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Abstract
Whenstoringfacebiometricsamples inaccordancewithISO/IEC
19794 as JPEG2000 encoded images, it is necessary to encrypt
them for the sake of users’ privacy. Literature suggests selective
encryption of JPEG2000 images as fast and efficient method for
encryption, the trade-off is that some information is left inplain-
text. This could be used by an attacker, in case the encrypted
biometric samples are leaked. In this work, we will attempt to
utilize a convolutional neural network to perform cryptanalysis
of the encryption scheme. That is, we want to assess if there
is any information left in plaintext in the selectively encrypted
face images which can be used to identify the person. The cho-
sen approach is to trainCNNs for biometric face recognitionnot
only with plaintext face samples but additionally conduct a re-
finement training with partially encrypted data. If this system
can successfully utilize encrypted face samples for biometric
matching, we can show that the information left in encrypted
biometric face samples is information actually usable for bio-
metric recognition.

The method works and we can show that a supposedly se-
cure biometric sample still contains identifying information on
average over the whole database.
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1 Introduction
Selective encryption refers to selecting only a part some data to
be encrypted with state of the art ciphers (e.g. AES). The mo-
tivation is to speed up encryption and decryption by reducing
the encryption amount. If it canbe ascertained that the selective
encryption prevents abuse of the data, an overall speedup was
gained.

A recent paper [1] uses selective encryption to protect face
biometric samples. While this not new by itself, as selective
encryption was proposed with different encryption methods
and for different biometric modalities before [2, 3, 4, 5], it is
interesting insofar as that face recognition uses CNNs for bio-
metric recognition. One takeaway from that paper is that the
recognition performance of CNNs is so strong, that techniques
considered safe (in terms of encryption) for traditional biomet-
ric recognition methods do not hold up when used in systems
utilizing CNNs.

In [1] the authors analyse the performance of selective en-
cryption of face biometric samples by attempting to conduct
the recognition process on ciphertext data with traditional and
CNN based methods. The findings are such that information
contained in the plaintext which was hitherto, i.e. for recogni-
tion with traditional methods, considered safe is now insecure
due to the higher recognition performance of a CNN based
method. This is likely the case also for other selective encryp-
tion methods and other application fields when recognition is
moved to CNNs. After these findings, the authors evaluated
the threshold for a save amount of encryption based on the im-
proved, i.e., CNN based, recognition scheme, concluding that
information relevant for faces is condensed in the first 12% of a
layer progressive JPEG2000 encoded bitstream.

However, this topicwas not thoroughly investigated, specif-
ically, the authors used a classical CNN trained on an unen-
crypted face database and then tested for authentication by
comparing encrypted andunencrypted face images (this is pos-
sible due to format compliance of the encryption scheme, see
Section 4). Thus, onemight argue that using ciphertext directly
in a classical face recognition scheme is not the strongest crypt-
analysis thinkable. In thiswork,we apply a potentially stronger
attack for cryptanalysis by enhancing the training of the face
recognition CNN - refinement training is done using partially
encrypted samples, i.e. CNN is trained for recognition based
on protected samples.

The rest of the paper is structured as follows: Section 2
reviews the state-of-the-art in cryptoanalysis of encryption
schemes for visual data, while Section 3 explains the role of se-
lective encryption in the context of a biometric system. Section4
describes themethods, experimental setup, anddatabasesused
and how they are combined for the experiments. Section 5
presents and discusses the experimental evaluation. Finally,
Section 6 succinctly recaps the findings and concludes the pa-
per.

2 Security of Encryption for Visual Data
The assessment of encryption schemes for visual data, using se-
lective encryption or weaker encryption approaches like chaos-
based encryption, is known to be difficult. On the one hand, tra-
ditional imagequalitymetrics arenotuseful todeterminevisual
security [6], and the establishment of propermetrics is difficult
[7, 8]. On the other hand, the methodology of cryptanalysis
being applied turns out to be faulty in many cases [9]. For se-
lective encryption, specific attack techniques do exist, which
exploit information from the plaintext part to attack the cipher-
text part (i.e. replacement [10] and reconstruction attack [11],
respectively). A specific reconstruction attack applies error-
concealment functionality of compression formats, developed
for storage or transmission errors, to encryption artefacts, thus
termed error-concealment attack (see [12] for an example ap-
plied to J2K selective encryption). Another reason to not use
image quality metrics or similar methods for assessment of
residual information is that we have an objective way of do-
ing so. Specifically, we want to assess the security in regards
to biometric recognition, as such we can (and should!) use the
biometric recognition error as an inverse measure of residual
information, i.e., the lower the recognition error themore perti-
nent information remains.

Caused by the recent advancement in machine learning, a
new application field for image encryption has emerged, and
new techniques for cryptanalysis have been developed. In dis-
tributedmachine learning, privacypreservingCNNshavebeen
introducedforvariousapplications includingvideo/imageclas-
sification [13], in the context of which also new learning-based
encryption techniques have been proposed [14]. Many of those
techniques have been found to be insecure, partially using new
attack types[15, 14, 16, 17], likeGANor InverseTransformation-
based attacks, respectively [14]. Other attacks look into the in-
termediate CNN representations for cryptanalysis [13], which
is a related problem to reconstructing face images from deep
templates [18]. However, deep learning-based attacks have
also been successfully applied to classical chaos-based encryp-
tion [19, 20].

In this work, we consider a distinct pathway for cryptanal-
ysis. Contrasting to the papers referenced, we do not aim to
break the images’ encryption, butwe aim to train the face recog-
nition network to also copewith selectively encrypted face data,
thereby revealing the presence of relevant plaintext parts, and
thus conducting successful cryptanalysis. The experiments in
[1], as discussed in the Introduction, already show a baffling
ability of the CNN to extract faces from noisy (i.e. encrypted)
information. However, the experiments do not take into ac-
count that a CNN can also be trained on noisy data, very likely
improving its performance. To train theCNNonnoisydata sug-
gests itself whenever a potential noisy image, e.g., outdoor ac-
cess systemwith low light, might otherwise impact recognition
performance. The conclusion about the required encryption
amount (stated as 12% in [1]) was based on the idea that this
is where the recognition performance was impacted by the en-
cryption to such a degree that the biometric recognition results
were random (i.e. the contained information could not get bet-
ter results than guessing the identity). However, this analysis
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only confirms that the protected biometric face samples can not
be successfully directly presented to the system. The claim that
all the relevant data is contained in the first 12% is not checked
beyond that assumption.

Here, wewill take a closer look at the amount of data in J2K
encodedandselectivelyencryptedimageswhichcanbeusedfor
the facial biometric recognition under optimal attack conditions.
This means that we assume that it is known at training time of
the system that such protected face data might be presented to
the system. Of course, this is not typical for an actual system in
use. However, if informationwhich can lead to a correct biomet-
ric recognition is still contained in the encrypted images, then it
is conceivable that an attacker could extract it aswell, e.g. using
a GAN-based attack. While it is difficult to anticipate all possi-
ble attacks, we can utilize the learning capabilities of CNNs to
see, given encrypted data available during the training process,
whether a correct biometric recognition is possible.

Thus our approach is to train CNNs to recognise encrypted
facial images. If there is no information left in the encrypted
image the matching performance should be similar to random
guessing, i.e., 50% equal-error rate (EER). However, if the EER
deviates significantly from this rate then information related to
the biometric trait is retained in the encrypted face samples. In
such a case we have a proof of falsification to the claim in [1].

Wewould likemake clear that this is of coursenot apractical
attack, it merely shows that information is left in the plaintext
which an attacker could potentially exploit by any of the attacks
discussed.

In summary our contribution is to show the use of CNNs
as application-oriented cryptanalysis tool, which to our knowl-
edgewas not done before. Weuse this tool to assess the amount
of information retained in the plaintext portion of the method
introduced in [1]. This is of course equally applicable to other
selective encryptionmethods, but to the best of our knowledge,
the only work in the literature proposing selective encryption
of face biometric data which takes into account CNNs is [1].

3 Selective Encryption and it’s Place in
the Biometric System

In this section, we briefly give an overview of the relevant litera-
ture, and standards, regarding the storage of biometric (face in
our case) samples.

The International Organisation for Standardisation (ISO)
specifiesbiometricdata tobe recordedandstored in image form
(ISO/IEC 19794-5:2011 [21]), i.e., biometric samples, not only
extracted templates. The standard allows two file formats for
facial images: JPEG and JPEG2000. Several studies recommend
JPEG2000 (J2K) due to better performance, [22, 23]. Storing
the facial images during enrolment (in addition to the extracted
templates in the biometric database) has the benefit of being
future proof, i.e., extraction methods can be easily changed
without the need for the costly and cumbersome re-enrollment.
While this increases interoperability and vendor neutrality [24]
on the positive side, it also generates a problem, if this database
is compromised as the biometric traits of all enrolled users are
leaked.

One method to circumvent this is to split storage of the ex-
tracted biometric templates (online in the system) from the
facial images (offline database). In addition, both databases
can be protected: biometric templateswith template protection
schemes, and the offline database either with traditional or se-
lective encryption schemes (both using state of the art ciphers).

During the process of using the offline (biometric sam-
ple) database to regenerate the online (biometric templates)
database the systemcannotbeused, thus, this operation should
be fast. Typically, the online database (with protected tem-
plates) is regenerated for three reasons: (i) changes in the bio-
metric template extraction or matching, (ii) a known breach
of the online database, (iii) a periodical change of the online
database to cover the case of an unknown breach. The last two
usually rely on a change in the extraction key of a given tem-
plate protection scheme. In either case, the downtime should
be minimized, which requires a fast decryption method for the
offline database. This is usually the reason to utilize selective
encryption.

A recent biometric sample protection method relying on
J2Kselectiveencryption, andtheonlyonewhichconsidersDeep
learning-basedrecognition for securityassessment to thebestof
our knowledge, is suggested in [1]. There are a number of find-
ings in that paper, but the pertinent one is that the layer progres-
sive encoding of J2K compresses the information required for
face biometric recognition (and resolution progression should
not be used for security reasons). It is found that the relevant in-
formation for face biometric recognition is contained in the first
12% of a J2K compressed images with layer progression. Fur-
thermore, results also show the ability of convolutional neural
networks (CNNs) to conduct facial recognition despite strong
(noise-like) interference caused by partial encryption.

The aimof thismethod is to prevent the use of the biometric
face samples in case the offlinedatabase is leaked. In such a case
the still usable information in the database (resulting from un-
encrypted J2K codestreamparts) has to be assessed to ascertain
that it does not allow for an attack on the biometric recogni-
tion system, i.e., to use the protected face samples to conduct
successful authentication.

4 Methodology and Experimental Setup
Our goal is to determine the information left in a selectively
encrypted biometric face sample. Engineering every potential
attack is not possible so we utilize CNNs to learn to recognize
encrypted face samples. In order to do this, we will keep the
training and testing dataset and encryption as separate as pos-
sible, themethods used and how they are set up follows.

We will use methods from [1], so we can use the results
from that paper to guide our training approach. We only use a
single CNN basedmethod from those evaluated since we need
to retrain the models in our experiments and this can be time
consuming. For the same reason, we chose the MobileFaceNet
[25] over the best performing ResNet-ArcFAce [26]. For the
layer progression encoding of J2K MobileFace has a compara-
bleperformance[1]andahighefficiency in termsofparameters,
FLOPs, model size and computation time [27].
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For training,weselectCASIA-WebFace [28] (CASIA)which
contains 494414 images of 10575 identities, with variations in
pose, age, ethnicity and illumination. For preprocessing, Reti-
naFace detector [29] is used to detect face landmark points,
which are used to align, normalize, and crop each face into a
template of size 112×112.

These imageswere then encodedwith lossless J2K, differing
only in the progression type, of which there are two: layer and
resolution progression. The actual progression used is given in
the experiments.

For encryption we used the format compliant J2K encryp-
tionschemeintroducedin[30]. Formatcompliance is important
as it allows to decode the image by a standards compliant J2K
decoder. The encryption introduces strong distortions into the
image but the output can directly be used for biometric recogni-
tion. It should be noted that there is an inbuilt error correction
in a J2K decoder whichwas used in all experiments and during
training,whichwas shown to slightly improves results in [1].

Two encryption setupswere used. The first is the increasing
windowencryption,where encryption starts at thebeginningof
the J2Kbitstreamandawindowofagivensize is encrypted. The
other is a slidingwindowencryptionwhereafixedwindow(4%
of the total bitstream) is encrypted but the offset varies. Both
methodscanbedescribedwith twoparameters, theoffsetwhere
encryption starts (o) and the window size (w), i.e., how much
of the bitstream is encrypted. These parameterswill be given in
the experiments. Examples of different offsets for the window
encryption on the CASIA database, which is used for training,
can be seen in Figure 1. Except for one test, we useddifferent en-
cryptionsetupsfortraining(slidingwindow)andforevaluation
(increasingwindow) to increase generalisability.

Wefine-tuned the pre-trainedMobileFaceNet ondifferently
encrypted CASIA datasets, with the settings that will be given
in the next section in conjunction with the discussion of the ex-
periments. As optimization solverwe adopt stochastic gradient
descentwiththebatchsizesof128,256and512. Thelearningrate
was initialized to 0.1 anddecreasedby a factor of 10 periodically
at 100 k, 140 k, and 160K iterations. The final iteration stepwas
200 k. The momentum parameter was set to 0.9 with a weight
decay of 5×10−4. The parameter initialization for convolution is
Xavierwith randomsampling fromaGaussiannormal distribu-
tion and the loss function used is ArcFace [26] with an angular
margin𝑚=0.5.

For testing we used a separate dataset, the Labeled Faces in
theWild (LFW) database [31], which is well known as a public
benchmarkforunconstrainedfaceverification. It contains13233
face images are from 5749 different identities, with large varia-
tionsinpose,expressionandillumination. Thesamepreprocess-
ing as for the training data, i.e., face detection with RetinaFace,
cropping andnormalization,wasused.

For evaluation we use the increasing window encryption
since we already know that the sliding window encryption is
insecure [1]. Figure 2 shows samples of the encryption used for
testing, a single image encryptedwith variouswindow sizes. It
can be seen that the resolution encoding allows the remnants
of low-frequency data, i.e., coarse object outlines, to be present
much longer than for layer progression.

5 Experiments and Discussion

For encryptions we used the results from [1] to steer our exam-
ination. The assumption is that a similar strength encryption
would have a similar impact on the results, therefore, we used
theEERas reported in[1] tofindencryptionsof similar strength.
Wewant to see if there is a difference of using the same strength
of encryption on resolution vs. layer progression for learning.
Further,wewant to seewhether there is amaximumencryption
strength touseduring training for apositive impact. That is, if is
there a pointwhere the encryption is so strong that nothing can
belearnedfromitorthat itevenbecomesdetrimental tolearning.

Thebasis for learning is the slidingwindowencryptionwith
awindowsize of 4%. Theprogressionmode, layer (L) or resolu-
tion (R), is specified in conjunctionwith the offset. For example,
L6 describes an image encoded with layer progression with a
sliding window encryption with window size 4% and starting
offset of 6%.

Figure 3 shows the performance of MobileFaceNet on the
slidingwindowencryptionof theLFWdatabase asdiscussed in
[1]without any specific refinement of theCNN.The encryption
settingswhichwill be used for training aremarked and labeled.
Figure 1 shows examples of the CASIA database, used during
training, encoded and encryptedwith themarked settings. The
marks will be consistently used for the rest of the plots as well
to make reference to Figure 3 easier. The parameters R6, R10
andL10areof equalEERperformancebutdifferentprogression
modes (L10 and R10) or of the same progression but different
encryption settings (R6 and R10). For the encrypted layer pro-
gression,which spans a larger range of EER rates,we also chose
twodifferent encryption settingswith similarEERperformance
(L4 andL6). Finally,we also included an intermediary between
the twoEER rates represented so far (L8).

5.1 Refinement with Fixed Window Size En-
crypted Data

The results of the evaluation on the LFWdatabasewith increas-
ing window size after refinement of the CNN, and the two pro-
gressionmodes, are presented in Figure 4. The color reflects the
progression type during training, the same mark (e.g. ) rep-
resent similar EER performance (without refinement) of that
encryption type in Figure 3. The bold black line is the base-
line recognition performance of the systemwithout refinement.
Note that 50%EER is guessing, this is thegoal for a security eval-
uation. The baseline of the resolution progression encoded J2K
doesnotreach50%andshouldnotbeconsideredsecure, it isonly
included to see if there are differences between layer and resolu-
tion progression when it comes to refinement learning. While
theabsolutevaluesaredifferentof course, theoverall behaviour,
as discussed in the following, for layer progression also holds
for resolutionprogression. Apart fromnot being secure the two
progressionmodes otherwise behave similarly.

The first thing to note is that refinement generally improves
the biometric recognition, meaning there is amore information
still contained in the encrypted face samples than it originally
appeared in [1]. This alsomeans that the use ofCNNs for crypt-
analysis hasmerit.
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Original layer resolution

Offset 4 6 8 10 6 10

Figure 1: Samples of the encryption on the CASIA databasewhichwas used for training. The J2K progressionmode is given aswell
as the encryptionoffset for the slidingwindowencryption (windowsize is 4%).
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(a) Layer progression J2K encoding
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(b) Resolution progression J2K encoding

Figure 2: Encryption examples from the faces in the wild
databasewith the givenwindow size (increasingwindow) and
the givenprogression for J2K encoding.

SimilarEERperformanceofanencryptiontype, for thesame
progressionmode, showasimilarperformanceonthe increased
windowencryptiontestset,thesearetheR6/R10andL4/L6pairs.
However, there is a distinct difference when it comes to differ-
ent progression types: R10 and L10 had a similar EER for the
sliding window encryption, see Figure 3. However, when used

P 0 2 4 6 8 10 12 14 16 18 200
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R6

R10

L10

L8

L6L4

Offset [%]

EE
R
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]

layer resolution

Figure3: Resultsoftheslidingwindowencryption(windowsize
4%) and the givenoffset (P is for original)without refinement.

for refinement and evaluatedon the increasingwindowencryp-
tion the behaviour is very different, Figure 4. Not only is the re-
sulting performance different, refinement with L10 (and at the
startalsowithL8)actuallydecreasesperformance. This isdueto
the impact of the encryption on the encoding. The farther away
from the start of the bitstream the higher the encoded frequen-
cies become. This is only a rule of thumb and not totally true
for layer progression where amplitude as well as frequency of
the signal determine the ordering, but it is mostly true, see Fig-
ure1. The increasingwindowencryptionstartsat thebeginning,
so encrypts primarily low frequency content, see Figure 2. So,
the CNNs are trained to dealwith high frequency noise and are
presented low frequencynoise,which leads to the results in Fig-
ure 4. Only when the increasing window also produces higher
frequencynoisedoes the refinementof theCNNskick inand im-
prove theresults. This is reflected inFigure4bythebetterperfor-
manceof thosenetworkswhentheencryptionbecomesstronger.

The same argument applies to the differences of the R6/R10
and L4/L6 pairs, where the lower offset always performs better.
This isagainduetotheCNNsbeingtrainedonlowerfrequencies.
ThebetterperformanceofCNNsrefinedonlayerprogressiveen-
coding has a similar reason. A finding in [1] was that the layer
progressive encoding compresses the informationwhich is rele-
vant to the biometric comparison. This means that a 4% sliding
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(a) Layer progressive encoding
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(b) Resolution progressive encoding

Figure 4: Results for the evaluationonLFWwith increasingwindowencryption,windowsize as given.
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Figure 5: Evaluation on LFW with increasing window encryp-
tion for layer progressive encoding.

windowencryptsmore information for layer than for resolution
progressive J2K coding. In other words, CNNs trained on layer
progressionandencryptedimagesaretrainedtoperformmatch-
ing with less information than those trained on the resolution
progression.

5.2 Refinement with Increasing Window Size
Encrypted Data

As a final experiment about J2K encryption, we have used the
same encryption for training that is used for testing, an increas-
ing window encryption with a window size of 6, which is the
first EERplateau reachedby the evaluationof theprior tests, see
Figure4. Theresultsof theevaluation, togetherwiththebaseline
andthebestperformingresult fromFigure4, isshowninFigure5.
Wehavealso extended themaximumsizeof thewindowduring
testing to 25% of the bitstream, which would be a speedup of 4
over a full encryption. We can see that overall training on the
increased window encryption improves the results but perfor-
mance is slightly worse for smaller window sizes. This is likely
because the CNN does not learn to handle lower encryption
amounts. The next step to improve the results would be to com-
bine different encryption strengths during training. However,
this is somewhatmoot as we can see that even at a window size
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55
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Figure 6: Evaluation on LFW with increasing window encryp-
tion for JPEGencryption.

of 25% we have not reached the 50% EER. But the figure makes
it clear that, should we further increase the window size, both
retrainedCNNswould converge on the 50%EER.

5.3 JPEG Encryption and Cross Encryption
Refinement

While JPEG is not recommended for storage of face images for
biometric comparison [22, 23], we can use it to see if the refined
(on J2K) CNNs also improve on different encryption artefacts.
The results are found in Figure 6, where the EER is given for
the unrefinedCNN (as baseline), aswell as those of the refined
CNNs. Wewon’t go into details about the JPEGencryption [32]
but apart from the change in encryption we followed the same
workflowaswith J2K increasingwindowencryption.

Two facts are readily apparent: (1) JPEG encryption, even
with a 25%window, is still far from secure (the 50%EER range).
So the choice to use J2K for storage of face biometric samples is
also good in light of securing those samples. And (2), retrain-
ingdoes not improve the recognition in case of JPEGencryption
artefacts, the contrary is true. So cross encryption refinement,
i.e., transfer learning, does notwork.

Neither of these is terribly surprising, the artefacts are to-
tally different from J2K artefacts, compare Figures 2 and 7 for
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Figure 7: JPEGencryption examples from the faces in thewilddatabasewith the givenwindowsize (increasingwindow).

encrypted J2K and JPEG images respectively. So learning one
does not help with the other. Further the coding of JPEG is in
spatial ordering, so encryption of any percentage is leaves the
rest very recognizable. In contrast JPEG2000 orders its data by
impact on the whole image, compressing data relevant to the
whole image into the earlier parts of the bitstream.

What ismore, decodingproblems lead to skippedblocks for
the JPEG encrypted images resulting in a circular image shift.
This splits the face, even though the results are recognizable to
a degree, it should be clear that an attacker which reverses this
shift could easily produce an equal error rate which deviates
farther from50%.

6 Conclusion
Wehave shown, by using encrypted data during training, that a
CNN can learn to correctlymatch encrypted face samples. This
means that information pertaining to the identity of a protected
biometric sample is leaked despite the selective encryption. As
stated this is aproofby falsificationof the claim from[1] that the
information required forbiometric face recognition is contained
in the first 12% of a layer progressively encoded JPEG2000 bit-
stream.

WehavealsoshownthatJPEG,theotherstandardsapproved
storagevariantforfacebiometricsamples[21], islesssecurethan
JPEG2000.

Theobservedleakofbiometric informationcanbealleviated
by increasing the encryption amount of the bitstream, but the
trade-off between performance and risk becomes troublesome
to a point where it is likely better to use a traditional encryption
method. However, this is a theoretical result, in that usually the
network used for the biometric recognition will not be trained
on the encrypted data itself. It is unclear how this data can be
extracted in practice, and how an attack can be mounted with
it. Wehave shownhowever that the relevant data is present and
therefore apotential security leak.

We have also shown that when using CNNs as we did here
we can utilize them to asses the usefulness of the remnants of
information left in the plaintext part of a selectively encrypted
image. In thiswayaCNNcanbeused tocryptanalysea selective
encryption scheme. While it is not an actual attack, it certainly

showcases whether or not information left to an attacker to use
is remaining inplaintext.
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