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ABSTRACT

The structural similarity index measure is a well known and
widely used full reference visual quality index. In this paper
we introduce a new full reference visual quality index based
on local edges and edge gradients in the wavelet domain. The
proposed metric corresponds better to human judgement and
is more efficient, in terms of computational complexity, than
the structural similarity index measure. Furthermore, the pro-
posed metric is more efficient than other state of the art met-
rics and surpasses them for certain visual impairment classes.

Index Terms— Image analysis, Quality control

1. INTRODUCTION

The assessment of image and video quality is important for
transmission (assessment of transmission errors) and com-
pression (compression vs. quality). Optimally an evaluation
where human observers judge the perceived quality or im-
pairment should be performed. However, the time and cost
requirements to perform such tests are high. Thus, algorithms
to assess image quality automatically are employed, which
are referred to as visual quality indices (VQI). These VQIs are
in turn compared to human assessment over a number of dis-
tortion and compression types via established databases. It is
important for VQIs to strongly correlate to human judgement.
Furthermore, ease of use and low computational complexity
are desired traits.

Still widely used the peak signal-to-noise ratio (PSNR) is
unrivaled in speed and ease of use. However, it is also well
known that the correlation to human judgement is somewhat
lacking [1]. With this problem in mind newer VQIs were de-
veloped which take the human visual system (HVS) into ac-
count in order to increase the correlation with human judge-
ment.

These VQIs utilize the knowledge of the HVS to a lesser
or higher extent. However, the trend over all VQIs is the more
information about the HVS is included in the generation of a
quality score the more complex and time consuming the VQI
becomes. This ranges from the fast luminance and edge sim-
ilarity score (LSS and ESS) as introduced by Mao and Wu

[2] to the refined but slow visual information fidelity crite-
rion (VIF) by Sheikh and Bovik [3] and CPA1 by Carosi et
al. [4]. In terms of HVS LSS and ESS uses the basic knowl-
edge that edge information reflects the assessment of humans
regarding the shape or contour of objects and the luminance
score reflects changes in the color space. The VIF on the
other hand uses a more refined model which starts with the
modeling of the reference image using natural scene statistics
(NSS). Furthermore, the possible distortion is modeled as sig-
nal gain and additive noise in the wavelet domain and parts of
the HVS which have not been covered by the NSS are mod-
eled, i.e. internal neural noise is modeled by using a additive
white Gaussian noise model.

However, the most widely used VQI is the structural sim-
ilarity index measure (SSIM) by Wang et al. [5] because it
offers an excellent tradeoff between performance and quality.
The SSIM extracts three separate scores from the image and
combines them into the final score. First the visual influence
is calculated locally then luminance, contrast and structural
scores are calculated globally. These separate scores are then
combined with equal weight to form the SSIM score.

In this paper we propose a VQI which is more efficient
as well as more effective than the SSIM and for certain cases
is even better than VQIs which are heavily modelled on the
HVS. The proposed metric is a full reference metric, i.e. both
original and impaired image are used, based on local edge
direction and gradient which exploits properties of the HVS to
some extent. Based on the utilization of local edge gradients
we will refer to this metric as LEG for the rest of the paper.

Local edge information is a good feature when it comes
to image comparison, classification or retrieval. Local binary
patterns (LBP) have been widely employed to assess local
edge information. LBPs compare a center pixel to its neigh-
borhood to gain an edge description, and have been success-
fully used from face recognition, e.g. [6], to medical image
classification, e.g. [7]. Usually these LBPs are used in the
form of histograms in the comparison of images. In our case
image based histograms do not provide enough error localiza-
tion, thus a different approach of direct comparison is used.

Furthermore, we use a one-step wavelet decomposition



which allows the utilization of HVS based knowledge to in-
crease the accuracy of error assessment. The decomposition
serves a number of purposes. First the peripheral vision is
taken into account by using the low frequency subband. The
eye of an observer focuses on one point but also takes in
surrounding information. Furthermore, the HVS is sensi-
tive to different spatial and temporal frequencies which are
present in a stimulus and this is modelled by using the high
frequency subbands. Additionally, error information is per-
ceived stronger among large edge structures in the image and
the high frequency bands can be used for structure detection.
In the proposed algorithm this structural information is used,
by means of local edge gradients, as a weighting function
for the local error features generated form the low frequency
bands. Furthermore, the difference of overall luminance will
be used to model the light sensitivity of the eye allowing to
detect impairments which do not change the structure of the
image.

In order to assess how the LEG performs in comparison
to other metrics based on edge features the local feature based
visual security metric (LFBVS) by Tong et al. [8] as well as
the natural image contour evaluation (NICE) quality index by
Rouse et al. [9] will be evaluated and compared to LEG.
The LFBVS uses basic color features as well as edge ampli-
tude and direction on local blocks. The NICE uses gradient
maps on different scales, adjusts for possible image shift by
using a morphological dilation with a plus shaped structuring
element. The actual score is computed by doing a threshold-
ing on the image and calculating differences. For the imple-
mentation of the NICE we choose the version with only one
scale, Sobel edge detector and morphological dilation since it
is significantly faster than using steerable wavelet decompo-
sition but shows similar performance, c.f. [9]. For weighting
the hamming distance and normalization as given in [10] was
used.

The implementations of NICE, LFBVS, LEG and SSIM
which are used in the following sections are available online
at http://www.wavelab.at/sources/VQI/.

In section 2 the algorithm for the LEG VQI will be given.
In section 3 we give the evaluation and analysis of the VQI
with respect to LIVE, MICT and IVC image database as well
as a comparison to other metrics. Section 4 concludes the
paper.

2. ALGORITHM

Let I and O denote the impaired and original (gray scale)
image of size W × H with maximum pixel value M = 2b

with b bits per pixel. The following steps are performed to
calculate the LEG index.

Step 1: The following steps only use edge difference, con-
sequently a change in the image which does not influence the
structural influence would go unnoticed. To compensate for
this the difference in luminance between I and O is calcu-

lated:

lum(I,O) = 1−
√
|µ(O)− µ(I)|

M
,

µ(X) =
1

WH

W∑

x=1

H∑

y=1

X(x, y),

where X(x, y) is the pixel value of image X at position x, y.
Step 2: One step wavelet decomposition with Haar

wavelets resulting in four sub images for each image X
denoted as X0 for the LL-subband, and X1, X2, X3 for LH,
HH and HL subband respectively. Figure 1 illustrates the
decomposition of a sample image, upper left is X0 and the
numbering continues clockwise.

Fig. 1: Wavelet decomposition of the lighthouse2 image with
the Haar wavelet.

Step 3:A local edge map is calculated for each position
x, y in the image, reflecting the change in coarse structure
of the image. Through the Haar wavelet decomposition and
the comparison of each center pixel with its neighborhood the
actual area of influence of the original image is a 6 × 6 win-
dow. The local edge map is used to prevent faulty information
gained from gradients on parts of the image where the edges
are off by a certain degree.

le(I,O, x, y) =





1 if EDC(I,O, x, y) = 8,
0.5 if EDC(I,O, x, y) = 7,
0 otherwise.

EDC(I,O, x, y) =
∑

p∈N(x,y)

ED(I,O, x, y, p)

ED(I,O, x, y, p) =





1 if I(x, y) < I(p) and O(x, y) < O(p),
1 if I(x, y) > I(p) and O(x, y) > O(p),
0 otherwise.

whereN(x, y) is the eight neighborhood of the pixel x, y.
Edge extension is done by copying the last edge value, e.g.
I(−1, 0) := I(0, 0).



Step 4: In order to assess the contrast changes a differ-
ence of gradients in a neighborhood will be calculated. The
effect of a contrast change will be more pronounced along
large edges. Thus, this step serves as a contrast sensitivity
function as well as a detector for large structures in the im-
age.

led(I,O, x, y) =
1

8

∑

p∈N(x,y)

(
1−

√
|LD(I,O, x, y, p)|

M

)2

LD(I,O, x, y, p) = (O(x, y)−O(p))− (I(x, y)− I(p))
Step 5: The edge score is calculated by using local edge

conformity (le) and local edge difference (led).

es(I,O) =
4

WH

W
2∑

x=1

H
2∑

y=1

(
le(I0, O0, x, y)

∗ 1
3

3∑

i=1

led(Ii, Oi, x, y)
)
.

Step 6: The LEG visual quality index is calculated by
combining es and lum:

LEG(I,O) = lum(I,O) es(I,O).

An example of the generated edge score and edge con-
formity is given in fig. 2, where the original image O (lower
left) as well as an impaired image I (top right) is given in low
and high quality. The top left illustrates the values of le(I,O)
and the lower right gives the average of the led values as used
in step 5, i.e. 1

3

∑3
i=1 led(Ii, Oi, x, y). The values have been

mapped onto a continuous gray scale, [0, 1] 7→ [0, 255], where
black indicates a high amount of errors and white represents
no distortion between I and O.

2.1. Analysis of Weight Functions

The features used in the metric are average luminance (µ),
edge direction conformity (EDC) and contrast change differ-
ence (LD) which are combined with weight functions in or-
der to model their impact on the HVS. For example, should a
small difference in µ have a huge impact, super linear weight,
or a small impact, sub linear weight. In order to find the best
weight function for each feature the individual weight func-
tions were tested on the IVC database.

It turned out that super linear weight performed better, in-
dicating that the HVS is able to detect even small aberrations
from the original. For this reason we tested various functions,
as depicted in fig. 3, with varying degrees of superlinearity:
different slope for linear with capping at the boundaries, as
used in le for EDC; logarithmic or square root, again with
different forms of superlinearity, e.g., normal square root as
used in lum for µ or squared as used in led for LD.

(a) High Quality

(b) Low Quality

Fig. 2: Comparison of high and low quality error maps. The
original image is in the lower left corner, the impaired version
is in the top right corner, the edge error map is top left and the
difference of gradient error map is lower right.

Table 1 shows results for this test, for reasons of brevity
only some results are presented. The table gives the Spear-
man rank order correlation (SROC) for a given function on
each testset of the IVC database as well as the summation
of the SROC scores for overall comparison. The test uses
the final weight functions for all features except for the fea-
ture indicated in the table for which the given weight function
is evaluated. The weight functions indicated in the table are
those illustrated in fig. 3.

The trends towards the selected weight functions as used
in the final version of LEG is clearly visible.

3. EXPERIMENTAL RESULT AND ANALYSIS

In order to evaluate the LEG VQI we compare it to the widely
used SSIM. Furthermore, a comparison to slow VQIs which
highly exploit the HVS, such as VIF and CPA1, is included.
In addition a comparison to fast VQIs, PSNR and LSS, which
rely less on the HVS are performed. Furthermore, a com-
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Fig. 3: Different forms of weight functions, log is actually
calculated as log = log(1 + x)/ log(2) to compensate for the
singularity at 0 and lin2 is min(2x, 1).

Testset

feature weight lar j2000 flou jpeg lumichr sum

LEG 0.8504 0.8837 0.9692 0.8962 0.9392 4.5386

µ lin 0.8535 0.8708 0.9669 0.8942 0.9473 4.5327
µ log 0.8535 0.8708 0.9669 0.8942 0.9473 4.5327

LE sqrt 0.7448 0.8361 0.9263 0.8015 0.6985 4.0072
LE log 0.8038 0.8724 0.9429 0.8375 0.8073 4.2639
LE lin 0.8087 0.8871 0.9519 0.8551 0.8615 4.3643
LE lin2 0.8390 0.8918 0.9692 0.8909 0.9338 4.5248

Table 1: Result of the test of a selected number of weight
functions and features on the IVC database.

parison with the NICE and LFBVS, which use similar image
features as LEG, is included.

The comparison is done based of the LIVE (release 2)
[11], MICT [12] and IVC [13] databases. Three different
image databases were used because a single database can be
biased due to different evaluation methodology, number of
participants, demography, expertise of participants etc. An
example of this are the JPEG and JPEG 2000 compression
testsets which are contained in each of the three databases.
Throughout this section the absolute value of the Spearman
rank order correlation (SROC) is given. We also used the
Kendall tau (τ ) measure for evaluation and both measures co-
incide.

The SROC for LIVE is given in table 2a, for MICT ta-
ble 2b lists the results and for IVC the results are given in
table 2c, where each table shows separate entries per testset.
Likewise the results for τ are given in table 4. The main fo-
cus of the comparison is SSIM versus LEG and the higher
correlation per testset is given in bold for both SROC and τ
for easier reference. Table 3 shows the SROC for NICE and
LFBVS in comparison to LEG and SSIM, for brevity reasons
no Kendall τ results are given for this comparison.

Overall the LEG outperforms the SSIM except for two

(a) LIVE

testset LSS PSNR SSIM LEG VIF CPA1

fastfading 0.843 0.891 0.942 0.971 0.965 0.881
gblur 0.916 0.782 0.903 0.966 0.972 0.927
jp2k 0.953 0.895 0.936 0.945 0.968 0.958
jpeg 0.970 0.881 0.946 0.960 0.984 0.962
wn 0.965 0.985 0.962 0.960 0.985 0.984

(b) MICT

testset LSS PSNR SSIM LEG VIF CPA1

jpeg 0.839 0.285 0.631 0.938 0.907 0.725
jpeg2000 0.908 0.860 0.915 0.914 0.956 0.923

(c) IVC

testset LSS PSNR SSIM LEG VIF CPA1

flou 0.889 0.805 0.869 0.969 0.973 0.902
j2000 0.938 0.850 0.851 0.884 0.936 0.927
jpeg 0.952 0.674 0.805 0.896 0.924 0.906
lumichr 0.914 0.563 0.749 0.939 0.878 0.834
lar 0.863 0.699 0.711 0.850 0.888 0.881

Table 2: Absolute Spearman rank order correlation (SROC)
for LSS, PSNR, SSIM, LEG, VIF, CPA1 on the IVC, MICT
and LIVE databases.

cases. For the white noise testset on the LIVE database the
SSIM reaches a SROC of 0.96151 while the LEG only scores
0.96000, a negligible difference given that the performance
over the other testsets is significantly higher. The other ex-
ception is the JPEG 2000 testset on the MICT database where
again the SSIM outperforms the LEG by a small margin.
However, for the JPEG 2000 testsets on both LIVE and IVC
the LEG performs better. This fluctuation is most likely due
to the, relatively low, number of human observations which
are used as ground truth.

When it comes to class of similar metrics we see that LEG
outperforms NICE on all three databases and all testsets. LF-
BVS on the other hand is slightly better than LEG on the
IVC lar testset and significantly better than LEG, and all other
metrics including VIF and CPA1, on the IVC lumichr testset.

For some testsets the LEG even surpasses the VIF and
CPA1 VQIs. On average the CPA1 is surpassed by LEG al-
though only by a small margin, the LEG is on average sur-
passed by the VIF with an equally small margin. For metrics
which use similar features the LEG on average outperforms
both LFBVS and NICE. The average difference of a given
VQI to the LEG is shown in table 5, and table 6 for NICE
and LFBVS, for the SROC on a per database basis. Posi-
tive results indicate a VQI which is on average better than the
LEG on the given database.



(a) LIVE

testset SSIM LFBVS NICE LEG

fastfading 0.942 0.932 0.959 0.971
gblur 0.903 0.937 0.949 0.966
jp2k 0.936 0.853 0.925 0.945
jpeg 0.946 0.920 0.950 0.960
wn 0.962 0.891 0.910 0.960

(b) MICT

testset SSIM LFBVS NICE LEG

jpeg 0.631 0.814 0.861 0.938
jpeg2000 0.915 0.584 0.881 0.914

(c) IVC

testset SSIM LFBVS NICE LEG

flou 0.869 0.955 0.924 0.969
j2000 0.851 0.825 0.882 0.884
jpeg 0.805 0.889 0.860 0.896
lumichr 0.749 0.969 0.809 0.939
lar 0.711 0.853 0.795 0.850

Table 3: Absolute Spearman rank order correlation for SSIM,
LFBVS, NICE, LEG on IVC, MICT and LIVE databases.

(a) LIVE

testset LSS PSNR SSIM LEG VIF CPA1

fastfading 0.668 0.707 0.784 0.848 0.841 0.698
gblur 0.751 0.584 0.726 0.841 0.858 0.761
jp2k 0.811 0.711 0.771 0.785 0.843 0.817
jpeg 0.849 0.691 0.795 0.822 0.892 0.827
wn 0.835 0.894 0.832 0.824 0.894 0.888

(b) MICT

testset LSS PSNR SSIM LEG VIF CPA1

jpeg 0.644 0.199 0.446 0.791 0.737 0.524
jpeg2000 0.742 0.682 0.752 0.747 0.821 0.764

(c) IVC

testset LSS PSNR SSIM LEG VIF CPA1

flou 0.741 0.667 0.709 0.878 0.899 0.741
j2000 0.803 0.726 0.693 0.705 0.790 0.784
jpeg 0.822 0.519 0.627 0.719 0.791 0.750
lumichr 0.752 0.442 0.563 0.813 0.718 0.631
lar 0.659 0.571 0.571 0.656 0.713 0.705

Table 4: Absolute Kendall tau (τ ) for LSS, PSNR, SSIM,
LEG, VIF, CPA1 on the IVC, MICT and LIVE databases.

database LSS PSNR SSIM VIF CPA1

LIVE −0.031 −0.073 −0.023 0.015 −0.018
MICT −0.053 −0.354 −0.153 0.005 −0.102
IVC 0.003 −0.189 −0.111 0.012 −0.018

Table 5: Comparison of average SROC per database in rela-
tion to LEG.

database SSIM LFBVS NICE

LIVE −0.023 −0.053 −0.022
MICT −0.153 −0.227 −0.055
IVC −0.111 −0.010 −0.054

Table 6: Comparison of average SROC per database in rela-
tion to LEG.

3.1. Runtime Efficiency Analysis

For an efficiency analysis the LEG metric is compared to the
SSIM, LSS, PSNR, NICE and LFBVS. The CPA1 and VIF
are not included since they are only available as matlab im-
plementations and the matlab overhead would unfairly influ-
ence the results. However, the CPA1 uses a full frame Fourier
transformation which is of complexityO(N logN) while the
LEG is O(N). And for the VIF, Sheikh et al. [3] evaluated
that the VIF is 6.5 times slower than the MS-SSIM. The MS-
SSIM is a multi scale variant of the SSIM utilizing wavelet
decompositions and repeat calculations of the SSIM for dif-
ferent subbands, thus the VIF is at least 6.5 times slower than
the SSIM.

As testset the 779 impaired images from the LIVE
database were used. The results of the comparison are given
in table 7 where it is shown that LEG is faster than the SSIM
for best, worst and average case but can not match the effi-
cient simplicity of LSS or PSNR. For the average case LEG
is 6 times faster than the SSIM.

For the edge based metrics, NICE, LFBVS and LEG, the
performance is similar with the LEG outperforming LFBVS
and NICE by a factor of 1.46 and 1.22 respectively.

metric t̄ tmin tmax

SSIM 764 ms 588 ms 882 ms
LFBVS 186 ms 140 ms 247 ms
NICE 155 ms 107 ms 193 ms
LEG 127 ms 94 ms 198 ms
LSS 52 ms 40 ms 83 ms
PSNR 55 ms 43 ms 68 ms

Table 7: Runtime performance of the given metrics over 779
impaired images of the LIVE database.



4. CONCLUSION

We have proposed a novel visual quality index based on local
edge features augmented by knowledge about the human vi-
sual system. We have given the algorithmic details of a new
visual quality index, LEG, and have evaluated it in terms of
runtime efficiency and correlation with human judgement.

It was shown that the proposed VQI is more effective, i.e.,
corresponds better to human judgement, than the SSIM and is
superior in runtime efficiency. Furthermore, on average the
proposed metric is more effective than the CPA1 and has a far
superior runtime efficiency than either CPA1 or VIF.

The LEG also has a higher runtime efficiency than NICE
and LFBVS, which use image features similar to those used
in LEG. Furthermore, LEG is more effective than NICE and
on average more effective than LFBVS.
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