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ABSTRACT

Even with trained operators and cooperative subjects, it is
still possible to capture off-angle iris images. Considering
the recent demands for stand-off iris biometric systems and
the trend towards “on-the-move-acquisition”, off-angle iris
recognition became a hot topic within the biometrics commu-
nity. In this work, CNNss trained with the triplet loss function
are applied to extract features for iris recognition. To analyze
which parts of the eye are most suited for the CNN-based
recognition system, experiments are carried out using image
data from different parts of the eye (full eye, eye zoomed to
iris, iris only, iris normalized, eye without iris). To analyze
the impact of different gaze angles on the recognition per-
formance, experiments are applied on: (1) different gaze an-
gles separately, (2) image data with increasing differences in
the gaze angles, and (3) corrected off-angle image data. The
experiment results show superior performance of the CNN
trained with the triplet loss on the iris images with more lat-
eral gaze angles (> 30°). However, higher differences in the
gaze angles between images deteriorate the network perfor-
mance. Also, the results are about the same for the different
parts of the eye and correcting the gaze angle did not really
improve the performance of the CNN.

Index Terms— Deep-learning, CNN, Iris recognition,
Off-angle iris recognition, Triplet loss

1. INTRODUCTION

Iris recognition is one of the most reliable and popular bio-
metric techniques. Under ideal (constrained) image acqui-
sition conditions, iris recognition achieves precise recog-
nition/identification results with very low false acceptance
rates. However, in the case of none-ideal (relaxed) condi-
tions, the eye images contain off-angle related distortions
such as corneal refraction, distorted three-dimensional iris
textures, missing iris boundaries and non-circular iris shapes
in addition to common noises such as specular/light reflec-
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tions, non-uniform illumination and low contrast. Off-angle
iris recognition focuses on addressing these challenges.

This work aims to utilize the power of Convolutional Neu-
ral Networks (CNNs) to learn and extract iris features from
off-angle eye image data. The proposed CNN approach is
trained using the triplet loss function [1]. The key advantage
of the proposed approach is that the CNN learns to extract fea-
tures from the eye for subject recognition instead of applying
a direct class assignment. In this way, the CNN can be ap-
plied to subjects that were not registered during the training
process, contrary to CNNs trained with common loss func-
tions like the SoftMax loss. In our experiments, we analyze
the impact of different gaze angles on the recognition per-
formance. We further examine which features and parts of
the eye are most suited for the triplet loss based iris recogni-
tion by using image data from different parts of the eye (full
eye, eye zoomed to iris, iris only, iris normalized, eye with-
out iris). Furthermore, we analyze if correcting the off-angle
images by transforming them to the frontal view can com-
pensate for some off-angle distortions. Finally, we compare
the recognition performance of the proposed approach against
some state-of-the-art off-angle iris recognition algorithms.

2. RELATED WORK

Several different techniques have been proposed to address
the off-angle iris recognition problem, e.g. [2] [3]. Gang-
war et al. segmented the eye in the polar space using adaptive
filters and then refined the segmentation outcome in the Carte-
sian space [4]. We further denote this approach as ’Irseg’.
Uhl and Wild proposed the WAHET (Weighted adaptive
hough and ellipsopolar transforms) algorithm, which uses an
adaptive Hough transform at multiple resolutions to estimate
the approximate position of the iris center [5]. Jalilian and
Uhl utilized fully convolutional encoder-decoder networks to
segment the iris pixels in images acquired in a wide set of het-
erogeneous conditions, including off-angle images [6]. Based
on this approach, they proposed an end-to-end off-angle iris
recognition pipeline utilizing the Refinenet [7] network in
their later work [8]. Using the segmented output, iris features
were extracted using quadrature 1-D Gabor wavelets. We fur-
ther denote this approach as ’Segmentation-CNN’. Previous



CNN based approaches for iris recognition used off-the-shelf
CNN features [9], capsule network architectures [10] or iris
information from both eyes [11]. Ahmed and Fuller used
the triplet loss for iris recognition using segmented iris im-
ages [12]. Zhao and Kumar proposed the Extended Triplet
Loss (ETL) function, which is specifically developed to in-
corporate the bit-shifting and non-iris masking in normalized
iris images [13]. In [14], a CNN trained with the SoftMax
loss was applied for off-angle iris recognition using basically
the same image data as in this work. The experimental setup
was to analyze the classification performance (ROC curve) of
the CNN for different parts of the eye using training data from
either all gaze angles or only the frontal view. Because of the
SoftMax loss training, the CNN recognition system in [14]
can be applied only to subjects that were used for the training
of the CNN. So, compared to [14] the main differences are
that we use a different CNN training, different experiments
and additionally we employ gaze angle correction.

3. METHODOLOGY

In this work we aim to address four main questions:

Q1: Are different gaze angles easier or harder for iris
recognition systems? To find out if iris images with extreme
gaze angles are harder to recognize than iris images that are
less off-angle or entirely not off-angle (frontal view), the EER
is computed separately for the images of 11 different gaze
angles (—50°, —40°, ..., 440°,+50°). That means for each
gaze angle, only similarity scores between images of the con-
sidered gaze angle are computed for the EER.

Q2: How tolerant are iris recognition systems to off-angle
iris data? To find out the impact of differences in the gaze
angle between images on the results of recognition systems,
we compute the EER using only similarity scores between
images with a maximum gaze angle difference of 6 with 6 €
{0°,10°,20°,30°,40°}. For example if # = 30°, that means
we employ all similarity scores between image pairs with a
maximum gaze angle difference of 30° (e.g. +50° and +20°
or —20° and —40° but not for image pairs with gaze angles of
e.g. —30° and +10°).

Q3: Which parts of the eye work best for the triplet loss
based CNNs? Contrary to classical eye recognition systems
that segment and normalize the iris, CNNs may also use in-
formation from other parts of the eye than only the iris, like
e.g. eye shape, eye brows, eye wrinkles, skin texture and so
on. In order to find out which parts of the eye can be used for
subject recognition with the triplet loss CNN, we carry out
experiments using image data from different parts of the eye.
We use the following image data in our experiments: (1) full
eye images, (2) images zoomed to the iris, (3) images with
only the iris, (4) images where the iris is removed and (5) im-
ages of the normalized iris. Fig. 1 shows exemplary images.

Q4: Does gaze angle correction improve the results? We
aim to find out if it is beneficial to correct the image gaze
angles by bringing them back to the frontal view.

Fig. 1: Exemplary images of: Full eye (1a), No iris (1b), Iris
only (1c), Zoomed iris (1d), and Iris Normalized (1e).

3.1. Off-angle iris recognition using triplet loss CNNs

The triplet loss [1] requires three input images at once (a so
called triplet), where two images belong to the same class
(the so called Anchor image and a sample image from the
same class, further denoted as Positive) and the third image
belongs to a different class (further denoted as Negative). The
triplet loss trains the network to minimize the distance be-
tween the Anchor and the Positive and maximize the distance
between the Anchor and the Negative. The triplet loss using
the squared Euclidean distance is defined as follows:

Lia,pvy = max(||f(A) = f(P)|* = [If(A) = F(N)II* + @, 0),

where A is the Anchor, P the Positive and N the Negative.
« is a margin that is enforced between the positive and neg-
ative pairs and is set to & = 1. f(I) is an embedding (the
CNN output) of an input image /. Summarized, this means
the CNN is trained to create an embedding f(I), such that
the Euclidean distances between embeddings of images from
the same class (eye) is small, whereas the Euclidean distance
between embeddings of any pairs of images from different
eyes is large. To specifically train the CNN to tolerate differ-
ences in the gaze angle between images, we allow differences
in the gaze angle between the Anchor and Positive and the
Anchor and Negative with a maximum of 10°. It turned out
that using only small differences in the gaze angle (10°) is
enough to make the CNN more off-angle robust and works
better than using higher gaze angle differences between the
three input images. For CNN training we employ the hard
triplet selection [1] (only those triplets are chosen for training
that actively contribute to improving the model). As net ar-
chitecture we use the Squeeze-Net ! (SqNet) [15]. SqNet is a
small neural networks that is specifically created to have few
parameters and only small memory requirements. The size of
the CNN’s last convolutional filter layer is adapted so that a
256-dimensional output vector (embedding) is produced. The
implementation of the network was realized in PyTorch. The
CNNs are trained for 400 epochs with the ADAM optimizer,
starting with a learning rate of 0.001 . One major problem
with CNN classifiers (using common loss functions like the
SoftMax loss) utilized for biometric recognition is that the
CNNs are only able to identify those subjects which have

! pytorch.org/vision/0.8/_modules/torchvision/models/squeezenet.html



been used for the training of the neural network. If new sub-
jects are added in a biometric application system, then the
nets need to be trained again since the new subjects can only
be classified as one of the subjects that were used for training.
This problem can be avoided using the triplet loss function.
During training, data augmentation is applied by resizing the
input images to a size of 234 x 234 followed by extracting
patches of size 224 x 224 at a random position of the resized
image (+5 pixels in each direction).

CNN training is the same for all experiments. For CNN
training, we use image data across all gaze angles (—50° to
+50°) to improve the off-angle robustness of the CNNs and
also to have more available training data. The only limita-
tion is that the gaze angle difference of the three images of
a triplet must not exceed 10°. The details of the employed
image data in the experiments are specified in Section 3.3.
Distances between feature vectors of images of the evalua-
tion data are measured using the Euclidean distance d. To
transform the Euclidean distance to a similarity metric, the
Euclidean distances are inverted (d — 1/d) and normalized
so that the resulting similarity values range from zero to one.

3.2. Gaze angle correction

The main issue with off-angle iris images is the related distor-
tions such as: 3D structural changes, missing iris boundaries,
and perspective and refraction distortions, which erode and
deform the geometric profile of the iris. So, correcting the im-
ages (bringing them back to frontal view) may help to correct
these distortions and improve the performance of iris recogni-
tion systems. To investigate this, we additionally extend our
experiments to gaze angle corrected image data. For gaze an-
gle correction, we apply the approach presented in [8]. The
gaze angles are determined using various measures of the eye
that are unique for different gaze angles and then the images
are re-projected to the frontal view.

3.3. Experimental Framework

Dataset: For our experiments we used 4400 iris images cap-
tured from 40 subjects of an off-angle iris database [16]. The
iris images are captured by two near-infrared sensitive IDS-
UI-3240ML-NIR cameras. Images at 0° gaze angle were
captured by a frontal fixed camera, and off-angle images were
captured by a frontal moving camera rotating horizontally
from —50° to + 50° in angle with a 10° step-size. Each
camera captured 10 (gray scale) iris images per stop, giving
10 frontal and 100 off-angle iris images per subject.

Comparison methods: To compare our proposed approach
with the state-of-the-art, the experiments are carried out
with three methods from previous publications on the same
database (using the Full eye images). The IrisSeg [4] algo-
rithm and the WAHET (5] algorithm are two classical meth-
ods, and the Segmentation-CNN is a deep learning based
method [8]. The technical details of these algorithms have

already been explained in Section 2. We used the imple-
mentations of these methods as provided by the Iris Toolkit
(USIT) 2 from the University of Salzburg.

Training approach: We employ 2-fold cross validation to
train and evaluate the CNNs. For this, we divide the whole
database into two equal parts (20 subjects per fold). In the
first fold, one part is used as training data and the other one as
evaluation data. In the second fold, the roles are switched.
Recognition metrics: To quantify the recognition perfor-
mance the Equal Error Rate (EER) is calculated. Genuine
and imposter scores are computed for all possible pairs of
images of the evaluation data. The only limitations are made
by the two different experiments, where either only similar-
ity scores between images of the same gaze angle are taken
into account (Q1), or only similarity scores between images
with a certain maximum gaze angle difference (Q2). For the
triplet loss CNN, there are different mappings of the images
to the CNN output feature space for the CNNs of each fold,
and therefore the EER has to be computed for each fold sep-
arately using only similarity scores between images of the
evaluation data. Thus, we report mean EER over both folds.

4. RESULTS

In this section we present the results of our experiments to an-
swer the four questions raised in Section 3. First, we present
the results of the experiment to measure the impact of the
gaze angles on the recognition performance (Q1). For this,
the EER is computed separately for the images of each of the
11 different gaze angles. Fig. 2 presents the results across
the different gaze angles for the triplet loss CNN using im-
age data from different parts of the eye. As we can observe,
more extreme gaze angles do not worsen the results compared
to lower gaze angles. Furthermore, it does not really mat-
ter which parts of the eye are used, the results are always
about the same. Yet interestingly, it seems that the results
are slightly better when removing the iris information ("No
iris’) than for keeping it CFull eye’). Fig. 4 shows the re-
sults obtained with and without gaze angle correction for the
triplet loss CNN approach (image data zoomed to the iris)
along with the results of the comparison methods. For the re-
sults of the triplet loss CNN, we can observe that correcting
the gaze angles improves the results very slightly, but not con-
sistently across all gaze angles. At more extreme gaze angles
the triplet loss CNN achieves the best results. The compari-
son approaches perform worse at more extreme gaze angles.
At lower gaze angles, Segmentation-CNN applied to the un-
corrected image data achieves the best results.

Second, we present the results of the experiment to mea-
sure the off-angle robustness of the approaches (Q2). For the
computation of the EER, we employed all similarity scores
between image pairs with gaze angle differences that are up
to 0°, 10°, 20°, 30° and 40°. Fig. 3 presents the triplet loss

Zhttp://www.wavelab.at/sources/USIT
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Fig. 2: Recognition results (EER in%) of the triplet loss CNN
network. Only similarity scores between images of the same
gaze angle are employed for EER computation

CNN results for image data from different parts of the eye.
As we can observe, the results are quite similar with respect
to the used eye parts. Using the Zoomed iris’ image data
performs best and using ’Iris only’ performs worst.

Fig. 5 shows the results obtained with and without gaze
angle correction for the triplet loss CNN approach (image
data zoomed to the iris) along with the results of the com-
parison methods. Interestingly, the triplet loss CNN performs
slightly better on less off-angle images (up to 20°) using the
corrected image data (Zoomed Iris corrected), while for the
more extreme off-angle images (30° and 40°) slightly better
results are achieved using the uncorrected data (Zoomed iris).
So, we may conclude that the CNN is already off-angle robust
due to its training with off-angle image data. The correction
process actually deteriorates the results on higher gaze angles,
where the correction process is the most difficult. The best
results in this experiment are achieved using Segmentation-
CNN on the corrected data. Thus, correcting the off-angle
data can effectively improve the recognition performance for
images that are acquired at different gaze angles, but not for
our proposed method. Segmentation-CNN using uncorrected
image data performs similar to the proposed approach and the
two other methods perform worst.

5. CONCLUSION

In this work, CNNs trained with the triplet loss were used
for iris recognition. The experiments were specifically de-
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Fig. 3: Recognition results (EER in%) of the triplet loss CNN
network using only similarity scores between images with
maximal gaze angle differences between 0° and 40°
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Fig. 4: Recognition results (EER in%) of the triplet loss CNN
(with and without gaze angle correction) along with the com-
parison methods evaluated on the different gaze angle groups

signed to answer 4 questions (Q1-Q4) related to the use of
off-angle iris image data. We showed that unlike the other
comparison methods, the results of the proposed CNN ap-
proach did not decrease at stronger gaze angles and main-
tained an EER of around 2% across all gaze angles, making
it a better choice when dealing with more extreme off-angle
iris images (> 30°). The experiments yet showed that higher
differences in the gaze angles between images deteriorate the
results of the proposed CNN approach (FER =~ 2% at 0°
difference and EER ~ 8% at 40° difference), but to a lesser
extent than most of the comparison methods. In this case,
the Segmentation-CNN combined with gaze angle correction
proved to be a better choice. We also showed that it is not so
important which parts of the eye images are used for subject
recognition, as eventually the results remain similar. An inter-
esting outcome of the experiments was that removing the iris
information (‘No iris’) often gave better results than keeping
it CFull eye’). This, together with the fact that using image
data from only the iris (Iris only’) often performed worst in
the experiments, indicates that iris information is less suitable
for subject recognition than information from other parts of
the eye, at least for the proposed CNN approach. Finally, we
showed that correcting the gaze angle did not really improve
the CNN results, neither for the experiments on separate gaze
angles nor for the experiments to test the off-angle robustness.
However, the Segmentation-CNN method did clearly benefit
from using rotation corrected data.
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Fig. 5: Recognition results (EER in%) for the triplet loss
CNN approach (with and without gaze angle correction) and
the comparison approaches for an increasing maximum gaze
angle difference between images
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