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Abstract—Hand vein recognition systems are more robust
against external influences which degrade the image quality
like dust or dirt on the sensor or skin surface conditions than
fingerprint ones. We investigate the robustness of several hand
vein feature extraction and matching schemes against different
types of image distortions, related to conditions occurring during
the acquisition of hand vein images. These distortions correspond
to sensor defects, bad system design and problems in the use of
the sensor. The impact on the recognition accuracy is quantified
in terms of the EER and compared across the different schemes
and different types of distortions.

I. INTRODUCTION

Hand vein recognition systems gain more and more at-
tention nowadays as they provide several advantages over the
well established fingerprint ones. Hand vein recognition is
more robust against skin surface conditions like dust, dirt,
cuts, moisture than fingerprint recognition and can thus be
used in scenarios where fingerprint systems cannot because
of environment or finger surface conditions.

However other issues might affect the image quality and
therefore the recognition accuracy of hand vein systems.
These include misplacement of the hand, compression, noise,
transmission errors, blurring and sensor ageing related pixel
defects. Different strategies have been proposed to assess the
robustness of fingerprints, e.g. benchmarking tests like the
fingerprint verification contests (FVC [1]) and the BioSecure
evaluation framework [2]. An alternative approach is to gener-
ate synthetic fingerprints (SFinGe [3]) or to artificially degrade
real fingerprint images (in [4] StirMark is used). However for
hand and finger vein recognition systems there are neither
benchmark data sets nor robustness evaluation results available,
except our previous work on the impact of sensor ageing on
the recognition performance of finger vein recognition [5].

The main goal of this work is to evaluate the robustness of
hand vein recognition systems (different feature extraction and
matching schemes) against certain kinds of image degradations
related to capturing conditions occurring in practice. We use
the same methodology as proposed in [4], i.e. generating
the degraded data sets based on a data set captured at the
University of Salzburg. StirMark is used to apply image
distortions to hand vein images where appropriate and generate
degraded data sets. Additionally we generate several “aged”
data sets using our image sensor ageing simulation algorithm
[5].

Utilizing StirMark and the image sensor ageing simulation
algorithm to generate these data sets has several advantages.
First of all the tests are reproducible if their parameters are
known and the test data set is available. Further it becomes
feasible to isolate specific external influences from others if
there is the need to investigate the impact of a specific type of
influence. Moreover it is possible to systematically simulate
different strengths of distortions corresponding to different
levels of external influence, which may not only be a tedious
and time-consuming work but also hardly possible to achieve
using real data.

Section 2 briefly describes image sensor ageing related
pixel defects and presents the StirMark toolkit’s image ma-
nipulations we utilized. Section 3 gives a short review of
the evaluated preprocessing, feature extraction and matching
schemes and explains the experimental setup. It continues with
the experimental results on the degraded data sets and a short
discussion. Section 4 concludes this paper and gives an outlook
on future work.

II. IMAGE DEGRADATIONS

A. Image Sensor Ageing

In principle a hand vein scanner consists of an infrared light
source and an image sensor. An image sensor is an electronic
device, containing an array of photosensitive cells, also called
pixels, which captures the incoming light and transforms it
into an electric signal. The pixels may become defective due
to ageing effects. Defective pixels appear as spiky shot noise in
the output images. Pixel defects are permanent, their number
increases linearly with time, they are randomly distributed over
the sensor area and they do not appear in clusters [6].

Defective Pixel Types: there are two main types of in-field
pixel defects, hot and stuck pixels [7], [6]. Both are showing
different characteristics than at manufacturing time. Example
aged hand vein images can be seen in figure 1.

A stuck pixel has always the same arbitrary but fixed
output value independent of the incoming illumination and
exposure settings.

A hot pixel adds a light independent offset to the pixel’s
output which increases linearly with exposure time.



Figure 1: Sample aged images, top: original images, bottom:
aged images containing 10000 hot and 10000 stuck pixels
generated by the ageing simulation algorithm

B. The StirMark Toolkit

Fabien A. P. Petitcolas et al. [8] developed a benchmark
test in the context of robustness evaluation for digital image
watermarking methods, called StirMark (Currently version
4.0 of the toolkit is available at http://www.petitcolas.net/
fabien/watermarking/stirmark/). It provides specific types of
perturbations which are pre-defined and their intensity can be
adjusted via a given set of parameters for each type.

In the following we describe the StirMark image manip-
ulations which are chosen to be appropriate for hand vein
images and used during the experiments. Not all manipula-
tions provided by StirMark are suitable to simulate natural
acquisition conditions. For each manipulation the relation to
realistic hand vein capturing scenarios which could be mod-
elled thereby is outlined. The example images shown have been
generated by applying the respective StirMark manipulations.
The different kinds of manipulations have different meanings
in the context of a biometric system and can be grouped into
several classes: Sensor ageing related pixel defects and the
remove lines and columns correspond to a defective sensor.
JPEG compression influences result from a bad system design.
Median cut filtering and additive noise are due to defects on
the use of the sensor.

Median Cut Filtering results in non directional blur,
additionally corrupting the clarity of the vein structure. This
sums up small hand movements during the image acquisition
and in general blurry vein structures due to the interaction of
the infrared light with different types of tissue inside the finger.
The size of the filter mask can be set from 1 to 15.

Additive Noise simulates noise that might naturally appear
in hand vein images due to dust, graining caused by the
acquisition equipment itself (e.g. thermal sensor noise), shot
noise due to high ISO setting or other errors introduced during

(a) Level 1 (b) Level 7 (c) Level 15

Figure 2: Additive noise

(a) Level 80 (b) Level 50 (c) Level 10

Figure 3: JPEG compression

processing, storage and transmission of the acquired images.
This noise is added to the input image. Its amount can be
adjusted by a single parameter ranging from 0 to 100 where
0 means “none” and 100 means “completely random image”.
Some example images can be seen in figure 2.

Remove Lines and Columns corresponds to errors in hand
vein images resulting either from transmission/processing or
errors of the biometric sensor while reading the hand vein
image (might not be able to read the whole hand and miss or
skip some lines). This could be caused by a defective image
sensor suffering from dead lines/columns. This manipulation
removes lines and columns from the input image. The amount
can be adjusted by a single parameter k which corresponds to
the frequency of removing lines, where k means “remove 1
line in every k lines”. The dimensions of the output image are
reduced.

JPEG Compression is applied to the hand vein images in
order to save storage space. It is lossy and leads to a general
loss in sharpness, reduced edge clarity, loss of colour detail
and introduces compression artefacts (blocking and ringing
artefacts). This leads to a reduced visibility and breaking of
the vein lines. The higher the compression the more severe the
artefacts become. The quality level can be set from 0 to 100
where lower numbers indicate higher compression. Figure 3
shows some example JPEG compressed images.

III. EXPERIMENTS

At first a brief overview of the evaluated preprocessing, fea-
ture extraction and matching methods are given. Then the hand
vein data set and the test protocol are outlined. Subsequently,
our experimental results with respect to the different schemes
and types of image degradations are presented and discussed.

To improve the visibility of the vein pattern we use High
Frequency Emphasis Filtering (HFE), Circular Gabor Fil-
ter (CGF) and simple CLAHE (local histogram equalisation)
as preprocessing.



Different binarisation type feature extraction and one key
point based technique are used. Repeated Line Tracking
(RLT), Maximum Curvature (MC) and Wide Line Detector
(WLD) aim to extract the vein pattern from the background
resulting in a binary image, followed by a comparison of
these binary images. For RLT, MC and WLD the MATLAB
implementation by B.T. Ton (publicly available on MATLAB
Central: http://www.mathworks.nl/matlabcentral/fileexchange/
authors/57311) is used. In addition Local Binary Patterns
(LBP) and a simple Adaptive Binarisation (AB) are evalu-
ated as representatives of binarisation type feature extraction
methods. Matching the binary feature images is done using a
correlation measure, calculated between the input images and
in x- and y-direction shifted and rotated versions of the refer-
ence image. Moreover a SIFT based technique with additional
key-point filtering is used. AB, LBP and the preprocessing
techniques as well as the SIFT(based on VL_Feat SIFT:
http://www.vlfeat.org/) approach are custom implementations.
For more details on the preprocessing, feature extraction and
matching methods please refer to [9].

Hand Vein Data Set: A custom subset of the hand vein
data set collected at the University of Salzburg [10] is used.
Our custom data set contains only images captured using
transillumination and includes images of 100 hands, 3 images
per hand. This is a relatively low number of images to derive
profound statements. Thus we plan to extend the whole data
set in the future to include more subjects and also more images
per subject/hand.

Image Sensor Ageing related pixel defects are simulated
using our algorithm proposed in [5]. Although in practice only
very few defective pixels occur under normal conditions, we
use a defect rate of 1000 hot and 1000 stuck pixels per year
over a period of 10 years during our experiments to account for
higher radiation environments or other external stress imposed
to the sensor.

EER Determination is done according to the FVC2004’s
[11] test procedure, resulting in in 300 genuine matches and
4950 impostor matches (3 × 100 images).

A. Experimental Results

From table I it can be clearly seen that MC and SIFT
achieve the best baseline EER and show the highest robustness
against all tested distortions.

Figure 4 shows from top to bottom the results for an
increasing number of hot, stuck and combined hot and stuck
pixels. In general hot pixels have less influence than stuck
pixels. The influence on SIFT and MC is almost negligible up
to 20000 defective pixels. AB is influenced starting from 6000
defects. WLD, RLT and LBP are affected starting from several
hundred defects, especially for stuck and hot and stuck pixels
combined. But in practice more than several hundred defects
are very unlikely to occur and most of the scheme are robust
against such a number of defects. Thus hand vein recognition
systems are robust against a realistic number of pixel defects
occurring in practical applications.

EER MC SIFT WLD RLT LBP AB
Baseline 0.013 0.02 0.073 0.044 0.297 0.157
5000 Hot 0.015 0.031 0.101 0.063 0.323 0.163

5000 Stuck 0.015 0.027 0.143 0.09 0.337 0.166
10000 Hot + Stuck 0.016 0.029 0.161 0.103 0.35 0.174

Noise level 1 0.023 0.036 0.24 0.143 0.37 0.223
Noise level 3 0.127 0.159 0.477 0.276 0.443 0.374
Noise level 15 0.457 0.294 0.527 0.49 0.457 0.5
RML 1 in 100 0.014 0.023 0.079 0.047 0.317 0.157
RML 1 in 30 0.02 0.017 0.107 0.103 0.36 0.18
RML 1 in 10 0.077 0.03 0.227 0.263 0.433 0.243

Median Filter 3 0.013 0.027 0.076 0.033 0.287 0.15
Median Filter 9 0.013 0.02 0.163 0.033 0.287 0.15
Median Filter 15 0.013 0.03 0.27 0.043 0.337 0.166

JPEG 90 0.013 0.026 0.07 0.043 0.3 0.157
JPEG 50 0.02 0.02 0.123 0.07 0.354 0.167
JPEG 15 0.066 0.118 0.363 0.21 0.45 0.28

Table I: EER for baseline performance and degraded images
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Figure 4: EER for hot, stuck and both, hot and stuck pixels
combined
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Figure 5: EER for additive noise test
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Figure 6: EER for median cut filtering test

If additive noise is applied to the images, each of the tested
schemes suffers significantly, which can be seen in figure 5.
It has the most severe impact among all of the tested image
manipulations. At a noise level of 5 except for SIFT and MC
there is no meaningful recognition possible any more.

The difference between sensor ageing related pixel defects
and additive noise is that the defective pixels caused by ageing
always have the same fixed locations and characteristics in
all output images. Random noise varies from image to image
in both, its location and characteristics. The results clearly
show that additive noise has a much more severe impact than
sensor ageing. This might be due to the type of noise content
introduced to the images but more likely due to the different
amount of noise that is added. The average PSNR of images
with 10000 defects is 24.92. The average PSNR of all images
with noise level 1 is 28.28 and for noise level 7 it is 15.3.

Median cut filtering corresponds to blur. As figure 6 shows,
MC is completely insensitive to this type of distortion. SIFT
shows quite a good robustness too, except some variations.
Actually all schemes except WLD show an improvement in
their EER if slight median cut filtering is applied.

Figure 7 shows the excellent robustness of SIFT against
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Figure 7: EER for remove lines
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Figure 8: EER for JPEG compression

the removal of lines even up to every 5th line is removed. MC
is robust against the removal of lines up to 1 in 20 lines are
removed. WLD, RLT and AB are affected more and LBP is
affected most. Removing only a few lines does not “destroy”
the vein lines, i.e. it is unlikely to break them. It shortens them
and makes them thinner which has only a minor impact on the
actual vein structure. If more lines are removed, vein lines may
get broken or disappear completely.

Figure 8 shows the very high stability of MC against
JPEG compression down to a quality level of 30. AB is only
slightly affected down to a quality level of 50, from there its
EER increases rapidly. The performance of SIFT decreases
at first but at a quality level of 50 it is equal to its baseline
performance. WLD, RLT and LBP are not robust against JPEG
compression at all. All schemes are severely affected below a
quality level of 20.

IV. CONCLUSION

We assessed the robustness of hand vein recognition sys-
tems against several image distortions related to real acquisi-
tion conditions. Therefore we generated several test data sets
using different StirMark image manipulations and a sensor



ageing simulation algorithm. Our experimental results clearly
show a large variability in the robustness of the different
schemes against the tested types of image distortions. The
performance on unperturbed data and even the performance
on lower strength levels of the perturbations cannot predict
general robustness properties. This necessitates the need for
a standardised test tool or common test data sets for the
evaluation of hand vein recognition systems like they are
available in fingerprint recognition.

Our experiments are a first step towards a systematic
robustness evaluation for hand vein recognition. These first
results are only theoretical but they provide a basis for further
investigations. In practice not only a single kind of distortion
will occur but several conditions distorting the images. Our
first goal was to have a look at the single distortions and their
influence on the recognition performance. Future work will
include tests with combined distortions and also more specific
image manipulations to be able to exactly model different
acquisition conditions occurring in real applications. E.g. the
influence of background illumination and constricted or dilated
placement of the hand has to be investigated. In addition we
will perform further tests on other public available data sets
and more feature extraction and matching schemes.
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