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a b s t r a c t

Celiac disease (CD) is a complex autoimmune disorder in genetically predisposed individuals of all age
groups triggered by the ingestion of food containing gluten. A reliable diagnosis is of high interest in
view of embarking on a strict gluten-free diet, which is the CD treatment modality of first choice. The
gold standard for diagnosis of CD is currently based on a histological confirmation of serology, using
biopsies performed during upper endoscopy. Computer aided decision support is an emerging option in
medicine and endoscopy in particular. Such systems could potentially save costs and manpower while
simultaneously increasing the safety of the procedure. Research focused on computer-assisted systems
in the context of automated diagnosis of CD has started in 2008. Since then, over 40 publications on the
topic have appeared. In this context, data from classical flexible endoscopy as well as wireless capsule
endoscopy (WCE) and confocal laser endomicrosopy (CLE) has been used. In this survey paper, we try to
give a comprehensive overview of the research focused on computer-assisted diagnosis of CD.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Celiac disease (CD) is a multisystemic immune-mediated disease,
which is associated with considerable morbidity and mortality
[4,44,82]. The prevalence of CD in Europe and North America ranges
from 1:80 to 1:300 [11,12,28,29,32,61,66]. In the pathogenesis of CD,
a pivotal contribution is made by a dysregulated immune response
directed against tissue transglutaminase type 2 (TG2) which has been
identified as a prominent autoantigen of CD [27]. The exogenous
trigger of this dysregulated immune response is gluten which is
ingested along with grain-containing food. Gluten is the main protein
of specific grains like wheat, barley and rye.

CD displays itself through a wide spectrum of clinical manifesta-
tions including gastrointestinal symptoms such as abdominal pain,
chronic diarrhea, bloating, nausea and vomiting as well as more
general features like failure to thrive, weight loss and fatigue. There
are also numerous extraintestinal CD manifestations like dermatitis
herpetiformis [6,97], alopecia areata and cerebellar ataxia [47] and
various other neurologic and psychiatric diseases, iron deficiency
[65] and premature osteopenia. It has been estimated that seven

out of eight patients with CD remain undiagnosed because most
cases of CD only have minor gastrointestinal symptoms [13].

In untreated or inappropriately treated CD the inflammation
caused by the dysregulated immune response can disrupt the int-
estinal mucosa thus leading to a total atrophy of the villi, which are
finger-like projections of the mucosa. After embarking on a strict
gluten-free diet (GFD), which is the CD treatment modality of first
choice, the inflammation gradually subsides allowing for mucosal
healing. Strict adherence to a GFD for life is required if acute and
chronic complications are to be avoided [88]. To avoid the most
severe complications of CD, early and reliable diagnosis of CD for
commencing a strict GFD is of vital importance.

Besides for a small proportion of children fulfilling certain
clinical, serological and genetic criteria [64], biopsy of the small
intestine remains the gold standard for CD diagnosis and is usually
recommended as CD requires a lifelong commitment to a strict GFD.

The mucosal alterations caused by CD are classified into different
stages of severity. Oberhuber [77] modified a widely used staging of
severity by Marsh [75] in 1999. This histological classification
scheme identifies six classes, ranging from class Marsh-0 (no visible
change of villi structure) up to class Marsh-3C (absent villi).

Unfortunately, the histological staging of biopsies is subject to a
significant degree of intra- and inter-observer variability [76,1,85,
96,23]. Therefore, observer independent diagnostic methods such as
computer-assisted diagnosis systems are urgently needed. Further-
more, the whole diagnostic work-up of CD, including duodenoscopy
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with biopsies, is time-consuming, cost-intensive, and rather invasive.
Consequently, to save costs, time, andmanpower and at the same time
increase the safety of the procedure, a less invasive approach avoiding
biopsies would be highly desirable. Recent studies by Cammarota et al.
[10,8] investigating such endoscopic techniques report reliable results.
Current diagnostic methods are entirely observer-dependent and
require significant knowledge, expertise, and time.

An interesting field where computer-assisted video analysis could
be useful is the application within follow-up endoscopies of celiac
patients on a GFD, testing if a re-growth of villi has taken place.
Another advantage of computer-assisted video analysis is quality
improvement rendered possible by means of telemedicine, for exam-
ple, by obtaining a second opinion after endoscopic video clips have
been transmitted to institutions that have video analysis software at
their disposal allowing for an observer independent objective diag-
nostic evaluation.

A further limitation of the current gold standard for the diagnosis
of CD is due to the possibly patchy distribution of intestinal mucosa
areas affected by CD in the midst of normal mucosa [5,62]. If, unfo-
rtunately, biopsies are taken only from areas of healthy mucosa
within the duodenum the proper diagnosis of CD will be missed due
to sampling error. A diagnostic tool based on computer-aided pattern
analysis of endoscopic video clips could indicate areas that are
damaged by CD thus improving the targeting accuracy of biopsy.
Additionally, such a system would allow gastroenterologists who do
not routinely take duodenal biopsies recognize mucosal alterations
triggering a decision to biopsy. So even in a diagnostic scenario
involving biopsies, computer-assisted video analysis contributes to a
more reliable diagnosis.

In this work, we try to draw a comprehensive picture of the
research focused on computer-assisted diagnosis of CD in endoscopic
data. In Section 2 an overview of current endoscopic techniques used
in automated diagnosis is given with a discussion of the different
properties and requirements for computer-assisted systems. Section 3
provides a general overview of techniques devised for classification of
CD. Concepts for handling image degradations in the challenging
endoscopic environment are presented in Section 4. Common issues
and flaws in the methodical evaluation of techniques and the
available ground-truth in medical image classification are covered in
Section 5. Finally, Section 6 concludes the paper.

2. Endoscopic techniques used in diagnosis of celiac disease

Besides standard upper endoscopy, several new endoscopic
approaches for diagnosing CD have been applied [14] and used in
research on computer-assisted diagnosis. The modified immersion

technique (MIT [7–9]) allows detailed scanning of the mucosal
surface for villi. Technically, water is rapidly instilled into the
duodenal lumen after evacuation of air by suction through the
endoscope. Villi, if present, straighten up in water and appear as
tiny finger-like structures. In a detailed evaluation, Hegenbart et al.
[52] have presented strong empirical evidence, that MIT is super-
ior for computer-aided diagnosis as compared to the conventional
imaging technique.

Narrow band imaging (NBI [30]) uses specific blue (440–
460 nm) and green (540–560 nm) wavelengths for illumination to
enhance the contrast of vascular patterns on the mucosal surface.
This imaging modality could be a promising technique for classifi-
cation of celiac tissue. Valitutti et al. [90] recently proposed the use
of NBI combined with the water immersion technique which could
also be explored for automated diagnosis. At this point in time, a
systematic assessment of all four imaging modalities in flexible
endoscopy for computer-assisted diagnosis is still open.

Confocal laser endomicroscopy (CLE, also known as visual
biopsy) is a novel technology allowing real-time in vivo microscopy.
CLE allows the inspection of multiple mucosal layers, employing a
laser at different focal points and has been shown to be a promising
technique for diagnosis of CD in endoscopy [70].

A general drawback of endoscopy using flexible endoscopes is the
limited range. As a way of inspecting a much larger area of the
intestine, wireless capsule endoscopy (WCE [80]) is used. In WCE, a
small capsule equipped with a camera is swallowed by the patient.
The capsule records images of the mucosal tissue during its passage
through the intestine, which is then analyzed by a clinician or poten-
tially by an automated system for diagnosis.

Figs. 1 and 2 schematically illustrate the different endoscopic
techniques used for computer-assisted diagnosis of CD.

2.1. Endoscopic markers and diagnosis of CD

The most prevalent endoscopic markers for CD include scalloped
folds, mosaic patterns of the mucosa and a nodular mucosa [25].
After entering the duodenum with the endoscope, the endoscopist
searches for visible CD-induced mucosal lesions indicated by these
markers. All of this features become more pronounced and easier
detectable when using MIT. Consequently, NBI is employed (if
available) to specifically delineate the outline of the residual villous
structures (if present). NBI is used because images captured using
this modality allow a better assessment of the villous height and
shape compared to the conventional white light endoscopy.

It has been reported that the prevalence of endoscopic markers
is significantly lower for partial villous atrophy (58%) than for
subtotal or total villous atrophy (82%) [26]. Consequently, systems
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Fig. 1. Conventional endoscopic imaging, the modified immersion technique (MIT) as well as wireless capsule endoscopy (WCE).
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based on visual endoscopic markers might be subject to error in
diagnosis of CD due to missing features even in the high-risk
population. CLE is a technique that could potentially be used for
classification in accordance to the histologically described changes
of the mucosal tissue instead of relying on visual endoscopic
markers with low sensitivity.

Effort has been put into the identification of temporal features in
CD such as the variations in brightness and texture [22,16,18,21] as
well as changes in the duodenal wall motility [17]. This sort of
features were mainly used in WCE and have shown promising
results. They have not yet been evaluated in a large clinical study yet.

Fig. 3 illustrates the most prevalent endoscopic markers cap-
tured during flexible endoscopy.

2.2. Characteristics of endoscopic techniques

The natural features of endoscopic techniques used in the
diagnosis of CD call for different approaches towards automated
diagnosis. Data from flexible endoscopy is characterized by high
image resolution but rapid non-monotonic movement. As a con-
sequence, spatio-temporal features are rather inappropriate for this
type of data and most work in this context was done using the
approach from a more classical texture classification perspective.
CLE combines microscopy with standard endoscopy, providing the
highest image resolution of all endoscopic methods. Although
classic endoscopic degradations are not expected during endomi-
croscopy, targeting of suspect areas for inspection is a vital part of
the diagnosis chain and comparable to flexible endoscopy. Conse-
quently, a significant number of challenges are shared between
flexible endoscopy and CLE. The most significant difference of those
two techniques compared to WCE is the possibility of interaction
with a clinician during the procedure.

Data captured duringWCE is characterized by slower, monotonic
movement and lower resolutions. This is resulting from the passive
propulsion of the camera through the intestine caused by peristal-
sis. Due to the nature of the data, spatio-temporal features are a
much more promising concept as compared to flexible endoscopy
and CLE. The missing possibility of interaction and the large amount
of recorded data requires different concepts for computer-assisted
systems as compared to flexible endoscopy and CLE. In WCE,
automated systems focused on reducing the workload of a manual
analysis and interpretation by clinicians and providing additional,
discriminative statistics for diagnosis seem to be most valuable.

The properties of flexible endoscopy, CLE and WCE are quite
divergent. Consequently, it is unlikely that methods developed for
one endoscopic technique can be used in the other in a straightfor-
wardmanner. Table 1 gives a summary of the most relevant properties
of each endoscopic methodology for computer-assisted systems.

3. Image representations used in automated diagnosis of CD

The nature of data provided by endoscopy requires systems for
computer-assisted diagnosis to perform visual analysis. Conse-
quently, the main focus of research found in the literature is
focused on methods for the visual classification of duodenal tissue.

3.1. Materials used in experimental studies

The unconstrained gastrointestinal environment provides a chal-
lenging scenario for visual analysis. Endoscopic image degradations
such as blur, bubbles, specular reflections, non-opaque fluids as well
as rapidly changing viewpoints and camera-distances complicate a
systematic analysis of developed methodologies. To avoid unwanted
side-effects caused by such degradations, current research focused on
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Fig. 2. Narrow band imaging (NBI) and confocal laser endomicroscopy (CLE).
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Fig. 3. The most prevalent endoscopic markers in CD.
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the visual classification of intestinal mucosa affected by CD is based
on a defined set of (possibly unrealistic) constraints. Due to the lack
of publicly available data-sets experimental evaluation and develop-
ment is performed using specific private data-sets.

WCE: The data used during experimentation and consequently all
reported results in WCE [22] are based on a rather small number of
patients (approximately 20). The sequences were captured in a
follow up examination after the diagnosis of CD had been confirmed
using standard flexible endoscopy including biopsies. All patients
with positive histology (Marsh–Oberhuber) and serology were on a
GFD. The authors report, that these patients are still considered to
have active CD due to the fact that a period of multiple months is
needed for the diet to cause a reduction in small intestinal villous
atrophy. The entire sequences were interpreted by three experienced
gastroenterologists and selected video clips with 200 image frames
in length were exported as 576�576 pixel images.

Flexible endoscopy: The data used during experimentation in
flexible endoscopy varied between publications. Initial work
[95,94] was based on a rather small amount of data (approxi-
mately 200 images of the duodenal bulb and approximately 200
images of the second part of the duodenum) recorded with the
conventional image capturing technique. Hegenbart et al. [52]
compared MIT with the conventional technique and found MIT to
be superior for computer-assisted diagnosis. Subsequently, all
work in flexible endoscopy was based on images captured using
MIT. The amount of data that was used was reported as 600
images from 170 patients in 2011 [93,56] and 1050 images with
320 patients in 2014 [67]. The results reported in this section are
all based on comparable data-sets from 2011.

The flexible endoscopy data-set is based on video data captured
during standard endoscopy (the majority using the MIT) in
children suffering from signs and symptoms making upper

endoscopy necessary. The severity of the disease was classified
based on histological findings (Marsh–Oberhuber) in children with
positive CD serology. During the procedure, still images of areas
with specific visual manifestations of CD or the absence of the
disease were captured by the endoscopist. The full image frames
were later manually segmented by a domain expert into possibly
multiple, non-overlapping regions of size 128�128 pixels [52].

CLE: The CLE data-set used by Grisan et al. [45] in their initial
work is still of rather small size (128 images from 30 patients).
Subjects were recruited from a population with known CD, sus-
pected CD and controls. CLE images and forceps biopsies of the
same site were then taken sequentially at standardized locations.

A variety of different classification methodologies, including
variations of support vector machines (SVM), k-nearest neighbor
classifiers (kNN), Bayes classifiers and random forests were used in
this context. According to the published literature, it seems clear
that the most significant impact on the accuracy of automated
diagnosis lies within the proposed image representations however.
Consequently, the focus of the presented methodologies in the
following subsections lies on the feature extraction methods used
for classification of CD. Due to different data-sets and evaluation
methodologies used across the literature, it is difficult to compare
the obtained results. Consequently, herein we will only report the
results of methods that were evaluated in a comparable fashion.
The presented experiments were based on the data described in
this section. Note that the data-sets used in experimentation was
approximately balanced between cases and controls (in terms of
samples) in this experiments. For the sake of consistency we
present the classification accuracy (denoted as overall classification
rate (OCR)) of each paper in the following section. Table 2 presents a
summary of the reported results.

3.2. Spatial domain features

In flexible endoscopy, special attention was payed to image
representations in the spatial-domain. A method particularly devel-
oped for classification of CD is the Shape-Curvature-Histogram (SCH)
[34,36] (OCR 85–87) which is a robust shape based feature,
describing local curvature along edges and is supposed to capture
the shape of duodenal villi.

Ciaccio [15] explicitly measured the fissure length in endo-
scopic images in a semi-automatic system (OCR 64). Based on
manually selected sub-images, morphological skeletonization was
performed. The total length of the skeletonized fissures was then
used as one-dimensional feature.

Other, more general purpose image representations that were
applied include the Edge Co-Occurrence Matrix [81,34] (OCR 86)
describing edge information, the classical Haralick features [51,34]
computed from gray-level Co-Occurrence Matrices (OCR 87) and
features based on the autocorrelation between an image and a
morphologically transformed version of the same image using the
Distribution of Spatial Size (SSD) [2,34] (OCR 90).

A very promising class of spatial image representations was
based on Local Binary Patterns (LBP [78]). LBP represents images as
distributions of pixel neighborhoods, encoded as binary patterns
and has been shown [55,53,58,41,43,45] to be very robust and
accurate in classification of CD (OCR 83).

Various specialized LBP-variations have been developed for
computer-assisted diagnosis of CD. Vécsei et al. [93] proposed two
new LBP-based methodologies, particularly optimized for endo-
scopic environments. The WT-LBP (OCR 88) method was designed
to combine different wavelet subbands with appropriate LBP-
based operators, while the ELTP (OCR 86) method combines the
benefits of the robust Local Ternary Patterns (LTP [86]) with the
highly discriminative Extended Local Binary Patterns (ELBP [63])
using an adaptive thresholding, based on local image statistics.

Table 1
Relevant properties of endoscopic techniques for computer-assisted diagnosis.

Property Flexible endoscopy WCE CLE

Movement Fast Slow None
Resolution High Low High
Interactive Yes No Yes
Modalities Multiple Single Single
Field of view 120–1701 140–1701 500� 500 μm

Table 2
Accuracies (OCR) of feature representations used in automated diagnosis of CD.

Flexible endoscopy

Spatial Size Distribution 90 LDB 79.5–82.5
Wavelet-based LBP 88 MRF 78.5–80.5
Local Binary Patterns 83–86 Correlation

signatures
82

Shape-Curvature-Histogram 85–87 Fourier
statistics

82

Local Fractal Dimension - MR8 92 Multi-Fractal-
Spectrum

89

Multiscale Blob Features 86 Dense SIFT 83.5
WCE

Basis Image Statistics 71 Local Image
Statistics

65

Volumetric statistics 64 Wall
Motility

59

CLE

Pyramidal LBP 93
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Explicit frequency filtering using appropriate cut-off frequencies
in combinationwith LBP-based image representations [53] has been
explored (OCR 83-86) as well. Gadermayr et al. [41] employ LBP
based on an adaptive neighborhood for implicit distortion correc-
tion while Hegenbart et al. [58] compute a scale- and orientation-
adaptive LBP-representation, providing reliable features in scenarios
with highly varying orientations and scales. Finally, Grisan et al. [45]
used LBP with a pyramidal image decomposition of CLE imagery
(OCR 93).

Spatial domain features seem to be very well suited for the
visual classification of CD. In addition to providing a high classi-
fication accuracy, the majority of methods in this category are
robust in terms of distortions and fast to compute. Both of these
strengths are necessary requirements for real-time applications in
endoscopy.

3.3. Transform domain features

Various feature extraction methods used for classification of CD
in flexible endoscopy are based on image domain transformations.
A benefit of computing features in transform domains is the
possibility of employing different categories of information, such
as multi-scale and multi-orientation information in wavelets sub-
bands or frequency and phase information in the Fourier domain.

Wavelet-based methods have been used frequently for the
classification of CD throughout literature. The most elementary
features [49,34] are based on classical statistics such as the mean,
the standard deviation or entropy of subband-coefficient energies
(OCR 70). Due to the low discriminative power of this type of
features, more sophisticated approaches based on the wavelet
packet decomposition have been employed. Using the best basis
centroids method (BBC) [71,95,93,34] (OCR 77–82) as well as the
local discriminant basis (LDB) algorithm [49,83,95,93,34] (OCR
79.5–82.5) the discriminative power of elementary statistical
features could be further improved.

Other wavelet-based image representations that have been
applied include classical Gabor statistics [74,52,93] (OCR 80) as
well as features based on Gaussian Markov Random Fields (MRF)
in the wavelet domain [48,93,34] (OCR 78.5–80.5).

In addition to the standard wavelet transform, the dual-tree
complex wavelet transform (DT-CWT, [84]) has been applied for
classification of CD. Discriminative features include correlation
signatures [91,93] (OCR 82) as well as the Weibull parameters of
the marginal distribution of the complex wavelet coefficients
[68,52,93] (OCR 77–82).

In a complementary fashion to the wavelet transform, Fourier
based features have been proposed as well. Ring shaped filters with
variable width, optimized in an evolutionary framework, were used
to compute elementary statistics of the frequency domain coeffi-
cients [94,52,93] (OCR 82).

Comparing the classification performance achieved by features
computed in transform domains (OCR 70–82.5) with the rates of
spatial features (OCR 81–90), a lower accuracy was obtained when
using transform domain features. This could potentially be caused
by endoscopic distortions, negatively influencing the transforma-
tion process or a generally lower discriminative power of the image
representations.

3.4. Scale-invariant features

Due to highly varying camera-perspectives and scales in endo-
scopic sequences, image representations invariant to scaling and
rotation could be superior to features affected by such transforma-
tions. Consequently, scale-invariant image representations have
been applied to data from flexible endoscopy [89,60,58]. Among
the most promising scale-invariant features are the Multi-Fractal-

Spectrum [99,60] (OCR 89) and Local Fractal Features based on MR8
filtering [92,60] (OCR 92). Scale- and Orientation-Adaptive LBP [58]
have been specifically designed for environments with highly
varying camera-scales and orientations and are another promising
image representation for endoscopy.

The majority of scale-invariant methods perform similarly to
non-invariant image representations however. This is true for
methods based on the DT-CWT and the D3T-CWT [89,72] (OCR
66-88), dense SIFT features [79,60,58] (OCR 83.5) as well as
Multiscale Blob Features [98,60] (OCR 86).

Among the worst methods in terms of classification accuracy
were features based on pulse coupled neural networks such as
SCM [100,60] (OCR 64) and ICM [73,60] (OCR 67) as well as slide
Matching of Gabor features [33,60] (OCR 71–75) and Local Affine
Regions [69,60] (OCR 71).

The highly variable performance of scale-invariant features illus-
trates that such image representations are not always suited for
difficult environments such as in endoscopy. Specular reflections,
blur or bubbles are potentially misleading the identification of key-
points or the estimation of affine shapes. Even more, the scale-
invariance properties of a large number of methods are based on
theoretical concepts and assumptions, which rarely hold true in
practice. Consequently, the majority of features specifically designed
for scale-invariance perform similarly to features affected by scaling.
In general, scale-invariant image representations are computationally
more demanding as compared to more elementary features. There-
fore, the availability of such methods could potentially be restricted
to offline scenarios in computer-assisted diagnosis.

3.5. Spatio-temporal features

Spatio-temporal features are a powerful tool for analyzing
sequences of images or videos such as produced by WCE. The
general benefits of this type of image representation are a higher
robustness in terms of extraneous endoscopic degradations and the
possibility of identifying CD even if the gastrointestinal manifesta-
tions of the disease are not visualized directly in the recorded data.

Initial work [16] (OCR 65) on spatio-temporal features, com-
puted from WCE sequences, was based on elementary local statis-
tics (such as pixel brightness and image texture) measured over
10�10 pixel subimages and then averaged for 56�56 subimages
per frame. The authors reported spatio-temporal differences in
brightness and texture of celiac images as compared to controls.

In celiac patients, gastrointestinal motility abnormalities were
reported [87,3], which may result from a diminished number of
enterochromaffine cells producing hormones that regulate intestinal
motility. Ciaccio et al. [17] use dynamic estimates of wall motility for
image classification by characterizing the motility according to frame-
to-frame changes in lumen shape and position (OCR 59).

Based on the assumption that the reduced gastrointestinal
motility in celiac disease affects peristalsis, Ciaccio et al. [22,18,21]
(OCR 71) estimate the dominant period in a sequence of WCE
images as the tallest peak in the ensemble average power spectrum,
which is then used to compute salient information based on a set of
basis images. The results show that celiac images had more detailed
texture than controls and exhibited more variation in brightness. In
celiacs, correlations existed between greater textural alterations vs.
longer dominant periods.

Shape-from-shading is a technique for the reconstruction of the
three dimensional structure of an object, based on illumination
information. In [20] (OCR 64), shape-from-shading was applied to
reconstruct the duodenal structure from WCE images for an
analysis of luminal macro-architecture. Based on a syntactical
analysis, protrusions were identified and used to compute volu-
metric statistics. Significant differences of these statistics between
celiac patients and controls were reported.
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Due to the relatively low accuracy but complementary char-
acteristic of the presented features, a polling protocol for predict-
ing CD in WCE analysis was presented, based on a majority voting
scheme using a variety of features [19]. The experiments showed
that a combination of complementary, low-discriminative feature
can be used to construct an accurate classification system (OCR
88). This is impressive because no manual segmentation of WCE
sequences was performed and endoscopic image degradations
were handled implicitly. As a consequence of the small number
of used sequences during experimentation, however the general
performance of this system on independent data is still unclear.

4. The gastrointestinal-tract: a challenging environment

The gastrointestinal tract is a very challenging environment for
computer-assisted diagnosis. As mentioned in Section 3, the major-
ity of methods for automated diagnosis were developed based on
constrained data-sets, allowing systematic and objective evalua-
tions. Obviously, this is not a realistic scenario. As a consequence,
the impact of common image degradations as well as concepts for
handling challenges provided by the endoscopic environment was
specifically studied in a significant number of publications.

The appearance of duodenal tissue is highly dependent on
extrinsic camera parameters such as distance and angle towards
the mucosa. As a combined effect of the geometric properties of the
gastrointestinal tract with the large field of view of optical systems
used in endoscopic hardware, certain areas of the visualized tissue
are generally blurred or underexposed and noisy. The insufflation
and suction of air during flexible endoscopy as well as the instilla-
tion of water into the lumen can lead to a significant amount of
bubbles on the duodenal walls. Fluids on the mucosal surface can
potentially cause specular reflections of the illuminating point light
sources attached to the endoscope. These types of image degrada-
tions are likely to affect the feature extraction process and the
performance of a computer-assisted system for diagnosis.

Due to the challenging environment, methods for informative
frame identification and segmentation are generally applied across
the literature in related fields of endoscopic image processing. Most
of the proposed methodologies, however, are tailored toward
specific applications or endoscopic scenarios and cannot be used
in a straightforward manner for CD diagnosis.

An approach combining informative frame detection and seg-
mentation in classification of CD was proposed by Gadermayr et al.
[42]. The authors combine multiple elementary quality measures
(brightness, contrast, blur, noise and reflections) to perform an
automated segmentation of image frames from flexible endoscopy.

An alternative concept by Hegenbart et al. [54,57] was based on a
one-class support vector machine (SVM), solely trained on celiac
features for implicit handling of certain endoscopic image degra-
dations.

In WCE, a way of handling extraneous features is based on
robust spatio-temporal features computed from noise insensitive
basis images [18,21].

4.1. The duodenal gang: blur, bubble, noise and reflection

It is safe to assume that endoscopic image degradations have a
negative effect on the performance of computer-assisted diagnosis.
The severity of these effects is unclear however. Consequently,
Hegenbart et al. [54] systematically investigated the implicit hand-
ling of the most common image degradations (blur, bubble, noise
and reflections) based on a one-class SVM. In an experimental
evaluation using LBP-based methods for feature extraction, image
degradations were simulated to allow a fine grained analysis (with
corresponding ground-truth) of the individual effects on the pro-
posed classification pipeline. Fig. 4 illustrates real and simulated
endoscopic image degradations used by Hegenbart et al. [54].

The authors report that certain types of image degradations,
such as bubbles and reflections, only affect a subset of LBP-based
methods and can actually be compensated using the proposed
approach. Blur and noise had the most impact on the accuracy of
the system. The unconstrained classification of CD based on LBP
using a one-class SVM is feasible to some degree. Extreme cases of
image distortions might require an additional step of informative
frame identification however. By relaxing the needs for informa-
tive frame identification to extreme cases, the general reliability of
a fully automated system could possibly be increased.

Another, unorthodox approach is based on degradation adaptive
texture classification [39]. Using a set of measures for the severity of
image degradation (noise, blur, scale, illumination and contrast), the
set of features used for training is adaptively adjusted in such a way
that only images with a high similarity in terms of distortions to the
image classified are used. The authors reported significantly improved
classification accuracies (up to 5 percentage points) as compared to
using the entire corpus of training data.

4.2. Gastrointestinal regions: Where am I?

Sequences in flexible endoscopy are commonly non-monotonic
in terms of the passage through gastrointestinal regions. During
the procedure, the endoscopic tip often traverses the stomach and
the duodenum multiple times. Consequently, the visual appear-
ance of esophageal and gastric tissue in endoscopic data is a

Original Simulated Real Original Simulated Real

NoiseBubbles

Original Simulated Real Original Simulated Real

Blur Reflections

Fig. 4. Real and simulated endoscopic image degradations.
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common thing. A classification model based on duodenal tissue is
potentially subject to error if visualized tissue of other (unknown)
gastrointestinal regions is provided. Consequently, Hegenbart et al.
[57] studied if tissue visualized from other gastrointestinal regions
(esophagus and stomach) would be misclassified as CD using their
approach based on a one-class SVM.

The authors reported that the visualized appearance of eso-
phageal and gastric tissue can be very close to duodenal tissue
affected by villous atrophy (see Fig. 5). The experimental evalua-
tion indicates that celiac tissue cannot be distinguished from
esophageal and gastric tissue in such a classification approach.
Consequently, it is likely that an additional mechanism for
tracking the endoscope's location or identification of the intest-
inal region is required to handle non-monotonic transits and the
visualization of unknown gastrointestinal regions in a fully
automated system.

4.3. Extrinsic camera parameters: high variance

Highly varying extrinsic camera parameters such as distance and
angle to the mucosa can potentially lead to a blurred visualization of
the tissue (close distance) or to a missing visualization of small
spatial structures such as villi (far distance) and could therefore be
inappropriate for visual classification (see Fig. 6).

The effects of varying camera-scales were explicitly studied by
Hegenbart et al. [57]. Experimental data indicated that the visua-
lization of duodenal tissue at close and far distances is inappropriate
for classification with features affected by scaling such as LBP.

Consequently, scale- and viewpoint-invariant methods have
been employed [60] for the classification of CD. In this work, the
authors showed in a comprehensive study that scale-invariant
image representations often exhibit an intrinsically lower discrimi-
native power as compared to features affected by scaling. Conse-
quently, scale-invariant features often do not pose a significant

benefit. A small subset of such methods (Fractal Dimension and
affine-adaptive LBP) were promising however.

Recently, a scale- and rotation-invariant image representation
based on highly discriminative LBP (SOA-LBP) has been proposed,
particularly for scenarios with significantly varying camera-scales
[58] such as endoscopy.

4.4. Interlacing

Interlaced scanning is a technique that has been widely used in
video systems to double the perceived frame rate without increasing
the required bandwidth. This technique is still in use by certain
endoscopic video hardware today. Various specialized de-interlacing
techniques have been developed over the last decades to re-
construct full frames from two interlaced half-frames. The impact
of interlaced scanning and the benefits of applying suited de-
interlacing techniques for computer-assisted systems was specifically
studied [59].

The authors state that de-interlacing does not have a significant
positive effect on the classification accuracy of endoscopic data with
indication for CD. The benefits of applying de-interlacing were
comparable to the effects of Gaussian filtering. Considering the
accuracy of the system, the authors could not identify significant
differences between simple and more complex de-interlacing techni-
ques. Consequently, computer-assisted systems based on interlaced
data could potentially be used without an explicit need for de-
interlacing.

4.5. Do not believe your eyes: lens distortion

A special type of endoscopic image degradation, present in all
endoscopic images, is a consequence of the wide-angle nature of
the optical systems used in endoscopic hardware. Such barrel-type
distortions introduce non-linear changes in the images, leading to
a significantly smaller visualization of outer areas. Fig. 7 illustrates
the visual manifestation of lens distortions in endoscopic imagery.

The effects of endoscopic lens distortions as well as distortion
correction on computer-assisted diagnosis have been extensively
studied [46,34,43,50]. The general consensus in the literature is
that the effects of lens distortion and the benefits of distortion
correction are highly dependent on the used type of features.
Features based on low-frequency components of the images are
merely affected by lens distortion while image representations
based on high-frequency components clearly benefit from distor-
tion correction. The largest improvements reported were in the
range of 5–6 percentage points. In some cases the classification
accuracy dropped by approximately 9 percentage points however.

Interpolation artifacts and varying camera-scales were identi-
fied as the main restrictions of distortion correction performance
[35]. Consequently, distortion adaptive classification [38,40], dis-
tortion compensated features based on the Fourier transform [37]
as well as intrinsic distortion correction [41] have been proposed.

A particular application for lens distortion correction is an
improved visualization for clinicians during endoscopy [43]. It was
shown in a study involving several gastroenterologists that the
accuracy of diagnosis by domain experts using such a system is
actually negatively affected. This is most likely a consequence of
their medical training based on distorted imagery.

5. Evaluation of methods in medical image classification

The nature of medical data differs from the characteristics of
data used in more classical texture classification scenarios. As a
consequence of a potentially small number of available patients
and an uneven distributions of healthy and unhealthy individuals

Esophagus Stomach Celiac Disease
Fig. 5. Visual appearance of different GI-regions.

Fig. 6. Visualization of tissue at different camera distances.
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undergoing treatment, multiple samples per patient are often used
to build balanced data sets of sufficient size. This often results in
an intrinsic bias of data sets used in medical image classification.

To deal with restricted amounts of data available for experi-
mentation, cross-validation techniques are used for predicting
how well developed methodologies will generalize. Particularly
in medical image classification, assumptions of such techniques
are often violated by the inherent intrinsic bias of the created
data-sets. The performance predicted by cross-validation is con-
sequently subject to error.

Methods for feature extraction or classification are usually para-
metrized by a set of values such as thresholds, number of neighbors or
filter coefficients. The optimal range of values of such parameters is
often unclear from a theoretical standpoint and usually determined
empirically. Consequently, parameter optimization is often performed
in the process of development or evaluation. In a combination with
cross-validation, optimization can be dangerous and can potentially
lead to over-fitting, reducing the accuracy of performance prediction
significantly.

A common flaw in the evaluation of methods is based on using
the predicted classification accuracy of the cross-validation as the
objective function for optimization. Hegenbart et al. [56] reported
prediction errors when using this strategy of up to 7.5 percentage
points (OCR 92 vs. OCR 84.5). The authors suggest to use nested
cross-validations to avoid such errors, optimizing parameters in a
separate cross-validation based on the current training fold.

Due to violated assumptions of cross-validation techniques,
caused by the intrinsic bias of medical image sets, errors of up to
7 percentage points were reported (Leave-One-Out Cross Valida-
tion: OCR 90; Distinct Sets: OCR 83). The violation of assumptions
in cross-validation techniques can be avoided by using a data
partition based on patients instead of images.

The prediction error of nested-cross validations using patient-
based partitions was reported to be only 1.4 percentage points as
compared to the most realistic scenarios with two independent data-
sets. Although nested-cross validations add a significant amount of
computational complexity to the experimental setup, such schemes
are mandatory for realistic predictions if optimization is performed.

5.1. Staging schemes and noisy ground-truths

In a revision of the Marsh-scheme for staging the severity of
CD, Oberhuber et al. [77] classified Marsh type 3 lesions into three
sub-groups. Unfortunately, the definitions of type Marsh-3A (mild
or moderate villous shortening) and Marsh-3B (marked villous
shortening) lack objective criteria, contributing to an increased
intra- and inter-observer variability [31,76,1].

Only four publications [93,60,15,43] on computer-assisted diag-
nosis of CD are focused on a reduced 4-class Marsh-like scenario
(including classes Marsh-0, Marsh-3A, Marsh-3B and Marsh-3C).
The authors reported classification rates between 50 and 68% and
point out problems with lacking distinction of visual appearance
between classes of type Marsh-3. Vécsei et al. [93] suggest to use
more simplified, visually focused systems such as proposed by
Corazza and Villanaci [24] or Ensari [31] for automated diagnosis.
Consequently, the majority of work throughout the literature has

been focused on the clinically most relevant two-class case (celiac
disease vs. healthy).

As a side-effect of the potentially high intra- and inter-observer
variability, the histological Marsh–Oberhuber based ground-truth
used for developing computer-assisted systems is subject to a
certain amount of noise. As a consequence of the patchy distribu-
tion of CD, discrepancies between areas with known histology and
images used for developing computer-assisted systems could pot-
entially exist.

A noisy ground-truth as basis for development and training of a
computer-based system could be problematic and effectively reduce
the accuracy of and confidence in the automated diagnosis. Recently,
Kwitt et al. [67] were able to show that existing noise in ground-
truths can be compensated by a sufficiently large corpus of training
data. In a crowd-sourcing context, endoscopic data with indication
for CD were labeled by non-experts and used to create a classification
system that performed comparably to a system trained on data with
histological ground-truth (and therefore a substantial smaller
amount of label noise). This finding consequently indicates that a
moderate amount of label noise (as present in histological ground-
truths) can actually be compensated implicitly by a classification
system based on a training corpus of sufficiently large size.

6. Conclusion

Since the first publication on computer-assisted diagnosis of CD
in 2008, a lot of progress towards a fully automated system has
been made. A large variety of image representations has been
studied and a solid knowledge of the behavior of methods in an
endoscopic environments has been acquired. Based on constrained
data-sets from flexible endoscopy, CD can currently be classified
with an accuracy of up to 92%. Based on a majority voting using
multiple complementary spatio-temporal features, classification
accuracies in sequences of WCE currently reach 88%. The small
number of sequences used for evaluation, however, still leaves open
questions about the general performance of this methodology.
Recently reported results by Grisan et al. using data from CLE
indicate that this imaging modality could potentially be promising
for automated diagnosis (OCR 93). Again, the small data-set size in
CLE is problematic.

Significant effort was put into the study and development of
concepts for handling various challenges in endoscopic imagery
such as image degradations, heavily varying extrinsic camera-
parameters, interlacing and lens distortion. As an alternative
approach to informative frame detection, a classification pipeline
based on a one-class SVM has been proposed for the implicit
handling of the most common endoscopic image degradations.

Robust features computed from degradation insensitive basis
images have been used to implicitly handle extraneous features in
WCE and in an unorthodox approach, degradation adaptive classi-
fication has been successfully performed.

Lens distortion has been shown to affect the accuracy of auto-
mated diagnosis. Consequently, distortion adaptive classification,
distortion compensated features as well as intrinsic distortion
correction have been used to improve the accuracy of classification.

Distorted (Checkerboard) Distortion Corrected Distorted (Duodenum) Distortion Corrected

Fig. 7. Lens distortion and distortion correction applied to endoscopic images.
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A solid understanding of issues and common flaws in the
evaluation of methods in a medical context has been gained. It
was shown that medical data in particular has to be treated with
extreme care if cross-validation is used in combination with any
type of parameter optimization. Empirical data indicates that a
moderate amount of label noise in the ground-truth can be
compensated if a large amount of training data is available.

Although a big step towards the establishment of a fully
automated system has been made, there are still a lot of challenges
to be solved before a system for computer-assisted diagnosis can be
used in clinical routine. One of the most stressing issues, especially
in flexible endoscopy and CLE, is the development and establish-
ment of robust and accurate methodologies for informative frame
detection and segmentation. Although the implicit handling of
various endoscopic image degradations is possible to some degree,
images affected by blur and large camera distances are not very well
handled in such an approach.

Combining spatio-temporal features with highly discriminative
texture features as used in still image classification is another
challenging but promising concept. It may be possible that other
highly significant celiac markers could be integrated into such an
approach, potentially improving the general accuracy and robust-
ness of the systems.

Finally, it should be a general ambition to provide publicly
available data-sets of CD. We are highly convinced that the research
progress and interest on computer-assisted diagnosis of CD would
thrive if public data-sets were available to fellow researchers.
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