good ones. This is
done by �rst estimating the incident illumination at the pixel's location (i, j) by interpolating its
neighbouring pixels' values. Of course the choice of the interpolation scheme has a signi�cant impact
on the accuracy of the detection method. Although several interpolation schemes can be used, for this
application the emphasis is placed on di�erent performance parameters than for typical applications.
E.g. many schemes try to maintain high-frequency components in the output and try to use as much
of the surrounding data as possible, which is both contra productive for defect detection. The authors
proposed the 4NN and ring averaging schemes, which are shown in the �gure 16. The smaller the
interpolation region and the closer this region is located towards the pixel under investigation, the
better will be the estimate of the pixel's value. According to Jenny Leung [21], the 5x5 ring averaging
�lter provides the best tradeo� between accurate pixel estimation and avoiding the defect spreading
problem caused by colour interpolation if dealing with colour images. If the estimated pixel value
at position (i, j) is denoted as zi,j , then the estimation error can be calculated by ei,j = zi,j − yi,j
for each pixel in the image. Based on the estimation error, the estimation error density PDF pE(e)
is calculated over the whole image and its statistics are accumulated in the probability distribution
(CDF) PE(e), which also describes the e�ectiveness of the estimation scheme. Now the likelihood for
each defect type can be determined by calculating the expected error eD at each pixel, for each defect
type D and retrieving the probability for this defect type from the distribution PE(eD) using

P (y(k)|D) = PE(e
(k)
D = fD(z)− y(k))

P (y(k)|(m, b)) = PE(e
(k)
D = z − [

y(k)

m
− b])

where fD describes the transfer function of the defect type. E.g. a pixel stuck at value c has

P (y(k)|D(0, c)) =

{
1 y(k) = c

0 otherwise
and a a half sensitivity pixel has P (y(k)|D(0.5, 0)) = PE(z − 2 · y).

Like before, the predicted defect type at the pixel (i, j) is the one with the highest likelihood then.
The estimate from the interpolation does not need to precisely predict xi,j at each image, because
using a certain number of test images, the results should be reasonably accurate. Thus this scheme
is more e�ective than the image statistics method. The authors claim that only 50 ordinary images
are su�cient to accurately identify all faults without falsely diagnosing good pixels as faulty [11].
They also found out that the 8NN or 3x3 averaging �lter work better than the 4NN averaging �lter
because due to the smaller weighting of each single pixel defects have less impact on the interpolation
results. Furthermore adding noise only slows down convergence rates but does not a�ect the false
positive detections. Using other interpolation schemes like the 4 round-robin technique, which is a
modi�cation of the 4NN scheme and described in [10] further mitigates the e�ects of a catastrophic



38 4 Defect Detection Algorithm

Fig. 16: Filters for interpolation method [15]

error but might be less accurate. It basically splits the 4NN interpolation into 4 separate tests and
uses a majority voting scheme. At �rst the pixel is compared to its left neighbour and the probability
P (D|y(k)) is evaluated, then it is compared to the neighbour above, again evaluating the probability
using the left pixel's test probability as prior probability. This is continued until all 4 neighbours
have been examined. If the interpolation error becomes very large this causes issues within the
Bayesian statistical methods (saturation), which leads to false positive detections and should therefore
be avoided.

As mentioned before if only colour images are available for defect detection, the single pixel defects
are distorted by the multiple steps in the image processing chain of the camera to produce a colour
image from the raw data, including demosaicing, white balance, noise reduction, linearisation, image
scaling, dark signal removal, exposure compensation and compression. All these imaging functions
will make a single pixel defect look like a defect cluster, which cannot be detected by the simple
interpolation schemes any longer. A possibility to deal with this is to use a 5x5 or 7x7 ring averaging
�lter, because the pixel's nearest neighbours are a�ected most by the colour demosaicing. Thus
interpolating using pixels further away can mitigate this e�ect, but also leads to a less accurate
interpolation, i.e. a higher interpolation error, because of the larger interpolation region. As a
consequence the detection result might not be very robust. The defect location might be detected
(actually easier because it is more visible), but the defect parameters cannot be detected reliably.
Thus access to the raw data is favourable for an accurate defect detection.

Another issue might be if the defect density gets rather high (5% of all pixels are defective). Then
the performance of this scheme su�ers because the distribution of PE(e) is derived from an image with
defects and the more defects the less accurate this CDF becomes. Another reason might be that some
defect locations are better to detect defects than others, depending on the surrounding pixels' values.
The more defects there are the higher is the probability of defects to be in these regions and thus it
gets more di�cult to accurately detect them. The performance of this scheme reduces dramatically if
multiple defects within a 3x3 pixel area are allowed, because of the interpolation technique used. The
accuracy of the estimate of P (D|Y ) highly depends on the estimate of zi,j , which is calculated by an
interpolation of the neighbouring pixels' outputs. If these pixels are also defective, the interpolated
values will be incorrect, which leads to an incorrect estimate of the probability P (D|Y ). These
problems illustrate the shortcomings of using local information from a pixel's neighbourhood to detect
defective pixels. They also illustrate the importance of statistically evaluating data instead of using
�xed thresholds and explain why statistical methods are more reliable. A large interpolation error in
combination with �xed thresholds may lead to a large number of false positive detections using �xed
thresholds, but due to the Bayesian inferences these e�ects might be mitigated or at least be not as
catastrophic when using this statistical approach.
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Fig. 17: Flowchart of the defect detection scheme [11]
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4.4.3 Extension for Hot Pixels

Leung et al. [14] found out that most observed in-�eld defects are hot pixels. Therefore they extended
or actually modi�ed the above method to distinguish between good and hot pixels only, thus being
more accurate at the detection of hot pixels [15]. The transfer function of a hot pixel is:

fHot−Pixel(x) = m · x+ b+ IHotTIntegration

For simplicity only a hot pixel with no additional o�set (which is called partially-stuck hot pixel by
the authors then) is modelled. The output y of a pixel can then be modelled by:

y = x+ (Texp · IDark) = x+ ∆

where a good pixel has ∆ = 0.
This is an extension of the interpolation method: Like before an interpolation image is generated

to estimate the expected pixel value based on its neighbouring pixels' values. Then the interpolation
error is calculated using the actual pixel value by ei,j = zi,j − yi,j . pE(e) describes the probability
density function (PDF) of this error over the whole image. For a good pixel it should be near 0 if a
well performing interpolation scheme is used. If yi,j is the output of a hot pixel then the error should
be approximately ∆.

In the following, the subscripts (i, j) will be omitted for simplicity. y denotes the value of a given
pixel at (i, j) and yk denotes the output of this pixel in the k-th image. Now there are only good and
hot pixels, thus the Bayes formula for a pixel to be good after the k-th image can be written as:

P (Good|yk) =
P (yk|Good) · P (Good|yk−1)

P (yk|Good) · P (Good|yk−1) + P (yk|Hot) · P (Hot|yk−1)

Another consequence is that the likelihood of a pixel being a hot one is simply the compliment of
P (Good|yk):

P (Hot|yk) = 1− P (Good|yk)

The conditional probabilities P (yk|Good) and P (yk|Hot) are again estimated using the interpola-
tion error PDF pE(e):

P (yk|Good) = pE(yk − zk)

P (yk|Hot) = pE(yk − (Texp · IDark)− zk) = pE(yk −∆− zk)

The index k is omitted from here on for simplicity. The above equation suggests that the dark
current value is a known constant (IDark and as a consequence ∆ is known), but in practice the dark
current will change signi�cantly from image to image due to temperature variations and di�erent
exposure times additionally in�uencing ∆. So the computed error e = y − ∆ − z will not be an
accurate estimate of the error caused by a hot pixel over several images. Thus the dark current or ∆
is modelled as a �uctuating quantity instead, by the procedure described below.

The dark current is measured at calibration time for each pixel at �rst. Then the �rst iteration
is started with a conservative underestimate of the dark o�set denoted by ∆min. With ∆ being the
dark o�set, the estimate of P (y|Hot) is corrected using an upper and lower bound of the dark o�set
by:

P (y|Hot) = P (y|∆min ≤ ∆ ≤ ∆max) =

∆maxˆ

∆min

pE(y −∆− z) · p∆(∆)d∆
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As the PDF pE(e) is just a 512 element vector, the integral can be reduced to the following
summation:

P (y|Hot) =

255∑
∆=∆min

pE(y −∆− z) · 1

255−∆min + 1
=

1

255−∆min + 1
· [

(y−z)−∆min∑
x=(y−z)−255

pE(x)]

assuming a uniform distribution of dark current values. This summation is the cumulative distri-
bution function (CDF) of the interpolation error pE(e). If the cumulative sum of pE(e) is calculated
and stored, the summation can further be simpli�ed to (PE(e) denotes the CDF of pE(e)):

P (y|Hot) =
1

255−∆min + 1
· [PE(y − z −∆min)− PE(y − z − 255)]

Because there are no calibration images available, the value ∆min is set manually. If a dark �eld
calibration image is available, ∆min can be set to:

∆min = m · ((IDark)min · Texp + b)

where (IDark)min and b are derived from the calibration image andm = ISOx
ISOcalibrated

is a correction

factor for the current image, taken at ISOx. A problem pointed out by the authors [15] is that the
performance of the Bayesian statistics may �uctuate signi�cantly due to the dark current magnitude.
But on the other hand due to the accumulative nature of the Bayesian inference method, small changes
in P (yk|Good) and P (yk|Hot) are re�ected in the accumulated statistics. Thus also hot pixel defects
in images with low exposure time can be detected [16].

4.4.4 Correction using Local Region Analysis

There are many external factors which in�uence the performance of the detection algorithm, like the
complexity of the image scenes, ISO and exposure settings, the dark current magnitude, additional
noise, etc. The main factor limiting the accuracy of the detection algorithm are false detections caused
by the scene complexity due to large interpolation errors. Especially image regions containing edges
or �ne details exhibit more colour variations than usual, which leads to high interpolation errors that
could be interpreted as being caused by a hot pixel. Another problem with images taken with a high
ISO level is that they are grainier due to the sensor noise, which means that a region with similar
colours can still result in large interpolation errors. To improve the performance of the detection
algorithm, i.e. reduce false positives, in [14] it is proposed to analyse the image on these factors.
Just ignoring images containing �ne details would discard much useful information. Thus it is more
advantageous to only exclude the image areas containing �ne details. This can be done by applying
a post procedure, which extracts information about the local region around the pixel of interest. To
be more speci�c, the complexity of a local region can be described by the mean and variance of the
region. Thus setting a threshold on these statistical values of the neighbouring region can be used to
correct the detection, by simply not taking pixels into account if the variance exceeds a prede�ned
threshold. If this approach is used to track the time of the �rst appearance of a defective pixel, the
authors [17, 14] suggest to ignore the whole image if the variance is above a preset threshold.
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5 Ageing Simulation Algorithm

The impact of the defects cannot be measured using two images of the same �nger or hand, respectively,
taken at di�erent points in time, because then all other external parameters and in�uences would
have to be exactly the same. In addition other in�uences are also present and one cannot distinguish
between the impact of the sensor ageing related pixel defects and the other in�uences, in particular
human ageing. So one would need to have identical data (i.e. �ngerprint, �nger vein or hand vein
images), captured at least at two signi�cantly di�erent points in time, but this is practically impossible.
It would not be possible to distinguish between the subject's ageing and the sensor ageing. Therefore
the only possible solution to study solely the impact of sensor ageing is to take a given set of �ngerprint,
�nger vein or hand vein images, respectively and arti�cially age them by simulating the sensor defects.

The simulation only includes hot and stuck pixels. The parameters needed for the simulation
should have been found by comparing images of the CASIA2009 and CASIA2013 �ngerprint database
images and extracting defective pixels caused by sensor defects. Unfortunately it became clear that
there were di�erent sensors used in 2009 and 2013 for capturing the images. Thus the pixel defect
rate and parameters could not be estimated based on the CASIA the images. Therefore, an empiric
formula was used to estimate the defect growth rate based on the sensor parameters, described in
section 8.4.1.

5.1 Algorithm

Based on the pixel model in section 3.4.1, the algorithm computes the defect matrices C and D and
then applies them to the images. An ideal sensor would have C and D as time-invariant zero matrices.
But in practice each sensor starts developing defects at some point in time T0 with a constant defect
growth rate. According to Jessica Fridrich [18], this can be modelled by a Poisson process, which
means the number of stuck and hot pixel defects can be calculated as follows:

ns(T ) = (T − T0)λs

nps(T ) = (T − T0)λps

where λs and λps are the growth rate of the stuck and hot pixel defects
2, respectively. According to

research done by Leung et al. [13, 16, 15, 19] and also Albert Theuwissen [3, 4], the defects are being
independent from each other and do not develop in clusters, so they can be modelled by a uniform
distribution in a 2D sensor array. This means that the defective pixel's position sk ∈ w×h of the k-th
defect is obtained from uniformly distributed random variables for the simulation. For a stuck pixel
the corresponding value according to the position in the matrix C has to be set and for a hot pixel
the value corresponding to the position in the matrix D has to be set. as is the maximum amplitude
of a stuck pixel and aps is the maximum amplitude (o�set) of a hot pixel (based on 8 Bit grey-scale
images). Then the corresponding value in the matrix C and D is obtained by

C(sk) = raas

D(sk) = raaps

for a stuck or a partially-stuck pixel at sk respectively, where ra ∈ R : [0; 1] is a uniformly
distributed random number.

2 Bergmüller et al. used the term partially-stuck pixels instead of hot pixels, thus the subscripts are ps. I use the
term hot pixel instead but left the notation as it is proposed in their paper.
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According to Leung et al. [15], the dark current is known to �uctuate due to heat variations
between each image capture. They modelled the dark current with a �uctuation constant Vdark and
updated the dark o�set according to: ∆ = Idark ·Vdark ·Texp. As discussed above, I assume during my
simulations that the same sensor is used and all environmental conditions like temperature are kept
constant. Thus also the dark current value and so the dark o�set are constant. Hot pixels are most
observable at long exposure times and the dark o�set ∆ is a function of the exposure time, but as I
assume that all the �ngerprint, �nger vein and hand vein images, respectively are captured using the
same exposure time and thus a constant dark o�set value can be used.

The simulation uses images captured at a speci�c point in time T0 as basis and adds ageing related
sensor defects to each image YT0

. Of course there might already be some defective pixels due to sensor
defects contained in the images taken at T0, but as only the change over time (increase in the number
of defects) is of interest, it does not matter which time frame is observed and especially if there are
already some defects present at T0 or not. The results of the later experiments are relative compared
to the baseline performance achieved using the T0 images, so the defects already contained in the
images at T0 do not in�uence the results of the experiments. The sensor defects according to the
defect matrices C and D at a speci�c point in time Ti are added to the image YT0

, which results in
the aged image YTi then. This image captures the same scene as at T0 but the sensor defects which
occurred during the timespan Ti−T0 are also present in the image. For the evaluation of sensor ageing
related pixel defects on �nger- and hand-image based biometric recognition systems, a sequence of
subsequentially aged images (YTi)i=1...m is generated by applying the defect matrices C and D to the
images taken at T0. Therefore, at �rst the sequences of the defect matrices C and D, each representing
the state of the sensor at a speci�c point in time Ti has to be calculated. This sequences are denoted
as

(DTi)i=0...m and (CTi)i=0...m

The following listing (Listing 1) describes the original sensor ageing algorithm in pseudo code as
proposed by Bergmüller et al. [22] to generate the defect matrices and also the sequence of aged
images, based on a single source image YT0

(defect matrices can simply be applied to a set of source
images to generate sets of aged images at the speci�c points in time) and sample points in time
T0...Tm:

As the number of defects always increases and existing defects do neither disappear nor heal over
time, the defect matrices C and D are calculated recursively, i.e. defects are only added and earlier
defects are maintained.

The �rst step at each iteration is to calculate the number of additional defects ∆ns and ∆nps
compared to the previous step. Therefore, the locations and the amplitudes of the new defects in the
i-th ageing step are determined using random numbers and the new defects are stored in the defect
matrices CTi and DTi . These are then used to calculate the aged image YTi . According to the pixel
model, the incident illumination I would have to be used, but as the incident illumination which lead
to the image YT0 is not known, the image YT0 is used directly instead of I using the argument of
relative evaluation again. The output of the algorithm is a sequence of aged images (YTi)i=1...m.

For the present work an extended version of this algorithm with a few additions was used. A
minimum distance between two defects can be set to avoid clustering of sensor defects which does not
occur in practice (e.g. Leung et al. showed that the minimum distance between two neighbouring
defects is between 79 to 340 pixels [13, 15]) but might occur in the simulation. Dudas et al. [11] used
the restriction that no two defects may fall in the same 3x3 pixel region while testing their algorithm
using Monte Carlo Simulations. This is done using the checkNeighbours(pos, size) function in the
pseudo code. In addition the amplitudes or the o�sets of the hot pixels, respectively are not drawn
from a uniform distribution, but from an exponential distribution, which is denoted as expd(µ) in the
pseudo code. The extended algorithm is shown in the second listing (Listing 2).
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Listing 1: Sensor ageing simulation algorithm

1 procedure AgedImageSequence (YT0 )
2 f o r i =1 . . .m do
3 ∆ns ← ns(Ti − T0)− ns(Ti−1 − T0)
4 ∆nps ← nps(Ti − T0)− nps(Ti−1 − T0)
5 DTi = DTi−1

6 CTi = CTi−1

7 f o r k=1 . . .∆ns do
8 ra ← random in [ 0 ; 1 ]
9 sk ← random in w × h
10 CTi(sk)← ra · as
11 endfor
12 f o r k=1 . . .∆nps do
13 ra ← random in [ 0 ; 1 ]
14 sk ← random in w × h
15 DTi(sk)← ra · aps
16 endfor

17 YTi(x, y) =

{
CTi(x, y) if CTi(x, y) 6= 0;

YT0(x, y) +DTi(x, y) otherwise.

18 endfor
19 return (YTi)i=1...m

20 end procedure
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Listing 2: Extended sensor ageing simulation algorithm

1 procedure AgedImageSequence (YT0
)

2 f o r i =1 . . .m do
3 ∆ns ← ns(Ti − T0)− ns(Ti−1 − T0)
4 ∆nps ← nps(Ti − T0)− nps(Ti−1 − T0)
5 DTi = DTi−1

6 CTi = CTi−1

7 f o r k=1 . . .∆ns do
8 ra ← random in [ 0 ; 1 ]
9 do
10 sk ← random in w × h
11 whi l e checkNeighbours (sk , 3) = 1
12 CTi(sk)← ra · as
13 endfor
14 f o r k=1 . . .∆nps do
15 ra ← drawn from expd ( 0 . 1 5 )
16 do
17 sk ← random in w × h
18 whi l e checkNeighbours (sk , 3) = 1
19 DTi(sk)← ra · aps
20 endfor

21 YTi(x, y) =

{
CTi(x, y) if CTi(x, y) 6= 0;

YT0
(x, y) +DTi(x, y) otherwise.

22 endfor
23 return (YTi)i=1...m

24 end procedure
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6 Fingerprint Recognition

6.1 Biometric Recognition Systems

The aim of biometric recognition systems is to identify human beings using some kind of biometric
trait. A biometric trait is based on a certain distinctive anatomical or behavioural characteristic of
an individual. The most common modalities are �ngerprint, iris, face, palmprint, �nger vein, etc. A
biometric trait cannot be shared or misplaced and is therefore ideally suitable for identi�cation and
authentication purposes. It also helps in reducing fraud and abuses and improves user convenience, as
users do not have to remember multiple complex passwords any more. In addition, only by applying
biometrics, negative recognition, i.e. the system checks if the individual is the one it denies to be,
is possible. There are some important properties which are either desired or necessary for biometric
traits:

• Uniqueness: Is the trait distinctive across users? This means that the trait must be distinctive
enough between two di�erent subjects, which is called inter-person variability. This variability
should be as high as possible, i.e. the trait has a high discriminative power, to achieve a low
number of misclassi�cations.

• Permanence: Does the trait change over time? There is an intrinsic variability for each biometric
trait from one capture to another for the same person, which is called intra-person variability.
This is due to ageing processes and di�erent environmental conditions at the point in time of
capture. Of course this variability should be as low as possible.

• Stability: qualitative property of a trait with high distinctiveness and high permanence.

• Universality: Does each person have the biometric trait?

• Collectability: Can the trait be measured quantitatively? This is mainly provided by the sensor
technology used, but also the processing chain has to guarantee a certain quality. The time that
it takes to acquire the sample of the trait is also important and should be as little as possible.

• Performance: Does it meet error rate, throughput? This is mainly in�uenced by the speed of
sensor technology, processing, matching and scalability in terms of the number of users, detection
accuracy and resources needed to provide a given accuracy.

• Acceptability: Is the capturing of the trait acceptable to the users? Are the users willing to use
the system if they have to? The system should be non-invasive, require only a minimal level of
user experience to use it, should be easy to use in general and of course be convenient for the
users.

• Vulnerability: Can the trait be easily spoofed, attacked or even circumvented?

• Integration: Can the trait be embedded in the application? The question here is if the trait
can be applied in an existing application with some adoptions or if it is not usable for a given
application at all. E.g. a �ngerprint based authentication system is not the best choice for coal
mine workers, because the dirt and abrasion due to their work might make the capturing of a
�ngerprint image with su�cient quality impossible. Here an iris scanner or a hand- or �nger
vein based system would be a better choice.

A biometric recognition system operates in two steps. The �rst step is the enrolment process, where
the biometric samples of a subject are captured for the �rst time and stored in a database under
the ID of the subject. Most of the time not the raw input data, e.g. a �ngerprint image is stored,
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instead there is a feature extraction stage, at which certain features, e.g. the minutiae points are
extracted, preceded by a quality check and a preprocessing step. Then only the extracted features
are stored in the database, which are called a biometric template. The raw input data can be stored
in addition to the template, which can optionally be encrypted and compressed, to be able to do an
alternative feature extraction at a later point in time. The next step is the authentication procedure,
where another sample is captured and used to verify or determine the identity of a given subject.
In the veri�cation scenario the captured sample is compared against the template stored inside the
database under the ID the subject claims to have, i.e. a 1 to 1 comparison. The same steps like
during enrolment are performed, i.e. also a quality check, preprocessing and feature extraction is done
prior to calculating the match score using the extracted features and comparing these to the ones
stored inside the database. According to this comparison, a matching score is calculated and using a
threshold, the system decides whether it is the same subject or not. In contrast to veri�cation, there is
also the identi�cation scenario: The current capture of the sample is from an unknown subject and is
compared to each sample stored in the database to �nd the best match, which has a certain likelihood
to be from the same subject as the current capture, i.e. a 1 to N comparison is performed. In this
scenario it is not su�cient to return the ID of the template, which achieved the highest matching
score and say that this is the unknown subject's ID. A likelihood test is also necessary to determine
the probability that it is really this subject, depending on the matching scores of the current capture
against all other templates inside the database. Especially for the identi�cation scenario a very low
EER is essential to get a reliable result.

6.2 Fingerprint Recognition Systems

In �ngerprint recognition the used biometric trait are images of the subject's �ngers, more precisely
the impression of the friction ridges on the inside of the �ngertips. Fingerprints meet the requirements
for biometric traits as they are highly distinctive and unique, they are supposed not to change severely
during the lifetime of a person, are publicly accepted as reliable, their acquisition is easy and convenient
for the users and �ngerprint sensors can be integrated into most existing authentication systems.
The vulnerability can be reduced by performing a fake �ngerprint detection using e.g. liveliness
checks, which can be done based on physical (e.g. elasticity), visual (e.g. colour) or electrical (e.g.
resistance, capacitance) properties of the skin or based on generated signals like pulsation, blood
pressure, perspiration, etc. Fingerprint images are captured using di�erent types of scanners, e.g.
optical sensors, which work most like a digital camera or sweep sensors, integrated into most modern
notebook computers. Also silicon based sensors are common. Today the most widely used sensors
are optical ones working based on the FTIR principle. Like all other biometric recognition systems,
�ngerprint recognition systems operate in two steps, enrolment and authentication. The second step
is di�erent for veri�cation and identi�cation. The schematic procedures for enrolment, veri�cation
and identi�cation can be seen in �gures 18, 19 and 20. As quality metric the NFIQ (Nist Fingerprint
Image Quality) is the de facto standard for evaluating the quality of �ngerprint images. To achieve
a higher robustness, not only the image of one �nger of each person is captured during enrolment,
but at least two �ngers are used. The subject may hurt one �nger and would then not be able to
authenticate himself if only one �nger is enrolled. In addition in some applications, a re-enrolment
may be possible to store an updated version of a subject's �ngerprint, whereas in others this might
be prohibited, like in high-security applications to avoid forging attacks.

6.2.1 Fingerprint Sensors

Here the di�erent types of �ngerprint sensors which are available should be discussed brie�y with a
focus on optical sensors using a CCD/CMOS image sensor as only these sensors are a�ected by the
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Fig. 18: Enrolment step

Fig. 19: Veri�cation process
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kind of sensor ageing related pixel defects as described in section 3.4. Of course also thermal and
other sensors are a�ected by ageing related e�ects but to the best of my knowledge the impact on the
sensor output has not yet been investigated and there is no defect model available. Consequently the
focus of this thesis is on biometric sensors using a CCD or CMOS image sensor.

O�-line acquisition In forensics, so called latent �ngerprints are captured o�-line. If a �nger touches
an object, there remains a moisture or grease �lm on it, which renders the ridge and valley structure.
This �lm can be made visibly by di�erent methods, e.g. using powder or chemical treatment.

Also for authentication systems the so called ink technique is used to capture �ngerprints o�-line.
Therefore the �nger is put onto an ink pad and then pressed against a cardboard. Here the whole
�ngerprint, from nail to nail can be captured which stores more information than by using an FTIR
sensor. The quality of the �ngerprint not only depends on the uniform dispensation of the ink, but
also on the condition of the �nger itself (fat, dirt, sweat, moisture). The print on the cardboard is
then converted into a digital image using a scanner or camera.

Optical - FTIR and Direct FTIR, which stands for frustrated total internal re�ection, is the most
common used �ngerprint sensor technology. The �nger is placed on top of a glass prism, the ridges
directly touch the prism and the valleys form a small gap, where there is air closed up between the
skin and the prism surface. One side of the prism is illuminated, the light is being absorbed at the
ridges and re�ected at the valleys, thus the valleys appear bright and the ridges appear dark. The
re�ected light passes out of the prism on the other side, where it is focused on a CCD image sensor
through a lens. The optical distortion, which is introduced by the prism, has to be corrected optically
or by software. The size of the prism can be reduced by using a sheet prism, but this reduces the
quality.

The Direct sensor technology uses an optical �bre with a CCD sensor directly applied to it, which
replaces the prism and the lens. Residual light originating from the �nger is being transferred through
the optical �bre and captured without the need of an external light source. The large CCD sensor
area leads to high costs, which is the main disadvantage.

Electro-Optical These sensors consist of two layers. The �rst one is a light emitting polymer, which
light intensity depends on the electric potential applied on the side of it. The ridges touch the surface
whereas the valleys not, so they have a di�erent potential and thus the emitted light has a di�erent
intensity. The second layer consists of photodiodes, arranged in an array, which capture the emitted
light and transform it into an electric signal, which is then converted to the digital image. These
sensors can be built in very small sizes, but the quality is inferior compared to FTIR sensors.

Silicon - Capacitive Silicon based sensors are also called solid-state sensors and consist of an array
of pixels where each pixel is a sensor on its own. The �nger directly touches the silicon surface. They
only di�er in the way the physical information (ridge and valley structure) is translated into electrical
signals.

A capacitive sensor consists of an array of micro capacitors, in particular only one capacitor plate.
The second plate is the �nger itself. If the �nger touches the surface, this results in small electrostatic
charges and according to the laws of the electrostatic �eld, the magnitudes of the resulting charges are
dependent on the distance between the two plates, i.e. the distance between the sensor's surface and
the skin surface of the �nger. Thus the ridges and valleys cause charges with a di�erent magnitude
which can be measured. The surface has to be protected using a protection layer and it has to be
resistant against electrostatic discharges. These sensors cannot be tricked by a photograph of the
�nger.
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Silicon - Thermal Each individual sensor is made of a pyro-electrical material, which generates an
electrical current dependent on temperature di�erences. The sensor is kept at a certain temperature,
higher than room temperature, to provide a high enough temperature di�erence to the skin temperat-
ure. As the ridges directly touch the sensor surface and the valleys not (the air in between isolates it
thermally), the sensor surface is cooled down where the ridges are. Due to the temperature compens-
ation the image is only visible a short amount of time, even if the �nger still stays on the sensor. Thus
a dynamic capturing method like sweeping should be used. These sensors are more robust against
discharges and the protective layer can be thicker.

Silicon - Piezoelectrical Each pixel contained on the sensor is pressure-sensitive and the electric
output signal depends on the pressure applied to each pixel. The pressure at the ridges is higher
than at the valleys, which causes a di�erent output signal. The currently available materials are not
sensitive enough, the problem with the protective layer is not yet solved and the output is a binary
image.

Silicon - Electric Field The sensor generates an electric �eld, which is distorted by the structure of
the skin surface. These distortions can be measured and converted to an output signal. This type of
sensor is also vulnerable to electrostatic discharges.

Ultrasonic Ultrasonic sensors work with acoustic signals in the ultrasonic range, which are re�ected
at the ridge and valley structure of the �nger. The re�ected sound waves are captured by a sensor
and based on the di�erent points in time when they are captured, the distances that the signals have
travelled can be determined. Sound waves re�ected at ridges have shorter distances than the ones
re�ected at valleys. The quality of the output images is quite good and is it not in�uenced by dust,
dirt, wearing gloves etc. The main disadvantages are the size of such a sensor, the high costs and the
long acquisition time of a few seconds.

Touch and Sweep Touch means the �nger is simply placed on top of the sensor surface. No training
of the user is necessary but the sensor surface may get polluted fast. This reduces the image quality,
moreover the �nger can be placed rotated or misaligned and a latent �ngerprint resides on the sensor
after the capture.

Sweep means that the �nger is moved over the sensor in a vertical sweeping motion. The sensor has
to be as wide as the �nger and should be at least several pixels high to enable a robust reconstruction
of the image from the slices. The production costs are lower, the sensor does not get polluted so easily
as it is constantly cleaned while sweeping and the �nger cannot be placed rotated. However the user
needs some training to perform an even sweeping motion with the right speed, the sensor has to be
fast enough to capture the image slices while sweeping and the image has to be reconstructed from
the slices, which may introduce additional errors.

6.2.2 Fingerprint Image Examples captured by Di�erent Sensors

Figure 21 shows some �ngerprint images acquired with di�erent types of �ngerprint sensors. HiScan,
MSO350, UareU4000 and Veri�er 300 LC 2.0 are FTIR sensors. FingerChip AT77C101B is a thermal
sweep sensor. AES 4000 is a representative of an electric �eld sensor and TouchChip TCS1 is a
capacitive sensor.
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(a) HiScan (b) MSO350 (c) FingerChip
AT77C101B

(d) Veri�er 300
LC 2.0

(e) AES 4000 (f) UareU4000 (g) TouchChip
TCS1

Fig. 21: Example images captured by di�erent �ngerprint scanners [26]

Fig. 22: Minutiae types [27]

6.3 Fingerprint Anatomy

The skin on the inside of human feet and hands is covered with concentric raised patterns, forming
ridges and valleys. These ridges provide friction making it easier for humans to hold and grasp objects.
The pattern shown in �gure 22 which is formed by these ridges is called a �ngerprint. A �ngerprint
consists of mainly parallel �owing lines called ridge lines, forming a pattern called ridge pattern. These
lines are not continuous or straight, instead they are broken, forked or change direction. Points on
which the ridges change, fork or end are called minutiae points. These minutiae points, which are
extracted and used as features by the most common matchers, are determined by the termination or
bifurcations of the ridge lines and can be classi�ed in:

1. Ridge Ending: end of a ridge

2. Ridge Bifurcation: a single ridge divides into two ridges

3. Independent Ridge: the ridge begins and ends again already after a short distance

4. Island: a small ridge inside a short ridge

5. Spur: a bifurcation, at which a short ridge branches out of a longer one

6. Crossover: a short ridge running between two parallel ridges
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7. Delta: ridges meeting in a Y-shape

8. Core: a U-turn of a ridge

The most commonly used types are ridge endings and ridge bifurcations. There are other local
structures produced by the ridge lines, the most common ones are a whorl, a loop and an arch, which
can be used for a coarse classi�cation of �ngerprint images and therefore as a �rst matching step.
These singularities are most commonly found by a method based on the Poincaré index.

In addition, there are more local features, which are only visible at a very high resolution of the
scanner, e.g. at 1000 dpi, which include sweat pores, creases and incipient ridges. These features can
also be used to perform an even more accurate matching but require a high quality and high resolution
input image.

6.4 Feature Extraction and Matching

For the traditional minutiae based approach the feature extraction stage begins with a segmentation of
the input image to separate the foreground (�ngerprint area) from the background. This is followed by
deriving an orientation, a �ngerprint shape and a frequency image, respectively, from the segmented
�ngerprint image. Based on the orientation image the singularities, e.g. deltas and whorls are found.
The three images are then used to derive a ridge pattern, out of which the di�erent minutiae points
are extracted. This can also be done quite simple by �rst binarising the input image, then performing
a thinning operation on the binarised image and the minutiae points can then be detected using a
simple image scan (e.g. �ltering the image with prede�ned �lters). Most feature extractors use at
least the minutiae type, direction and position.

Based on this simple method of minutiae extraction there are some intrinsic problems. First of
all a certain amount of information may be lost during the binarisation step. Moreover binarisation
techniques provide unsatisfactory results in low-quality image regions and thinning may introduce
additional spurious minutiae. Thus other types of feature extraction methods have been developed,
especially for low quality images, which do not use minutiae points, but some other features like local
ridge features, including local ridge orientation and frequency and also correlation based approaches,
which use the global ridge and furrow structure.

Di�erent types of �ngerprint recognition schemes react di�erently to quality degradations, thus
fundamentally di�erent types of �ngerprint feature extraction and matching schemes are considered
to be able to study the in�uence of sensor ageing related defects on each one of them. After the image
is captured, di�erent features are extracted from the image based on the discriminative characteristics
a �ngerprint contains. The di�erent approaches used during the evaluation are described below.

6.4.1 Correlation Based Matcher

In contrast to the minutiae based matchers, a �ngerprint image in its entirety is used at the feature
extraction stage, i.e. the global ridge and furrow structure is decisive. The �ngerprint images are
correlated using di�erent translational and rotational alignments. During the experiments done in this
thesis, a custom implementation of the phase only correlation (POC) matcher [28] done by Michael
Pober was used. This POC matcher works as follows: At �rst the DFT (discrete Fourier transform)
of each of the two images, which should be matched against each other, is calculated. Afterwards the
normalised cross spectrum (or cross-phase spectrum) is calculated in the Fourier domain. Finally the
inverse DFT of the normalised cross spectrum is computed, which is the actual POC then. POC has
some advantageous properties like shift invariance, brightness invariance and immunity to noise, which
makes template alignment easier. The rotational alignment is done by computing the POC for rotated
versions of the original �ngerprint images in a range of ±20° with a step size of 1°. The rotated version
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with the highest POC score is used for matching. The POC peak is used to perform displacement
alignment and subsequently probe and gallery images are cropped to the common area of intersection,
as non-overlapping regions would lead to uncorrelated noise in the POC function. For the �nal score
a band limited version of the POC is computed. Band limiting is done in a way trying to limit the
frequency spectrum to only those regions in the �ngerprint image that are related to actual �ngerprint
data, especially the ones originating from the ridge and furrow structure and excluding high frequency
areas with interfering components. The last step is the calculation of the �nal matching score which
is computed by summing up the P highest peaks. In the custom implementation P = 1, i.e. only the
highest peak is used. Fingerprint enhancement as suggested in [29] is done before feature extraction
to improve the matching results.

6.4.2 Ridge Feature Based Matcher

This type of matcher uses the overall ridge and furrow structure not in a global manner like the
correlation based one but in a localised manner. Features like local ridge orientation and local ridge
frequency are extracted and used to represent the individual �ngerprint. During this thesis, as a
representative of this category, a custom implementation of the �ngercode (FC) approach [30] done
by Michael Pober was used, which is based on Gabor �lters. Again with this custom implementation
the �ngerprint enhancement strategy suggested in [29] is used.

Prior to the actual feature extraction, normalisation is applied to the input images by pixel-wise
adjusting the grey-levels to get an image with a speci�c mean and variance. A least squares estimate
of the local ridge orientation, computed in 16 x16 pixel blocks is then calculated using a Marr-Hildreth
operator. This is followed by applying a low-pass operator to smoothen the output, which forms the
so called orientation image. This orientation image in combination with the normalised �ngerprint
image is then used to create the frequency image, containing the local ridge frequency. Then the
x-signature is calculated per block using an oriented window by projecting the respective grey levels
of the normalised �ngerprint image onto the length of the window, which is placed in a direction
orthogonal to the local ridge orientation of each block. Using the reciprocal of the average distance
between the peaks in x-signature, the frequency is determined. In addition interpolation of invalid
blocks, i.e. blocks where the x-signature does not follow a discrete sinusoidal-shape wave, is done
using a discrete Gaussian kernel.

Feature extraction is based on a bank of eight separate Gabor �lters, each one oriented at a
di�erent, constant angle. The image is convolved with each of the eight �lters, resulting in eight
distinct �ltered images, each of them containing the response of the particular Gabor �lter applied to
the ridge and furrow structure of the �ngerprint. For each image the standard deviation at every pixel
position in a 16 x 16 block, centred at the pixel under investigation, is computed. The union over all
eight standard deviation images is denoted as Standard Deviation Map. During the enrolment step the
image is subsampled by a factor of 16 to generate ridge feature images, which union forms the Ridge
Feature Map. Di�erently displaced ridge feature images are correlated in the Fourier domain and by
identifying the image with maximal correlation, compensation for shift and translational alignment
is done. Rotational alignment is performed by simply storing a set of ridge feature maps calculated
from rotated versions of the �ngerprint images in a range of ±20° with 1° step width and then again
using the one achieving the maximum correlation value. Finally the matching score is computed by
calculating the Euclidean distance between the aligned ridge feature map entries.

6.4.3 Minutiae Based Matcher

Each minutia of the �ngerprint is determined, represented at least by its type, location and direction
and stored in a list. The matching process then simply tries to �nd an optimal alignment between
two sets (lists) of minutiae points of the two �ngerprints to be matched, resulting in a maximum
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number of pairings (including some kind of distance metric) between the minutiae from the one set
to compatible ones from the other set.

NFIS2 (mindtct and bozorth3) The �rst representative of a minutiae based matcher used in this
work is mindtct (feature extraction) and bozorth3 (matching), both contained in the �NIST Biometric
Image Software (NBIS)� package, available at http://fingerprint.nist.gov/NBIS/. mindtct loc-
ates and extracts minutiae points contained in the input �ngerprint image and assigns type, location,
orientation and quality to each point. The process can be divided into 6 steps:

1. Generation of image quality map

2. Binarisation

3. Minutiae detection

4. Removal of false minutiae including lakes, holes, islands, hooks, overlaps, side minutiae, minutiae
in low quality image regions, minutiae that are too wide or too narrow (pores)

5. Counting of ridges between each minutiae point and its nearest neighbours

6. Minutiae quality assessment

The minutiae detection is unreliable in low quality image regions. Therefore, the �rst step is to
determine image areas that have low quality using characteristics like low contrast, high curvature
and incoherent ridge �ow. These characteristics represent unstable image areas and are used to assign
a quality level to each image area in order to generate an image quality map. The image is divided
into non-overlapping blocks and to each block a quality level from 1 to 5 is assigned. This is followed
by a binarisation step. Afterwards the minutiae detector scans the binarised image, trying to identify
local pixel patterns that indicate splitting or ending of a ridge. The candidate minutiae points are
then detected by comparing the patterns to a set of minutiae patterns. In the next step, false minutiae
points are removed and the remaining ones are considered as correct minutiae of the �ngerprint. Apart
from the minutiae information itself, mindtct also extracts additional information, in particular the
ridge count between each minutiae point and its nearest neighbours. In the last step, a quality score
is assigned to each of the remaining minutiae points, because some false minutiae may still remain in
the list after the removal stage. The quality score is based on two measures. The �rst one is taken
directly from the quality map of the image at the location of the minutia point and the second one
is based on pixel intensity statistics of the minutia point's neighbourhood, i.e. mean and standard
deviation.

bozorth3 is the matching algorithm which computes a match score between all the minutiae points
from two �ngerprints. Although mindtct extracts type, location, orientation and quality of each
minutia point, bozorth3 uses only the location and orientation information of the minutiae points
to calculate a match score. It is rotation and translation invariant. The matching score is based on
computing appropriate scores for each pair of minutiae points of the two images, based on the distance
between the two minutiae and the angle between each minutia's orientation and the intervening line
between both minutiae.

VeriFinger (Neurotechnology) The second representative is a commercial one, developed by Neur-
otechnology and called VeriFinger, which is available as trial version of the VeriFinger SDK, version
7.0 at http://www.neurotechnology.com/download.html#verifinger_sdk_trial. According to
Neurotechnology's website3: �The VeriFinger algorithm follows the commonly accepted �ngerprint

3 http://www.neurotechnology.com/verifinger-technology.html

http://fingerprint.nist.gov/NBIS/
http://www.neurotechnology.com/download.html#verifinger_sdk_trial
http://www.neurotechnology.com/verifinger-technology.html
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identi�cation scheme, which uses a set of speci�c �ngerprint points (minutiae) along with a number
of proprietary algorithmic solutions that enhance system performance and reliability.� VeriFinger is
tolerant to �ngerprint deformations and able to match �at against rolled �ngerprints and vice versa.
It is robust against translation, rotations, and deformation. In addition stuck ridges, ridge ruptures
and noise are eliminated prior to minutiae extraction to get more reliable results even from poor qual-
ity �ngerprints. Even if the template and the query �ngerprint image have 5 � 7 matching minutiae
only an identi�cation should still be possible. It uses a feature generalization mode, i.e. features are
extracted from several �ngerprint images of the same �nger, analysed and then combined into a single
generalized feature collection, which is stored in the database. This makes the enrolled features more
reliable and increases the recognition quality.

MCC - Minutia Cylinder Code The Minutia Cylinder Code approach is no combined feature ex-
traction and matching technique. Instead it is a new local matching approach for previously extracted
minutiae points. In contrast to global minutiae matching algorithms, which are computationally de-
manding and not robust against non-linear �ngerprint distortions, local ones use attributes that are
invariant to global transformations, e.g. rotation, translation, scaling and aim to be less computa-
tionally demanding. But as only local minutiae arrangements are used for matching, the information
contained in global spatial relationships is not available and therefore there is less discriminative in-
formation available for matching the �ngerprints. This might lead to a lower matching performance
compared to the usual global approaches. This approach could be used in a hybrid two-stage strategy.
At �rst the local matching is used to reduce the number of candidate matches and then a global
matching approach is used to make the �nal decision.

According to the Cappelli et al. [31] the main advantages of their approach are:

• it is a �xed-radius approach and therefore it tolerates missing and spurious minutiae better than
nearest neighbor-based approaches;

• unlike traditional �xed-radius techniques, it relies on a �xed-length invariant coding for each
minutia and this makes the computation of local structure similarities very simple;

• border problems are gracefully managed without extra burden in the coding and matching stages;

• local distortion and small feature extraction errors are tolerated thanks to the adoption of smoothed
functions (i.e., error tolerant) in the coding stage;

• it e�ectively deals with noisy �ngerprint regions where minutiae extraction algorithms tend to
place numerous spurious minutiae (close to each other); this is made possible by the saturation
e�ect produced by a limiting function;

• the bit-oriented coding makes cylinder matching extremely simple and fast, reducing it to a
sequence of bit-wise operations (e.g., AND, XOR) that can be e�ciently implemented even on
very simple CPUs.

MCC represents each minutia using a local structure, which encodes the spatial and directional rela-
tionships between the minutia and its neighbourhood. This structure can be represented as a cylinder
with its base and height depending on the spatial and directional information.

Matching is done using a local similarity measure, based on a vector correlation measure. A bit-
based version of this measure can be implemented and used on architectures where �oating point
operations are not available or rather slow to speed up the matching process.



6.4 Feature Extraction and Matching 57

Fig. 23: Local 3D structure representation [31]

Fig. 24: Matching two cylinders [31]
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6.5 Factors In�uencing Recognition Accuracy

In the identi�cation (not veri�cation), thus in an 1:n and not an 1:1 matching scenario, a high matching
accuracy, i.e. a low equal error rate, is necessary to successfully identify an individual. If everything
would be perfect, then either two �ngerprints would match exactly or they would not match at all.
But unfortunately even though the ridge pattern does not change signi�cantly over time, �ngerprint
images can vary a lot due to di�erent skin conditions, dirt and abrasion. This can go as far as to
have two �ngerprints of di�erent �ngers look like they are taken from the same �nger, e.g. due to
creases or worn �ngerprints, which makes feature extraction very challenging. Especially in forensic
applications, where most of the time latent �ngerprints are used, there are many factors that in�uence
the quality of the �ngerprint and therefore the recognition accuracy. Moreover, the higher the number
of templates, the higher is the likelihood of two �ngerprints looking like the same if they are not. So it
is vital to know which feature extraction/matching scheme is robust against di�erent types of quality
degrading factors, to be able to choose the right one for the given purpose.

6.5.1 Acquisition Area

The most important parameter is the acquisition area. The larger it is, the higher is the accuracy,
i.e. the lower the EER. An acquisition area of 240 mm² should be the minimal area used. For good
results an acquisition area of 350 mm² or higher is recommended. Using an acquisition area of only
210 mm², the average performance drop in terms of EER is about 70%.

6.5.2 Displacement and Rotation

If there is a high displacement or a high degree of rotation, only a small overlap between the template
and the current sample exists, which makes matching di�cult even if the input image has a high
quality. The problem gets worse for small area sensors. Another problem is motion blur, resulting
from small movements of the �nger while capturing the image, which can be reduced using short
exposure times.

6.5.3 Non-Linear Distortion

The sensor performs a mapping of the 3D structure of the �nger onto the 2D surface of the sensor,
which results in a non-linear distortion. This distortion is not always the same due to the skin
plasticity, which could result in images of two di�erent �ngers looking very similar.

6.5.4 Pressure

Especially uneven and non-uniform pressure applied to the �nger while put on the sensor surface
causes problems, as it further distorts the image in a non-linear way. Some of these e�ects can be
corrected using preprocessing, trying to model the skin distortion at �rst and then �ltering the e�ects
according to the modelled distortion.

6.5.5 Skin Conditions

The condition of the �nger's skin, which is placed on the �ngerprint sensor may also in�uence the
quality of the captured �ngerprint image and therefore the recognition accuracy. Especially dust, cuts
and dirt on the �nger lead to disruptions in the ridge and valley lines, causing the extraction of minutia
points to be more di�cult. Dryness of the skin, sweat, grease and high air humidity may lead to a
poor overall image quality, depending on the sensor type, which might make the extraction of minutiae
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points nearly impossible. Thus other feature extraction and matching schemes, e.g. correlation- and
ridge-feature based matchers have to be used.

6.5.6 Sensor Noise

Sensor noise may be caused due to a high ISO level, which results in shot noise in the output image.
A high ISO level is used to achieve short exposure times in low light conditions, helping to reduce
motion blur. This is a problem especially for sensors having a very small pixel size, as each single pixel
may only be collecting a few thousand photons. The output of the pixel is then a�ected by random
statistical �uctuations in the photon density, which leads to noise in the output image. Another type
of sensor noise is the quantization noise, which is caused by the quantization of a single pixel's output.
Additional noise may be introduced by the sensors electronics, errors in signal transmission and
errors on the storage medium. Sensor noise is typically also dependent on environmental conditions,
especially on the temperature.

Another type of sensor noise are pixel defects due to sensor ageing. These defective pixels further
degrade the image quality and their in�uence on the recognition accuracy of biometric recognition
systems is the main topic of this thesis.

6.5.7 Fingerprint Image Enhancement

Sensor noise can be reduced using a denoising �lter. If a sensor's characteristics and its noise pattern
are known, this can be used to reduce the sensor noise to a great extent by using deconvolution.
Displacement and rotation can be corrected by trying to align the images or by computing the matching
score for di�erent translations and rotations. The best approach for further enhancement of �ngerprint
images is using contextual �lters, e.g. Gabor Filters, trying to extract exclusively the ridge and valley
structure. Despite all enhancement techniques, today humans still outperform automatic �ngerprint
feature extraction algorithms in extracting features from very low-quality input �ngerprint images.
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7 Finger and Hand Vein Recognition

For authentication and identi�cation not only �ngerprints can be used but also �nger and hand vein4

images. Basically these images capture the pattern of the blood vessels inside the �ngers and hands
of a human.

Using the vein patterns has several advantages over the well established �ngerprints. First of all
the veins are underneath the skin and only visible in near infrared light, thus the vein pattern is
resistant to forgery. Moreover, liveness detection is easily possible. The most important advantage
is that the vein patterns are insensitive to abrasion and �nger surface conditions, like moisture, dirt,
dryness, cuts and so on.

On the other hand there are also some disadvantages. First of all it is not completely clear if
the vein patterns exhibit su�ciently distinctive features to reliably perform biometric identi�cation
among large user groups. The data sets which are currently public available, are limited in their
size and therefore, this issue cannot be clearly answered by now. The second disadvantage are the
capturing devices needed for taking images of the vein pattern. It is necessary to illuminate the human
hand or �ngers with infrared light to make the inside veins visible. There are two ways of doing this,
either by re�ected light or using transillumination. Transillumination is able to make also vein lines
further underneath the skin visible, leading to more distinctive output images. But scanners using
transillumination are rather big compared to �ngerprint sensors. An example can be seen in �gures
25 and 26. The vein structure is in�uenced by temperature, physical activity and certain injuries and
diseases. Although the impact and e�ects of these in�uences on the recognition performance has not
yet been studied it is known that especially the width of the veins changes due to temperature changes
and physical activity. Thus a suitable feature extraction technique should not depend on the width
of the veins.

Nevertheless, there are already some uses of �nger vein scanners nowadays, e.g. the UK Barclays
Bank uses �nger vein scanners to approve transactions in their local branches5 and now introduced
�nger vein scanner for their customers to approve online banking transactions as well6.

7.1 Finger and Hand Vein Scanners

7.1.1 Finger Vein Scanner from Veldhuis et al.

The UTFVP data set provided by R.N.J Veldhuis [33] was captured using a custom designed transil-
lumination device. Finger and hand veins are underneath the skin and not apparent in visible light,
but they are visible in infrared light. All capturing devices utilize the fact that blood has a higher
absorbency than surrounding tissue in the near infrared spectrum, so the veins appear as dark lines,
which is due to the haemoglobin in the blood. Images are thus captured using near infrared light,
typically with a wavelength between 780 and 930 nm. Veldhuis et al. used infrared LEDs with a
wavelength of 850 nm.

Their �nger vein scanner consists of an infrared sensitive camera with an additional �lter for visible
light, a mirror (to minimize the height of the device) and eight individual infrared LEDs, each with
its own control loop to achieve uniform light intensity along the �nger. Figure 26 shows a schematic
and an image of the capturing device.

4 Actually it are not only the veins that are used for authentication but also the arteries so the more correct term
would be hand and �nger vascular pattern.

5 http://www.theguardian.com/business/2014/sep/05/barclays-introduce-fingervein-id-readers
6 http://www.newsroom.barclays.com/Press-releases/Barclays-first-in-UK-to-launch-new-Biometric-

Reader-for-customers-bab.aspx

http://www.theguardian.com/business/2014/sep/05/barclays-introduce-finger vein-id-readers
http://www.newsroom.barclays.com/Press-releases/Barclays-first-in-UK-to-launch-new-Biometric-Reader-for-customers-bab.aspx
http://www.newsroom.barclays.com/Press-releases/Barclays-first-in-UK-to-launch-new-Biometric-Reader-for-customers-bab.aspx
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Fig. 25: Barclays Bank �nger vein scanner [32]

Fig. 26: Image capturing device for �nger vein images [33]
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Fig. 27: Example �nger vein images [33]

7.1.2 University of Salzburg Hand Vein Scanner

The hand vein image database used during this work was collected at the University of Salzburg using
a custom made prototype hand vein scanner. This device basically consists of an infrared light source
underneath a glass plate with pegs for alignment, where the hand is placed, for transillumination and
another infrared light source on top of the device for re�ected light. A modi�ed DSLR is used to
capture the images. The infrared light �lter of the DSLR has been removed and an additional �lter
to cut o� visible light has been added. All the components are �tted in a wooden box to block o�
the ambient light, which also has some infrared component and might infer with the controlled light
sources.

7.2 Image Preprocessing

One of the main problems regarding �nger and also hand vein images is that although a capturing
device with an individually controllable light source is used, the images have a rather low contrast
and low quality in general. It highly depends on the subject how well the vein structure is visible in
the captured images. Figure 27 shows two example �nger vein images, a rather good one at the top
and a bad one at the bottom, at which the vein structure is only barely visible.

To achieve a higher recognition accuracy, the images have to be preprocessed prior to the feature
extraction stage, with the aim to make the vein structure more visible and make it easier for the
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feature extraction methods to accurately extract it.
Several preprocessing methods were used, starting from the detection of the �nger region and

borders and aligning the image based on the �nger edges to compensate rotations. The most basic
method used for contrast enhancement is an adaptive histogram equalisation (CLAHE), which is
widely used in the literature. In addition some methods speci�cally designed to enhance the vein
pattern are used, which are High Frequency Emphasis Filtering and a Circular Gabor Filter based
technique. Furthermore, sharpening using Unsharp Masking and denoising using a median �lter and
an adaptive Wiener �lter were tested.

7.2.1 Detecting Finger Region (LeeRegion [1])

LeeRegion is a quite simple method for detecting the �nger region and setting all pixels outside it
to black, which is favourable for further preprocessing (histogram equalisation). It uses the fact
that the �nger region is brighter than the background and determines the �nger boundaries using a
simple 20 x 4 mask, containing 2 rows of 1 followed by 2 rows of -1 for the upper boundary and a
horizontally mirrored one for the lower boundary. The position at which the masking value is maximal
is determined as the �nger edge (boundary).

7.2.2 Finger Position Normalisation [2]

Due to slight variations in the positioning of the �nger on the capturing device, the orientation of
the �nger does not always have to be the same. Therefore, this method tries to align the �nger to
the centre of the image, compensating rotations and translations. It uses the �nger edges detected by
LeeRegion and attempts to �t a straight line between these detected edges. The parameters of this
line are then used to perform an a�ne transformation, which aligns the �nger.

7.2.3 CLAHE (Contrast Limited Adaptive Histogram Equalization)

CLAHE is suggested by most authors as a preprocessing step for �nger vein images due to their
low contrast. CLAHE is a local contrast enhancement technique, similar to histogram equalization.
Standard histogram equalization modi�es global image contrast to achieve a nearly uniform histogram.
It does not work well with images containing bright areas with high detail and low contrast background.
In this case details are lost. CLAHE divides the image into small blocks, each block is then histogram
equalized separately. Contrast limiting is applied to avoid ampli�cation of noise: any histogram bin
over a de�ned limit is clipped and those pixels are distributed uniformly to other bins. As a �nal,
step bilinear interpolation is used to reduce border artefacts at the block boundaries.

7.2.4 High Frequency Emphasis Filtering

High Frequency Emphasis Filtering (HFE) is applied in the Fourier domain. It was �rst proposed
by Zhao et al. [34]. They used it for hand vein image enhancement. At �rst the discrete Fourier
transform F (u, v) of the image f(x, y) is calculated. The transform is then centred (image is multiplied
by (−1)x+y ) and the high frequency emphasis �lter:

G(u, v) = Hhe(u, v) · F (u, v)

Hhe(u, v) = a+ b ·Hhp(u, v)

where

Hhp(u, v) =
1

1 + ( D0

D(u,v) )2n
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is a Butterworth high-pass �lter of order n, is applied. a , b , D0 and n are the parameters of the
�lter. Afterwards the inverse Fourier transform of the enhanced image G(u, v) is computed and its
real part is used as result. Finally the resulting image is multiplied by (−1)x+y to get the enhanced
image g(x, y). The authors used histogram equalization on the �ltered image afterwards to further
enhance the image contrast.

7.2.5 Circular Gabor Filter

The Circular Gabor Filter (CGF) was proposed by Zhang et al. [35] in combination with grey level
grouping for contrast enhancement. Here only the Circular Gabor Filter is used and CLAHE is
performed afterwards instead of grey level grouping.

Circular Gabor Filters are rotation invariant and can achieve optimal joint localisation in both,
spatial and frequency domain. Here an even-symmetric circular Gabor �lter is used:

GC(x, y) = g(x, y) · cos(2πfc ·
√
x2 + y2)

where

g(x, y) =
1

2πσ2
· e−

x2+y2

2σ2

is a 2-D isotropic Gaussian envelope. The Relation between σ and fc is:

σ · fc =
1

π
·
√
ln(2)

2
· 2∆F + 1

2∆F − 1

σ and ∆F are the parameters of the �lter. The enhanced image is then computed using convolution:

F (x, y) = GC(x, y) ? I(x, y)

where ? denotes the 2-D convolution operator.

7.2.6 Further Preprocessing

A median �lter (5 x 5) and an adaptive Wiener �lter (7 x 7) for denoising were tested but did not
improve the results except for LBP were the EER could be improved. As the implementations provided
by B.T. Ton [36] resized the images by a factor of 2, the images were also resized to half of its original
size in order to comply with the test procedure and to lower the runtimes.

7.2.7 Best Combination

Here the best preprocessing combinations for the di�erent feature extraction/matching methods re-
garding �nger vein recognition are summarized. Figure 28 shows the e�ect of the best preprocessing
combination found for SIFT on the two example �nger vein images of �gure 27. The original image
is depicted on the left and the preprocessed one on the right. It can be clearly seen that the vein
structure becomes more visible in both images.

• For SIFT / SURF: LeeRegion, HFE Filter, Circular Gabor Filter, Resize (0.5)

• For Maximum Curvature, Repeated Line Tracking, Huang Wide Line Detector and Template
Matching: LeeRegion, Normalisation, Gabor Filter, Resize (0.5)

• For Local Binary Patterns: LeeRegion, Normalisation, Gabor Filter, Denoising, Resize (0.5)

It has to be noted that CLAHE was used in conjunction with the HFE Filter and the Circular Gabor
Filter (as a replacement for the grey level grouping), so this is why CLAHE is not explicitly listed
above.
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Fig. 28: Example of best preprocessing combination (for SIFT)

7.3 Feature Extraction and Matching Techniques

The �rst 3 techniques, which are discussed now and used during this thesis, basically aim to extract
the vein pattern from the background using di�erent approaches, which lead to a binary image. These
binary images are then compared using a simple correlation measure. Also a custom implementation
of a keypoint based technique using SIFT/SURF keypoints was used. Another feature extraction
technique is an LBP based one, which uses the hamming distance for matching two feature images.
None of these feature extraction techniques uses characteristics of the veins, e.g. vein crossings and
endings, which are like minutiae in �ngerprints. The last one is a simple template matching technique
using adaptive local thresholding for binarisation of the input images and then again using a correlation
measure for matching the images.

7.3.1 Maximum Curvature

This technique proposed by Miura et al. [37] emphasises the centre lines of the veins and is therefore
insensitive to changes in the width of the veins. Processing of the �nger vein image is done in three
steps.

The �rst step is to extract the centre positions of the veins. F is the �nger image, F (x, y) is
the intensity value of a pixel at position (x, y). Pf (z) is the cross-sectional pro�le of F (x, y) at any
direction and position, where z is a position in the pro�le. To relate a position of Pf (z) to F (x, y)
there is the mapping function Trs de�ned as: F (x, y) = Trs(Pf (z)). To �nd the centre positions, the
local maximum curvature in the cross-sectional pro�le Pf in four directions, horizontal, vertical and
the two oblique directions, based on the �rst and second derivatives is determined. The curvature
κ(z) can be represented as:

κ(z) =
d2Pf (z)/dz2

{1 + (dPf (z)/dz)2} 3
2

Each pro�le is then classi�ed as being concave or convex (curvature positive or negative). Only local
maxima of κ(z) in concave pro�les are calculated and indicate the centre positions of the veins. The
positions of these points are de�ned as z′i where i = 0, 1, ..., N − 1 and N is the number of local
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Fig. 29: Pro�le, curvature and probability score of veins [37]

maximum points in the pro�le. Each centre position is then assigned a score Scr(z), according to the
width Wr(i) and curvature κ(z′i) of the region where z′i is located.

Scr(z
′
i) = κ(z′i)×Wr(i)

The scores are assigned to a place V , which is the result of emphasising the veins:

V (x′i, y
′
i) = V (x′i, y

′
i) + Scr(z

′
i)

where (x′i, y
′
i) represents a point de�ned by F (x′i, y

′
i) = Trs(Pf (z′i)). The relation of the cross-

sectional pro�le, the curvature and the score can be seen in �gure 29.

Afterwards the centre positions of the veins are connected. Due to noise or other distortions, some
pixels may not have been classi�ed correctly at the �rst step, so a �ltering operation is applied to all
pixels in all four directions.

Cd1(x, y) = min{max{V (x+ 1, y), V (x+ 2, y)) +max(V (x− 1, y), V (x− 2, y))}}

This �lter just compares the central pixel with its two neighbours. If the central pixel has a small
value but the neighbours have large values, it is assumed to be a vein and its value is increased to
connect the line. If only the central pixel but none of its neighbours has a high value it is assumed to
be noise and its value is decreased. If all pixels have high values nothing is changed. Subsequently the
maximum of Cd1, Cd2, Cd3, Cd4 is selected at each pixel position and forms the so called locus space
image G(x, y).

Finally a binary image is generated from G(x, y), representing the vein pattern using the median
of the locus space as a threshold.
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7.3.2 Repeated Line Tracking

This approach also proposed by Miura et al. [38] is based on tracking dark lines starting repeatedly
at various random positions in the image. Veins appear as valleys in the cross-sectional pro�le of the
image. At �rst the locus space Tr is initialized, which is a matrix with the same size of the input image,
where every entry stores the number of times the corresponding pixel has been tracked as dark line.
At each round the tracking point is initialized at a random position (xc, yc) and a locus position table
Tc is initialized, where all tracking points found in the current round are stored. The tracking point
is then moved pixel by pixel along a dark line, where the depth of the valley indicates the movement
direction (the pixel is moved to where the valley is deepest, i.e. the value of Vl = (s+ t)− 2p has its
maximum). Figure 30 shows the detection of a dark or vein line, respectively. The detailed steps are:

De�ning the moving-direction attributes Dlr and Dud. They are de�ned at the beginning of each
round to bias the selection of the next tracking point towards a given direction, as veins tend to move
in straight lines. As the tracking point is forced to go into that direction, this prevents the track from
curving excessively.

Dlr =

{
(1, 0) if Rnd(2) < 1

(−1, 0) else

Dud =

{
(0, 1) if Rnd(2) < 1

(0,−1) else

where Rnd(n) is a uniform random value between 0 and n.
The next step is to �nd a candidate new tracking point, if possible. Candidates are the neighbouring

pixels, which have not been previously assigned as tracking point in the current round. Formally this
can be written as:

Nc = T̄c ∩Rf ∩Nr(xc, yc)
with Nc as the set of candidate pixels for the new tracking point. Nr(xc, yc) is the neighbouring

pixels function, de�ned as:

Nr(xc, yc) =


N3(Dlr)(xc, yc) if Rnd(100) < plr

N3(Dud)(xc, yc) if plr + 1 ≤ Rnd(100) < plr + pud

N8(xc, yc) if plr + pud + 1 ≤ Rnd(100)

with plr and pud as the probability that a horizontal or a vertical direction is chosen, respectively,
N8 is the eight-neighbourhood of the pixel (xc, yc) and N3 is a set of 3 neighbouring pixels, which
direction is determined by the moving direction attribute D:

N3(D)(x, y) = {(Dx + x,Dy + y), (Dx −Dy + x,Dy −Dx + y), (Dx +Dy + x,Dy +Dx + y)}

where D can be either Dlr or Dud.
The �nal step is to �nd the direction that has the deepest valley in the cross sectional pro�le.

Therefore a line evaluation function is used:

Vl = max
(xi,yi)∈Nc

F (xc + rcosθi −
W

2
sinθi, yc + rsinθi +

W

2
cosθi)

+F (xc + rcosθi +
W

2
sinθi, yc + rsinθi −

W

2
cosθi)

−2F (xc + rcosθi, yc + rsinθi)
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Fig. 30: Dark line detection [38]

where F (x, y) is the pixel value at position (x, y) in the image, r is the distance between (xc, yc) and
the cross section, θi is the angle between line segments (xc, yc)− (xc + 1, yc) and (xc, yc)− (xi, yi) and
W is the width of the pro�les in the cross section.

To speed up the process, only a certain number of angles θi is checked. If Vl is positive, the pixel
is the new tracking point, it is added to Tc and used as starting point for the next iteration. If Vl is
negative or zero, none of the neighbouring pixels are valid candidate points, i.e. they are not inside
a vein or in other words there is no valley detected. In this case the current round is �nished, Tr is
updated by incrementing all values that are set to 1 in Tc and a new tracking operation is started at
a random point.

The number of times each pixel is tracked as a dark line is recorded in the locus space matrix Tr.
Pixels that are tracked multiple times as being a line statistically have a high likelihood of belonging
to a blood vessel, i.e. they have a high value in locus space image. The tracking procedure is repeated
N times. The higher N , the more accurate are the vein pattern results, but the computation time
increases. The authors suggest to use at least a value of N > 3000 for good results. Finally again
binarisation is applied to the locus space image the get the binary output vein image.

The parameters of this approach are N (number of starting times), W (valley width) and r (search
radius).

7.3.3 Wide Line Detector

Huang et al. [2] suggested a quite simple method to extract the vein lines. This technique is essen-
tially a local adaptive thresholding one using isotropic non-linear �ltering, i.e. thresholding inside a
neighbourhood region. Each pixel has a circular neighbourhood

N(x0, y0) = {(x, y)|
√

(x− x0)2 + (y − y0)2 ≤ r}

with a radius r. A centre pixel with its circular neighbourhood is depicted in �gure 31. The di�erence
of each pixel inside the neighbourhood to the central pixel is determined:

s(x, y, x0, y0, t) =

{
0 F (x, y)− F (x0, y0) > t

1 else
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Fig. 31: Circular neighbourhood region [2]

Then the number of pixels inside this neighbourhood, which have a di�erence smaller than a set
threshold, is determined:

m(x0, y0) =
∑

(x,y)εN(x0,y0)

s(x, y, x0, y0, t)

This number is again thresholded to get a binary vein image:

V (x0, y0) =

{
0 m(x0, y0) > g

255 else

7.3.4 Matching using Correlation (Miura Matcher)

For matching the binary output images the approach used in [38] and [37] was adopted, which is
essentially the calculation of the correlation between the input and reference image. As the input
images are not registered to each other and only coarsely aligned (using LeeRegion), the correlation
between the input image I(x, y) and the reference one is calculated several times, while shifting the
reference image R(x, y) in x- and y-direction.

Nm(s, t) =

h−2ch−1∑
y=0

w−2cw−1∑
x=0

I(s+ x, t+ y)R(cw + x, ch + y)

where Nm(s, t) is the correlation value.

The maximum value of the correlation is normalised and used as matching score:

score =
Nmmax

t0+h−2ch−1∑
y=t0

s0+w−2cw−1∑
x=s0

I(x, y) +
h−2ch−1∑
y=ch

w−2cw−1∑
x=cw

R(x, y)

where s0 and to are the indices of Nmmax in the correlation matrix Nm(s, t) . The resulting score
values are in the range of 0 ≤ score ≤ 0.5.

7.3.5 Local Binary Patterns (LBP)

This feature extraction scheme is based on the use of local binary patterns (LBP). LBP compares the
grey level of a centre pixel to its neighbouring pixels and assigns a value depending on the corresponding
binary code resulting from the binary pattern of the neighbourhood pixels. The original LBP is a
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3x3 non-parametric operator. It can also be de�ned as an ordered set of binary values determined by
comparing the grey values of a centre pixel to its 8 neighbouring pixels:

LBP (xc, yc) =

7∑
n=0

s(in − ic) · 2n, s(x) =

{
1 if x ≥ 0

0 if x < 0

I used a multi-scale version of LBP. Matching is done based on Hamming distance. The Hamming
distance is basically calculated by applying XOR to the two feature images combined with an additional
mask:

HD =
||(codeA⊗ codeB) ∪maskA ∪maskB||

||maskA ∪maskB||

where codeA and codeB are the extracted local binary patterns, maskA andmaskB are binary masks,
where 1 means the pixel is inside a vein region and 0 means it is not. The masks are calculated using
a 3 × 3 window in which the standard deviation of the pixels from the centre pixel is determined.
If it is above a threshold (2), it is denoted as a vein region, otherwise not. Note that the extracted
patterns are not binary, thus ⊗ is an XOR operator between the corresponding pairs of bits in the
extracted patterns (binary representation of the integer values). ∪ is an OR operator. The Hamming
distance values are in a range of 0...1 where 0 means a perfect match. Note that this matcher also
performs a shifting of the codes (images), done to compensate misalignments of the input images,
which is not stated in the equations above. Shifting is done in the same way as by the correlation
matcher described above.

7.3.6 Template Matching

A basic adaptive binarisation approach [39] was used to assess the advanced binarisation techniques,
which try to model the vein shape in their binarisation strategy. This technique uses adaptive
thresholding for generating the binary vein image. The resulting binary images can then be com-
pared against each other using XOR, Hamming distance or a correlation measure.

7.3.7 SIFT / SURF

Keypoint based techniques try to use information from the most discriminative points as well as
considering the neighbourhood and context information of these points by extracting keypoints and
assigning a descriptor to each keypoint. In this thesis SIFT [40] (Scale Invariant Feature Transform)
was used instead of SURF [41] (Speeded Up Robust Features) because its performance was superior.

Especially in the case of SURF many strong keypoints are along the �nger boundaries. As the
classi�cation should not be based on the �nger shape but on the vein pattern and descriptors of these
keypoints may also contain irrelevant background information, a �ltering step was implemented at
which all keypoints inside a window with a prede�ned width along the �nger boundaries are discarded.
Using the keypoints along the �nger boundaries could lead to false or ambiguous matches. In addition
a minimum number of keypoints can be de�ned and if after �ltering only too few keypoints remain,
the feature extraction is re-run with adapted parameters to extract more keypoints until at least the
minimum number of keypoints are found. Note that there is no upper bound, i.e. no maximum
number of keypoints de�ned.

SIFT and SURF matching is done based on the keypoint descriptors. The keypoint with the
smallest distance to the reference keypoint is the matched one (nearest neighbour search) if the
distance is below a certain threshold or otherwise the keypoint cannot be matched. A keypoint could
have small distances to more than one other keypoint and this would lead to ambiguous matches, thus
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a ratio threshold is used: a match is only valid if the distance of the best matched keypoint is at least
k times smaller than to the second best one (or all other points).

Matching returns a set of matched keypoints with associated distances. The simplest way to
compute a �nal matching score is to use the number of matched keypoints only. A slightly better way
is to use the ratio of matched keypoints to the maximum number of possible matches. There are also
techniques involving the distances between the matched keypoints but they performed worse than the
two simple techniques, so they have not been considered.
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8 Experimental Setup

In this chapter details regarding the experimental setup to evaluate the impact of sensor ageing related
pixel defects in �ngerprint, �nger- and hand vein images on the matching performance of di�erent
feature extraction and matching approaches are explained. At �rst the databases used for �ngerprint,
�nger vein and hand vein evaluation, respectively, and also the test protocol are described. This is
followed by the determination of the simulation parameters.

8.1 Fingerprint Database

8.1.1 Casia 2009 and 2013

In order to estimate the defect growth rate and the pixel defect parameters (defect o�set and distri-
bution of defect amplitudes) the images of the Casia Fingerprint Database7 should have been used.
There is one set of images which was acquired in 2009 and another set of images acquired in 2013, so
there is a time span of 4 years in between, which should be enough for at least some sensor ageing
related pixel defects to develop.

The 2009 data was captured using an URU4000B �ngerprint sensor from Digital Persona8. There
are a total of 3920 images acquired from 49 subjects in 3 sessions. The 2013 data was captured using
three di�erent �ngerprint sensors, an URU4000B from Digital Persona, an URU4500 also from Digital
Persona, which is the successor of the URU4000 and an Atmel Fingerchip T2. The images captured
with the URU4000B and also the URU4500 are split in two directories, which indicates that there
were two di�erent sensors of this model used as I found out later. For the Atmel Fingerchip T2 there is
only one directory but as this is a thermal sensor these images were not used during the experiments.
There are a total of 1960 images acquired from 49 subjects for the URU4000B �ngerprint sensor and
also for the URU4500.

It later turned out that the images in 2009 and in 2013 were not captured with the same sensor.
This means that an estimation of the defect growth rate and the defect parameters is not possible
as the most important requirement, that the same sensor is used for both sets of images, is violated.
Following is a proof by contradiction that the images have truly been captured with at least two
di�erent sensors.

8.1.2 Sensor Identi�cation

It was not clear if the same sensor which was used in 2009 was again used in 2013, but in order to
be able to determine the sensor's defect growth rate for the Casia data sets it is inevitable, that both
image sets were taken using the same sensor. To check whether the sensor used in 2013 is the same
as the one used in 2009 and vice versa, the sensor identi�cation methodology of Höller and Uhl [42],
which is based on the PRNU noise residuals of the sensor, was adopted.

The check was done using proof by contradiction so the assumption is that the two data sets were
acquired using di�erent sensors and it was tried to derive a contradiction to the assumption from the
results.

The methodology works as follows: At �rst the PRNU noise residual of every image is extracted
using 4 patches with a size of 128x128 pixels, located in the corners of each image. Then 850 images
are chosen randomly from each data set which results in a total of 1700 images. 50 images of each of
these 850 images per data set are used to calculate a PRNU �ngerprint K̂ for the data set and the
remaining 800 images are used to calculate the normalised cross correlation (NCC) scores between the

7 CASIA-FingerprintV5, http://biometrics.idealtest.org/
8 They are now part of Crossmatch Technologies. No information regarding the URU4000B �ngerprint sensor could

be found on their new website http://www.crossmatch.com/.

http://biometrics.idealtest.org/
http://www.crossmatch.com/
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1 2 3 4 5 6 7

�nger_uru4000 (1)
�nger_uru4000_�nger0358 (2) 49.9722
�nger_uru4000_�nger1267 (3) 49.8889 49.3056

uru4000_1 (4) 0 0 0
uru4000_2 (5) 0 0.0556 0 0
uru4500_1 (6) 0 0.0556 0 0 0
uru4500_2 (7) 0 0 0 0 0 0

Tab. 3: Cross-sensor matching results

�ngerprints and the noise residuals. As there are two data sets with 800 remaining images each, this
leads to 800 matching and 800 non-matching scores, at which the �ngerprint K̂ comes from the same
sensor as the images and the �ngerprint K̂ comes from a di�erent sensor as the images, respectively.
Afterwards, the equal error rate (EER) is calculated using all correlation values ρ by comparing the
two data sets. A con�dence interval (CI) of 95% is used to estimate the real variability of these
values. For this purpose the EER and the corresponding threshold are calculated 1000 times on a
set of m matching and n non-matching ρ values. The m matching correlation values and the n non-
matching correlation values are drawn from the matching and non-matching data set, respectively,
using sampling with replacement. The range which contains 95% of the total 1000 values (i.e. 950
values then) is the interval of con�dence.

If the same sensor has been used for both data sets, the resulting EER would be very high, i.e.
nearly 50%, which means the matching and non-matching NCC scores are almost identical. So the
matching scores cannot be distinguished from the assumed non-matching ones, because the PRNU
�ngerprints K̂ are present in the images from the same as well as in the images from the other data set.
This would be in contradiction to the assumption that di�erent sensors have been used and therefore
the same sensor must have been used for both data sets.

Results for Casia 2009 and 2013 Database The results for the cross-sensor matching are shown
in table 3. The Casia Database consists of 2 directories, one for 2009 and one for 2013. The
�rst one contains 3 sub-directories: �nger_uru4000 (1), �nger_uru4000_�nger0358 (2) and �n-
ger_uru4000_�nger1267 (3). The second one contains 5 sub-directories: Finger_T2, uru4000_1
(4), uru4000_2 (5), uru4500_1 (6) and uru4500_2 (7). The directory named Finger_T2 was not
evaluated because the images were captured with a thermal sensor and not with one of the URU
sensors. Cross matching was done between all the di�erent directories. As it can be seen from the
results, the EER is high, i.e. nearly 50%. Thus the images in the directories �nger_uru4000, �n-
ger_uru4000_�nger0358 and �nger_uru4000_�nger1267 were captured using the same sensor. As
all other determined EERs are 0 or close to 0, thus none of the images in the other directories have
been captured with the same sensor, especially the images from 2013 have all been captured with
di�erent sensors than the ones in 2009. Thus it does not make sense to try to detect sensor ageing
related pixel defects inside the images as they do not have a temporal relationship. There were no
other data sets of the sensors used with a timelapse in between available to be able to estimate the
approximate defect growth rates and parameters directly from the images. So I used an empirical
formula to estimate the defect growth rate based on the image sensor characteristics as described in
section 8.4.1.
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Sensor Type Model Image Size Resolution

DB1 Optical CrossMatch V300 640× 480 500 dpi
DB2 Optical Digital Persona U.are.U 4000 328× 364 500 dpi
DB3 Thermal Sweep Atmel FingerChip 300× 480 512 dpi
DB4 Synthetic SFinGe v3.0 288× 384 500 dpi

Tab. 4: Databases of the FVC2004 data set

8.1.3 FVC2004 Dataset

For the ageing simulation experiments in this work, the example �ngerprint images from the FVC2004
[43] data set were used and also the test procedure was adopted. The FVC (Fingerprint Veri�cation
Competition) was a contest organised by the Biometric System Laboratory of the University of Bo-
logna, the Biometric Test Centre of San Jose State University and the Biometrics Research Lab -
ATVS of the Universidad Autonoma de Madrid comparing the performance of di�erent �ngerprint
matching algorithms. Further information on the FVC can be found on their website9.

The data set consists of three databases containing �ngerprint images, acquired with di�erent
sensors and one containing synthetic �ngerprint images. The images are provided in uncompressed
TIFF format.

Each database consists of two sets of images:

• Set A consists of 100 �ngers with 8 images per �nger, which is a total of 800 images. This one
is only used in the �nal experiments.

• Set B consists of 10 �ngers with 8 images per �nger, which is a total of 80 images. This set is
used for preliminary tests and parameter tuning.

As the fourth database (DB4) contains synthetic images and in the present thesis the impact of sensor
ageing related defects should be investigated, DB4 was not used because the images are not acquired
using an image sensor. DB3 was acquired using a thermal sensor and it is not clear how this type of
sensor is a�ected by ageing, thus DB3 was also not used. So only DB1 and DB2, which were both
acquired using an optical sensor, were used during the experiments.

The implementation of the non-minutiae based matchers has a rather low processing speed, thus
the images of DB1 were resized to 512×512 pixels because a 2D Fast Fourier Transform is used, which
can only be applied to images that have dimensions of a power of 2, i.e. the images of DB1, having
an original resolution of 640× 480, would have been automatically resized to 1024× 512 pixels, which
would further extend the processing time. Resizing was done by �rst cropping the images on the left
and right side, i.e. a stripe of 64 pixels width was removed on the left and right side leaving the centre
area and resulting in an image size of 512 × 480. Afterwards the top and bottom of the image was
extended by a stripe which is 16 pixels high and its pixels were set to white (255), which corresponds
to the background of the original images.

Test Procedure The test procedure of all the FVC contests basically consists of two types of tests:

• Genuine Tests: To determine the False Non Match Rate (FNMR) the genuine tests have to be
carried out. Each sample image is matched against all remaining samples of the same �nger.
No symmetric matches are performed. Based on the Set A of databases from the FVC2004 data

9 http://bias.csr.unibo.it/fvc2004/

http://bias.csr.unibo.it/fvc2004/
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Fig. 32: Example images of the FVC2004 database (left: DB1, right: DB2)

set, containing 100 �ngers with 8 images each, the number of genuine tests is:

nimages · (nimages − 1)

2
· nfingers =

8 · 7
2
· 100 = 2800

• Impostor Tests: These tests are used to determine the False Match Rate (FMR). Therefore, the
�rst imprint of each �nger is matched against the �rst imprint of all the remaining �ngers. As
with the genuine tests, no symmetric matches are performed. Again based on the Set A of the
databases, the number of impostor tests is:

nfingers · (nfingers − 1)

2
=

100 · 99

2
= 4950

8.2 Finger Vein Database

For the evaluation I used the University of Twente Finger Vascular Pattern Database (UTFVP) [33],
kindly provided by R.N.J Veldhuis. This data set consists of a total of 1440 images, taken from 60
persons, 6 �ngers per person (index, ring and middle �nger of each hand) and 4 images of each �nger.
The images were acquired in 2 sessions with a time lapse of 15 days between the sessions. Each �nger
was captured twice during one session. 73% of the subjects were male and 82% were right handed.
The images have a resolution of 672 x 380 pixels, a density of 126 pixels/cm and are stored in 8 bit
grey scale PNG format. The width of the visible blood vessels is 4 - 20 pixels.

8.2.1 Test Procedure

The original test procedure from [33] was �nally not used during this work due to its high number
of impostor matches. To determine the EER at �rst the positive and negative match scores have
to be determined, which is similar to the determination of the FNMR and FMR, respectively. For
computing the FNMR and FMR the test protocol of the FVC2004 was adopted:

• Genuine Matches: Each image of each �nger is compared with all remaining images of the
same �nger. No symmetric matches are performed. The total number of positive compares is
therefore:

4 · 3
2
· 360 = 2160
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Fig. 33: Example images of the UTFVP �nger vein database

Fig. 34: Example images of the hand vein database

• Impostor Matches: Using the same test procedure as in the FVC2004, i.e. the �rst image of
each �nger is compared against the corresponding �rst image of the same �nger of all remaining
subjects. This results in a total of:

60 · 59

2
· 6 = 10620

8.3 Hand Vein Database

The hand vein image database was collected at the University of Salzburg using a custom made
prototype hand vein scanner. From the raw images taken by the scanner a ROI (region of interest)
was extracted, which is roughly located in the centre of the hand surface and has an area of 500× 500
pixels. There are a total of 107 subjects with at least 1 image per hand per subject. For most of the
subjects only images of the left hand were captured, but for some subjects images of the right hand
were captured too. The images are split in re�ected light and transillumination images, resulting in a
total of 620 images for transillumination and 593 for re�ected light. The images are stored in JPEG
format with a resolution of 500× 500 pixels.

Custom Subset As stated above, there is not the same number of images available for each subject
(hand) in the database. There can be anything from 1 to 9 images per hand. To simplify the test
protocol, a custom subset out of the transillumination images contained in the database was used.
This subset consists of 100 subjects (hands) with exactly 3 images per subject, thus a total of 300
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images. Only transillumination images were used, because the achieved EER is higher compared to
using re�ected light images only and also to using both, transillumination and re�ected light images.

8.3.1 Test Procedure

Again for the hand vein experiments the test protocol of the FVC2004 was adopted.

• Genuine Tests: Each sample image is matched against all remaining samples of the same hand.
No symmetric matches are performed. Based on the the custom subset used for evaluation,
containing 100 hands with 3 images each, the number of genuine tests is:

nimages · (nimages − 1)

2
· nhands =

3 · 2
2
· 100 = 300

• Impostor Tests: Following the FVC2004 test protocol the �rst image of each hand is matched
against the �rst image of all remaining hands. As with the genuine tests, no symmetric matches
are performed. Again based on the custom subset, the number of impostor tests is:

nhands · (nhands − 1)

2
=

100 · 99

2
= 4950

8.4 Simulation Settings

As I was not able to determine the number and parameters of the sensor ageing related pixel defects
directly from images captured by the respective sensor due to the lack of usable data, i.e. I had no two
data sets acquired by the same sensor with a timespan of several years in between, the defect growth
rate could not be estimated directly. Thus, I used the formula of Chapman et al. [9] to estimate the
defect growth rate for the di�erent sensor types according to the parameters of the particular image
sensor.

8.4.1 Defect Growth Rate

Fingerprint Scanner As I showed in 8.1.2 the Casia data sets of 2013 and 2009 were captured using
di�erent sensors and thus it was not able to derive the defect growth rate and defect parameters from
these data sets. So I had to estimate the defect growth rate using the following formula from Chapman
et al. [9], explained in 3.7 :

D = A · SB · ISOC

As I have not got technical information from Digital Persona10 regarding their U.are.U4000B and
U.are.U4500 �ngerprint sensors, I did some research on commonly used image sensors for that purpose.
The most widely used ones are CMOS sensors with a pixel sizes between 5.0µm and 7.4µm (square
pixels).

I also ordered an U.are.U4000B �ngerprint sensor and disassembled it to have a look at the image
sensor. There was no label on it but I was able to measure the sensor size. In �gure 35 a picture of the
image sensor can be seen. The outside dimensions (dark yellow square) are 10.6× 10.6mm or about
410 × 410 pixels in the image. The actual image sensor area (red to yellow rectangle in the left and
blue rectangle in the right picture) is about 77× 66 pixels. This means that the sensor's dimensions
are 1.99× 1.71mm which corresponds to a sensor area of 3.404mm2.

The images captured by the U.are.U 4000b and U.are.U 4500 have a resolution of 356×328 pixels,
thus, with the measured sensor size of 3.404mm2 the pixel size is: 1.99

356 ×
1.71
328 = 5.59 × 5.21µm. I

10 http://www.crossmatch.com/UareU4500Reader/

http://www.crossmatch.com/UareU4500Reader/
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Fig. 35: Image sensor inside the U.are.U4000B �ngerprint scanner

therefore assumed a pixel size of 5.4µm. I further assumed that the images are taken at an ISO Level
of 400. This results in a defect growth rate of:

D = 0.0742 · 5.4−3.07 · 4000.5 = 0.008375 defects/year/mm2

or for the assumed sensor area of 3.404mm2:

0.0285 defects/year = 0.244 defects/MP/year

Finger Vein Scanner The images in the UTFVP database [33] were captured using the BCi5 mono-
chrome CMOS camera produced by C-Cam Technologies. According to the data sheet of the man-
ufacturer11 this camera uses an CMOS image sensor with an active sensor area of 8.58 × 6.86mm,
a pixel size of 6.7 × 6.7µm, a �ll factor of 50% and a resolution of 1280 × 1024 pixels. There is no
information available at which ISO level the images were captured. Therefore I assumed ISO level
400 again. This results in a defect growth rate of:

D = 0.0742 · 6.7−3.07 · 4000.5 = 0.00432 defects/year/mm2

or for a sensor area of 58.859mm2:

0.254 defects/year = 0.194 defects/MP/year

As the images contained in the database have a resolution of 672 × 380 pixels, the e�ective pixel
defect rate is:

672× 380

1280× 1024
· 0.254 = 0.0495 defects/year

11 www.c-cam.be/doc/Archive/BCi5.pdf

www.c-cam.be/doc/Archive/BCi5.pdf
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Hand Vein Scanner The custom build hand vein scanner uses a Canon EOS 5D Mark II DLSR
camera as image capturing device. According to Canon this camera uses a CMOS image sensor with a
size of 36.0×24.0mm and a resolution of 5616×3744 pixels. Thus it has a pixel size of 6.41×6.41µm.
The images were taken at ISO level 800. This results in a defect growth rate of:

D = 0.0742 · 6.41−3.07 · 8000.5 = 0.006997 defects/year/mm2

or for a sensor area of 864mm2:

6.045 defects/year = 0.287 defects/MP/year

According to the literature [6] DSLRs develop between 0.5 and 10 defects per year at ISO Level
400 so a value of 6.045 defects per year seems reasonable.

As only a ROI (region of interest) with a size of 500× 500 pixels is used the e�ective pixel defect
rate is:

500× 500

5616× 3744
· 6.045 = 0.0719 defects/year

8.4.2 Hot and Stuck Pixel Amplitudes

Jessica Fridrich [18] and also others found out that there are stuck low, stuck high and in general
stuck pixels with any value between 0 and 255 (for 8 Bit images). Thus, I assumed that stuck pixels
can appear with any value between 0 and 255, uniformly distributed. According to Chapman et al.
[6] but also Albert Theuwissen [3] the additional o�set IOffset of hot pixels or the dark current value,
respectively follows an exponential distribution, i.e. hot pixels with a lower amplitude are more likely
to occur.

Estimating the Exponential Distribution To be sure to use an accurate model for the distribution
of the hot pixel amplitudes it has to be veri�ed whether they are really exponentially distributed and
then a �tting exponential distribution with the parameter µ has to be determined. First of all, the
actual values of the hot pixel amplitudes and the number of hot pixels having these amplitudes have
to be determined. As basis for that �gure 3 (a) in [5], at an exposure time of 1/2 s and for ISO Level
400, was used to get the reference data. Chapman uses an Ioffset value, which is according to the
pixel model in section 3.4.2, the dark response of a hot pixel, i.e. an additional o�set to the electrical
current induced by the incident light, depending on the dark current amplitude, the exposure time
and the ISO level. For each database or set of images I tested, all images were captured using the
same exposure time, ISO level and roughly the same environmental conditions like temperature, i.e.
the dark current amplitude should remain constant. So instead of an Ioffset value I used the pixel
value o�set directly for the simulation of pixel defects. As pixel values between 0 and 255 are used, an
Ioffset value of 0 simply corresponds to a pixel o�set value of 0 and an Ioffset value of 1 corresponds
to a pixel value of 255.

As second source of reference data �gure 6 from [3] was used. There the number of hot spots per
sensor per day versus the hot spot amplitude in DN (digital numbers) is shown. I assumed that a
DN value of 4500 corresponds to a pixel value of 255 and used the corresponding values as pixel o�set
values then. The values from the two �gures were extracted as follows:

A suitable exponential distribution with its parameter µ was determined using MATLAB's built-in
graphical distribution �t tool dfittool.

For the Chapman data which is given as a histogram, a bin width of 0.2 was used for the input
data and a corresponding exponential distribution with µ = 0.1438 at a standard error of 0.00045437
was found.
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Fig. 36: Hot pixel amplitudes, top: Chapman et al. [5], bottom: Theuwissen, Albert [3]
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Ioffset defect count (%)

0.1 87.3

0.3 8.3

0.5 1.9

0.7 1.2

0.9 0.2

1 1.1

Hot Spot Amplitude (DN) Number of hot spots

0 0.6856

250 0.1208

500 0.06122

750 0.03475

1000 0.02569

1250 0.01762

1500 0.01254

1750 0.00893

2000 0.00712

2250 0.005264

2500 0.003892

2750 0.003346

3000 0.002668

3250 0.001973

3500 0.00119

Tab. 5: Defect counts of hot pixels with a certain amplitude, left: Chapman data, right: Theuwissen
data

For the Theuwissen data at �rst the DN values were normalised by dividing each value by 4500 to
get values in the interval of [0, 1]. But at �rst no suitable exponential distribution was found, so the
�rst value which corresponds to DN = 0 and actually means that it is no hot pixel at all (having a hot
spot amplitude of 0) was omitted. Still no exponential distribution could be found, so I interpreted
the diagram as a histogram with a bin width of 250

4500 = 0.05556 and then best �t was obtained using
µ = 0.16839 with a standard error of 0.000961.

8.4.3 Simulation Parameters

The resulting defect rates according to the estimations are rather low, ranging from 0.028 to 0.072
defects per year, i.e. less than 1 defect per year. Statistically, even in 30 years there would only be
1 or 2 defective pixels visible in the �nger or hand images. I started the simulations using a defect
rate of 1 defect per year, with a simulation timespan of 30 years to get realistic results (no one would
use a camera or biometric sensor for more than 30 years). The defect rate was doubled each time, i.e.
2 defects per year, 4 defects per year and so on, and the simulation was run again until there were
noticeable e�ects on the recognition accuracy. As the defects were only barely noticeable below 1000
defects contained in a single image, I modi�ed the simulation parameters and ran the simulation with
a defect rate of 1000 defects per year for a time span of 10 years, which results in a total of 10000
hot or stuck pixel defects or 20000 hot and stuck pixels combined, respectively. Note that using both,
stuck and hot pixel defects, the defect rate is twice as high as using a single defect type. The results
only show the total number of defects, i.e. the combined defect rate is given.

The �ngerprint images of the FVC2004 DB1 and DB2 have di�erent resolutions. Also the �nger
vein and hand vein image resolutions are di�erent from that of the �ngerprint images. If a defect
rate of 1000 defects per year is used, this results in a higher defect density for images with a smaller
resolution and a lower defect density for images with a higher resolution, respectively. A higher defect
density has a higher impact on the recognition accuracy. To be able to compare the results among each
other, a defect rate per year per MP was used. The simulations were done for �nger vein images �rst
using a defect rate of 1000 defects per year. These images have a resolution of 672× 380 = 0.255MP ,
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thus for the other simulations a defect rate of 4000 defects/MP/year was used.
The stuck pixel amplitudes were drawn uniformly out of the interval [0, 255] and the hot pixel

amplitudes were drawn according to an exponential distribution with µ = 0.15.
All simulations were run using only stuck pixel defects, only hot pixel defects and then both, stuck

and hot pixel defects, respectively.
During the tests two sets of images were used: the gallery database, which contains the unaged

images and the probe database, which contains the aged images. In other words the template images
were not aged, only the probe images were. This means that in each pair of matched images only one
is aged, the other one is the original image from the data set. In addition for some of the experiments,
also the template images were aged using the same defective pixels as the probe images to be able
to examine the e�ects. In the case of gallery images aged, this is denoted with TA (templates aged)
in the diagrams and in the text. An application scenario where also the gallery images are a�ected
by sensor ageing is the use of an �old� biometric sensor, i.e. a sensor that was in use for at least a
few years, for establishing a biometric database. In this case the probe images will contain ageing
related pixel defects which will become more severe with increasing sensor age. In addition also the
gallery images will contain some ageing related pixel defects, depending on the point in time when the
database was established. For a thorough investigation of course all combinations of di�erent progress
in the ageing process should be tested. E.g. the database could have been established in year 1 and
the probe images could be captured in year 12, or the database could be established in year 10 and
the probe images also captured in year 10. Due to time restraints this would have been beyond the
scope of this thesis so only the combinations where the gallery and probe images are captured at the
same point in time, i.e. show the same ageing related pixel defects, were tested.
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9 Results

This section presents the experimental results from running the ageing simulation for the di�erent
biometric traits, i.e. �ngerprint, �nger vein and hand vein, and also the di�erent matchers used for
each trait aimed to investigate the impact of sensor ageing related pixel defects on the recognition
performance of each of the feature extraction and matching schemes used for the di�erent biometric
traits. More information on the experimental settings, especially the simulation parameters, the test
data sets and the test protocol, can be found in section 8. The following subsection introduces some
abbreviations for the evaluated feature extraction and matching schemes. After that each subsection
deals with a speci�c biometric trait, beginning with �nger veins, followed by hand veins and �nally
�ngerprints. In each of these three subsections �rst of all the tested schemes are listed and speci�c
settings or tests are described, if any. In addition some sample aged images for each trait are given.
Afterwards the experimental results are provided in form of a table, stating the baseline EER and the
EERs for the aged images, and diagrams showing the EER at di�erent numbers of defective pixels
for each of the evaluated approaches. This is followed by a discussion of the results. Not only the
results of each individual approach are discussed but they are also compared to the other approaches
that were tested. In addition I also try to give some explanations why some approaches are in�uenced
whereas other are not and how to reduce the impact in general.

9.1 Abbreviations

The following list shows the abbreviations for the di�erent feature extraction and matching schemes
used in the diagrams and the text.

• MC: Maximum Curvature, described in section 7.3.1. Feature extraction method which was
used for �nger vein and also for hand vein evaluations.

• SIFT: SIFT based feature extraction method, also used for �nger vein and hand vein evaluations,
described in section 7.3.7.

• WLD: Huang Wide Line Detector, described in section 7.3.3. This is the second feature extrac-
tion method which is used for �nger vein and hand vein experiments.

• RLT: Repeated Line Tracking, feature extraction method used only for �nger vein experiments
due to its high runtime and inferior results on hand vein images. Described in section 7.3.2.

• LBP: Local Binary Patterns, another feature extraction method which is described in section
7.3.5. This was only used for �nger vein images due to its inferior results on hand vein images
compared to MC and SIFT.

• AB: Adaptive Binarisation or Template Matching as the last feature extraction method which
was used for �nger vein and hand vein experiments. Details are described in section 7.3.6.

• NBIS: Means the mindtct minutiae extractor and bozorth3 matcher from the NIST Biometric
Image Software package. Details can be found in section 6.4.3. NBIS was used for �ngerprint
images only.

• VF: VeriFinger matcher from Neurotechnology. This is a commercial package of a minutiae
based feature extractor and matcher for �ngerprint images. Details can be found in section
6.4.3. A trial version was used during the �ngerprint evaluations.

• POC: Phase Only Correlation, a correlation based matcher for �ngerprint images. A custom
implementation was used, details are described in section 6.4.1.
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• FC: Finger Code is a ridge feature based matcher for �ngerprint images. Details of the custom
implementation which was used during the evaluations can be found in section 6.4.2.

9.2 Finger Vein Results

In this subsection the results of the �nger vein experiments are lined out. MC, RLT, WLD, LBP,
AB and the SIFT based approach were tested. The simulations were run for hot pixels only, stuck
pixels only and combined hot and stuck pixels. All simulations were run 5 times, i.e. 5 test sets with
aged images are created. All the feature extraction and matching schemes are evaluated for each test
set. The sensor defects are randomly distributed over the image and also the amplitudes or hot pixel
o�sets, respectively, are random values. Due to the random nature of the defect locations and values,
some defective pixels may have a larger in�uence on the recognition accuracy than others, e.g. if there
are several hot pixels inside a vein. Running the simulations 5 times should mitigate these e�ects but,
as it can be seen on the results, not completely as there are still some statistical �uctuations. The
mean of the EER is used as �nal result.

In addition, all evaluations were done using a denoising �lter (median �lter followed by an adaptive
Wiener �lter) during the preprocessing step, which reduces the sensor ageing related impact to a great
amount even for those schemes which are heavily in�uenced. One drawback is that the baseline EER
rises, i.e. the recognition accuracy drops if denoising is used. Also note that the results for LBP are
the same with and without denoising as LBP uses denoising by default.

9.2.1 Sample Aged Images and Corresponding Feature Extraction

In �gure 37 some sample �nger vein images with no defects, 1000 and 10000 pixel defects and the
corresponding region of the feature extraction image for MC, RLT and WLD are shown. One can
clearly see that for MC due to the pixel defects the lines get broken and an additional line appears at
10000 defects which is clearly not a vein. The vein lines do not get broken in the case of RLT but they
appear wider with some additional noise at the vein boundaries. WLD does not show much useful
information any more at 10000 defects due to the noise caused by the defective pixels which appears
as small circles inside the image.

9.2.2 Simulation Results

Table 6 shows the baseline EER for all the tested approaches with and without denoising. As stated
above, in the case of MC, RLT and SIFT the baseline EER rises when denoising is used. In addition
also the EER for 10000 defects present in the images (5000 hot and 5000 stuck pixels) are shown with
and without denoising. Furthermore the percental rise of the EER compared to the corresponding
baseline EER is given right next to each absolute EER value. By comparing the baseline EER values
of the di�erent approaches, it can be clearly seen that MC performs best with an EER of 0.006. The
second best performing approach is RLT closely followed by SIFT, both achieving an EER of 0.02
which is more than 3 times higher than MC. On the fourth place is WLD with an EER of 0.031
followed by AB with 0.036. The worst performing approach is the LBP based one with an EER of
0.063, which is more than 10 times higher than the best performing approach, MC.

Figure 38 shows that not only SIFT and MC but also the simple AB scheme (presumably because
it additionally relies on the �nger outline and not solely on the vein structure) is hardly in�uenced
at all by hot pixel defects, even if there are 10000 defects inside the image. The EER of MC rises
to 0.0074 at 10000 defects but it is still the best performing approach. The EER of RLT doubles at
10000 defects but stays still below 0.045 so it is on the fourth place while SIFT gets on the second
one with an EER of 0.024. The EER of AB rises to 0.043, which is a bit better than RLT and on the
third place regarding the matching performance. WLD, as it is quite a simple thresholding method, is
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(a) No defects (b) MC (c) WLD (d) RLT

(e) 1000
defects

(f) MC (g) WLD (h) RLT

(i) 10000 de-
fects

(j) MC (k) WLD (l) RLT

Fig. 37: Sample aged images and feature extraction

Method EER EER EER (%) 10000 Defects EER (%) 10000 Defects EER (%)

Baseline w. denoising w. denoising

MC 0.006 0.010 60.5% 0.017 184.4% 0.010 5.7%

RLT 0.020 0.021 4.2% 0.077 285% 0.021 -0.4%

WLD 0.031 0.025 -16.8% 0.361 1079% 0.028 11.9%

LBP 0.063 0.063 0% 0.068 8.1% 0.068 8.3%

SIFT 0.020 0.022 11.6% 0.029 46.1% 0.023 1.7%

AB 0.036 0.036 -1.5% 0.048 30.6% 0.036 -1.1%

Tab. 6: Finger-vein EER baseline and at 10000 defects

�

����

���

����

���

����

���

� ���� ���� ���� ���� ���� ���� 	��� 
��� ���� �����

�
�
�
�
��
�
��
�
��
	
�

�

��������	
����
���
����

�
 ���� ��� ��� ��� ��

Fig. 38: EER hot pixels only Fig. 39: EER stuck pixels only
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Fig. 40: EER hot and stuck pixels

in�uenced dramatically. At 10000 defects the EER is 0.301 and thus ten times higher than its baseline
EER. Hence it is the worst performing approach. The performance of LBP is hardly in�uenced at all
by the noise introduced due to sensor ageing, even in the case of 10000 defects, its EER is 0.067 which
corresponds to an increase of 6.5%. LBP uses denoising by default but it is still no better than the
�fth place regarding the performance ranking.

In �gure 39 it can be seen that the in�uence of stuck pixels is more severe than of hot pixels.
The average amplitude or hot pixel o�set, respectively, is quite low thus the original grey value is
only slightly changed. Stuck pixels always have the same �xed value, independent of the original grey
value, so they are actually more likely to �break� the vein lines inside the image.

SIFT is again quite stable with an EER of 0.028 at 10000 hot pixel defects, which is now placed
�rst in the performance ranking. MC is a�ected more by stuck than by hot pixels and at 10000 defects
the performance of MC gets slightly worse than the SIFT one with an EER of 0.029, which means
it is the second best approach. Also the performance of AB is in�uenced more by stuck pixels than
by hot ones as the EER rises to 0.051 at 10000 stuck defects in comparison to 0.043 for hot ones but
it is again on the third place. RLT is in�uenced more than MC and AB as its EER rises to 0.097 in
comparison 0.045 at 10000 hot pixel defects and thus it is on the fourth place. In accordance with MC,
AB, RLT and SIFT, WLD is also in�uenced more by the stuck pixel defects. The EER of WLD rises
to 0.379 at 10000 stuck pixel defects, which is again the last place regarding matching performance.
Only for LBP the impact of stuck pixels is not signi�cantly higher than for hot pixels due to denoising.
Its EER for 10000 stuck pixels is 0.069 and it is on place four in the ranking this time.

If both, hot and stuck pixel defects, are present in the images, similar results as with the single
defect types can be seen. WLD is in�uenced most and again the worst performing approach, whereas
the performance of SIFT is quite stable, even if 20000 defects in total (10000 hot and 10000 stuck
pixels) are present, i.e. the EER rises to 0.032. SIFT is the best performing approach at 20000 defects.
The performance of MC gets worse than SIFT at 14000 defects (MC: 0.03 and SIFT: 0.027) and at
20000 defects it is the second best performing approach, only slightly ahead of AB which is on the
third place. RLT is a�ected more than by hot pixels only but not as much as by stuck pixel defects
only. At 20000 defects it performs worse than LBP and is the second worst performing approach. Its
EER for a total of 10000 defects is 0.077 and at 20000 defects it is 0.111. The in�uence on LBP and
AB is again negligible. The EER of LBP at 20000 defects is 0.07, thus it is on the fourth place in the
performance ranking. AB achieves an EER of 0.054 at 20000 defects, which means it is the third best
performing approach.
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Fig. 41: EER hot pixels only with denoising Fig. 42: EER stuck pixels only with denoising

Fig. 43: EER hot and stuck pixels with denoising

9.2.3 Simulation Results with Denoising

While conducting the �nger vein experiments all tests were run a second time. This time the denoising
�lter, which is used by LBP during preprocessing, was also applied for the other approaches. Table 6
shows that the baseline EER for MC, RLT and SIFT is slightly higher with denoising than without.
It can be seen from �gures 41, 42 and 43, that the impact of sensor ageing related pixel defects can
be eliminated almost completely using denoising for MC, SIFT, RLT and AB, i.e. the EER remains
almost constant even for a high number of pixel defects except some small statistical variations due to
the random positions of the defective pixels. The EER of WLD and LBP rises only slightly. Although
the baseline EER rises, the performance ranking for 0 defects is not changed. This ranking remains
unchanged over the whole range from 0 to 10000 hot pixels, 0 to 10000 stuck pixels and 0 to 20000
combined hot and stuck pixels. Consequently, this indicates that denoising itself has an impact on
the recognition performance but it is able to suppress the impact of sensor ageing related pixel defects
almost completely.

Denoising can be made adaptive so that it is only used at a certain noise level and in addition only
used for schemes where it is advantageous. Thus the baseline EER stays the same and if more pixel
defects are present, the EER can be reduced.
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9.2.4 Interpretation of the Results

MC MC tries to emphasise the centre lines of the veins, thus it generates binary images where the
width of the vein lines should be 1 pixel. In addition MC uses a �ltering operation to connect broken
vein lines. Therefore it is quite insensitive to sensor ageing related pixel defects, which are point
like, single pixel defects. On the one hand the �ltering operation reconnects vein lines that might get
broken due to defective pixels, on the other hand if a vein might get thicker due to stuck low pixels,
this e�ect is mitigated by emphasising only the centre lines of the veins. If the number of defective
pixels rises, vein lines might get broken because the �ltering operation cannot connect them any more.
This is why the performance of MC drops at some point. As it can be seen from the �gures, MC is
hardly in�uenced at all if only hot pixels are present. A hot pixel simply adds an o�set to a pixel
value, thus the pixel appears brighter. As the veins appear as dark lines in the image, bright pixels
will only break the vein lines, which is corrected by the �ltering operation of MC. Stuck pixels have a
more severe in�uence on MC because they might be stuck at any pixel value between 0 and 255, i.e.
also dark values. Thus, a stuck pixel can �extend� a vein line at least by one pixel and if there are
several stuck pixels in the same image area, the �ltering operation might connect the stuck pixel and
�generate� a false vein line.

Using a denoising �lter reduces the baseline performance of MC because it gets more di�cult to
accurately extract the centre lines of the veins as due to denoising the vein boundaries get less sharp
than without it. But this simple denoising �lter is able to mitigate the e�ect of hot and also stuck
pixels on MC almost completely as the EER remains nearly constant not only up to 10000 hot or stuck
pixels, respectively, but also up to 20000 pixel defects in total (10000 hot and 10000 stuck pixels).

SIFT SIFT tries to extract keypoints only out of �relevant� areas inside the image, i.e. it is also
able to handle noise contained in the image. The keypoint extraction algorithm tries to extract the
keypoints according to image information, like edges, high frequency content, etc. It is able to handle
a certain amount of point like noise well. Like MC also SIFT is in�uenced more by stuck than by
hot pixels. But the in�uence for a realistic number of pixel defects occurring in practical applications,
which are much less than 1000 defects per sensor, is negligible. Even for 20000 defects in total its EER
only rises from 0.02 to 0.032 which is a rise of 60%. Although SIFT is only the second best performing
scheme, it is less in�uenced by pixel defects than the best performing approach, MC, which can be
seen by comparing the percental rise of the EER. The in�uence of hot pixels might be lower than for
stuck pixels because a hot pixel only adds an o�set to a pixel value, i.e. the region containing the
pixel stays smooth to a certain degree, whereas a stuck pixel has an arbitrary but �xed value, which
might be totally di�erent compared to its surrounding pixels.

Using denoising the baseline EER of SIFT gets higher but as with MC it remains almost constant
up to 20000 pixel defects except some statistical variations. This means that also the SIFT based
approach has no di�culties to deal with sensor ageing related pixel defects in practice.

RLT As it can be seen in �gure 37, the vein lines do not get broken if Repeated Line Tracking
is used as feature extraction method. But they appear brighter and have some additional noise on
the vein boundaries. This is because of the way RLT works. It tries to extract the vein lines by
repeatedly tracking dark lines inside the image. Dark means the pixel's value is darker compared to
its neighbours. If there are several hot pixels inside the image, a pixel which actually does not belong
to a vein line might appear dark enough for RLT to count it as vein. RLT records the number of
times each pixel is detected as belonging to a vein and applies a simple thresholding to these values
afterwards to get the binary output image. This means that it is not independent of the vein width
and especially if there are some hot pixels present along the boundaries of the veins, additional pixels,
that are actually outside the vein but appear not as bright as the pixels further outside, may be
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detected as still belonging to the vein because the pixels further outside appear brighter due to the
hot pixels. The EER of RLT rises from its baseline EER of 0.02 to 0.043 for 10000 hot pixels. Again
the in�uence of stuck pixels is more severe as the EER rises to 0.051 for 10000 stuck pixels. The same
as in the case of MC holds, i.e. a stuck low pixel is directly counted as vein line, thus especially stuck
low pixels have a high in�uence on RLT. But also stuck high pixels lead to a drop in the recognition
accuracy because they have the same e�ect as hot pixels and might lead to an increase in the width
of the extracted vein lines with some additional noise on the vein boundaries.

The simple denoising �lter is again able to mitigate the e�ects of sensor ageing almost completely.
The EER of RLT remains quite constant even up to 10000 hot, 10000 stuck or 20000 combined hot
and stuck pixel defects. Its baseline EER rises from 0.02 to 0.021 which is only a rise of 4%. Its
EER for 10000 hot pixels is 0.0205, for 10000 stuck pixels it is 0.0211 and for 20000 pixel defects it
is 0.0228 which results in a rise of 9% in the worst case. Thus also RLT can be made robust against
sensor ageing related pixel defects using a simple denoising �lter with only a small drop in the baseline
recognition performance.

WLD WLD basically uses a simple local adaptive thresholding technique to extract the vein lines
from the background. It compares the centre pixel to its neighbouring pixels inside a circular neigh-
bourhood. If the centre pixel is in�uenced by a hot or a stuck pixel defect, this has a severe in�uence
on the binary output image. As it can be seen in �gure 37, the defective pixels are causing noise that
appears as small circles in the binary output images. This is the main reason why WLD is heavily
in�uenced by both, hot and stuck pixel defects. Again the in�uence of stuck pixels is higher than for
hot pixels, that is mainly due to the rather low hot pixel o�sets, which do not in�uence the adaptive
thresholding so much. But it is the approach, which is in�uenced most by sensor ageing related pixel
defects as its EER is more than 10 times higher than the baseline EER for 10000 hot and also for
10000 stuck pixel defects. This suggests that WLD is also sensitive to other types of image distortions,
which may occur during practical use of �nger vein recognition systems.

Again denoising is able to reduce the impact of the sensor ageing related pixel defects to a minimum.
For WLD the baseline EER improves when using denoising as it is only 0.025 compared to 0.031
without denoising. The EER for 10000 hot pixels is 0.028, for 10000 stuck pixels it is 0.03 and for
20000 combined stuck and hot pixels it is 0.029, which is even lower than for 10000 stuck and only
slightly higher than for 10000 hot pixel defects. In either case the rise of the EER is less than 17%
(8.4% for hot, 16.3% for stuck and 14.8% for hot and stuck pixels combined).

LBP LBP compares the value of a centre pixel to its neighbouring pixels where the output value
depends on the binary pattern of the neighbouring pixels inside a 3× 3 neighbourhood. Here a multi-
scale LBP operator was used, which repeats this comparison for several resized versions of the image
trying to make the output more robust against noise and small perturbations. As stated above, LBP
uses denoising during preprocessing by default. Thus the impact of hot and stuck pixels is relatively
low compared to LBP without denoising which was also tested. This is quite obvious because already
a single pixel, which changes its value inside the neighbourhood, changes the output value completely.
Also the baseline EER of LBP would much higher without denoising and LBP was only evaluated with
denoising. Using denoising the image is smoothed and the spiky noise is suppressed. Thus the impact
of the pixel defects is manageable but LBP has the worst performance of all the tested approaches. Its
baseline EER is 0.063, which is more than 6 times higher than the baseline EER of the best performing
approach, MC. LBP is in�uenced slightly more by stuck pixels than by hot pixels only as its EER
for 10000 stuck pixels rises to 0.069 compared to 0.067 for 10000 hot pixels only. Its EER for 20000
combined stuck and hot pixels rises to 0.07 which is a rise of 12% and thus the second highest drop
in recognition performance after WLD (with denoising).
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AB The adaptive binarisation or template matching approach is a generic adaptive thresholding
technique, which is even simpler than WLD but it is much less in�uenced by sensor ageing than
WLD. If the binary output images of AB are inspected, the �nger boundaries can be clearly seen,
whereas small veins do not appear in the output images. Single pixel defects mostly in�uence small
structures inside the image like the small and thin veins but bigger structures like the �nger boundaries
are not in�uenced so much. Thus my assumption is that AB relies on the �nger outline to a great
extent and on thicker vein lines, which reduces its baseline EER compared to the other approaches, but
makes it more robust against single pixel defects. For 10000 hot pixel defects and also for 10000 stuck
pixel defects it performs better than RLT, LBP and WLD. For 20000 combined defects it performs
nearly as good as MC. Its EER rises only slightly even without denoising. Its baseline EER is 0.036
and its EER for 10000 hot pixel defects is 0.043, for 10000 stuck pixel defects it is 0.051 and for
20000 combined defects it is 0.055. This means a rise of 17.5%, 40% and 50%, respectively. The fact
that the rise in the EER is higher compared to hand veins shows that it does not solely rely on the
�nger outline as there is no �nger or hand outline visible in the hand vein ROI pictures used during
evaluation.

Using denoising the baseline EER of AB remains nearly the same (it actually slightly drops) and
in addition it remains constant except some very small statistical variations for hot, stuck and also
combined hot and stuck pixels. Thus in the case of AB denoising is able to mitigate the e�ect of
sensor ageing on the recognition performance completely.

9.2.5 Finger Vein Conclusion

According to the estimation done with the empiric formula in section 8.4.1 a defect rate of 0.05
defects/year would occur for the type of sensor used in the �nger vein scanner. This defect rate is
really low and would statistically lead to 1.5 defective pixels over a reasonable long sensor lifetime of
30 years. I showed that the impact of less than 1000 pixel defects per image is negligible for all of the
tested approaches. Thus, the impact of sensor ageing and its related pixel defects for a reasonable,
i.e. realistic number of defective pixels that will occur in practice, is negligible.

Even for the unrealistic number of 10000 (which is about 10000 times the number of defects the
whole sensor would develop in 20 years) pixel defects, SIFT is hardly in�uenced at all because its
key point extraction algorithm is robust against that type of noise. The in�uence on MC is quite
low because it emphasises only the centre lines of the veins and uses a �ltering operation, which
reconnects broken vein lines and �lters out some noise at the vein boundaries. RLT, LBP and the
simple AB scheme are also relatively robust against the defects up to a rather high number of defective
pixels. Only the performance of WLD drops signi�cantly. Using a simple denoising �lter the baseline
performance slightly drops, i.e. the EER rises, but the in�uence of sensor ageing can be substantially
reduced even for WLD. As mentioned above denoising can be made adaptive, so that it is only used
if the performance drop is higher than it would be due to denoising.

In conclusion sensor ageing is not an issue for practical applications of �nger vein recognition.

9.3 Hand Vein Results

This subsection presents the results regarding simulations and experiments done using the hand vein
data. For evaluating the impact of sensor ageing on hand vein based biometric recognition systems,
some of the feature extraction and matching schemes from �nger vein recognition have been used.
Speci�cally MC, SIFT, WLD and AB were used during the experiments. Again all simulations were
run 5 times for hot pixels only, stuck pixels only and combined hot and stuck pixels using a defect
rate of 4000 defects/MP/year for 10 years with a time step of 1 year.

As the rotation correction done for �nger vein images is based on the �nger outline and cannot
be done for the hand vein images (only the ROI images are used which do not contain the outline of
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Method Baseline EER 10000 Hot EER (%) 10000 Stuck EER (%) 10000 Hot+Stuck EER (%)

MC 0.013 0.016 19.2% 0.017 25.8% 0.016 20.6%

MC TA 0.013 0.016 20.6% 0.022 61.4% 0.019 40%

SIFT 0.02 0.027 30.7% 0.03 47.6% 0.029 43.9%

SIFT TA 0.02 0.024 16.9% 0.023 14.1% 0.021 2.6%

WLD 0.073 0.112 52.9% 0.177 142.1% 0.161 120.2%

AB 0.157 0.163 3.9% 0.185 18% 0.174 11.2%

Tab. 7: Hand-vein EER baseline, 10000 hot, stuck and combined hot and stuck pixels

the hand or �ngers), the rotation correction has to be done during the matching process. Therefore
the Miura matcher was extended to repeat the matching process several times using rotated versions
of the test image. Of course also the vertical and horizontal shift correction in the same way as with
�nger vein images is still performed (matching with slightly shifted versions of the image and using
the highest matching score as result). I found out that the best compromise between runtime and
matching performance is to use steps of 0.5° in a range of ±5°. A more sophisticated way of doing
rotation and translation correction would be an alignment based on the vein crossings like it is done in
[1]. On the one hand such an alignment is more complex and prone to errors because the vein patterns
have to be extracted at �rst and then the vein �minutiae� have to be found and matched. On the
other hand it will speed up the matching process and may improve the matching results. Note that
this is not necessary for SIFT as it is rotation invariant. In addition, as the structures of hand veins
are di�erent compared, to �nger veins the parameters of the preprocessing �lters were adjusted. In
particular the parameters of the Circular Gabor Filter and the High Frequency Emphasis Filter were
slightly modi�ed. Furthermore, the feature extraction parameters for WLD and AB were adjusted to
account for the wider veins compared to �nger veins.

9.3.1 Sample Aged Images

Figure 44 shows 2 hand vein images and the corresponding aged images containing 10000 defective
pixels (5000 hot and 5000 stuck pixels).

9.3.2 Simulation Results

In table 7 the baseline EER for all the tested hand vein approaches and also the EER at 10000 hot
pixels, at 10000 stuck pixels and at 10000 combined hot and stuck pixels is listed. Again also the
percental rise of the EER compared to the corresponding baseline EER is given right next to each
absolute EER value. By comparing the baseline EER values of the four tested approaches, it clearly
shows that MC is the best approach again with an EER of 0.013. The performance of MC is lower for
hand veins than for �nger veins (baseline EER is more than doubled). The second best performing
approach is SIFT, achieving an EER of 0.02 which is nearly the same as with �nger veins and this
time only 1.5 times higher than MC. On the third place is WLD with an EER of 0.073 which is much
higher than for �nger veins. The worst performing method is the simple thresholding scheme, AB
with an EER of 0.157, which is also much higher than for �nger veins. The other methods, i.e. RLT
and LBP, were not tested because their performance was inferior compared to the the four tested
schemes.

Figure 45 shows the performance in terms of the EER if only hot pixels are present in the probe
images. First of all, it can be seen that the ranking of the 4 tested schemes does not change, even
up to 10000 hot pixels. MC is the best, followed by SIFT, then WLD and the worst performing
scheme is AB. It also shows that in the context of hand vein recognition MC is hardly in�uenced
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Fig. 44: Sample aged hand vein images, left: original image, right: aged image
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Fig. 45: EER hot pixels only
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Fig. 46: EER stuck pixels only

at all by hot pixels, it EER at 10000 hot pixel defects is 0.016 which means a rise of 17.6%. Even
SIFT is in�uenced more than MC for hand vein recognition as its EER at 10000 hot pixel defects is
0.027, which corresponds to a rise of 30.7% compared to its baseline EER. The simple AB scheme,
although the worst performing approach, is in�uenced least. Its EER at 10000 hot pixels is 0.163,
which corresponds to a rise of only 3.9%. Like for �nger veins also for hand veins, WLD is in�uenced
most by hot pixel defects and shows an EER of 0.11 or a rise in EER of 50.2%, respectively, at 10000
hot pixel defects. Due to the larger width of the hand veins compared to �nger veins this rise is less
severe than for �nger veins.

The next �gure, �gure 46, shows the EER behaviour if the images are aged with stuck pixels only.
Again the ranking of the 4 approaches does not change up to 10000 stuck pixels. The best approach
is MC, followed by SIFT, then WLD and AB as last one. Similar to the situation with �nger vein
recognition also here the in�uence of stuck pixels is higher than of hot ones which is most visible for
WLD and AB. The EER of WLD at 10000 stuck pixels has a value of 0.176 which is a rise of 140%
compared to the baseline EER. This is nearly 3 times higher than for hot pixels. The EER of AB
increases by 18% to 0.185 which is more than 4 times the increase for hot pixels. MC settles at an
EER of 0.0168 for 10000 stuck pixels, which is equal to a rise of 26% and thus more than for hot
pixels.

The following are the results for both, hot and stuck pixels combined, which can be seen in �gure
47. Once again the ranking of all the tested schemes does not change during the whole range of 0 to
20000 defects in total, except that WLD gets worse than AB at 20000 defects. Here it is the same
situation as with �nger veins again. The impact of combined hot and stuck pixels is higher than for
hot pixels only but it is lower than for stuck pixels only, which is another hint that stuck pixels have a
higher in�uence in general. Please note that the x-coordinate ranges up to 20000 defects in total but
to make a more meaningful comparison possible, I mainly state the values at 10000 defects in total.
MC achieves an EER of 0.15 at 10000 defects in total, which is even better than for hot pixel defects
only. SIFT settles at an EER of 0.029, which is higher than for hot but lower than for stuck pixels
only. WLD has an EER of 0.162, which is a bit lower than for stuck pixels only and higher than for
hot pixels only. AB is in�uenced less than for stuck pixels only and hits an EER of 0.174 for 10000
defects in total, again following the trend that the EER is higher than for hot pixels only and lower
than for stuck pixels only.

9.3.3 Interpretation of the Results

MC First of all the performance of MC in the context of hand vein recognition is lower compared
to �nger vein recognition. This might be because there are less veins visible in the images compared
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Fig. 47: EER hot and stuck pixels

to �nger vein images, thus the extracted vein patterns exhibit fewer distinctions. As it can be seen
in the �gures 45, 46 and 47, the in�uence of the sensor ageing related pixel defects is lower compared
to �nger veins for all types of defects, i.e. hot pixels only, stuck pixels only and also hot and stuck
pixels combined. Figure 44 shows some samples of aged hand vein images. It can be clearly seen that
the vein structures are bigger compared to the relatively thin �nger veins, i.e. hand veins are wider
than �nger veins. Thus the single pixel defects have less in�uence on the visible vein pattern inside
the image, i.e. they cannot break the vein lines so easily. As mentioned before, MC only extracts
the centre lines of the veins and uses a �ltering operation to reconnect broken vein lines and to �lter
out noise at the vein boundaries. Due to that, the in�uence of single pixel defects on the feature
extraction is rather low, even lower as with �nger veins, as long as the number of defects stays within
a reasonable range. Although the in�uence on MC for hand veins is lower than for �nger veins, stuck
pixels have a higher in�uence than hot and stuck pixels combined, which have a higher in�uence than
hot pixels only like it is the case for �nger veins.

SIFT The baseline performance of SIFT is nearly the same as with �nger veins. Figures 45, 46
and 47 show that there are some variations in the EER values with an increasing number of sensor
defects but there is still a clear trend visible. These variations are due to score calculation method
used for SIFT, which is �count only� instead of �ratio score calculation� as it showed superior results.
Count only means that the matching score is simply the total number of keypoints, which could have
been matched between the two images. Ratio score calculation would divide this number by the total
number of possible matches. Consequently, there are only discrete score values, thus the operating
point for determining the EER cannot be set to such a �ne degree (decimal values between two score
values would not make sense). This also reduces the number of possible resulting EER values, which
limits the accuracy of the resulting EER leading to the variations, that can be seen in the diagrams. In
contrast to the situation for �nger veins, when SIFT is used for hand vein recognition it is in�uenced
more by the sensor ageing related pixel defects, i.e. the percental rise of the EER is higher than
for MC. Hand veins exhibit bigger structures than �nger veins, but the vein pattern has neither as
many crossings nor intersections. In addition there is only a fewer number of veins visible in the
image. This leads to a lower number of SIFT keypoints that can be extracted from the images. If
there is the additional noise, induced by the pixel defects, present in the images, SIFT tries not to
extract keypoints in noisy areas, which further reduces the number of keypoints that can be extracted.
Consequently due to the count only score calculation, there are even fewer possible score values, i.e.
less distinction between individual score values in general and between impostor and genuine scores in
particular. The recognition performance drops because the score distributions of genuine and impostor
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scores start to overlap and thus the distinction between genuine and impostor scores gets more di�cult
(i.e. there are more false positives or more false negatives or both). Nevertheless, SIFT is still the
second best performing approach.

WLD Like MC, the performance of WLD if used for hand veins is worse than for �nger veins. Its
baseline EER is more than twice as high compared to �nger veins. This is mainly because the adaptive
local thresholding is optimized for smaller structures, i.e. smaller vein width. Of course I tried to
optimize the feature extraction parameters to get usable binary vein images. The most important
parameters to tune are the radius of the local neighbourhood and the thresholds. If the radius is too
small, the images get highly noisy as WLD also detects ridges and valleys on the skin surface as vein
lines. Thus, the actual veins are covered by these smaller but more frequently appearing lines which
are no veins at all. If the radius is too large, only the most prominent, i.e. widest and darkest, vein
lines are detected and extracted. Consequently, the binary output images do only show a few thick
vein lines and cannot exhibit many distinctions any more. Therefore a suitable compromise between
the noise on the one hand and too few vein lines on the other hand has to be found. I experimented
with the parameters for quite a while and a baseline EER of 0.073 was the best that could be achieved.
Again like MC, the relative in�uence on the recognition performance is lower on hand veins than on
�nger veins using WLD, which is clearly indicated by the percental rise of the EER. The in�uence is
less because the hot and stuck pixels due to sensor ageing do not complete break vein lines or generate
arti�cial vein lines that might appear as vein lines in the binary output image. Due to the larger
radius parameter used compared to �nger veins, the defective pixels do not cause noise appearing
as small circles in the feature extracted output images, which were the main reason for WLD's bad
performance in �nger vein recognition. Besides that, WLD is again in�uenced most by stuck pixels
only, followed by hot and stuck pixels and least by hot pixels only.

AB Following the trend of MC and WLD also the performance of AB in the context of hand vein
recognition is worse than for �nger vein recognition. This is another hint that AB really relies on the
�nger outline, which is strikingly visible in the �nger vein images, to a certain extend at least. The
hand vein images do not exhibit the outline of the hand or the �ngers as only a ROI, which is a region
extracted from the centre of the hand surface, is used. Thus AB can only rely on the veins, that are
not as clearly visible at the �nger or hand boundaries and so the recognition performance drops. AB
achieves a baseline performance, i.e. an EER of 0.157 which is more than 4 times higher than for
�nger veins. It is again the scheme, which is least in�uenced by hot and stuck pixels as it can be seen
from the percental values in table 7. Although the basic principle of WLD and AB is quite similar,
both are using an adaptive thresholding technique, AB uses a much larger window size compared to
WLD. Thus a small number of defective pixels does not in�uence the thresholding result as much as
it does for WLD. The same argument as with MC and WLD can also be used in the context of AB.
As the hand veins are wider than �nger veins, the single pixel defects in�uence the visible structures
of the veins to a smaller extent. Thus also the drop in the recognition performance is less compared
to �nger veins.

9.3.4 Simulation Results with Templates Aged

For MC and SIFT the experiments were run a second time, again all simulations 5 times, with the
mean of the EER as �nal result. This time not only the probe images but also the gallery images
(or template images) were aged. A comparison of the matching performance for MC and SIFT with
(denoted as TA) and without templates aged can be see in �gures 48, 49 and 50. With templates
aged, the same trend as without can be seen. Hot pixels alone have the least in�uence, followed by
combined hot and stuck pixels and stuck pixels have the highest in�uence.
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SIFT behaves as expected, i.e. if the templates are aged, the performance is increased. The
diagrams also show that the EER of SIFT TA is lower than the one of SIFT across the whole range
of defects. I say this is the expected behaviour. If the templates are also aged, the images get more
similar again compared to the case where only the probe images are aged. If the images are more
similar, the additional noise introduced by the pixel defects should have less in�uence on the matching
results. I already mentioned that SIFT tries not to extract keypoints in noisy image areas. If only one
of the images to compare is aged, there is a di�erent number of keypoints, which can be extracted.
The aged image will tend to have less keypoints than the unaged one. Such an unbalanced number of
keypoints may cause unambiguous matches and makes matching keypoints more di�cult. Thus the
matching performance drops. If both images are aged, only the total number of potentially matchable
keypoints decreases which leads to a lower number of possible score values as explained before. But
it does not necessarily decrease the matching performance. Summing up SIFT performs better if not
only the probe images but also the template images are aged.

Looking at MC the situation is di�erent. First of all if only hot pixels are concerned, there is not
much di�erence if the gallery images are aged or not. There are only some statistical variations, but
the general trend remains the same and neither the EER of MC TA nor the one of MC is signi�cantly
better. For stuck pixels only the situation changes. With an increasing number of stuck pixel defects
present, the gap between MC and MC TA gets bigger. This general trend is not surprising. The
interesting thing is that MC outperforms MC TA. Although the images are more similar in the case
of MC TA, the recognition performance drops as the EER rises. The explanation for this behaviour is
not obvious at �rst sight. Having a closer look at the scores distribution for 10000 combined defects,
shown in �gure 51a, it can be seen that the impostor scores are shifted to the right towards the genuine
scores. Also the genuine scores are slightly shifted to the right. This indicates that the images appear
more similar in general (also images from di�erent hands). Figure 51b shows the FAR and FRR for
MC and MC TA, revealing that the FAR of MC TA is increased. Note that FAR is the same as
FMR and FRR is the same as FNMR here, respectively. Thus the number of false positive matches
increases for MC TA in comparison to MC. This is the main reason why MC TA performs worse than
MC. Now the question is, why do the false positive matches increase? This can be explained having
a closer look on the feature extraction results (binary vein images) and by having a look on how MC
generates the binary images. If more and more stuck pixels are present, the simple �lter operation
used by MC is not able to reliably reconnect broken vein lines and �lter out the outliers at the vein
boundaries. In addition it tends to generate �arti�cial veins�, i.e. vein lines visible in the binary
output images where there are actually no veins in the image. This is mainly caused by the stuck
low pixels starting from a certain number of stuck pixels. While the defective pixels are randomly
distributed over the image, their position and parameters do not change for the same image sensor.
One assumption for the simulations is that all images are taken with the same sensor, else evaluating
sensor ageing e�ects would not make much sense either. Consequently, the pixel defects are the same,
especially they are at the same spatial location for all images inside the database. If they lead to
broken vein lines and arti�cial veins, these are located at exactly the same position in every feature
space image. Matching is done using a simple correlation measure, which compares to feature space
images and calculates the correlation based on their corresponding pixel values (0 or 1). Thus the
images appear more similar, not only images of the same hand, but also images from di�erent hands
as they exhibit the same pattern of arti�cial and missing veins. If images from di�erent hands appear
more similar, this induces more false positive matches and thus the overall matching performance
decreases. Finally looking at hot and stuck pixels combined the situation is similar to stuck pixels
only. Starting at around 8000 pixel defects, the performance of MC TA gets signi�cantly worse than
MC. At 16000 defective pixels the performance starts to decrease rapidly (EER rises faster), at 18000
defective pixels it gets worse than SIFT TA.
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Fig. 48: EER MC + SIFT TA hot pixels only
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Fig. 49: EER MC + SIFT TA stuck pixels only
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Fig. 50: EER MC + SIFT TA hot and stuck pixels
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Fig. 51: Scores distribution and FAR/FRR for MC and MC TA at 10000 defects
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Note on the Fluctuations The attentive reader may have noted that although all simulations were
run 5 times, there are still �uctuations in the EER values with an increasing number of defects, for
some approaches more and less for others, but they are always present. Especially �gures 48, 49 and
50 reveal this �uctuations because they only show a limited range on the y-axis, thus small variations
become more apparent. First of all, I should explain why there are these �uctuations as they indicate
that an increasing number of defects not always decreases the recognition performance. According
to the pixel model, which was used as a basis for the simulations and thus for the experiments and
evaluations, the defective pixels are randomly distributed over the sensor area. Consequently, they
have random spatial positions in the images and also their parameters follow random distributions.
However, their positions and parameters remain constant for all images taken with the same sensor
at the same time, which was my assumption for all of the images in one database (either the ground
truth or the aged ones). Now there are three things that can happen. First, a defective pixel (either a
stuck or a hot one) may break a vein line at a speci�c location or may even extend a vein by at least
one pixel if it is a stuck low pixel. With an increasing number of defective pixels these e�ect becomes
more prominent, which leads to a general decrease of the recognition accuracy, because at some point
the preprocessing and feature extraction methods are not able to cope with the increasing number
of defects any more. This is of course also true for �ngerprints, at which the ridges and valleys get
interrupted by the defective pixels. This is what one would expected with an increasing number of
defects. The second thing which may happen is exactly the opposite. A defective pixel may connect
two parts of a vein line, where they appear broken due to bad image contrast, dust on the scanner or
other distortions during the image capturing process. Actually it does not really need to reconnect the
two parts, it may be su�cient if e.g. a stuck low pixel or a several stuck low pixels are located in the
gap between the two vein parts. The preprocessing and feature extraction techniques are then able
to reconnect the vein line, whereas without the additional stuck pixels they would not. Consequently.
the matching performance increases. This is only one descriptive example. Of course this also applies
for �ngerprints and not only stuck pixels but also hot pixels can help to �improve� the vital parts of
the image for feature extraction. Finally, a defective pixel may also have no impact at all, depending
on its position. If it is a single stuck or hot pixel, located outside the veins or in the middle of a vein,
the chance that it is �ltered out during preprocessing and feature extraction is high and thus it has no
impact on the matching result at all. Note that this e�ect is always per image only, i.e. a pixel defect
which improves one image may corrupt another image. Hence an increase in the number of defective
pixels does not necessarily lead to a decrease in matching performance. It may have no e�ect at all
or even lead to an increase in matching performance. Returning to the initial question, this explains
why there need not always be a linear increase in the EER with an increasing number of pixel defects
considering a single simulation run. As a consequence, the simulations were run 5 times and using
the mean of the EER as �nal result as this should smoothen the results. But statistically 5 runs are
insu�cient to cancel out all statistical variations due to the random positions and parameters of the
defects. If the simulations are repeated 100 or 1000 times, the results will exhibit less variations. As
a consequence of the high computational demand of most of the tested approaches and thus the high
runtime of some of the tests, this was not feasible in the scope of this thesis.

9.3.5 Hand Vein Conclusion

As some of the approaches originally designed for �nger veins were used during the hand vein eval-
uations, basically the same things that were concluded for �nger veins also apply for hand veins.
Although the baseline EER, except for SIFT, is higher due to the lower number of veins visible in
the images, the in�uence of sensor ageing related pixel defects is less than for �nger veins. Because
hand veins are wider, single pixel defects do a�ect the visible vein patterns to a smaller extent and
thus also the feature extraction is less in�uenced. Consequently, the drop in matching performance is
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relatively lower compared to �nger veins. AB is in�uenced least, this time followed by MC and then
SIFT. Again WLD is in�uenced most. According to section 8.4.1, a defect rate of 0.072 defects/year
would occur. Based on this defect rate, there would statistically occur 2.16 defects during a period
of 30 years. It can be clearly seen that the in�uence of less than 1000 defective pixels is not worth
mentioning. 2 defects would have practically no impact at all on the recognition performance. Al-
though there is an impact for the high number of defects that were tested during the evaluations, is
is still rather low for MC, SIFT and AB. Even though it was not tested, denoising could also be used
in the context of hand vein recognition and is supposed to further reduce the impact of sensor ageing,
most likely at the cost of a slightly increased baseline EER. The experiments with additional template
ageing showed that SIFT behaves as expected as the results get better if also the templates are aged.
MC behaves contrary, but only for stuck and combined hot and stuck pixels starting from a certain
number of defects. A practical scenario where also the templates are a�ected by sensor ageing related
pixel defects would be if the template database is created using an old scanner, which already shows
ageing e�ects. In real life scenarios almost exclusively hot pixels occur, thus aged templates have no
additional impact on hand or �nger vein recognition systems.

In conclusion sensor ageing is not an issue when it comes to hand vein based biometric recognition
systems.

9.4 Fingerprint Results

In the following, the results of the �ngerprint experiments are given. As stated above, DB1 and
DB2 from the FVC2004 data set were used during the experiments. FC, POC, NBIS and VF were
evaluated. Due to the high runtime of FC and POC the simulation was only run once, for NBIS
and VF it was run 5 times and the mean of the EER is used as �nal result. For NBIS and VF the
experiments were repeated with aged gallery (template) images, denoted as TA in the diagrams and
in the text.

MCC (Minutia Cylinder Code, see section 6.4.3 for details) was not evaluated. It is only a matching
scheme. which relies on an external feature extractor. For this purpose the mindtct feature extractor
from the NBIS package was used. The results of MCC were inferior to NBIS (EER more than twice
as high as with NBIS). In addition also the runtime was several orders of magnitude higher compared
to bozorth3 from NBIS. As mindtct is used for feature extraction and the sensor ageing related pixel
defects mainly in�uence the feature extraction stage, evaluating MCC would mean to evaluate mindtct
a second time with another matcher, which is the reason why I decided not to evaluate MCC.

9.4.1 Sample Aged Images and Minutiae Extraction

Figure 52 shows some sample images, the �rst and second row are from FVC2004 DB1, the third
and last row are from FVC2004 DB2 (image 1_3 each time) and the corresponding minutia points
extracted using VeriFinger. In the �rst and third row the unaged versions of the images are shown,
second and last row show the aged versions with 10000 combined hot and stuck pixel defects present
in the images.

As it can be seen for the DB1 image there are not many di�erences between the minutiae in the
unaged and aged version. The aged image shows two additional minutia points in the top left and two
in the middle left section (one above the seventh green line starting from the bottom and one left below
the left triangle). All other minutiae in the centre part of the image do neither change nor disappear.
Even the type and orientation of the extracted minutia points remain the same. This clearly indicates
that minutiae based approaches are robust against sensor ageing related pixel defects as the extracted
features are only faintly a�ected. If the feature extraction is robust against the defects, the matching
process and thus the matching results will not change signi�cantly.
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The DB2 images show similar e�ects as the DB1 images. Most of the extracted minutiae points
remain the same, also with the same type and orientation. Especially all minutiae located in the
centre region of the image are not changed at all. Only some points on the right border of the image
are missing in the aged version and in the top right area there are some additional points appearing.
There is one interesting thing that can be seen on the left side of the image. The aged version shows
two green lines, which indicate ridges, but there is not even a �ngerprint visible at this position in
the image. The same thing can be seen on the right edge of the image, where two additional vertical
ridges appear (one on the top and one in the middle part). This indicates that presumably mainly
the stuck pixel defects around the edges of the grey trapezoid in the image in combination with the
preprocessing and �ltering operations used by VeriFinger to enhance the image lead to false ridges and
valleys. However there are no minutiae points extracted at these arti�cial ridge and valley lines. Thus
it does not in�uence the feature extraction and the matching result. But this reveals that minutiae
based approaches, at least VeriFinger, are not completely insensitive to sensor ageing related pixel
defects and there might be a measurable in�uence for a higher number of defects.

9.4.2 Simulation Results DB1

The following table 8 shows the EER results for the FVC2004 DB1 achieved by FC, POC, NBIS and
VF, which are the 4 matchers evaluated on �ngerprints. First of all the baseline EER is given, followed
by the EER values at a defect density of 40000 hot pixels per MP, 40000 stuck pixels per MP and
40000 combined hot and stuck pixels per MP, each one followed by the percental increase of the EER
compared to the baseline one.

Note that for the �ngerprint evaluations not the total number of defects present in the image is
given. Instead the defect density per MP is shown. The images contained in DB1 and DB2 have
di�erent resolutions (DB1: 640 × 480, DB2: 326 × 364), thus giving a total number of defects per
image would make comparing the results of DB1 against DB2 more di�cult. Not the total number of
defects per image is the crucial point, but rather the defect density, which corresponds to the in�uence
on the recognition accuracy. The same total number of defects per image for DB1 and DB2 means,
that the defect density is about 3 times higher for DB2 as the images have only 1

3 the size of the DB1
images. Thus there are more defects per area and consequently the defective pixels are located closer
to each other. The closer they are, the higher is the in�uence on the performance of the matchers as
the defects then tend to break the ridge and valley lines or generate arti�cial ones. Consequently, the
impact on the recognition performance if evaluating the DB2 images at the same number of defects per
image is higher as with DB1. Using the defect density instead, a much more meaningful comparison
between DB1 and DB2 results can be done.

Also note that the results for FC and POC exhibit a higher degree of �uctuations across the whole
test range as the simulations were run only once due to the high computational demand and thus high
runtimes of FC and POC. This is also the reason why the additional experiments with aged templates
were only done with NBIS and VF and not with FC and POC.

As the baseline EER values show, the commercial matcher from Neurotechnology, VeriFinger, is
by far the best performing matcher, achieving an EER of 0.025 for DB1. On the second place is FC
with a baseline EER of 0.126, closely followed by NBIS, reaching an EER of 0.136 for DB1. The worst
performing matcher is POC, which baseline EER is nearly 9 times higher then the EER of VF.

The impact of hot pixel defects is shown in �gure 53. First of all, same as with hand vein
recognition, the ranking of the tested �ngerprint matchers does not change over the whole range from
0 defects up to a defect density of 40000 defects/MP. It can also be seen that none of the matchers is
really a�ected, as the EER rises very slightly with an increasing defect rate. FC is in�uenced least,
its EER actually slightly drops at 40000 defects/MP. FC does not exhibit many statistical variations
across the whole range, i.e. the line is nearly a straight one, although the simulation and tests were
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Fig. 52: Sample aged �ngerprint images, left: original image, right: extracted minutia points
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Method Baseline EER 40000 EER (%) 40000 EER (%) 40000 EER (%)

Hot/MP Stuck/MP Hot+Stuck/MP

FC 0.126 0.125 -0.6% 0.13 2.8% 0.137 8.7%

POC 0.216 0.223 3.7% 0.204 -5.2% 0.199 -7.9%

NBIS 0.136 0.15 10.6% 0.156 14.9% 0.157 15.3%

NBIS TA 0.136 0.152 12.1% 0.153 12.9% 0.155 13.8%

VF 0.025 0.027 7.4% 0.027 10.6% 0.025 2.6%

VF TA 0.025 0.027 10.4% 0.029 16.5% 0.027 7.5%

Tab. 8: Fingerprint DB1 EER baseline and for hot, stuck and combined hot and stuck pixels

�

����

����

����

����

���

����

����

����

����

���

����

� ���� ���� ����� ����� ����� ����� ����� ����� ����� �����

�
�
�
�
��
�
��
�
��
	
�

�

������������	�
���

	
�� 
� ��� �


Fig. 53: Fingerprint DB1 EER hot pixels only
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Fig. 54: Fingerprint DB1 EER stuck pixels only

only run once. This indicates that FC is robust against hot pixel defects to a great extent. The second
robust matcher is POC, which EER rises by 3.7%, but the line shows some small variations. The two
minutiae based matchers, NBIS and VF are in�uenced more than the ridge-feature based one and the
correlation based one. NBIS is in�uenced most with an EER rise of 10.6%, Its EER remains quite
stable up to 12000 defects/MP, then there is a rise in the EER and starting from 24000 defects/MP
it remains almost stable again. VF is performing slightly better as its EER rises by 7.4% only and
it rises almost monotonically. Nevertheless VF performs best of all tested matchers across the whole
tested range in terms of EER and in addition it does not exhibit any major �uctuations regarding its
matching performance.

Now the focus is on stuck pixels only. Figure 54 shows the impact of stuck pixels for DB1 on the
4 tested �ngerprint matchers. Again the ranking of all 4 matchers does not change. VF is the best
performing matcher, followed by FC, third is NBIS and the worst performing matcher is POC. NBIS
shows a sharp rise in EER at the beginning, which continues up to 16000 defects/MP, but with �atter
rise and then it remains almost constant at a value of about 0.155 until 40000 defects/MP. Looking
at the percental rise values in table 8 reveals that NBIS is a�ected most by stuck pixel defects. Again
VF is the best performing matcher, but it is a�ected second most if comparing the percental increases
of its EER. The EER increases almost linearly with an increasing defect density. POC shows an
interesting behaviour. At �rst its matching performance improves, i.e. its EER decreases up to 28000
defects/MP, where it starts to rise again. But its EER value at 40000 defects/MP is still below its
baseline EER. This might indicate that POC performs better if stuck pixel defects are present, but
it could also be an e�ect due to bene�cial positions and values of the stuck pixels inside the image
as explained in Paragraph 9.3.4. The EER of FC rises until 20000 defects/MP and then drops again.
Nevertheless its value at 40000 defects/MP is above its baseline EER, i.e. an increase of 2.8%. I would
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Fig. 55: Fingerprint DB1 EER hot and stuck pixels

argue that the rise at �rst followed by the drop is again due to statistical variations caused by the
random positions of the stuck pixels and does not re�ect a general trend. Once again, the minutiae
based matchers are in�uenced to a greater extent than the non minutiae based ones.

The last �gure 55 for DB1 shows the impact of combined hot and stuck pixels. Following the
trend of hot and stuck pixels only, the ranking of the matchers does not change. VF again shows an
almost linear increase in its EER, which is increased by 2.6% at 40000 defects/MP. NBIS shows a
steep rise at the beginning up to 16000 defects/MP, then another slight rise up to 40000 defects/MP,
and remains nearly stable up to 64000 defects/MP. Then there is a slight drop, followed by another
steep rise starting from 72000 defects/MP. The EER of FC rises up to 32000 defects/MP, remains
constant until 48000 defects/MP and then drops again. Its EER at 40000 defects/MP is 0.137 but
at 80000 defects/MP its EER is only 0.13, which is slightly higher than the baseline EER. As the
simulation for FC was only run once, this does not indicate a general trend. POC is again the worst
performing matcher and shows the highest �uctuations. Regarding the percental increases of the EER
values, this time VF is in�uenced least, which is quite interesting because it is in�uenced second most
for hot only and also stuck only defects. NBIS is in�uenced most, which is in accordance with stuck
and hot only defects.

Although there is of course an in�uence on the matching performance, this in�uence is not dra-
matically in any case. As the highest increase in EER is only about 15% even for an extremely high
number of pixel defects, it is not worth mentioning in practice. In contrast to the situation when
evaluation �nger and hand vein recognition, here the in�uence of stuck pixels only is less then the
in�uence of stuck and hot pixels combined. However hot pixels have the least in�uence again.

9.4.3 Simulation Results DB2

Table 9 summarizes the evaluation results for all tested �ngerprint matchers on FVC2004 DB2. Com-
paring the baseline EER values reveals the performance ranking of the matchers. By far the best
performing matcher is again VF, achieving an EER of 0.025 for DB2, same as with DB1. On the
second place is NBIS with a baseline EER of 0.093. FC is able to achieve a baseline EER of 0.101,
slightly better than POC with an EER of 0.104. Thus POC is the worst performing matcher, same as
with DB1 and FC is on the third place for DB2, whereas it was the second best performing matcher
on DB1. On DB2 both minutiae based matchers perform better than the correlation- and the ridge
feature-based one. This indicates that not only the matching performance of each individual matcher
depends on the data set, but some matchers perform relatively better compared to others, depending
on the data set. The question why there are di�erences is not the topic of the present thesis, but
an interesting question is if there are also di�erences in the sensitivity to sensor ageing related pixel
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Method Baseline EER 40000 EER (%) 40000 EER (%) 40000 EER (%)

Hot/MP Stuck/MP Hot+Stuck/MP

FC 0.101 0.103 2.5% 0.177 76.1% 0.155 54.1%

POC 0.104 0.104 0.5% 0.116 11.9% 0.111 7.6%

NBIS 0.093 0.099 6.5% 0.119 27.6% 0.109 17.3%

NBIS TA 0.093 0.109 16.8% 0.133 43.1% 0.119 27.4%

VF 0.025 0.025 -1.8% 0.029 16.5% 0.027 9.1%

VF TA 0.025 0.027 9.3% 0.03 20.4% 0.028 13.4%

Tab. 9: Fingerprint DB2 EER baseline and for hot, stuck and combined hot and stuck pixels
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Fig. 56: Fingerprint DB2 EER hot pixels only
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Fig. 57: Fingerprint DB2 EER stuck pixels only

defects between the two data sets. This question is going to be answered below.

The evaluations for hot pixel defects using DB2 show that �rst of all the recognition performances
in terms of the EER of 3 of the tested matchers are close together. These are FC, POC and NBIS.
Figure 56 shows that their performances stay close together if only hot pixels are present in the images.
At �rst NBIS performs best of this triple up to a defect density of 20000 defects/MP. There all three
perform almost equally with an EER of about 0.098. If the defect density is further increased, NBIS
again performs best until 32000 defects/MP. Starting from about 34000 defects/MP, POC outperforms
both, NBIS and FC. But at 40000 defects/MP, NBIS again performs best and FC and POC are having
an almost equal EER of 0.104. As the �uctuations of the EER are rather large, no clear prediction
which matcher is in�uenced most and which of the 3 is in�uenced least can be made. Also the percental
rise values in table 9 can only provide some hints. Based on these, POC is in�uenced least, followed
by FC and NBIS is in�uenced most. Up to now, only NBIS, FC and POC were compared against
each other. Regarding the overall ranking, VF is in�uenced second most in terms of the percental
EER change. But �gure 56 clearly shows that the EER decreases starting at 16000 defects/MP up
to 40000 defects/MP, where its EER is 1.8% lower compared to the baseline EER. Thus I would say
VF is not in�uenced least but it is in�uenced least negatively by hot pixel defects. In addition, VF
clearly shows a monotonically decreasing EER starting at 16000 defects/MP.

The situation for stuck pixels is di�erent as it can be seen in �gure 57. Here the ranking of the
matchers does not change, except that POC outperforms NBIS at 40000 defects/MP and FC has a
slightly better baseline performance than POC. Apart from that, the best performing matcher is by far
VF, followed by NBIS. POC is able to achieve the third place and the worst performing matcher is FC.
Regarding the in�uence of stuck pixels on the matching performance, this time a trend is more visible
than for hot pixels. POC is in�uenced least as its EER increases just by 11.9% at 40000 defects/MP.
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Fig. 58: Fingerprint DB2 EER hot and stuck pixels

Also VF is rather insensitive to stuck pixels, with an EER increase of 16.5%. Again VF shows a
clear linear, monotonic increase in the EER towards higher defect densities. NBIS is in�uenced more
than VF, but not as much as FC, which is in�uenced most. In contrast to the situation using DB1,
here no clear trend towards minutiae based or non minutiae based matchers can be seen. It is also
interesting that FC shows a steep increase starting from the beginning, which slows down at about
30000 defects/MP. On DB1 FC was quite stable and only a slight increase in the EER towards higher
defect densities could be noted. This indicates that the impact of sensor ageing related pixel defects
depends not only on the type of matcher, but also on the data set.

If both, hot and stuck pixels are present in the images, no clear decision if NBIS or POC performs
better can be made. Nevertheless, �gure 58 reveals that VF performs best across the whole range
and FC performs worst. NBIS and POC are competing for the second place. This does not change
the performance ranking up to 40000 defects/MP. From that point, POC performs slightly better
than NBIS, but starting from about 50000 defects/MP the situation is changed once more until 76000
defects/MP, where POC outperforms NBIS again. Comparing the percental decrease in recognition
performance or the increase in EER, respectively, it becomes clear that POC is again in�uenced least,
followed by VF, then by NBIS and FC is in�uenced most. This is a completely di�erent situation
than it was with DB1. Once more, VF shows an almost linear increase in EER towards higher defect
densities. The EER of FC increases sharply from 0 to 8000 defects/MP and continues to increase less
steep afterwards.

Summing up the evaluation of DB2, POC is in�uenced least, by all of the tested defect types, i.e.
hot pixels only, stuck pixels only and hot and stuck pixels combined (not taking the negative increase
of VF for hot pixels into account). VF is in�uenced more than POC, but not as much as NBIS, thus
it is on the second place considering the ranking. Consequently, NBIS is on the third place and FC
on the last, i.e. it is in�uenced most. The evaluation of DB2 shows the same general trend that was
found during the evaluation of �nger- and hand vein recognition. Hot pixels cause the least decrease
in recognition performance, followed by hot and stuck pixels combined, which cause a higher decrease
and stuck pixels only cause the highest decrease in recognition performance. This is in contrast to
DB1, where hot and stuck pixels combined lead to the most severe e�ects.

Comparison between DB1 and DB2 This paragraph outlines the di�erences between DB1 and DB2
images and tries to infer why the evaluation results of the �ngerprint matchers are di�erent. I will not
go into detail why there are di�erences in the baseline performances, but try to explain the di�erences
due to the impact of sensor ageing related pixel defects. First of all the images of DB1 and DB2 are
di�erent in image size. DB1 images have a size of 640 × 480 pixels, while DB2 images have a size
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of 328 × 364 pixels. Thus a defect density per MP was used instead of a total number of defects
to compensate for the di�erent image sizes. However, the visible �ngerprint covers only a smaller
percentage of the total image area in DB1 images compared to DB2 images. This can be seen in
�gure 32. The visible �ngerprint covers about 70% of the image area in DB2 images and only about
30% in DB1 images. Another di�erence is that the background of the DB1 images is completely white
(pixel value 255), whereas the background of the DB2 images varies from middle grey to light grey
(pixel value 160 to 220) and is completely white only in the upper left and upper right outside image
regions. Apart from that, other e�ects that may impact the recognition accuracy are present in both
image databases, e.g. di�erent and uneven pressure leading to di�erent widths of the ridge and valley
lines, interruptions across parts of the images (vertical and horizontal bright lines which break the
ridge and valley lines), noise, etc.

The evaluations showed that in general the in�uence of pixel defects (hot and stuck) is higher
for DB2 images than for DB1 images. The explanation for this general behaviour is quite simple.
Although the visible �ngerprint in the DB1 images covers less than half of the total image area
compared to DB2 images, the absolute area covered by the visible �ngerprint in pixels is still larger
than for DB2 images. Consequently, the ridges and valleys are wider on average and thus the single
pixel defects do have less e�ect on the ridge and valley pattern. This is the same situation as with
hand vein images compared to �nger vein ones. Now let us have a closer look on each defect type.

Hot pixels have a lower e�ect on the matching performance for DB1 than for DB2. This is also
quite obvious as the background of the DB1 images is all white. A hot pixels adds an o�set to a single
pixel, but if the pixel is already white, it cannot get any brighter. Statistically the change for a hot
pixel to be located in a valley is nearly the same for images of both databases. A hot pixel located
in a valley, which has the colour of the background, will not a�ect DB1 images at all, but it might
have a little e�ect on DB2 images as there the background gets brighter. If a hot pixel is located on
a ridge, it a�ects images from both databases as ridges are dark and a hot pixel will cause a bright
dot to appear inside a ridge.

Stuck pixels again have less in�uence on DB1 images than on DB2 ones. If it is a stuck high pixel,
the same argument as with hot pixels holds. If it is a stuck low pixel, there is also a reason why the
impact on DB1 is less than on DB2. The ridges appear darker in DB1 images than in DB2, where they
are only dark grey, compared to nearly black for DB1 images. In combination with the pure white
background this yields a higher contrast and a stuck low pixel located inside a valley can be more
easily distinguished from ridge lines and thus �ltered out during preprocessing or feature extraction.
The same applies for stuck mid pixels.

Following the general trend, hot and stuck pixels combined have a higher in�uence on DB2 than
on DB1 images, which is just a logical consequence of the situation for hot and stuck pixels only as it
is explained above.

Another interesting observation is that on DB1 images, combined hot and stuck pixels have a
higher in�uence than stuck pixels only, which is in contrast to the results for �nger vein, hand vein
and the DB2 evaluations. This observation cannot be explained using the higher contrast argument
from above because then it would be exactly opposite. For VF the in�uence of hot and stuck pixels
combined is even less then the in�uence of hot pixels alone. I cannot provide a conclusive explanation
for this behaviour, but it might either be caused by statistical variations due to the small number of
runs or due to the image enhancement techniques used by VF prior to the extraction of the minutiae
points.

9.4.4 Interpretation of the Results

POC Summing up all results, POC was in�uenced least on DB2 and second least on DB1. As the
matching performance on DB1 for stuck and hot+stuck pixels combined even increased, one could
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also say that POC was most insensitive on DB1, depending if sensitive means any change regardless
in which direction or it only means negative changes. POC uses a �ngerprint enhancement technique
prior to feature extraction, which is designed to remove noise from the �ngerprint images. This
enhancement technique may also suppress most of the spiky shot noise caused by defective pixels.
This is not surprising as both, POC and FC have been designed to be used especially for low-quality
images and in the end, sensor ageing related pixel defects are just a kind of noise. POC correlates the
images in the frequency domain which has some advantages like brightness invariance and immunity
to noise. In addition, only a band limited version of the normalised cross spectrum is used, limited
in a way that only those regions that are related to �ngerprint data are contained in the spectrum.
This additionally �lters out interfering high frequency components like shot noise. Therefore POC is
intrinsically robust against sensor ageing related pixel defects.

FC On DB1 FC was least in�uenced by sensor ageing related pixel defects compared to the other
matchers, not taking into account that the performance of POC increased. On DB2 FC performed
worst for stuck and combined hot and stuck pixels and is on the third place for hot pixels. FC
uses a di�erent feature extraction strategy than POC. Unlike POC, which uses the global ridge and
valley structure of the entire �ngerprint, FC uses this structure in a more local manner. Local ridge
orientation and local ridge frequency are extracted and used during matching. Local structures are
always more prone to small distortions like noise than global ones, thus FC is more sensitive to
defective pixels. FC uses a normalisation step prior to feature extraction to adjust the images having
a speci�c grey-level mean and variance. Especially stuck pixels have a high in�uence on the grey-level
mean and variance in certain image regions, thus this normalisation step is of course a�ected. During
feature extraction FC is based on a bank of Gabor �lters, which are tuned to be responsive to the
ridge and furrow structure of the �ngerprint only. Therefore the feature extraction may again reduce
the impact of the defective pixels. FC and POC both use the same additional �ngerprint enhancement
strategy prior to feature extraction. As FC is in�uenced more than POC, this enhancement strategy
is able to reduce the impact of defective pixels only to a certain extent. Nevertheless, FC is in some
cases more robust against sensor ageing e�ects than pure minutiae based matchers like NBIS, as it
performed better on DB1 and on DB2 for hot pixels at least.

NBIS NBIS is a typical example of a minutiae based matcher. At �rst it generates a quality map to
exclude image regions with low quality in the feature extraction step. Then a binarisation is applied
to the images, mainly using morphological operations. This is followed by the minutiae extraction and
an additional �ltering of false minutiae. The remaining minutiae are then used during the matching
process. Minutia points can also be regarded as local image features and thus they are a�ected more
by pixel defects than global structures. This is con�rmed by the evaluations as NBIS is the most
a�ected matcher on DB1 and the second most a�ected one on DB2. NBIS does not use an additional
image enhancement prior to binarisation. The defective pixels in combination with the morphological
operations used during binarisation of the input �ngerprint images may cause ridges to be interrupted
and ridge ends to be connected to each other. As the sensor ageing related pixel defects only introduce
shot noise, these image regions are not marked as bad quality in the �rst step and thus they are of
course included in the feature extraction stage. The altered ridges and valleys cause some minutiae
points to disappear, while others may be arti�cially generated. This can be seen on the DB2 image
example in �gure 52. These false minutia points may be �ltered out, but some of them will remain
after the �ltering step, which in�uences the matching scores. There will be more minutia points that
cannot be matched even for genuine matches, thus the genuine scores decrease, leading to more false
negative matches.
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VF VF is another minutiae based matcher. As it is a commercial one, there are no details about
the principles behind the feature extraction and matching process available. The only thing I know is
that it uses some advanced image enhancement techniques prior to feature extraction which is surely
one of the reasons why it performed best during all the tests, on DB1 and also on DB2. On DB1 it
is most robust against hot and stuck pixel defects combined and on DB2 its matching performance
even increases if only hot pixels are present. This indicates that VF is really robust against hot pixel
defects. According to Neurotechnology, VF is able to deal with sweat pores that are naturally present
in �ngerprint images exhibiting a certain resolution. Especially hot pixels located on a ridge are very
similar to sweat pores and thus VF should be able to deal with hot pixels.

9.4.5 Simulation Results with Templates aged

The following �gures 59, 60 and 61 and �gures 62, 63 and 64 show the results with templates aged
against only probe images aged for NBIS and VF on DB1 and DB2, respectively.

Let us �rst have a look on VF. Although the percental increases of VF's EER on DB1 suggest that
VF TA is in�uenced more than VF, a closer look on the diagrams reveals that there is no clear trend
visible. Sometimes VF outperforms VF TA and sometimes the situation changes, except for combined
hot and stuck pixels starting from a defect density of 48000 defects/MP. There VF TA performs worse
than VF, i.e. VF is in�uenced more by the defective pixels if also the template images are aged than
if only the probe images are. But in general neither VF nor VF TA is in�uenced more compared to
the other. Investigating the results on DB2 reveals that again VF TA's percental rise of all the EER
values is higher compared to VF, but again the diagrams show that there is no obvious trend visible.
The two lines di�er only slightly and again sometimes VF TA is in�uenced more than VF and vice
versa, except for stuck pixels only where VF TA performs slightly worse than VF across the whole
range. Thus I would say for VF there is no distinction if the templates are aged or not, because the
matching performance does hardly change.

Now the focus is on NBIS. NBIS TA and NBIS perform equally for hot pixels on DB1. Although
the percental rise of the EER at 40000 defects/MP may suggest that NBIS TA performs worse, the
diagram clearly shows that there is absolutely no trend visible. However for stuck and combined
hot+stuck pixels there is a trend visible. The diagrams and also the EER values show that NBIS TA
performs better than NBIS, which is in a way the expected behaviour. If the templates are aged, the
images will be more similar again and this should lead to improved matching results. Therefore NBIS
TA behaves as expected on DB1. On DB2 the situation is completely di�erent. For all three tested
defect types, i.e. hot pixels only, stuck pixels only and combined hot+stuck pixels, the EER values
in table 9 indicate that NBIS clearly outperforms NBIS TA with an increasing defect density. This is
con�rmed by the �gures 62, 63 and 64. The question now is, why is NBIS TA in�uenced more than
NBIS? Once again a look into the scores distribution can help to answer this question. The scores
distribution for NBIS and NBIS TA at a defect rate of 24000 stuck pixel defects/MP is shown in
�gure 65a. It can be seen that again the impostor scores are shifted to the right towards the genuine
ones. Figure 65b shows the FAR and FRR. There it can be seen that the FAR of NBIS TA is higher
compared to NBIS. Both reveals an increased number of false positive matches for NBIS TA with an
increasing defect density, which is the reason for the lower matching performance. Actually the same
argument that was used to explain the expected behaviour can be used to explain this behaviour. On
DB2 the lower contrast and darker background in combination with the stuck and hot pixels leads to
more ridge and valley structures that are arti�cially generated and appear in the binarised images as
it was explained in Paragraph 9.4.3. These structures appear in each image present in the database.
If these lead to false minutiae during feature extraction, these minutia points will also be extracted
from each of the images. Consequently, this leads to lower matching scores as these minutiae can
always be matched. This lowers the genuine match scores but also the impostor scores and leads to
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Fig. 59: Fingerprint DB1 EER NBIS + VF TA hot
pixels only

Fig. 60: Fingerprint DB1 EER NBIS + VF TA
stuck pixels only
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Fig. 61: Fingerprint DB1 EER NBIS + VF TA hot + stuck pixels

more overlapping of the genuine and impostor scores distributions. Thus the number of false positive
matches increases and as a result the matching performance drops.

9.4.6 Fingerprint Conclusion

The evaluations on DB1 and DB2 showed that the impact of sensor ageing related pixel defects does
not only depend on the type of pixel defects and on the particular matcher, but also on the images
itself. The in�uence on DB1 images is in general less then on DB2 images. This is also true for the
experiments with additional template ageing. On DB1 the behaviour is as expected, while on DB2 due
to the higher in�uence of defective pixels in general it is not. On DB1 the minutiae based matchers are
in�uenced more than the non minutiae based ones, which can be explained by the fact that minutia
points are local image features that are more a�ected by single pixel defects. On DB1 FC is in�uenced
least, followed by POC (if counting the positive in�uence just as in�uenced, else they would switch
places), next is VF and NBIS is in�uenced most. The situation for DB2 is di�erent. There POC
is in�uenced least, followed by VF and NBIS, whereas FC is in�uenced most. Thus no clear trend,
if minutiae based matchers are in�uenced more or not, can be seen. The only thing which can be
seen is that VF performed best in terms of its absolute EER values for both databases. Although the
in�uence on DB2 is higher, having a look at the two least in�uenced matchers, the rise in their EER
still stays below 17% (for stuck pixels, it is even lower for hot ones). According to section 8.4.1 and
depending on the �ngerprint scanner used, a defect rate of 0.03 defects/year (for the U.are.U 4000B
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Fig. 62: Fingerprint DB2 EER NBIS + VF TA hot
pixels only
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Fig. 63: Fingerprint DB2 EER NBIS + VF TA
stuck pixels only
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Fig. 64: Fingerprint DB2 EER NBIS + VF TA hot + stuck pixels

−20 −10 0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 

 
Genuine NBIS TA
Impostor NBIS TA
Genuine NBIS
Impostor NBIS

(a) Scores distribution

0 10 20 30 40 50 60 70
0

5

10

15

20

25

Threshold

E
rr

or

FAR vs FRR graph

 

 
FRR NBIS TA
FAR NBIS TA
FRR NBIS
FAR NBIS

(b) FAR/FRR

Fig. 65: Scores distribution and FAR/FRR for DB2 NBIS and NBIS TA at 24000 stuck defects/MP



9.4 Fingerprint Results 113

scanner) would occur. Statistically, this not even leads to a single defective pixel during a period of
30 years. Despite FC showing a steep rise in its EER starting from a low number of defects on DB2
for stuck and hot+stuck pixels combined, all other tested matchers only show a slight rise or even a
decrease for a low number of defects. Stuck pixels are not reported to occur in real world applications.
Furthermore, there would not be a single defective pixel and even if there are up to 100 pixel defects,
the in�uence on the recognition accuracy is not worth mentioning. Following the trend of �nger and
hand vein recognition, sensor ageing is not an issue in �ngerprint recognition systems.
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10 Summary

The main research topic of the present thesis was:

�Evaluating the impact of sensor ageing on the recognition accuracy of �nger image based biometric
recognition systems�.

According to my experimental results, there is no considerable in�uence on either of the tested
schemes for a realistic number of defective pixels. In the following, I will give a short review of the
present thesis at �rst and then I am going to conclude the evaluation results based on the di�erent
biometric traits, which are �nger veins, hand veins and �ngerprints to obtain this �nal statement. I
will not go into details on each speci�c trait or any speci�c matcher once again as this was already
done in the corresponding subsection of the results section.

This thesis started with a short introduction on biometric recognition systems, widely used for
authentication purposes nowadays. Then the main impact of image sensor ageing, defective pixels,
were described, followed by a quick overview over the existing literature regarding sensor ageing.
Despite extensive literature research, by the time of writing this thesis, no literature could be found
regarding the impact of sensor ageing on the recognition accuracy of biometric recognition systems.
This lead to the main topic of the present thesis:

To be able to evaluate solely the impact of sensor ageing, the pixel defects had to be simulated, i.e.
the images were arti�cially �aged�. This procedure was selected in order to make sure that no other
in�uences than sensor ageing related pixel defects are present in the images and thus a�ect the results.
In the scope of the evaluations, �ngerprint, �nger vein and hand vein based feature extraction and
matching schemes were evaluated: Two minutiae based �ngerprint matcher, one ridge feature based
matcher and one correlation based matcher for �ngerprints, 5 binarisation type and one keypoint
based approach for �nger veins and 3 binarisation type and 1 keypoint based approach for hand veins.
All evaluations were conducted using some well established data sets as ground truth and then ageing
the images using the proposed ageing simulation algorithm. Usually only the probe images were aged,
but in addition some experiments were conducted with aged template images one more time.

After the introductory section there was a short section about image sensors and their functional
principles, to be able to explain the ageing related e�ects, which were described in the next section then.
This section not only stated the di�erent types of defects, it also mentioned some defect identi�cation
techniques and outlined the impact of di�erent sensor parameters on the defect growth rate. Section
4 described several defect detection algorithms, which can be used to estimate the defect growth rate
and the defect parameters from real world images. Section 5 explained the ageing simulation algorithm
used to create the defect matrices and embed the pixel defects into the images.

Section 6 was about �ngerprint recognition and also reviewed some general principles of biometric
recognition systems. Besides �ngerprint matchers also �nger- and hand vein ones were evaluated, thus
section 7 dealt with �nger and hand vein recognition. Afterwards section 8 stated the experimental
setup with the databases used for each biometric trait and the simulation settings which were estimated
using an empiric formula. This was followed by a detailed analysis of the evaluation results, which
can be found in section 9 and brings us �nally back to this conclusion.

During the experiments, �ngerprint, �nger vein and hand vein matchers were evaluated and the
results were analysed and interpreted. Each of the single results showed that for a realistic number
of defective pixels, i.e. a realistic defect rate, there is no impact on the recognition accuracy. The
estimated defect rates are between 0.03− 0.07 defects/year and would lead to 1− 2 defective pixels
over a reasonable long sensor lifetime of 30 years. The evaluations showed that for such a low number
of defective pixels none of the tested matchers was in�uenced.

There can be application scenarios where the defect rate is considerably higher. Pixel defects occur
due to cosmic ray radiation, which is dependent on the altitude and and can lead to a pixel defect rate
that is up to 300 times higher during transatlantic �ights than on the ground. Such a scenario would
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be a biometric authentication system for air plane pilots. Then there could be up to 600 defects per
image.

The evaluations showed that particular matchers are in�uenced by defective pixels due to sensor
ageing, not only negatively but also positively. In general the in�uence is again negligible even up
to 10000 defects per image for some of the tested schemes. This clearly shows that most feature
extraction and matching schemes are quite robust against these single pixel defects, although they are
not completely insensitive.

For �nger veins a simple denoising �lter was tested and the results showed that it is able to
eliminate the impact of sensor ageing induced pixel defects almost completely at the cost of a slightly
decreased baseline performance. If sensor ageing related pixel defects become a problem, such a simple
denoising �lter can be used to suppress the impact on the recognition performance. Although it was
neither tested for hand vein recognition nor for �ngerprints it is not far-fetched that denoising would
further mitigate the in�uence of sensor ageing on these biometric recognition systems. If a simple
denoising �lter is really able to cancel out the in�uence of the defective pixels caused by sensor ageing
on �ngerprint and hand vein based recognition systems, will be part of my future work.

Referring back to the main question of this thesis I can now conclude that sensor ageing has
no impact at all on real world applications of �nger image based biometric recognition systems.
Consequently, most state of the art �ngerprint, �nger- and hand vein recognition systems are already
able to deal with the level of defective pixels caused by sensor ageing during every day operation, i.e.
they are already robust against sensor ageing related pixel defects.

Yet another interesting research question would be if there is a noticeable impact due to sensor
ageing related e�ects on non-optical biometric sensors, e.g. thermal �ngerprint sensors. Therefore,
at �rst the ageing processes on these sensors have to be studied. Afterwards a suitable defect model
based on the ageing related e�ects has to be found, which can then be used in a simulation to evaluate
the impact on the recognition accuracy like it was done for optical sensors during this work.
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