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Abstract
Visual security metrics are deterministic measures with the
(claimed) ability to assess whether an encryption method for
visual data does achieve its defined goal. These metrics are
usually developed together with a particular encryption method
in order to provide an evaluation of said method based on its
visual output. However, visual security metrics themselves are
rarely evaluated and the claim to perform as a visual security
metric is not tied to the specific encryption method for which
they were developed. In this paper, we introduce a method-
ology for assessing the performance of security metrics based
on common media encryption scenarios. We systematically
evaluate visual security metrics proposed in literature, along
with conventional image metrics which are frequently used for
the same task. We show that they are generally not suitable to
perform their claimed task.
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1 Introduction
The claim of visual security metrics (security metrics for brevity)
is usually the ability to assess the functionality of an encryp-
tion method based on the output of the encryption of visual
data. In particular, the evaluation of an encryption method is
only based on the visual output (i.e., the ciphertext), which is
either an image or video. While such metrics are often created
in conjunction with a specific encryption method and tested,
if at all, only for this encryption method, the claim to perform
as a security metric is usually universal. Furthermore, regu-
lar image quality metrics, such as the frequently used PSNR
and SSIM, are also utilized in literature to evaluate encryption
methods,[1–4].

The problem with the evaluation of security metrics is the
fact that there is no established testing methodology. Thus,
even if security metrics are tested, the test is usually based on
the evaluation procedures for regular image metrics, which are
not sufficient to establish whether a method is applicable in the
context of encryption.

Regarding cryptographic security, Shannon’s work [5] shows
that the highest level of security is reached when applying a
secure cipher to a redundancy free plain text. Current im-
age/video codecs exploit redundancy for compression and
thus we can consider a bit stream to be an almost redundancy
free plain text in the sense of Shannon. Consequently, for
maximal security, the encryption of the entire bit stream with
a state of the art cipher, such as AES, would suffice (“conven-
tional encryption”). Lookabaugh and Sicker [6] showed that
selective encryption is sound and demonstrated its relation to
Shannon’s work. However, [7] showed that side information
can compromise security.

However, there are application scenarios which make it
necessary to move away from full encryption. Methods which
do not utilize full encryption of the underlying data are called
Lightweight / Soft / Partial / Selective Encryption. Specif-
ically, selective encryption is the application of an assumed
secure encryption method to a selected part of the plain text. In
selective encryption the encryption part is assumed to be secure,
e.g., by using AES. The final security of the selective encryp-
tion comes then from the selection part. What is evaluated in
order to gauge the final security of the selective encryption is,
to what extent the information left in plain text can be used to
reconstruct an image or video.
Furthermore, an attack on the selective encryption method
does not come from attacking the encryption, but from attack-
ing the selection. This is usually done by using knowledge
about the original format of the image/video. An attack is
usually based on removing the negative impact on quality by
the, essentially random, signal introduced by the encryption.
This is typically done by replacing the random signal by a sig-
nal which introduces the least amount of error into the final
decoding. In order to do so, very specific knowledge about the
containing format has to be exploited, and there is usually only
a single method to go about this, i.e., the attack.
Another, (implicit) assumption about the selective encryption
method under test is the format compliance. Format compliance
requires an encrypted bitstream to be decodable by a standards

compliant decoder. In other words, format errors may not be
introduced by the encryption. Thus, in the following, when we
refer to an encrypted image/video we mean the image or video
that results from decoding an unattacked encrypted bitstream.

The notion of security in selective encryption is different
from the traditional notion of security: First, we knowingly
leave information in plain text to retain format compliance;
second, the focus is on content security not information secu-
rity, i.e., the content should be secure (to some defined extent),
while information about the content might be allowed to leak.
In order to be able to discuss the exact notion of security in
such non-conventional encryption schemes, we need to distin-
guish distinct application scenarios of encryption schemes for
visual data:

Confidentiality encryption Means MP security (message pri-
vacy). The formal notion is that if a system is MP-secure
an attacker cannot efficiently compute any property of
the plain text from the cipher text [8]. This can only be
achieved by the conventional encryption approach.

Content confidentiality This is a relaxation of confidential
encryption. Side channel information may be recon-
structed or left in plaintext, e.g., header information,
packet length, but the visual content must be secure in
the sense that it must not be intelligible / discernible [9].

Sufficient encryption Means we do not require full security,
just enough security to prevent abuse of the data. The
content must not be consumable due to high distortion
(e.g., for DRM systems) by destroying visual quality to
a degree which prevents a pleasant viewing experience
or destroys the commercial value. This implicitly refers
to message quality security (MQ), which requires that an
adversary cannot reconstruct a higher quality version of
the encrypted material than specified for the application
scenario [10].

Perceptual / transparent encryption Means we want consumers
to be able to view a preview version of the video but in
a lower quality while preventing them from seeing a
full version. As an Example: This can be used in a pay
per view scheme where a lower quality preview ver-
sion is available from the outset to attract the viewers
interest, q.v., [11]. The difference between sufficient and
transparent is the fact that there is no minimum qual-
ity requirement for sufficient encryption. Encryption
schemes which can do sufficient encryption cannot nec-
essarily ensure a certain quality and are thus unable to
provide transparent encryption.

Given these different application scenarios it is clear that
depending on the goal, a security metric has to fulfill differ-
ent roles. For example, under the assumption of sufficient en-
cryption, a given security metric would have to evaluate which
quality is low enough to prevent a pleasant viewing experi-
ence. In contrast, for the transparent encryption case, a metric
not only has to assess whether the quality of an image or video
is low enough, but also whether the quality is high enough to
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be useful to attract interest. When it comes to content confiden-
tiality the question of quality is no longer applicable. Content
confidentiality requires that image content must not be iden-
tified by human or automated recognition. This requirement
also has to be maintained for any part of the image. Image
metrics, in general, do not deal with such questions but rate
the overall image quality, the question of intelligibility is usu-
ally not covered at all. A drastic example would be an image
where only a small part of the image is partly visible. Classical
metrics would judge the whole image and consequently would
attribute a high security, even though a part of the image is still
recognizable which contradicts content confidentiality. Still, it
has to be pointed out that content confidentiality can have dif-
ferent forms. To prevent a face recognition scheme from work-
ing properly it is sufficient to protect any facial information in
a surveillance video, while humans could still be identified in
such a video by using gait recognition. Furthermore, if the
appearance of a person has to be concealed entirely, a much
stronger extent of protection (i.e., higher security) is required.
Finally, confidential encryption cannot be solely assessed with
security metrics since the scope goes beyond assessing security
based on the visual appearance only. Furthermore, we should
note that the application of security metrics on video is per-
formed at a frame by frame basis in literature. We will adopt
this model but should note that for the discussion of confiden-
tial encryption motion data is of importance, e.g., in [12] it was
shown that a replacement attack combined with motion infor-
mation can reveal the content of a scene even though the visual
content of every frame is encrypted.

Consequently, depending on a given application scenario
different properties are required from a security metric and
different approaches to construct such a metric might perform
better or worse for some applications scenarios. This depen-
dence on the evaluation goal of a security metric is hardly
ever discussed in the papers introducing a metric. Sufficient
and transparent encryption scenarios have a clear and distinct
link to the traditional notion of (low) visual quality, while it
is highly questionable or at least doubtful if content confiden-
tiality can be assessed by the classical quality notion. While
the lack of relation to spatial areas of most security metrics
could be compensated in the design to provide locally vary-
ing results, the lack of relation to intelligibility in general can
probably not be easily resolved.

For both, security metrics and regular image metrics, in lit-
erature we do not find any evaluation whether a given metric
can perform the claimed function or how such an evaluation
correlates to actual security. However, for regular image met-
rics it is well known that the correlation with human observa-
tions over the full range of possible quality (from high to low
quality) does not imply a good performance on a given subset.
More specifically, it was pointed out recently that most image
metrics perform very poorly for the low quality range ([13]–
using the low quality end of the LIVE database). For security
metrics, not even this question has been covered so far.

In this paper, we will try to remedy this situation by giv-
ing an overview of requirements regarding security goals and
formulating these requirements into a testing methodology.
Based on this methodology we will evaluate the various secu-

rity metrics in literature as well as applicable conventional im-
age metrics. However, we will not deal with every application
scenario equally explicitly. We will only make a first step to
cover the content confidentiality scenario. The main reason for
this is a lack of ground truth. It is not obvious how to generate
ground truth for this scenario since there is a disparity between
how an image metric works and what is necessary to evaluate
content confidentiality. Image metrics, and as an extension se-
curity metrics, measure the quality of an image respective to
human judgement. This works well for high quality images
but suffers for low quality images where human observers can
have difficulties differentiating between the severity of an im-
pairment. Thus the methodology to systematically generate
ground truth based on human observation needs to be changed
for content confidentiality which is not in the scope of this pa-
per. On the other hand, for the image quality-related scenar-
ios (sufficient and transparent encryption), ground truth data
is available, in the form of image impairment databases with
mean opinion scores (MOS) based on a number of human ob-
servations.

In the following we will motivate and introduce a method-
ology which allows to measure desirable traits of a security
metric. This methodology can, and should, be used to asses
newly developed metrics.

To motivate this, we will give an overview of security met-
rics used in literature in section 2. We will not analyse why
metrics fail and the presented counterexamples should be seen
as a proof by contradiction rather than a exhaustive list of fail-
ings. Note that this is a question of generality, we do not dis-
pute that certain metrics are a good fit for specific encryption
types.

In section 3 we will describe what is expected of security
metrics and the methodology how security metrics can be eval-
uated. This is done by providing certain desirable traits of a se-
curity metric, a motivation for the traits and a formal descrip-
tion of the traits to allow measuring them.

In section 4 we will present the evaluation of state of the art
metrics and measure their ability to perform as security met-
rics. This is done based on the traits introduced in section 3
and shows the usefulness of these traits to find shortcomings
of current metrics and to prevent the same shortcomings in fu-
ture metrics.

Section 5 will conclude the paper and give a list of state of
the art reference metrics and their usability as security metrics.

2 Overview Of Security Metrics
In this section a brief overview of security metrics will be given.
The metrics discussed are taken from recent literature and are
specifically designed to ascertain whether the image quality af-
ter encryption is sufficiently reduced. The metrics given in this
section are discussed as general security metrics, i.e., not lim-
ited to the specific method with which they were designed to-
gether. References to the original work will be given for each
security metric as well as some examples where the metric fails
to assess given example images as would be expected from a
general security metric. The SSIM and PSNR are also included
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in this overview. Even though they were not designed to be se-
curity metrics, they are frequently used as such, e.g., [3, 14–16]
(SSIM), [4, 17–19] (PSNR) and [1, 2] (SSIM and PSNR).

Peak Signal to Noise Ratio (PSNR) The peak signal-to-noise
ratio (PSNR) is still widely used because it is unrivaled in speed
and ease of use. The PSNR is a quality metric, meaning a high
metric score reflects a high quality, which gives a score in the
range [0, ∞]. However, it is also well known that the correla-
tion to human judgement is somewhat lacking even for high
and medium quality [20]. Figure 1 illustrates the performance
of the PSNR metric on samples from the IVC-SelectEncrypt [21]
database (see section 3).

(a) 24.4566 (b) 24.4767 (c) 33.2437

Figure 1: PSNR metric scores for images from the IVC-
SelectEncrypt database. According to PSNR images (a) and (b)
are of the same quality and (c) is of much higher quality, i.e.,
less secure than (a) and (b).

Structural Similarity Index Measure (SSIM) The structural
similarity index measure (SSIM) [22] extracts three separate
scores from the image and combines them into the final score.
First the visual influence is calculated locally then luminance,
contrast and structural scores are calculated globally. These
separate scores are then combined with equal weight to form
the SSIM score. The SSIM is a quality metric, a high metric
score reflects a high quality, which gives a score in the range
[0, 1]. Figure 2 illustrates the performance of the SSIM metric
on samples from the IVC-SelectEncrypt database.

(a) 0.568 (b) 0.562 (c) 0.294

Figure 2: SSIM metric scores for images from the IVC-
SelectEncrypt database. According to SSIM images (a) and (b)
are of the same quality and (c) is of much lower quality, i.e.,
more secure than (a) and (b).

Edge Similarity Score (ESS) The edge similarity score (ESS)
was introduced in [23] and uses localized edge direction infor-
mation to compare two images. The ESS is a quality metric, a
high metric score reflects a high quality, which gives a score in
the range [0 ∶ 1]. Figure 3 illustrates the performance of the ESS
metric on the foreman sequence when encryption according to
[24] is applied in comparison to white noise.

Luminance Similarity Score (LSS) The luminance similarity
score (LSS) was introduced in [23] and uses localized luminos-
ity information to compare two images. The LSS is a quality
metric, a high metric score reflects a high quality, which gives
a score in the range [−8.5 ∶ 1]. Figure 4 illustrates the perfor-
mance of the LSS metric on the foreman sequence when en-
cryption according to [25] is applied in comparison to noise.

Neighborhood Similarity Degree (NSD) The neighborhood
similarity degree metric (NSD), introduced in [26], uses local
pixel similarity correlation between original and impaired im-
age. The NSD depends on two parameters, one to define the
region for pixel similarity correlation (𝑑) and one to define the
similarity threshold (𝑚). The parameters 𝑚 and 𝑑 were set to
the same values as in the experiments in [26], i.e., 𝑚 = 5, 𝑑 = 3,
border extension is done by repeating the last border pixel. The
NSD is an impairment metric, a high metric score reflects a low
quality, which gives a score in the range [0 ∶ 1]. Figure 5 illus-
trates the performance of the NSD metric on samples from the
IVC-SelectEncrypt database.

Local Entropy (LE) The local entropy metric was introduced
in [27] (LE), it is a no reference metric operating only on an im-
paired image. The LE metric uses the average of normalized

(a) Original (b) Processed

(c) White noise (0.2574) (d) Extracted (0.053)

Figure 3: ESS comparison for frame 80 of the foreman sequence
(a). ESS judges the white noise (c) to be of higher quality than
the residual information from the encrypted frame (d). In or-
der to show the amount of information actually retained in the
encrypted frame a post processed version is also shown (b).

(a) Noise (-1.31) (b) Extracted (-1.64) (c) Original

Figure 4: LSS comparison for a frame of the foreman sequence
(c). LSS judges the noise (a) to be of higher quality than the
residual information from the encrypted frame (b).
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localized entropy scores, on 8 × 8 blocks, as image quality pre-
dictor. The LE is an impairment metric, a high metric score
reflects a low quality, which gives a score in the range [0 ∶ 1].
Figure 6 illustrates the performance of the LE metric on sam-
ples from the IVC-SelectEncrypt database.

Local Feature Based Visual Security (LFBVS) The local fea-
ture based visual security metric (LFBVS) was introduced in
[28] and utilizes localized edge and luminance features which
are combined and weighted according to error magnitude, i.e.,
error pooling. The LFBVS is an impairment metric, a high met-
ric score reflects a low quality, which gives a score in the range
[0 ∶ 1]. Figure 7 illustrates the performance of the LFBVS met-
ric on the silent sequence when encryption according to [24] is
applied in comparison to white noise.

All the given image metrics, with the exception of the lo-
cal entropy metric (LE), are full reference metrics, meaning
they utilize information from the original and comparison (en-
crypted) image to calculate an assessment of the visual simi-
larity. The local entropy metric by Sun et al. is a no reference
metric, i.e., it utilizes only the impaired image to judge the
resulting quality. By measuring entropy, LE can also be in-
terpreted to assess the encrypted image compared to random
noise (which exhibits maximal LE). Since all of the given secu-
rity metrics are proposed to be general we will not differentiate
between full- and non-reference metrics in the following but
compare them solely on the task they are supposed to solve.

From the description of the various security metrics it can
be seen that a wide range of approaches exist, from metrics
targeting signal properties, e.g., PSNR which targets noise, to
LE which targets local entropy, metrics which use higher level
information, e.g., NSD or ESS which use a form of object de-
tection (mostly based on edges), to metrics which use informa-
tion about the HVS to improve their performance, e.g., SSIM
or LFBS which use simulation of the fovea centralis and er-

(a) 0.066527 (b) 0.068766 (c) 0.111781

Figure 5: NSD metric scores for images from the IVC-
SelectEncrypt database. According to NSD images (a) and (b)
are of the same quality and (c) is of much lower quality, i.e.,
more secure than (a) and (b).

(a) 0.039396 (b) 0.039555 (c) 0.045168

Figure 6: LE metric scores for images from the IVC-
SelectEncrypt database. According to LE images (a) and (b)
are of the same quality and (c) is of much lower quality, i.e.,
more secure than (a) and (b).

ror pooling respectively. However, for every security metric
the accompanying figure demonstrates an obvious fault in the
performance of the given metric. Such examples can be found
for every metric of course, the question we will try to answer
in the following sections is whether the demonstrated fault is
singular or systemic.

In order to gauge the effectiveness of a dedicated security
metric it is useful to compare them to regular metrics. To fa-
cilitate a fair comparison, three recent metrics, in addition to
PSNR and SSIM, are chosen and included in the evaluation.
The local edge gradient image metric (LEG) [29] shows a good
correlation with human judgement and is reasonably fast to
compute such that it can be used even under time constraints.
The visual information fidelity (VIF) [30] and CPA1 [31] out-
perform the SSIM and LEG in regard to correlation with hu-
man judgement but are a lot slower to compute [29]. A second
reason to include those metrics is to gauge whether they can be
used as security metrics. The LEG and VIF are quality metrics
with a score in the range [0, 1], and the CPA1 is an impairment
metric with a score in [0, ∞].

3 Evaluation Methodology
In this section we outline (1) our evaluation methodology, (2)
the reason to use this methodology, and (3) the application sce-
nario(s) which can be assessed by employing a certain method-
ology. A discussion of the desired outcome from these tests for
security metrics is also provided. This section is the guideline
of how security metrics and image metrics are evaluated for
the use as security metrics in section 4.

(a) Original (b) Processed

(c) White noise (0.731) (d) Extracted (0.757)

Figure 7: LFBVS comparison for frame 80 of the silent sequence
(a). LFBVS judges the residual information from the encrypted
frame (d) to be about the same as the information contained in
white noise (c). In order to show the amount of information ac-
tually retained in the encrypted frame a post processed version
is also shown (b).
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3.1 Application Domain
Selective encryption methods, in a majority of cases, aim at
format-compliant encryption, i.e., encryption in such a way
that the media can be decoded by a standards compliant de-
coder without error. Frequently, security metrics are applied
on a direct decoding of the encrypted bitstream. This can have
adverse effects since encryption introduces noise which can
hide plain text data and consequently a security metric might
judge that an encryption method is more secure then it actually
is. There are a number of options how a security metric can be
applied, as illustrated in Fig. 8. All security metrics under eval-
uation are applied on a direct decoding of the encrypted bit-
stream (which we will denote as the encrypted domain) by the
authors in the corresponding original papers. Other options
would be to attack the encryption method in a way which does
not break it but reduces the obfuscation of the plain text data in
the encrypted domain (denoted extracted in the figure). Such at-
tacks usually utilize knowledge about the bitstream rather than
the encryption method (other than location). Typical attacks
would be error concealment and replacement attacks against
selective encryption schemes [32]. In general, such attacks re-
place the encrypted content with bitstream elements that are
statistically known to introduce less noise than the random el-
ements produced by encryption. Another possibility would be
to utilize post processing to further help the metric detect resid-
ual information (denoted processed in the figure).

Original

Encrypted Extracted Processed

Security Metric

Figure 8: The possible domains which can be used by a met-
ric to compare to an original image. Either the direct output
of an encrypted bit stream for format compliant encryption or
an extraction of the plain text data which minimizes the dis-
ruptive effect of the encrypted data on the resulting bit stream.
Another possibility would be post processing to further accent
the residual plain text data contained in an image.

In the evaluation we only handle the difference between se-
curity metrics applied directly in the encrypted domain ver-
sus application in the extracted domain. The post processing
step is only provided to better highlight the remaining infor-
mation in an image. It cannot be directly used as an application
domain since the post processing step is either specific to the
encryption, in which case it should be included in the attack,
or specific to the metric, in which case it should be included
in the security metric. Post processing, in general, can influ-
ence different metrics in various ways, an example of this is
given in Fig. 9 where post processing increases ESS and, at the
same time, decreases the SSIM. This means that it is never actu-

ally possible to determine an optimal postprocessing method
which would be required in a sensible assessment.

Original/Metric Extraction Processed

ESS 0.053214 0.339692
SSIM 0.476891 0.269659

Figure 9: An example of how post processing influences dif-
ferent metrics.

In order to test whether a security metric can operate in the
encrypted domain a number of well known video sequences
have been encrypted for three target qualities, utilizing EZBC
encryption methods described in [24]. To generate the different
target qualities the selective encryption was applied to either
all I-frames (low quality), low frequency bands of all frames
(medium quality), and high frequency bands of all frames
(high quality). Figure 10 illustrates the quality targets of the
encryption process. The targets where chosen to contain high,
medium and low residual information. Under the assumption
that a security metric can operate in the encrypted domain it
should be able to reliably order the encrypted frames of each
sequence for every sequence from highest to lowest quality.

Domain Quality

High Medium Low

Encryption

Extraction

Processed

Figure 10: A sample of the quality ordering test set based from
the foreman sequence. Samples from the high, medium and
low quality sequences are shown in the encryption, extraction
and processed domain.

We generate two sets of ground truth, one for the high-
medium and one for the medium-low quality comparison,
containing ordered (based on quality) tuples for each frame.
For a sequence 𝑆 containing frames 𝑠1, … , 𝑠𝑁𝑆 and high (𝑆𝐻),
medium (𝑆𝑀) and low (𝑆𝐿) quality versions we generate two
sets of ordered (by quality) tuples

𝐷𝐻𝑀(𝑆) = {(𝑠1
𝐻 , 𝑠1

𝑀), … , (𝑠𝑁𝑆
𝐻 , 𝑠𝑁𝑆

𝑀 )},
and likewise for 𝐷𝑀𝐿.

Then a tested metric should also generate two sets with or-
dered tuples based on the estimated quality provided by the
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metric 𝑀(𝑜, 𝑐) ↦ ℝ:

𝑄𝐻𝑀(𝑆, 𝑀) = {𝑞(𝑀, 𝑠1, 𝑠1
𝐻 , 𝑠1

𝑀), … , 𝑞(𝑀, 𝑠𝑁𝑆 , 𝑠𝑁𝑆
𝐻 , 𝑠𝑁𝑆

𝑀 )},
where

𝑞(𝑀, 𝑜, 𝑐1, 𝑐2) =
⎧{
⎨{⎩

(𝑐1, 𝑐2) if𝑀(𝑜, 𝑐1) ≥ 𝑀(𝑜, 𝑐2),
(𝑐2, 𝑐1) otherwise,

�

and likewise for 𝑄𝑀𝐿(𝑆, 𝑀).
Based on these four sets the ability of a metric to order in a

given domain can be estimated by

𝑂𝑀(𝑆) = 1
2

|𝑄𝐻𝑀(𝑆, 𝑀) ∩ 𝐷𝐻𝑀(𝑆)|
|𝐷𝐻𝑀(𝑆)| +

+ 1
2

|𝑄𝑀𝐿(𝑆, 𝑀) ∩ 𝐷𝑀𝐿(𝑆)|
|𝐷𝑀𝐿(𝑆)| . (1)

Values of 1 (100% correct ordering) or 0 (0% correct orderings,
i.e., 100% correct reverse ordering) show a high ability of the
metric to order correctly in the given domain. The difference
between 1 and 0 is that image metrics can either measure sim-
ilarity of images, i.e., quality metrics, resulting in a normal or-
dering or the difference between images, i.e., impairment met-
rics, resulting in a reverse ordering. Results around 0.5 are akin
to random decisions and reflect the inability of the tested met-
ric to perform in this domain.

Furthermore, since the low quality range chosen is in (or
at least close to) the domain of content confidentiality, i.e., the
rightmost column in Fig. 10 does not exhibit intelligible visual
content, this setting also serves as an indication whether an im-
age metric might be useful for content confidentiality. While
a good performance on this evaluation does not necessarily
mean a image metric is qualified for content confidentiality,
a low performance is a strong indicator that the metric is un-
fit for this task. Based on the information which parts of the
data have been encrypted and the entirely evident differences
in visual appearance, ground truth is out of question here.

Note also that this is a proof by contradiction. That is, if
a metric claims to be able to generally work in the encrypted
domain and we can demonstrate that there are cases where it
does not, then this claim has been falsified.

3.2 Correspondence to HVS: Confidence
Besides the encryption application scenarios where a certain
quality is required (sufficient and transparent encryption), fur-
ther examples for the importance of the quality notion are wa-
termarking where the resulting quality should not be below a
certain threshold, and of course, lossy compression. However,
the notion of quality in this cases is not as straightforward as it
seems. On the one hand we use the term quality in the context
of the human visual system (HVS), i.e., how a person consum-
ing the content would judge the quality. On the other hand,
the term quality can refer to the score returned by a (security)
metric which is tied to the quality in the HVS sense. This rela-
tion is not exact and it is not inherently clear how to choose a
metric which correlates to the HVS quality which is targeted,
although in practice algorithm 1 is usually applied.

While this results in a target quality which can be used, we
know nothing about how well this score actually reflects the
human judgement, since it is well known that the correlation

Algorithm 1 Method for finding a target metric score based on
a target HVS quality.
1: Chose a source image.
2: Alter the image until it fits the perceived target quality.
3: Apply the security metric on the altered and original im-

age, the resulting metric score is the target quality.

between human judgement and image metrics is not perfect. In
other words, how confident can we be in the choice of image
metric score in relation to the perceived quality?

In order to evaluate this, well known databases which con-
tain impaired and encrypted images and the perceived quality,
in the form of mean opinion scores (MOS), will be used. The
databases contain a set of points 𝑝 representing impaired im-
ages with associated values 𝑝𝑣 for metric value and 𝑝𝑑 for MOS
value, ordered from lowest to highest quality. Based on a tar-
get MOS quality score 𝐷 two values can be calculated, Fig. 11
illustrates this.
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Figure 11: Illustrations of zero false negative 𝑉𝑚𝑖𝑛(𝐷), zero
false positives 𝑉𝑚𝑎𝑥(𝐷) and confidence 𝒞𝐷 for a MOS value of
𝐷 = 3 is shown based on the IVC-SelectEncrypt database and
the LEG metric.

Zero false negative 𝑉𝑚𝑖𝑛(𝐷) refers to the metric value for
which the following holds: 𝑝𝑑 > 𝐷 ⟹ 𝑝𝑣 > 𝑉𝑚𝑖𝑛(𝐷). That is
if the metric score is below 𝑉𝑚𝑖𝑛(𝐷) we are sure that the per-
ceived quality is below the MOS quality score (𝐷).

Zero false positives 𝑉𝑚𝑎𝑥(𝐷) refers to the metric value for
which the following holds: 𝑝𝑣 > 𝑉𝑚𝑎𝑥(𝐷) ⟹ 𝑝𝑑 > 𝐷. That is
if the metric score is above 𝑉𝑚𝑎𝑥(𝐷) we are sure that the per-
ceived quality is above the MOS quality score (𝐷).

This also means that if a target metric quality score 𝑝𝑡
𝑣 is ob-

tained as given by algorithm 1 we are assured that 𝑉𝑚𝑖𝑛(𝐷) ≥
𝑝𝑡

𝑣 ≥ 𝑉𝑚𝑎𝑥(𝐷).
Thus we can define the confidence 𝒞𝐷 for a metric score

based on a given perceived quality 𝐷 as 𝒞𝐷 ∶= |𝑉𝑚𝑎𝑥(𝐷) −
𝑉𝑚𝑖𝑛(𝐷)|. A confidence score over the full perceived quality
range can be given as

𝒞 = 1
#𝑆 ∑

𝐷∈𝑆
𝒞𝐷,

where 𝑆 is the set of distinct MOS samples from the database.
Also note that we can interpret 𝒞 as the average over 𝒞𝐷,

𝜇𝐷∈𝑆(𝒞𝐷), and consequently we can also calculate the stan-
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dard deviation, 𝜎𝐷∈𝑆(𝒞𝐷). The reason for calculating 𝜎 is to es-
timate how stable the confidence range is over the whole range
of visual quality. This has to be taken into account since it is
well known that image metrics exhibit different correlation to
human judgement depending on the quality range, e.g., [13].

For security metrics, and image metrics in general, the
lower 𝜇(𝒞𝐷) and 𝜎(𝒞𝐷) the better algorithm 1 can be used
to estimate a target image quality metric score.

Furthermore, since the signal is reduced to statistical com-
ponents it is also of interest which shape the signal takes in
conjunction with 𝜇(𝒞𝐷) and 𝜎(𝒞𝐷). The shape, together with
the monotonicity (see subsection 3.3), can be used to indicate a
possible application scenario for a security metric, essentially
whether the security metric can be used for all quality ranges
or only on high/low quality applications.

By shape of the signal we mean the distribution of outliers,
where we define outlier based on the z score1 of a data point D
as

𝑧𝐷 = 𝒞𝒟 − 𝜇(𝒞𝐷)
𝜎(𝒞𝐷) .

We will define high outliers as outliers with 𝑧𝐷 < −1 and like-
wise low outliers as outliers with 𝑧𝐷 > 1, indicating a higher
and lower confidence respectively. Based on the distribution
of high and low outliers we can specify the shape of the signal
as follows.

• A signal is stable if there are no outliers. That is, if −1 ≥
𝑧𝐷 ≥ 1 holds for all 𝐷 ∈ 𝑆.

• A signal is biased if it consist of two clearly separable
parts, where one exhibits a good confidence score (𝒞𝐷
small) and the other a bad confidence score (𝒞𝐷 large).
We say the signal is biased towards the quality where the
good confidence score is located, i.e., where the metric is
performing well.
That is, A signal is biased if there exists a 𝐷𝑡 such that
𝑧𝐷 < −1 ⟹ 𝐷 < 𝐷𝑡 and 𝑧𝐷 > 1 ⟹ 𝐷 > 𝐷𝑡 or
𝑧𝐷 < −1 ⟹ 𝐷 > 𝐷𝑡 and 𝑧𝐷 > 1 ⟹ 𝐷 < 𝐷𝑡. If a
low 𝐷 indicates a high quality we specify the shape to be
biased towards high quality if 𝑧𝐷 < −1 ⟹ 𝐷 < 𝐷𝑡 or
biased towards low quality if 𝑧𝐷 > 1 ⟹ 𝐷 < 𝐷𝑡. If
a low 𝐷 indicates low quality the definition is switched
accordingly.

• A signal which is neither stable nor biased is considered
unstable.

3.3 Correspondence to HVS: Monotonicity
What is required from image metrics in general is monotonicity
with regard to human observations. That is, if an image metric
decides that image A is of better quality than image B a human
observer should also prefer image A over image B. This is akin
to correlation but since the human visual system is not a linear
system regular linear correlation is meaningless. Thus in order
to ascertain the correlation of an image metric and human ob-
servations the notion of monotonicity is utilized. Rank order
correlation, which essentially judges the monotonicity of the

1NIST/SEMATECH e-Handbook of Statistical Methods, http://www.
itl.nist.gov/div898/handbook/, October 2013

signals, is most often used, usually in the form of Spearman’s
rank oder coefficient (SROC) [33] or Kendall Tau (𝜏) [34].

Hofbauer and Uhl [13] pointed out that the correlation of
an image metric over the full quality range does not imply that
a high correlation is achieved for the low quality range. This
is especially important for security metrics since certain appli-
cation scenarios specifically target the low quality range of im-
ages, e.g., sufficient encryption. We cannot confine the evalu-
ation to the low quality range since there are also applications
for higher quality, i.e., transparent encryption. Also note that
this is a dual property to the confidence in the sense that for the
confidence we evaluate the relation of choosing a MOS value
and evaluating the range of metric scores which can potentially
fall onto this MOS value. Monotonicity is evaluated on specific
sets of impairment and looks at how well an increase in metrics
score reflects an increase in the MOS.

To properly evaluate security metrics for all encryption sce-
narios we will evaluate them using a high quality, a low quality
and a full quality range dataset. The reason to also include the
high quality range is to be inclusive in terms of possible appli-
cation scenarios. For example the upgrade to high definition
quality from PAL/NTSC quality is just as valid in terms of ap-
plication scenarios as from hand held quality to PAL/NTSC
quality. As basis for the evaluation we will use well known
databases which contain mean opinion score of human judge-
ment over different impairments. The SROC will be used for
evaluation purpose, as is current best practice for metric eval-
uation.

From security metrics we would expect a high correlation
with human judgement for the low quality range. While the
low quality range is often the target of encryption some trans-
parent encryption schemes could target a higher quality, con-
sequently, a good correlation with human judgement on the
high quality range is also desirable.

4 Evaluation
In this section we present the results of the evaluation process
as detailed in Section 3. Each evaluation contains a short de-
scription of the test data, the actual data from the evaluation
and a discussion. We remark that the discussion is focussed on
the evaluation methodology rather than the details of why and
how a metric fails a test. Discussing the latter would require an
in-depth description of how the metrics work, together with
the explicit details about the test set which is out of scope of
this paper.

With respect to implementations, we used our own code2

for LSS, ESS, LE, NSD, LFBVS, SSIM and PSNR. For VIF, we
used the implementation from the “MeTriX MuX Visual Qual-
ity Assessment Package”3, version 1.1. For CPA1, we used the
MATLAB implementation provided by Florent Autrusseau4.
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Table 1: Results for the ordering given by Eq. 1 (Section 3.1) of high versus medium and medium versus low quality sequences in
the encryption and extraction domain. The averages over all the frames in a sequence as well as the average over all sequences is
shown per image metric.

Results for the Encryption Domain (𝑄𝑀)
LEG SSIM LSS ESS PSNR LFBVS LE NSD VIF CPA1

akiyo 0.168 0.500 0.496 0.441 0.527 0.500 0.609 0.481 0.449 0.496
bus 0.398 0.383 0.402 0.332 0.555 0.516 0.895 0.426 0.383 0.250
coastguard 0.500 0.391 0.340 0.434 0.582 0.590 0.754 0.422 0.508 0.254
container 0.246 0.484 0.207 0.391 0.348 0.500 0.777 0.563 0.586 0.035
flower 0.191 0.430 0.527 0.410 0.445 0.488 0.996 0.398 0.488 0.395
foreman 0.289 0.481 0.492 0.410 0.508 0.504 0.547 0.453 0.500 0.481
mobile 0.340 0.481 0.500 0.305 0.457 0.512 0.688 0.492 0.453 0.473
news 0.430 0.500 0.395 0.418 0.742 0.500 0.500 0.457 0.363 0.496
silent 0.270 0.332 0.242 0.102 0.250 0.602 0.992 0.375 0.320 0.148
tempete 0.414 0.481 0.500 0.395 0.500 0.500 0.742 0.481 0.449 0.465
waterfall 0.422 0.492 0.488 0.461 0.715 0.508 0.539 0.512 0.492 0.496

average 0.334 0.450 0.417 0.373 0.512 0.520 0.731 0.460 0.454 0.363

Results for the Extraction Domain (𝑄𝑀)
LEG SSIM LSS ESS PSNR LFBVS LE NSD VIF CPA1

akiyo 1.000 1.000 0.516 0.941 1.000 0.500 0.500 0.500 0.945 0.094
bus 0.996 1.000 0.512 0.969 0.992 0.500 0.500 0.461 0.981 0.234
coastguard 1.000 1.000 0.508 0.992 0.996 0.457 0.500 0.246 1.000 0.008
container 1.000 1.000 1.000 0.941 0.000 0.500 0.500 0.500 1.000 0.004
flower 1.000 1.000 0.953 0.926 0.063 0.418 0.500 0.473 0.984 0.094
foreman 1.000 1.000 0.531 0.996 0.500 0.500 0.500 0.500 0.996 0.000
mobile 0.984 1.000 0.922 0.977 0.434 0.500 0.500 0.410 0.984 0.020
news 1.000 1.000 0.500 0.996 1.000 0.500 0.500 0.500 0.996 0.000
silent 1.000 1.000 0.902 0.981 0.578 0.500 0.500 0.500 1.000 0.000
tempete 1.000 1.000 0.570 0.992 1.000 0.500 0.500 0.481 1.000 0.000
waterfall 0.957 0.992 0.695 0.828 0.930 0.500 0.500 0.246 0.981 0.008

average 0.994 0.999 0.692 0.958 0.681 0.489 0.500 0.438 0.988 0.042

4.1 Evaluation of the Application Domain
In order to evaluate the extraction versus encrypted domain
applicability of metrics, we used a number of standard se-
quences: akiyo, bus, coastguard, container, flower, foreman,
mobile, news, silent, tempete and waterfall5. The ordering, as
discussed in Section 3.1 above is performed on a frame by frame
basis and averaged over all the frames in a given sequence. Ad-
ditionally we provide the average over all sequences in order
to simplify the comparison. Table 1 shows the results for the
encryption and extraction domain. The optimal result would
be for a metric to perform equally well independent of the
application domain.

From the overall averages it can be clearly seen that the per-
formance in the encrypted domain is worse than in the extrac-
tion domain with the exception of LE. While LE performs bet-
ter in the encrypted domain than in the extraction domain, the
performance is still very low. In the extraction domain, most
metrics still perform poorly; only LEG, SSIM, VIF, CPA1 and,

2http://www.wavelab.at/sources/VQI
3http://foulard.ece.cornell.edu/gaubatz/metrix_mux/
4http://www.irccyn.ec-nantes.fr/~autrusse/Softwares.html
5Available for example at http://media.xiph.org/video/derf

to a lesser degree, ESS exhibit good performance. Aside from
the latter, all other security metrics exhibit extremely poor per-
formance.

This allows to conclude that application in the encrypted do-
main should not be performed (although, it is routinely done in all
corresponding papers).

When looking closer at the detail information from the
extraction domain, some interesting effects can be observed.
While the performance of LEG, SSIM and VIF are consistently
good, we notice that there are cases where even a metric that
shows good performance can have problems. In the actual case
the performance of the ESS is significantly reduced for the wa-
terfall sequence and the CPA1 shows poor performance on the
bus sequence. It stands to reason that there are other, untested,
sequences which would lead to similar reduced performance
for the LEG, SSIM and VIF.

4.2 Evaluation of Confidence
In order to evaluate the confidence, databases with either per-
tinent content, i.e., encrypted images, or a large dataset with
distortions are optimal. The IVC-SelectEncrypt database [21]
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contains various instances of JPEG 2000 transparent encryp-
tion, using different encryption techniques, and is a useful tool
for evaluating confidence with respect to encrypted images.
It is the only database available containing encrypted visual
data and corresponding MOS. The test sets contained in the
IVC-SelectEncrypt database (and their abbreviation) are tradi-
tional encryption (trad), truncation of the code stream (trunc),
window encryption without error concealment (iwind_nec),
window encryption with error concealment (iwind_ec), and
wavelet packet encryption (res), for detailed information see
[35]. However, the IVC-SelectEncrypt database has a rather
small set of impairments, i.e., five per test set, and is focused
on JPEG 2000 only.

In order to get a more diverse view on the confidence of
metrics we additionally utilize the LIVE database [36] to sup-
plement the IVC-SelectEncrypt database of encrypted images.
While the LIVE database does not contain encrypted images,
the quality range of the images reaches from high to low qual-
ity; this makes it at least relevant for transparent encryption
where a certain target quality is required. Furthermore, images
in the low quality range of the LIVE database exhibit strong
distortions which can be equated to encrypted images in the
sense that strong distortions mask a lot of the visual informa-
tion. Consequently, the distorted images can be used to as-
sess how well a metric can identify information contained in
a distorted/encrypted image; this is exactly the property that
we want from security metrics. An example of these strong
distortions is shown in Fig 12 which contains an encrypted im-
age from the IVC-SelectEncrypt database as well as heavily dis-
torted versions of images from the LIVE database. These exam-
ples illustrate that the LIVE database contains not only images
which are similar to the IVC-SelectEncrypt database in terms of
content masking, but also images which are clearly in the qual-
ity realm of sufficient encryption. The test sets contained in the
LIVE database (and their abbreviation in plots and figures) are
JPEG 2000 compression (jp2k), JPEG compression (jpeg), white
noise (wn), Gaussian blur (gblur), and bit errors in JPEG2000
bit stream transmission over a simulated fast fading Rayleigh
Channel (fastfading), for detailed information see [37].

What we tried to do is to break it down the complex relation
of the confidentiality as far as possible, to facilitate compari-
son, without losing too much information. The result is that
the measures 𝜇 and 𝜎 combined with the signal shape actually
contain a lot of information. The purpose of the detailed dis-
cussion in this section is to relate to the reader the implications
carried by the ‘scores’ 𝜇, 𝜎 and signal shape.

Figure 13 shows the detailed evaluation of confidence on
the LIVE database. For each metric, the figure shows a scatter
plot of MOS and metric values, the bounding curves 𝑉min(𝐷)
and 𝑉max(𝐷) as well as a plot of the local confidence value
𝒞𝐷. Table 2 lists the confidence scores 𝜇(𝒞𝐷) and 𝜎(𝒞𝐷) for
each metric on the LIVE database. In order to make the con-
fidence scores comparable a pseudo normalization was used.
Bounded metrics are normalized and unbounded metrics, e.g.,
PSNR, are normalized by mapping the range of occurring met-
ric scores into [0, 1]. For the calculation of the signal shape the
leading and trailing 10% of the MOS range where not taken
into account because, at the high and low ends of the MOS,

the difference in metric scores is limited due the boundary of
the metric range, see Fig. 13. This would result in false out-
liers. The shape was calculated, similar to 𝜇(𝒞𝐷) and 𝜎(𝒞𝐷),
on pseudo normalized local confidence value 𝒞𝐷. In Fig. 13,
outliers are indicated by down and up arrows for high and low
quality outliers, respectively.

For the IVC-SelectEncrypt database the accordant plot and
confidence scores are given in Fig. 14 and table 3, respectively.
Notice that while a MOS score of 0 is high quality on the LIVE
database, a MOS score of 0 represents low quality on the IVC-
SelectEncrypt database.

When it comes to confidence we can safely state that none of the
metrics show good performance overall, i.e., none of the metrics are
stable with a low 𝜇(𝒞𝐷) and 𝜎(𝒞𝐷). However, for certain test
sets there are metrics with good performance, e.g., CPA1 on the
IVC-SelectEncrypt test set shows exceptionally high confidence
and is stable. The CPA1 metric on the LIVE database, however,
shows extremely poor performance.

Let us consider the relation between shape, 𝜇(𝒞𝐷) and
𝜎(𝒞𝐷). The notional average performance is given by 𝜇(𝒞𝐷).
The amount of deviation from the notional average is given by
𝜎(𝒞𝐷). The way the deviation is distributed is given by the
signal shape. Contrariwise, 𝜎(𝒞𝐷) indicates the magnitude of
the shape, i.e., assuming constant 𝜇(𝒞𝐷) a biased signal will
be biased to a higher degree if 𝜎(𝒞𝐷) is higher.

Compare LEG and SSIM as an example: While LEG shows
better overall 𝜇(𝒞𝐷) and 𝜎(𝒞𝐷), SSIM is much more biased
than LEG, i.e., SSIM outperforms LEG where its bias is. Con-
trary to that, LEG outperforms SSIM outside of the bias. This
behavior is only identifiable when 𝜎(𝒞𝐷) is considered in con-
junction with shape. In particular, even though the LEG is bi-
ased, due to the small 𝜎(𝒞𝐷) we can deduce that the bias is
far smaller than the bias of the SSIM (which exhibits a high
𝜎(𝒞𝐷)).

A similar behavior can be observed for unstable shapes.
A metric with an unstable shape and a high 𝜎(𝒞𝐷) will have
much more severe outliers than one with a low 𝜎(𝒞𝐷). This
is nicely reflected in the PSNR: Although unstable, the magni-
tude of the outliers should be relatively small since the PSNR
shows a low 𝜎(𝒞𝐷). This is exactly what we see in the plots of
Fig. 13 and 14.

For a stable shape, 𝜇(𝒞𝐷) becomes more important since
it shows where the stable part of the confidence lies. The LE
metric on the IVC-SelectEncrypt database is a prime example
of this: While it is stable, the actual confidence score shows that
it is stable in the sense that it exhibits poor performance over
the whole quality range.

Regarding confidence values and shape, it can be seen from
Table 2 and 3 that can exhibit non-uniform behaviour over dif-
ferent test sets. If this is the case, when calculating the overall
performance scores, the worst value should be taken into ac-
count.
What is also noticeable from the two tables is the fact that
the evaluated image and security metrics are more often bi-
ased towards the high quality range. Indeed, on the IVC-
SelectEncrypt database which is the actual encryption database,
not a single metric is biased towards the low quality range.
Furthermore, the metrics biased towards the low quality range
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LIVE (jp2k) LIVE (fastfading) LIVE (jpeg)
MOS=91.372 MOS=104.7 MOS=108.77

LIVE (wn) LIVE (gblur) IVC (truncation)
MOS=111.77 MOS=93.409 MOS=1

Figure 12: The lowest quality images of each test set in the LIVE database as well as one of the lowest quality images from the
IVC-SelectEncrypt database.

on the LIVE database, i.e., LEG, VIF and LFBVS, are all biased
towards high quality on the IVC-SelectEncrypt database, and
should thus be considered unstable overall.

To sum up the findings regarding the confidence of the
metrics we can state the following: First, LE, LSS and CPA1
show extremely poor performance overall. While CPA1 per-
forms exceptionally well on the IVC-SelectEncrypt database, it
performs poorly on the LIVE database; consequently, the over-
all performance of CPA1 is not good. Second, LEG, VIF, ESS,
LFBVS and PSNR – while not stable – exhibit a low 𝜎(𝒞𝐷) and
are thus closest to being considered good metrics over the full
quality range. However, in each case the 𝜇(𝒞𝐷) is relatively
high overall (at least from a security standpoint) and thus
could use some improvement, or replacement. Third, SSIM
and NSD show a strong bias towards the high quality range.
While the confidence for these metrics is not good overall, the
confidence over the high quality range is actually quite good.
Consequently, when the application scenario is known to tar-
get the higher quality range, e.g., in transparent encryption,
these metrics should be considered.

4.3 Monotonicity for Low Quality Images
The monotonicity of an image metric over the MOS for the full
quality range is what defines the quality of an image metric.
However, for transparent/sufficient encryption it is more im-
portant that a metric has good monotonicity properties on the
lower quality range than on the full quality range. It is well
known, c.f. [13], that this can be a problem so it is necessary to
study this in more detail.

The absolute SROC values for the test sets of the LIVE
database are given in Table 4(a) for the full quality range, the
low quality range and the high quality range. In the table,
high means SROC > 0.9 (marked bold); a SROC score of < 0.5
means unsatisfactory (underlined). For the IVC-SelectEncrypt
database the same information is listed in Table 4(b).

In order to better compare the difference in high, low and
overall, rank order correlation for a given test set and database
is illustrated in Table 5 for the LIVE and IVC-SelectEncrypt
database. For each combination of test set and metric, the
graphical entry displays the range of possible SROC scores as
background, with SROC = 0 at the bottom and SROC = 1 at
the top. The light gray background bar shows the SROC value
for the full quality range while the smaller bars indicate the
SROC score for the high quality (left) and low quality range
(right). What can be directly seen is that the overall perfor-
mance of a metric does not imply good performance for either
the high or low quality range, although most metrics tend to
perform better on the high quality range. In some cases, a
metric can even perform better on a limited quality range than
over the whole range of quality. For example, the VIF per-
forms better for the low quality end of resolution encryption
on the IVC-SelectEncrypt database than for the whole range of
resolution. In other cases, the performance over the full qual-
ity range is drastically reduced over the high and low parts of
the quality range. For example, the VIF performs poorly on
the high quality range for resolution encryption on the IVC-
SelectEncrypt database. For other test sets, the impact of either
low or high quality is minor and most likely due to the reduced
number of samples from the database, e.g., the VIF performs
well for white noise distortion (from the LIVE database) irre-
spective of the quality range. This in essence shows that the
actual performance of an image metric is dependent on the
distortion type as well as the quality range. For most test sets
and image metric combinations, the SROC over the full quality
range can at most be used as an upper bound for the limited
quality cases. However, there are exceptions, e.g., VIF for the
low quality range of the resolution test set performs better than
on the overall quality range for the same test set.

With regard to security metrics and their performance on
the low quality range, there is no noticeable difference in be-
havior to regular image metrics. Interestingly, though, for each
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Figure 13: Confidence plots for the LIVE database for different image metrics. The plot shows the scatter plot for the MOS and
metric score pairs, the plot of 𝑉𝑚𝑖𝑛(𝐷), 𝑉𝑚𝑎𝑥(𝐷) and 𝒞𝐷.

Table 2: Average and standard deviation of normalized confidence and signal shape on the LIVE database.
SSIM LEG VIF CPA1 LSS ESS LFBVS LE NSD PSNR

𝜇(𝒞𝐷) 0.357 0.291 0.285 0.431 0.415 0.300 0.370 0.906 0.537 0.265
𝜎(𝒞𝐷) 0.225 0.070 0.110 0.109 0.159 0.133 0.071 0.069 0.277 0.038
Signal Shape Bias High Bias Low Bias Low Bias High Bias High Bias High Bias Low Bias High Bias High Unstable
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Figure 14: Confidence plots for the IVC-SelectEncrypt database for different image metrics. The plot shows the scatter plot for the
MOS and metric score pairs, the plot of 𝑉𝑚𝑖𝑛(𝐷), 𝑉𝑚𝑎𝑥(𝐷) and 𝒞𝐷.

Table 3: Average and standard deviation of normalized confidence and signal shape on the IVC-SelectEncrypt database.
SSIM LEG VIF CPA1 LSS ESS LFBVS LE NSD PSNR

𝜇(𝒞𝐷) 0.319 0.268 0.277 0.119 0.374 0.168 0.273 0.540 0.394 0.196
𝜎(𝒞𝐷) 0.226 0.077 0.098 0.066 0.173 0.090 0.139 0.107 0.274 0.063
Signal Shape Bias High Bias High Bias High Stable Bias High Bias High Bias High Stable Bias High Unstable
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Table 4: Spearman’s rank order correlation (SROC) for full, high and low quality range.

Full Quality Range
fast- gblur jp2k jpeg wnfading

SSIM 0.942 0.903 0.936 0.946 0.962
LEG 0.971 0.966 0.945 0.960 0.960
VIF 0.965 0.972 0.968 0.984 0.985
CPA1 0.881 0.927 0.958 0.962 0.984
LSS 0.843 0.916 0.953 0.970 0.965
ESS 0.933 0.888 0.929 0.949 0.886
PSNR 0.891 0.782 0.895 0.881 0.985
LFBVS 0.932 0.937 0.853 0.920 0.891
LE 0.241 0.236 0.076 0.766 0.228
NSD 0.815 0.803 0.741 0.806 0.657

High Quality Range
fast- gblur jp2k jpeg wnfading

SSIM 0.517 0.815 0.710 0.879 0.875
LEG 0.652 0.792 0.638 0.761 0.734
VIF 0.632 0.782 0.797 0.920 0.891
CPA1 0.681 0.689 0.761 0.889 0.840
LSS 0.504 0.762 0.754 0.825 0.700
ESS 0.473 0.618 0.694 0.744 0.827
PSNR 0.517 0.662 0.676 0.801 0.869
LFBVS 0.289 0.707 0.393 0.651 0.572
LE 0.295 0.127 0.228 0.136 0.143
NSD 0.028 0.760 0.275 0.370 0.674

Low Quality Range
fast- gblur jp2k jpeg wnfading

SSIM 0.662 0.487 0.635 0.339 0.802
LEG 0.893 0.872 0.617 0.699 0.804
VIF 0.937 0.920 0.646 0.829 0.911
CPA1 0.614 0.669 0.657 0.402 0.897
LSS 0.788 0.732 0.647 0.595 0.817
ESS 0.877 0.847 0.397 0.735 0.570
PSNR 0.611 0.408 0.510 0.046 0.897
LFBVS 0.863 0.849 0.391 0.702 0.659
LE 0.268 0.338 0.070 0.720 0.290
NSD 0.731 0.582 0.427 0.668 0.231

(a) SROC for the LIVE Database

Full Quality Range
iwind iwind resolu- trad trun-

ec nec tion cation

SSIM 0.925 0.954 0.887 0.968 0.879
LEG 0.869 0.956 0.876 0.966 0.863
VIF 0.937 0.969 0.767 0.982 0.954
CPA1 0.925 0.953 0.906 0.967 0.959
LSS 0.888 0.907 0.955 0.948 0.948
ESS 0.868 0.894 0.933 0.906 0.860
PSNR 0.909 0.910 0.916 0.965 0.889
LFBVS 0.756 0.930 0.916 0.943 0.878
LE 0.136 0.579 0.562 0.550 0.201
NSD 0.698 0.922 0.790 0.757 0.523

High Quality Range
iwind iwind resolu- trad trun-

ec nec tion cation

SSIM 0.652 0.863 0.714 0.975 0.835
LEG 0.713 0.852 0.643 0.920 0.610
VIF 0.729 0.907 0.143 0.885 0.662
CPA1 0.683 0.890 0.000 0.868 0.934
LSS 0.705 0.945 0.393 0.865 0.975
ESS 0.809 0.846 0.571 0.679 0.794
PSNR 0.636 0.857 0.500 0.879 0.830
LFBVS 0.521 0.863 0.250 0.698 0.723
LE 0.095 0.489 0.464 0.431 0.019
NSD 0.251 0.736 0.179 0.236 0.602

Low Quality Range
iwind iwind resolu- trad trun-

ec nec tion cation

SSIM 0.191 0.694 0.644 0.680 0.695
LEG 0.141 0.823 0.490 0.652 0.181
VIF 0.518 0.732 0.823 0.913 0.832
CPA1 0.400 0.628 0.897 0.592 0.706
LSS 0.523 0.240 0.875 0.386 0.679
ESS 0.422 0.411 0.551 0.609 0.549
PSNR 0.251 0.474 0.688 0.663 0.541
LFBVS 0.188 0.562 0.507 0.416 0.022
LE 0.386 0.004 0.152 0.166 0.272
NSD 0.100 0.655 0.290 0.589 0.291

(b) SROC for the IVC-SelectEncrypt Database
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Table 5: Visual representation of Spearman’s rank order correlation (|SROC| ∈ [0, 1]) for the LIVE Image Quality Assessment and
IVC-SelectEncrypt databases for full quality range (light gray), low quality range (orange bar on the right) and high quality range
(green bar on the left side).
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test set the best performance over the low quality range can be
found among the traditional image metrics.

Comparing the high and low quality ranges, we can see that
the low quality range has a far higher number of unsatisfactory
SROC scores. This shows that image metrics tend to perform
better at differentiating the different strength in distortion for
high quality images. A high SROC score over the whole quality
range indicates that the metric can differentiate between high
and low quality images. In essence, image metrics which per-
form well on the overall quality range can still be utilized to
identify sufficient encryption, even though a metric which ex-
hibits good performance in the range of the quality threshold
should be preferred. For transparent encryption, where the
goal is to find the best image below a certain threshold, mono-
tonicity in the chosen quality range becomes more important.
In particular, the target quality is a lot closer to the threshold,
thus a high monotonicity (expressed by a high SROC) is re-
quired.

Another interesting aspect of the high versus low quality
test is the fact that none of the tested metrics exhibits a better
performance on the high or low quality range for all test sets.
Consequently, the metrics cannot be reduced to a single SROC
score and a bias towards either high or low. There are cases
where the performance over both high and low quality is far
worse than for the whole quality range, e.g., LFBVS on the jp2k
test set. Thus, in order to evaluate whether an image metric can
be used as a security metric, tests regarding low and high quality
performance have to be conducted.

Summing up the monotonicity tests, we can state the fol-
lowing: First, VIF, CPA1, SSIM, LSS and LEG perform best over
the whole quality range. LFBVS, PSNR and ESS also show a
good behavior, while NSD and especially LE perform poorly.

Second, for the high quality range, most quality metrics still
show a decent performance. However, only SSIM, LEG, and
PSNR exhibit no unsatisfactory performance in a single test set.

Third, for the low quality range, only VIF exhibits good per-
formance over all test sets. All other metrics have at least two
test sets where their performance is unsatisfactory.

5 Conclusion and Future Work
We have outlined an evaluation method for security metrics
based on practical application scenarios and considerations.
These methods were used to evaluate (1) state of the art secu-
rity metrics, (2) image metrics which are used as security met-
rics as well as (3) state of the art image metrics. A summary of
the evaluation and a basic evaluation score is given in Table 6.
To simplify and give a clear comparison between metrics, we
assign a single score to each metric based on its performance
in the various evaluation steps. In particular, for each step, we
assign a score of 1 for desired behavior and a penalty of −1 for
a clear failure. The final score is the sum of the individual test
scores. In Table 6, desired behavior is indicated in bold and
failure in italics.
For the application domain a sorting error of less than 10% is con-
sidered good, while a performance around 50% (±10%) is con-
sidered a failure. For the confidence, a score for 𝜇±𝜎 of 0.3±0.1

is considered good, while a result of 0.5 ± 0.25 is considered a
failure. Regarding signal shape, we desire stable signals. The
signal shape will also be penalized if it does not agree on the
two test sets. For the quality and SROC, a value ≤ 0.5 is a fail-
ure while an SROC greater than 0.9 is desirable. From the final
scores in Table 6, we conclude that none of the security met-
rics are fit to perform as general purpose security metrics.

Regarding transparent and sufficient encryption, the LE
and NSD metrics especially show that metrics engineered to
fit a certain application scenario cannot claim generality. Fur-
thermore, SSIM and PSNR, which are frequently used as
security metrics, also perform poorly. Most state of the art
image metrics hardly perform the security metric task ade-
quately. Only VIF, apart from a borderline confidence score
and stability, demonstrates good performance.

Regarding content confidentiality we cannot make a strong
statement due to lack of ground truth for recognizability tests.
However, the performance in the encrypted domain, during
the evaluation of the application domain, gives a strong indi-
cation that none of the tested image metrics can perform the
task of evaluating the content confidentiality.

The presented methodology for the evaluation of security
metrics should be used to asses newly developed metrics to
prevent similar shortcomings as those shown by the investi-
gated metrics. Table 6 gives a concise overview of the state of
the art metrics, and can be used as a basis for comparison for
new image and security metrics.

5.1 Future Work
The inability to properly evaluate image metrics with regard
to content confidentiality naturally leads to the conclusion that
more data is required. This also holds true for the lower quality
ranges with respect to regular metrics, which would undoubt-
edly benefit from a dataset that is specifically designed for high
impairment cases. In future work, we will gather ground truth
data for content confidentiality (and will also design protocols
how to properly capture human assessment for these data sets)
and extend the work presented in this paper to properly en-
compass content confidentiality. Furthermore, we intend to
gather more data on the low quality range as well, in order to
better evaluate security metrics for transparent and sufficient
encryption.
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