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Abstract: Addressing the lack of massive amounts of labeled training data, deep domain adaptation
has been applied successfully in many applications of machine learning. We investigate the appli-
cation of deep domain adaptation for CNN based iris segmentation, exploring available solutions
and their corresponding strengths and pitfalls, with several major contributions. First, we provide
a comprehensive survey of current deep domain adaptation methods according to the properties
of data that cause the domains divergence. Second, after selecting credible methods, we evaluate
their expedience in terms of iris segmentation performance. Third, we analyze and compare the per-
formance against the state-of-the-art methods under these categories. Forth, potential shortfalls of
current methods and several future directions are pointed out and discussed.
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1 Introduction

Iris recognition has emerged as a rapidly growing field of research in past decades. Iris
segmentation is a critical step in the entire iris recognition system. Owing to their superior
performance, recently segmentation-oriented CNNs are proposed as a new paradigm for
iris segmentation. Basically, the networks are trained on samples of the source data for
which ground-truth labels are available. Having available a new target data (whose distri-
bution is different from the source data), for which the ground-truth labels are not available,
we aim to apply the trained (on the source data) network on the target data. Because of
many factors (e.g. illumination, pose, and image quality), there is normally a distribution
change or domain shift between the source and the target data (i.e. collected from different
sensors), causing the CNNs to fail in performing the segmentation in the target data well.
Domain adaptation (DA) is a particular case of transfer learning (TL), that addresses this
problem utilizing labeled data in the source domain to execute new tasks in a target data
domain (for which the target labels are not available). Deep networks can represent high-
level abstractions by multiple layers of non-linear transformations. So, they can learn more
transferable representations that disentangle the factors of variations underlying the data
samples and group features hierarchically in accordance with their relatedness to invariant
factors.

In this paper, we are focused on investigating and evaluating deep domain adaptation
(DDA) methods for iris segmentation using CNNs. In particular, we present a taxonomy
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of available deep DA methods according to the properties of data that define in how far
two domains are different. Analyzing the convolutional neural models and also the mech-
anisms and approaches used for the adaptation, we select certain plausible methods to be
evaluated for adapting domains between different well-known iris databases (as used in
our experiments). The performance is evaluated in terms of the resulting iris segmentation
output accuracy, and then compared against the most recent methods among these cate-
gories, where leverages and drawbacks in each case are analyzed and discussed. At the
end, some general pitfalls of current deep DA methods for adapting the domains between
different iris data, as well as several future headings will be outlined and discussed.

2 DDA overview and related work

The only work specifically dedicated to the domain adaptation for CNN based iris seg-
mentation is proposed by Jalilian et al. [JUK17]. They proposed two (shallow) pixel-level
domain adaptations (a linear- and a nonlinear-based method), to transfer the domains of
the source iris databases to those of the targets. Both methods require the target data labels
to perform the mapping between the domains. However, these labels are not available in
real case scenarios, and in fact this is the main objective of using domain adaptation. Do-
main adaptation in computer vision can be generally split into two main categories based
on different domain divergences: Homogeneous DA, where feature space distributions be-
tween domains differ (i.e. change in illumination, pose), and heterogeneous DA, where
dimensions of feature spaces also may differ in the domains (e.g. RGB vs. depth data). In
the followings we will review different deep techniques proposed in each category briefly.

2.1 Homogeneous discrepancy-based approaches

Class criterion: Uses the class label information as a guide for transferring class knowl-
edge between different domains. Most works in this category use target class label infor-
mation in a supervised DA framework to preserve the relationships between classes across
domains [Tz15]. Alternative techniques such as using pseudo labels, and attribute repre-
sentation [Ya17] (semi-supervised DA) generally do not deliver promising results as the
labels do not generalize well to the target domains (qualitatively or quantitatively).

Statistic criterion: Aligns the statistical distribution shifts, comparing the distributions
between two databases using well-known methods like: Maximum Mean Discrepancy
(MMD), Correlation Alignment (CORAL), etc. Long et al. [Lo15] extended MMD to a
deep framework and proposed a Deep Adaptation Network (DAN) that matches the shift
in marginal distributions across domains by adding multiple adaptation layers and explor-
ing multiple kernels. The Deep Domain Confusion network (DDC) by Tzeng et al. [Tz14]
uses two CNNs for source and target domains with shared weights. The domains’ differ-
ence then is measured by an adaptation layer with the MMD metric. [Zh15] proposed a
deep transformation model, in which both the marginal and the conditional distributions
are matched based on MMD.
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Architecture criterion: Aims at minimizing the distribution discrepancy between do-
mains by adjusting the architectures of deep networks. Rozantsev et al. [RSF19] proposed
a two-stream CNN, in which the first stream operates on the source data, and the second
stream operates on the target data, while they are jointly trained with shared weights. They
regularized the weights in an exponential loss function, while they allowed the weights in
one stream to undergo a linear transformation:

ψw(θ j
s,θ j

t) = exp(||a jθ j
s +b j −θ j

s||2)−1, (1)

where a j and b j are scalar parameters, and θ j
s and θ j

t denote the parameters of the jth

layer of the source and target models, respectively. Li et al. [Li16] later used a batch
normalization (B) layer to align the distribution for recomputing the mean and standard
deviation in the target domain:

B(X t) = λ
x−µ(X t)

φ(X t)
+α, (2)

where λ and α are parameters learned from the target data and µ(X) and α(X) are the
mean and standard deviation computed independently for each feature channel.

Geometric criterion: Mitigates the domain shift by integrating intermediate subspaces
on a geodesic path from the source to the target domains. E.g. Chopra et al. [CBG13]
proposed a DDA by Interpolating between Domains (DLID). The model generates an in-
termediate dataset, by which a deep nonlinear feature extractor using the predictive sparse
decomposition is trained in an unsupervised manner.

2.2 Homogeneous adversarial-based approaches

Generative models: Estimate generative models via an adversarial process. So called
”GAN” models [Go14] consist of two modules: generative module G that extracts the
data distribution and a discriminative module D that distinguishes whether a sample is
from G or the training dataset by predicting a binary label. CoGAN [LT16] consists of a
pair of GANs, in which one GAN is used for generating the source data and the other for
generating the target data. The weights of the first few layers in the generative module and
the last few layers in the discriminative module are shared. The core idea of this type of
models is generating synthetic target data that are paired with the source data.

Non-generative models: A deep feature extractor learns a discriminative representation
using the labels in the source and maps the target data to the same space through a domain-
confusion loss. An initial work, with focus on semantic segmentation, based on this con-
cept is proposed by Hoffman et al. [Ho16]. They applied category updates on the target
images, using a constrained pixel-wise multiple instance learning objective. Ganin et al.
[GL15] introduced the Domain-Adversarial Neural Network (DANN), which consists of
shared feature extraction layers and two classifiers, which integrate a gradient reversal
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layer (GRL) into the standard architecture to ensure that the feature distributions over the
two domains are made similar. In the same context, Tsai et al. [Ts18] proposed a Non-
generative Adversarial Learning Model (NALM) for semantic segmentation. Their model
consists of two modules: A segmentation network G and a discriminator D. The source im-
age Is is forwarded (with labels) to the segmentation network for optimizing G. Then, the
segmentation soft-max output Pt for the target image It (without label) is predicted. These
two predictions are forwarded to the discriminator D to distinguish whether the input is
from the source or the target domain. With an adversarial loss on the target prediction, the
network propagates gradients from D to G, which would encourage G to generate segmen-
tation distributions in the target domain similar to the source prediction. The adaptation is
done using two loss functions as follows:

Lseg(Is) =−∑
h,w

∑
c∈C

Ys
(h,w,c) log(Ps

(h,w,c)), (3)

Ladv(It) =−∑
h,w

log(D(Pt)
(h,w,1)), (4)

L(Is, It) = ∑
i

λ i
seg Li

seg(Is)+∑
i

λ i
adv Li

adv(It), (5)

where Ys is the label for the source images, Ps = G(Is) is the segmentation output, C is the
number of categories, and λ is a weighting factor.

2.3 Homogeneous adversarial-reconstruction approaches

Inspired by dual learning [He16], adversarial-reconstruction is proposed in deep DA with
the help of dual GAN models. Zhu et al. [Zh17] proposed a Cycle Generative Adversarial
Network (CycleGAN) that can translate the distinctives of one domain into the other (with-
out requiring paired images), applying inverse mapping and using a cycle consistency loss.
They used a class-balanced self-training framework to avoid the gradual dominance of
large classes in pseudo-label generation, and utilized spatial priors to refine the generated
pseudo-labels [Zo18]. The model has two generators, which learn a mapping G : X → Y
and an inverse mapping F : Y → X . Two discriminators, DX and DY measure how realistic
the generated images are G(X)≈ Y or G(Y )≈ X by an adversarial loss, and how well the
input is reconstructed after a sequence of two generations F(G(X))≈ X or G(F(Y ))≈ Y
by a cycle consistency loss (reconstruction loss). Thus, the distribution of images from
G(X) or F(Y ) is indistinguishable from the distribution Y or X :

Lgan(G,DY ,X ,Y ) = Ey[logDY (y)]+Ex[log(1−DY (G(x)))], (6)

Lcyc(G,F) = Ex[||F(G(x))− x||1]+Ey[||G(F(y))− y||1], (7)

L(G,F,DX ,DY ) = Lgan(G,DY ,X ,Y )+Lgan(F,DX ,Y,X)+λLcyc(G,F), (8)
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where Lgan is the adversarial loss produced by discriminator DY with mapping function
G : X →Y , Lcyc is the reconstruction loss, and λ is a weighting factor. Similarly, CyCADA
[Ho18] uses the CycleGAN [Zh17] to generate extra training data through an adversarial
learning framework. A current variant of this model [Le18] proposes a Diverse Image-
to-image Translation via Disentangled Representations (DITDR). The model disentangles
the latent spaces of source and target into a shared content space and an attribute space.
Adaptation then is done using cross-cycle consistency loss.

2.4 Heterogeneous DDA

Unlike the homogeneous DA, in heterogeneous DA the dimensions of the feature spaces in
the source domain may differ from those in the target. Thus, discrepancy-based methods
fail to work without extra processes. Shu et al. [Sh15] proposed weakly shared networks
to transfer labeled information across heterogeneous domains, in particular, from the text
domain to the image domain. Chen et al. [Ch16] proposed Transfer Neural Trees (TNTs),
which consist of two stream networks to learn a domain-invariant feature representation
for each modality. When images in two different domains can be directly resized into an
identical dimension, Class criterion and Statistic criterion methods are still effective. In
their work, Gatys et al. [ASB15] suggested that content and style are separable in CNNs.
Accordingly, they proposed a Neural Style Transfer (NST) model. They showed that the
higher layers of the networks can capture the content representations, and the style (tex-
ture) features can be generated by including the filter responses over the spatial extent of
the feature maps within the networks. In this way, responses in a layer l can be stored in a
matrix Fl , where F l

i j is the activation of the ith filter at position j in the layer l. The feature
correlations are given by the Gram matrix Gl , where Gl

i j is the inner product between the
vectorized feature map i and j in the layer l as: Gl

i j = ∑k F l
ik F l

jk. To generate a texture that
matches the style of a given image, they used gradient descent from a white noise image to
find an image that matches the style representation of the original image. This is done by
minimizing the mean-squared distance between the entries of the Gram matrixes. The lim-
ited works which are proposed based on adversarial and reconstruction based approaches
for heterogeneous domain adaptation, are mainly focused on utilizing the homogeneous
DDA models to transfer between the heterogeneous data domains.

3 Experiments

As the main objective of this work, we picked some DDA methods which possess certain
criteria such as: Using a fully unsupervised scheme, providing unpaired image-to-image
adaptation, delivering pixel level semantic affinity between the adapted domains, to be
evaluated for domain adaptation in CNN based iris segmentation. Delivering promising
results already in the original works, we considered: NALM [Ts18], CycleGAN [Zh17],
DITDR [Le18], and NST [ASB15]. The technical details and the actual DDA approach
used in each method are already discussed in Section 2. In the following we present the
corresponding experiments we curried out, and analyze and discuss the results in each
case.
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Fig. 1: Sample images from IITD and Casia5a databases (first and second columns), and their corre-
sponding adaptations using CycleGAN and DITDR models (third and fourth columns) respectively.

3.1 Experimental framework

For our experiments we used three publicly available iris databases. The Casia4i3 database
(containing 2640 images belonging to 249 subjects), the IITD4 database (containing 2240
images belonging to 224 subjects), and the Casia5a5 database (containing 1880 images be-
longing to 47 subjects). The details of these databases can be found in the provided links.
The segmentation ground-truth masks for these databases were provided by the Univer-
sity of Salzburg6. For the experiments, we developed six sets of unique database pairs,
using the three available databases, terming them as ”TargetToSource”. So, in each exper-
iment we adapted from the ”Target” database (for which the labels are not available) to
the ”Source” database (for which the labels are available). We performed the adaptations
assigning each sample in the source database to a sample in the target database (randomly)
for the image-to-image translation schemes. To evaluate the performance of DDA algo-
rithms, which do not generate the segmentation masks of the target data, we considered
to apply a Fully Convolutional Neural Network (FCN), which has been already used for
iris segmentation successfully [JU17], to the adapted outputs. Iris segmentation accuracies
were evaluated using nice1 and nice2 segmentation scores based on the NICE-I protocol7.
The segmentation error score nice1 calculates the proportion of corresponding disagreeing
pixels (by the logical exclusive-or operator) over all the image as follows:

nice1 =
1

c× r ∑
c′

∑
r′

O(c
′
,r

′
)⊗C(c

′
,r

′
), (9)

where c and r are the columns and rows of the segmentation masks, and O(c′,r′) and
C(c′,r′) are, respectively, pixels of the output and the ground-truth mask. The second seg-
3 http://biometrics.idealtest.org
4 http://www4.comp.polyu.edu.hk/ csajaykr/database.php
5 http://www.biometrics.idealtest.org
6 http://www.wavelab.at/sources/Hofbauer14b
7 http://nice1.di.ubi.pt/evaluation.htm



Deep Domain Adaption for CNN based Iris Segmentation: Solutions and Pitfalls 7

(a) (b) (c) (d)

(e) (f)

Fig. 2: Sample adapted images for: Casia5aToCasia4i (2a), Casia5aToIITD (2b), Casia4iToCasia5a
(2c), Casia4iToIITD (2d), IITDToCasia5a (2e), IITDToCasia4i (2f) using NST.

mentation error score (nice2) is the average between the false-positive (FPP) and false-
negative (FNP) segmented iris pixels:

nice2 =
1
2
(FPP+FNP) (10)

The values of nice1 and nice2 are bounded in the [0, 1] interval, and in this context, ”1”
and ”0” are respectively the worst and the optimal values.

3.2 Evaluations and analysis

Fig.1 (first row) demonstrates examplary results we obtained after adaptation between the
databases using CycleGAN. As it can be seen in the figure, the model is not able to preserve
the geometric properties of the image contents (i.e. iris circle shape) in the reconstructed
images. This is true also for the iris texture, which holds the unique information utilized
for recognition. While the texture information could be retrieved (e.g. by superposition of
the segmentation mask on the original input), yet the accurate iris pixel localization (as the
key objective of the iris segmentation) is not addressed. The second row in Fig.1 shows
examplary results for applying the DITDR model to our experimental databases. As it can
be seen, this model also suffers from the same drawbacks as the CycleGAN model. To this
extent, the GAN based models seem not be a good choice for our segmentation purpose.

Fig.2 demonstrates example results we obtained by applying the NST model to our experi-
mental data. As it can be seen, while there exist some artifacts (as propagated target image
contents) in an adapted output (Casia5aToIITD), yet the model is able to preserve the key
source eye structure contents in the adapted images to a great extent, affirming the model’s
capability to split and propagate the content and style information successfully. In order
to examine the actual expediency of this model on our experimental data, we applied our
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(a) (b) (c) (d)

(e) (f)

Fig. 3: Sample adapted images for: Casia5aToCasia4i (3a), Casia5aToIITD (3b), Casia4iToCasia5a
(3c), Casia4iToIITD (3d), IITDToCasia5a (3e), IITDToCasia4i (3f) using NALM.

FCN model to the adapted outputs and evaluated the segmentation performance in each
case. Tab.1 demonstrates the results for these experiments. As it can be seen in the table,
adoptions seem to deliver promising results, compared to the baseline (results of applying
the network trained with the source data, directly to the target data), in some certain cases
(i.e. Casia5aToCasia4i, Casia4iToIITD, and IITDToCasia4i), but not all. Comparing the
results to those of the shallow DA algorithm [JUK17] (the non-linear method is consid-
ered, as it delivered better results in the majority of cases), the NST model mainly shows
better performance adapting between Casia4i and IITD databases.

Likewise, we applied the NALM algorithm to our databases. As the corresponding results
in Tab.1 demonstrate, the algorithm is able to adapt the domains successfully in the major-
ity of cases. The model obtains an acceptable segmentation score (slighter lower than the

Method NST NALM [JUK17] Baseline

Scores nice1 nice2 nice1 nice2 nice1 nice2 nice1 nice2

Casia5aToCasia4i 0.14 0.30 0.21 0.36 0.02 0.07 0.27 0.40

Casia5aToIITD 0.05 0.16 0.07 0.22 0.03 0.08 0.04 0.11

Casia4iToCasia5a 0.30 0.62 0.29 0.61 0.27 0.35 0.29 0.64

Casia4iToIITD 0.10 0.09 0.17 0.19 0.20 0.17 0.31 0.58

IITDToCasia5a 0.24 0.22 0.15 0.21 0.26 0.30 0.22 0.22

IITDToCasia4i 0.08 0.10 0.07 0.10 0.10 0.09 0.21 0.21

Tab. 1: Segmentation scores for NST, NALM, and [JUK17] (Nonlinear) methods against the base-
line.
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Fig. 4: Experimental results of NST and NALM methods against the Baseline results.

baseline) also on Casia5a when trained on the IITD labeled data (check Fig.3 for corre-
sponding examplary segmentation outputs). Comparing the results to those of the shallow
algorithm ([JUK17]), the model delivers a comparable adaptation (to the NST model) pro-
file also, as it delivers better performance in 3 (out of 6) adaptation experiments. Fig. 4
provides further details on each experiment in the form of boxplots.

To further assess the actual performance of the proposed adaptation methods within an iris
segmentation framework, we considered to compare the obtained segmentation results to
the results obtained by applying: Some traditional iris segmentation algorithms (namely:
Osiris (Viterbi algorithm on the gradient map of anisotropic smoothed iris) [ODGS16],
Caht (contrast-adjusted hough transform) [RUW13], and Wahet (weighted adaptive Hough
and ellipsopolar transform) [UW12]), as well as our FCN network (when trained and tested
on an identical database, assuming that the training labels are available), to the experimen-
tal databases. TABLE 2 demonstrates the results for these experiments. Expectedly, FCN
network shows superior performance over all other algorithms (including the traditional
algorithms, and the corresponding deep methods). Comparing the results obtained by the
traditional algorithms against those obtained using DDA methods, we can observe better
performance by NST method on the Casia4i database (in particular when adapting it into
the IITD database domain), compared to Wahet algorithm, and also on the IITD database
(when adapting it into Casia4i database domain), compared to both Wahet and Caht al-
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Method Osiris Caht Wahet FCN

Scores nice1 nice2 nice1 nice2 nice1 nice2 nice1 nice2

Casia5a 0.018 0.033 0.036 0.151 0.024 0.083 0.008 0.002

Casia4i 0.056 0.067 0116 0.147 0.060 0.084 0.044 0.043

IITD 0.055 0.075 0.113 0.156 0.137 0.176 0.053 0.059

Tab. 2: Segmentation scores obtained by applying Osiris, Wahet, Cahet, and FCN network on the
experimental databases.

gorithms. Likewise, the NALM algorithm shows promising performance on this database
compared to both Wahet and Caht algorithms.

4 Discussion and conclusion

Analysis of the results obtained shows that the models which are able to split and treat
the content and the texture information (i.e. NST), perform comparably better on iris
domains possessing diverged (heterogeneous) feature spaces. The better results obtained
by the NST model, adapting the Casia5a domain to other two databases’ domains (i.e.
Casi5aToCasia4i or Casi5aToIITD) support this concept, as the feature (content) space of
this database diverges significantly from the other two databases (check the examplary
images in Fig.1). On the other hand, NALM model delivers promising results mostly on
databases that possess higher content affinities (e.g. IITDToCasia4i). Nonetheless, both
approaches obtained promising results adapting between Casia4i and IITD databases, per-
forming superior to the shallow method [JUK17], as well as the baseline in this case (see
TABLE 1). It should be noted that (as a key strength) in these approaches no target label
data is used in the adaptation process. The worst results for both approaches (expectedly)
are obtained on Casia4iToCasia5a adaptation. This seems to be due to the high diver-
gence of the feature spaces between these two databases, and the subsequent difficulties
networks have to learn the mapping from Casia4i to Casia5a (than the inverse case). Over-
all, evaluation of the results obtained against the baseline leads us to the conclusion that:
Regardless of the approach used, generally domain adaptation between databases which
enjoy higher feature (content) affinities delivers better results and vice versa. Furthermore,
while experimental results proved expediency of existing (evaluated) unsupervised DDA
models, yet in most cases, the adaptations and their subsequent segmentation outputs were
far from the optimal (to be used for recognition). This clearly shows that many issues
still remain to be addressed in this field when it comes to CNN based iris segmentation,
when no training labels are available. Analyzing the performance, we can also predict
that unsupervised-heterogeneous deep DA methods would attract more attention for CNN
based iris segmentation applications in future.
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