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Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac dis-
ease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and
multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific
properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum,
some scale invariant (and often even viewpoint invariant) methods provide classification results improv-
ing the current state of the art. However, not each of the investigated scale invariant methods is applica-
ble successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly
assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically
should be. Results imply that scale invariance is not a key-feature required for successful classification of
our celiac disease dataset.

� 2013 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Texture analysis is one of the fundamental issues in image pro-
cessing. The majority of existing texture analysis methods work
with the assumption that texture images are acquired from the
same viewpoint (Zhang and Tan, 2002). This limitation makes
these methods useless for applications, where textures occur with
different scales, orientations, or translations. Therefore, scale and
orientation invariant texture analysis approaches have been pro-
posed (see Tan (1995) or Zhang and Tan (2002) for surveys on this
topic). Invariance is important for many applications in medical
image processing, since medical images are often acquired at dif-
ferent scales and viewpoints. This is especially true for endoscopic
imagery since mucosal texture is seen from different perspectives
and distances to the cavity wall depending on the relative position
of the endoscopes tip and the mucosa surface. Fig. 1 illustrates that,
depending on the angle between endoscope and the surface (mid-
dle case) and the curvature of the surface (rightmost example), dif-
ferent distances between camera and surface may even occur
within a single image.

In gastroscopic (and other types of endoscopic) imagery, muco-
sal texture is usually found with different perspective and scale
(see Fig. 3). That means that the mucosal texture shows different
spatial scales, depending on the camera perspective and distance
to the mucosal wall (see Fig. 1).
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As a consequence, endoscopic imagery typically exhibits muco-
sal texture with different and/or mixed spatial scales, depending
on the corresponding acquisition conditions (see Fig. 3 for exam-
ples from our celiac disease database).

In this work, we focus on scale invariant texture classification
approaches being applied in computer-assisted diagnosis of celiac
disease. While most of the used techniques in this work exhibit
additional invariance to other transformations like rotation, trans-
lation, and illumination, we specifically concentrate on scale
invariance for the reasons explained above. The contributions of
this manuscript are as follows:

� We apply general purpose scale invariant texture descriptors
for the classification of duodenal mucosa texture imagery aim-
ing at the staging of celiac disease.
� Several approaches have been developed to achieve scale (and

often orientation) invariance for multi-scale and multi-orienta-
tion wavelet transforms. These techniques are mostly applica-
ble to any multi-scale and multi-orientation transform. We
employ the Dual-Tree Complex Wavelet Transform (DT-CWT)
(Selesnick et al., 2005) instead of the originally proposed trans-
forms and are able to show that our approach works better for
the target celiac disease database than other wavelet-type
transforms (like e.g. Gabor filters (Fung and Lam, 2009) or steer-
able pyramids (Montoya-Zegarra et al., 2007) (see Table 3). An
additional benefit is the improved ability to compare the differ-
ent strategies to achieve scale invariance if the underlying
transform is the same in all cases.
� We propose a new affine invariant method based on Local Ter-

nary Patterns (LTPs).
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Fig. 1. The field of view (FOV) depending on the endoscopic viewpoint and distance
to the mucosal wall.
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� We conduct explicit experimental tests for scale invariance for
all feature descriptors considered based on the Columbia–
Utrecht (CUReT) (Dana et al., 1999) dataset and the Celiac
Disease Scale (CDS) database (see Section 6.2.2) following
ideas in Varma and Zisserman (2009), revealing that claimed
scale invariance cannot be verified for many of the schemes
investigated.
� Most approaches are tested for their ability of invariant texture

analysis on public databases like Brodatz (Brodatz, 1966),
CUReT (Dana et al., 1999), KTH-TIPS (Hayman et al., 2004), or
the UIUCTex (Lazebnik et al., 2005) database. Correspondingly,
most of the considered methods have been optimized for the
corresponding datasets. Hence we have adjusted some of these
methods (e.g. using different parameters or replacing parts of
the original algorithm) to make them applicable in a sensible
manner for the classification of celiac disease (e.g., use of differ-
ent measures in techniques based on fractal analysis in Section 4
or application of a different clustering strategy for the dense
Scale Invariant Feature Transform (SIFT) features in Section 5).
Fig. 2. Example images for

Fig. 3. Images with differen
� We show, that methods extracting highly contrast sensitive
information work well for the classification of celiac disease,
specifically methods based on fractal analysis.

This paper is organized as follows. In Section 2 we briefly intro-
duce the concept of computer-assisted diagnosis of celiac disease
by automated classification of duodenal mucosa texture patches
and review the corresponding state-of-the-art. In Section 3, we de-
scribe strategies to achieve scale invariance for wavelet transforms
including the application of the discrete cosine transform (DCT) or
the discrete Fourier transform (DFT) to the feature vectors of the
wavelet transforms (Häfner et al., 2010; Lo et al., 2004),
re-arrangement of feature vectors (cyclic shifting, dominant scale,
and slide matching) (Montoya-Zegarra et al., 2007; Lo et al., 2009;
Fung and Lam, 2009), or methods that preprocess the image before
the wavelet transform is being applied (Pun and Lee, 2003).
Section 4 describes techniques based on fractal analysis while
Section 5 covers a heterogeneous set of additional approaches to
generate scale invariant texture descriptors (e.g. neural nets (Ma
et al., 2010; Zhan et al., 2009), SIFT features and region detectors
(Fei-Fei and Perona, 2005; Zhang et al., 2006), and multiscale blob
features (Xu and Chen, 2006)) as well as a new affine invariant
method we propose which is based on scale-normalized Laplacian
maxima combined with Local Ternary Patterns (Hegenbart and
Uhl, 2013). Experimental results with respect to classification of
the celiac disease dataset and with respect to effective scale invari-
ance (by means of the CDS database and parts of the CUReT data-
base) are presented in Section 6. Section 7 concludes our work.
2. Computer-assisted diagnosis of celiac disease

Celiac disease is a complex autoimmune disorder in genetically
predisposed individuals of all age groups after introduction of glu-
ten containing food. The gastrointestinal manifestations invariably
comprise an inflammatory reaction within the mucosa of the small
intestine caused by a dysregulated immune response triggered by
ingested gluten proteins of certain cereals (wheat, rye, and barley),
especially against gliadine. During the course of the disease, hyper-
plasia of the enteric crypts occurs and the mucosa eventually
the respective classes.

t perspective and scale.
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looses its absorptive villi thus leading to a diminished ability to ab-
sorb nutrients. The real prevalence of the disease has not been fully
clarified yet. This is due to the fact that most patients with celiac
disease suffer from no or atypical symptoms and only a minority
develops the classical form of the disease.

Since several years, prevalence data have continuously been ad-
justed upwards. Fasano et al. (2003) state that more than 2 million
people in the United States, this is about one in 133, have the dis-
ease. People with untreated celiac disease even if asymptomatic
are at risk for developing various complications like osteoporosis,
infertility and other autoimmune diseases including type 1 diabe-
tes, autoimmune thyroid disease and autoimmune liver disease.
This is why early diagnosis is of highest importance. Endoscopy
with biopsy is currently considered the gold standard for the diag-
nosis of celiac disease. Besides standard upper endoscopy, several
new endoscopic approaches for diagnosing celiac disease have
been applied (Chand and Mihas, 2006). The modified immersion
technique described in Cammarota et al. (2006) is based on the
instillation of water into the duodenal lumen for better visualiza-
tion of the villi. Furthermore magnifying endoscopy (standard
endoscopy with additional magnification) has been investigated
(Cammarota et al. (2004)). For conducting capsule endoscopy
(Petroniene et al., 2005) the patient swallows a small capsule
equipped with a camera that takes images of the duodenal mucosa
during its passage through the intestine. All these techniques aim
for detection of total or partial villous atrophy and other specific
markers that show a high specificity for celiac disease in adult pa-
tients like scalloping of the small bowel folds, reduction in the
number or loss of Kerkring’s folds, scalloped folds, mosaic patterns,
and visualization of the underlying blood vessels (Niveloni et al.,
1998).

Automated classification as a support tool is an emerging option
for endoscopic treatments (e.g. (Liedlgruber and Uhl, 2011a,b)).
Systems are being developed that support physicians during sur-
gery or highlight malignant areas during an endoscopy for further
inspection. Such systems could also be used for training purposes.
In the context of celiac disease, an automated system identifying
areas affected by celiac disease in the duodenum would offer the
following benefits (among other):

� Methods that help indicating specific areas for biopsy might
improve the reliability of celiac disease diagnosis. As biopsying
is invasive and the number of biopsy samples should be kept
small, optimal targeting is desirable. This targeting can be sup-
ported by an automated system for identification of areas
affected by celiac disease.
� The whole diagnostic work-up of celiac disease, including duo-

denoscopy with biopsies, is time-consuming and cost-intensive.
To save costs, time, and manpower and simultaneously increase
the safety of the procedure it would be desirable to develop a
less invasive approach avoiding biopsies. Recent studies (Cam-
marota et al., 2006, 2007) investigating such endoscopic tech-
niques report reliable results. These could be further
improved by analysis of the acquired visual data (digital images
and video sequences) with the assistance of computers.
� The (human) interpretation of the video material captured dur-

ing capsule endoscopy (Petroniene et al., 2005) is an extremely
time consuming process. Automated identification of suspicious
areas in the video would significantly enhance the applicability
and reduce the costs of this technique for the diagnosis of celiac
disease.

The celiac state of the duodenum is usually determined by vi-
sual inspection during the endoscopic session followed by a biopsy
of suspicious areas. During endoscopy at least four duodenal biop-
sies are taken. The severity of the mucosal state of the extracted
tissue can be histologically staged according to a modified Marsh
scheme (Oberhuber et al., 1999) which is based on Marsh (1992).
According to this staging scheme, we have divided available duo-
denal image material into four different classes, Marsh-0 Marsh-
3a, Marsh-3b and Marsh-3c (see Fig. 2).

Marsh-0 represents a healthy duodenum with normal crypts
and villi, Marsh-3a, Marsh-3b and Marsh 3c have increased crypts
and mild atrophy (3a), marked atrophy (3b) or the villi are entirely
absent (3c), respectively. Types Marsh-3a to Marsh-3c span the
range of characteristic changes caused by celiac disease, where
Marsh-3a is the mildest and Marsh-3c is the most severe form.
We also consider the 2-class case, where we only differentiate be-
tween healthy (Marsh-0) and unhealthy (Marsh-3a, Marsh-3b and
Marsh 3c) mucosal types, respectively.

As described in Section 1 endoscopic image material of mucosal
texture is usually found at different perspective and scale (see
Fig. 3 for examples from our database). Therefore, the employment
of scale invariant feature description techniques is a highly intui-
tive idea for a computer-assisted diagnosis system.

Prior approaches dealing with the computer-aided diagnosis of
celiac disease using endoscopic imagery do exist but they do not
focus on scale invariance. With respect to feature descriptors in
previous papers, we have investigated several variants of Local Bin-
ary Pattern (LBP) based operators (Vécsei et al., 2011; Hegenbart
et al., 2011), band-pass type Fourier filters (Vecsei et al., 2009),
as well as histogram and wavelet-transform based features (Uhl
et al., 2011a; Vécsei et al., 2008). We have also systematically com-
pared the classification performance of two different image captur-
ing techniques and various pre-processing schemes using a set of
different feature extraction and classification methods (Hegenbart
et al., 2009). Smoothness/sharpness measures have been used as
features in Ciaccio et al. (2011). Techniques involving temporal
information computed from videocapsule endoscopy have been
described recently (Ciaccio et al., 2010b,a).
3. Scale invariant wavelet based features

In this section we describe scale invariant texture descriptors,
that are based on multi-scale and multi-orientation transforms like
the discrete wavelet transform, the Gabor wavelet transform and
the dual-tree complex wavelet transform (DT-CWT). Various wave-
let-based feature extraction methods have been proposed for
endoscopic image analysis (since approximately 2003) (e.g. Kwitt
et al., 2009; Barbosa et al., 2008, 2009; Iakovidis et al., 2004). The
subbands of these methods contain information about different
scales and orientations of an image. The strategies to make these
transforms invariant to scale change are to transform or reorder
the corresponding transform coefficients or to find a different rep-
resentation for the images before applying the respective trans-
forms. The underlying principles how to achieve scale invariance
are similar for the approaches in this section (except for the ap-
proach that re-arranges the image before the transformation). If
an image is scaled, then the subbands of the scaled image are
shifted across the scale dimension compared to the subbands of
the unscaled image. In Fig. 4 we see two checkerboard patterns
in the first row, where the right pattern is a scaled version of the
left one with a scale factor of two. In the second row of Fig. 4,
the corresponding subband means (when using DT-CWT) of the
checkerboard patterns are shown. We can see that the subband
means of the scaled checkerboard pattern (the right one) are
shifted one scale level up compared to the subband means of the
unscaled checkerboard pattern.

Most strategies used to achieve scale invariance of the methods
described are applicable to any multi-scale and multi-orientation
transform method. We propose to apply these different strategies



Fig. 4. Cyclic shifting of the means of the subbands across the scale dimension.
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to the DT-CWT as opposed to the various (wavelet) transforms
published in the original papers. The advantages of this approach
are as follows: First, the DT-CWT provides better results for the
classification of celiac disease than any other type of multi scale
transform (as we will see in Table 3). Second, the different strate-
gies to achieve scale invariance are easier to compare if the under-
lying transform is the same in all cases. In fact, the results for
classifying celiac disease are better for all strategies if we use the
DT-CWT instead of the originally proposed (wavelet) transforms.
One possible reasons for that is the shift invariance of the DT-
CWT. Shift invariance is important for the classification of celiac
disease, since the representation of features of an image by wavelet
coefficients should not be dependent on the position of the fea-
tures in the image. Another possible reason is the high redundancy
of the DT-CWT (it is using two separate Discrete Wavelet Trans-
forms (DWT) and thus has double the redundancy of the DWT),
which provides extra information for the analysis.

Kingbury’s DT-CWT (Selesnick et al., 2005) divides an image
into six directional (15�, 45�, 75�, 105�, 135�, 165�) oriented sub-
bands per level of decomposition. The DT-CWT analyzes an image
only at dyadic scales. For some of the strategies proposed in this
section, a finer scale resolution is required. The double dyadic
dual-tree complex wavelet transform (D3T-CWT) (Lo et al., 2009)
overcomes this issue by introducing additional levels between dya-
dic scales. These additional levels are generated by recursively
applying the DT-CWT to a downscaled version of the original im-
age (using a factor of 2�0.5 in downscaling). For each subband we
calculate the statistical features’ mean (l) and standard deviation
(r) from the absolute values of the subband coefficients. We de-
note a statistical feature of a subband Sl,d with scale level
l 2 {1, . . . , L} and orientation d 2 {1, . . . , D} as ql,d. The feature vec-
tor of an image is composed of these statistical features collected
from the different subbands.

3.1. Applying discrete fourier transform and discrete cosine transform
to DT-CWT

Features that are approximately scale invariant can be gener-
ated by applying the discrete Fourier transform (DFT) across the
scale dimension of a feature vector of the D3T-CWT (Häfner et al.,
2010) (see Fig. 5):
Qn;d ¼
1ffiffiffi
L
p
XL

l¼1

ql;de
�i2pðl�1Þðn�1Þ

L ;
with n 2 {1, . . . , L}, d 2 {1, . . . , D}.
The vector fvSI = {jQ1,1j, . . . jQL,1j, jQ1,2j, . . . jQL,2j, . . . jQL,Dj} pro-

vides a texture feature that is nearly invariant to scale. The feature
curve of a feature vector shifts if input texture is scaled (see Fig. 4).
If a feature curve qm

l;d is a cyclic shifted version of the old one

qm
lðmodLþ1Þ;d ¼ qlþmðmodLþ1Þ;d;m 2 f1; . . . ; Lg

� �
, then applying DFT to

the feature curves followed by taking the magnitude of it provides

the same results for the old and new feature curve (jQn;dj ¼ Q m
n;d

��� ���,
where Qm

n;d is defined like Qn,d, but with using qm
l;d instead of ql,d).

The reason for that follows from the Shift Theorem of the DFT:

Qm
n;d ¼ Qn;de

2piðn�1Þm
L (with e

2piðn�1Þm
L

��� ��� ¼ 1). The problem is, that the Shift

Theorem is only valid if the input signal ql,d is periodic, but it is
questionable why these statistical features should be periodic.
However if the statistical features are close to zero at both ends,
the approach provides good scale invariance. In Fig. 5 we can see
the means of the subband coefficients from the red color channel
of an image of the celiac disease database (we separately apply
the DFT to the features of the three color channels of the RGB color
space). We can see that the coarse end (l = 6) has the highest
means, which are absolutely not close to zero. This of course ques-
tions input periodicity.

Another possibility is to consider only the real part of the DFT,
which is a cosine transform. This leads us to the application of
the Discrete Cosine Transform (DCT) across scale dimension (see
Häfner et al., 2010). The DCT is not invariant to cyclic shifts of
the feature curve and so it is not theoretically clear if the DCT en-
hances the scale invariance of the DT-CWT in general. Even if the
DCT would be invariant to cyclic shifts, this would not enhance
scale invariance since the input signal ql,d is not periodic. Results
in Häfner et al. (2010) indicate that the DCT enhances the scale
invariance at least for small differences of scales (maximum scale
factor �1.4), tests for bigger scale differences were not made.

A related approach (Lo et al., 2004) is to resize each D3T-CWT
subband to the size of the original image. In this way we get a local
feature vector for each pixel consisting of the subband coefficients
(absolute values) at the position of the pixel. Like in the approach
before, the DFT is applied across the scale dimension of these local
feature vectors (see Fig. 5), but this time to each local feature vec-
tor instead of the statistical features of the subbands:
Qlocal
n;d ðx; yÞ ¼

1ffiffiffi
L
p
XL

l¼1

Sl;dðx; yÞe
�i2pðl�1Þðn�1Þ

L ;
with n 2 {1, . . . , L}, d 2 {1, . . . , D}. For each ‘‘transformed subband’’
Qlocal

n;d we compute the statistical features mean and standard devia-
tion. Since the operations for achieving scale invariance are applied
to the local subband coefficients (instead to the global statistical
subband features mean and standard deviation like in the ap-
proaches before) we denote this method as ‘‘D3T-CWT with DFT (lo-
cal)’’. In extending Lo et al. (2004) we additionally use the DCT
instead of the DFT and denote this method as ‘‘D3T-CWT with
DCT (local)’’. A feature vector of DT-CWT or DT-CWT with DCT
has a length of 216 (6 orientations � 6 scale levels � 3 color chan-
nels � 2 statistical features per subband). In case of DT-CWT with
DFT, for each direction d, the following features form complex con-
jugates: Q2;d ¼ Q �6;d and Q3;d ¼ Q �5;d. That means 2 of the 6 scale lev-
els (scale levels 5 and 6) are redundant, which reduces the length of
the feature vector to 144 elements. If using D3T-CWT instead of DT-
CWT, the feature vector length is doubled.



Fig. 5. Computing the discrete cosine transform (DCT) or discrete Fourier transform (DFT) across the scale dimension of the subband means.
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3.2. Cyclic shifting of local features

Instead of computing the DFT across the scale dimension of the
local feature vectors of the D3T-CWT, these vectors are cyclically
shifted across the scale dimension (in the original approach (Lo
et al., 2009), the local feature vectors are additionally shifted across
the orientation dimension to achieve orientation invariance, but
since we are primarily interested in scale invariance we omit that).
First we square each element of the local feature vectors and apply
subsequently a circular-correlation (only across the scale dimen-
sion) of the squared feature vector with a specific mask M (see
Fig. 6).

The result of this process is a correlation vector, which is as long
as the number of scale levels is. Now the original feature vector is
cyclically shifted in the scale dimension, so that the first scale level
of the new local feature vector is the scale level of the original local
feature vector, in which the correlation vector had its maximum
(see Fig. 6). Then the subbands (consisting of the corresponding
feature values) are modeled by a Rayleigh distribution (Lo et al.,
2009) and the parameters of this distribution are used to form
the final feature vector of an image. Since we use only one statisti-
cal feature per subband, the number of features per image is half
the number of features using the D3T-CWT (216).

3.3. The dominant scale approach

The accumulated energies of the scales l 2 {1 . . . , L} are com-
puted across the orientations d 2 {1, . . . , D} (Montoya-Zegarra
et al., 2007):

EðlÞ ¼
X

d

X
x

X
y

jSl;dðx; yÞj:
A scale invariant representation is achieved by computing the
dominant scale (DS) of the images followed by feature alignment.
The dominant scale is defined as the scale with the highest accu-
mulated energy E(l). Now the feature vector, consisting of mean
and standard deviation of the subbands, is circularly shifted, such
that the features of the dominant scale are the first ones in the fea-
ture vector.

We face a problem when applying this method to our database
(which is identical for the original approach (Montoya-Zegarra
et al., 2007) using steerable pyramid decomposition and for our
version using the DT-CWT). Due to subsampling, subbands at
increasing scale have a lower number of coefficients. On the other
hand, the absolute values of coefficients in higher scales are dis-
tinctively higher than those in lower levels (see the subband means
in Fig. 7). Nevertheless, the dominant scale will almost ever occur
at scale level l = 1 due to the high number of coefficients.

In fact, when using the DT-CWT on our data set, the DS is always
at scale level l = 1, and for the steerable pyramid decomposition the
DS is not at scale level l = 1 for 17 images only (out of 612 images).
That is why we adapted the dominant scale approach by using sub-
band means instead of the subband energies. Using this approach,
for 38 images the DS is not at scale level l = 6 which improves the
situation only slightly. Feature vector values are almost always
monotonically increasing with the scale level (subband means)
or monotonically decreasing with the scale level (energy of the
subbands) and therefore shifting the features across the scale
dimension according to the DS does not make a big difference.
The original approach of Montoya-Zegarra et al. (2007) also deter-
mines the dominant orientation, but as we are more interested in
scale invariance we omit this process (results have been deterio-
rated when using this approach). The length of the feature vector
is equal to that of the DT-CWT (216).



Fig. 6. Cyclic shifting of local feature vectors.

Fig. 7. Comparison of the subband means and energies.
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3.4. The slide matching approach

Slide matching (Fung and Lam, 2009) was originally proposed
for the Gabor transform but is used with the D3T-CWT in our con-
text. The original approach is first made orientation invariant by
summing up the means and standard deviations of the subbands’
coefficients with same scale level. In adapting the proposed ap-
proach to our scenario (Fung and Lam, 2009), we compute the scale
levels 1, 1.5, 2, . . . , 6 of the training set and the scale levels 2, 3, 4, 5
of the evaluation set. The distance between an image of the train-
ing set and an image of the evaluation set is the distance that is
minimized by sliding the feature vectors along the scale dimension
against each other (see Fig. 8).

Since we are primarily interested in scale invariance we also use
a modified version of slide matching without summing up the sub-
bands of the same scale level. Consequently, we have for each scale
level 12 (6 orientations, 2 parameters per subband) instead of 2
features for the slide matching process. Therefore in case of the ori-
ginal version the length of the feature vector is equal to that of the
DT-CWT (216) and in case of the modified version, the length of the
feature vector is only a sixth of that of the DT-CWT (36).
3.5. The log-polar approach

The log-polar transformation maps points from the Cartesian
plane (x, y) to points in the log-polar plane (n, g) (see Fig. 9). In this
coordinate system, scaling and rotation is converted to
translations.

Scale invariance (and orientation invariance) can be achieved by
analyzing the transformed image with a shift invariant transform
like the adaptive row shift invariant wavelet packet transform (as
originally proposed in Pun and Lee (2003)) or the DT-CWT used in
this work. Unlike in Pun and Lee (2003), we compute subband
means and standard deviations as features (instead of energies)
and do not use the best basis algorithm. Obviously, the length of
the feature vector is equal to that of the DT-CWT (216).

4. Scale invariant methods based on fractal analysis

For a point set E defined on R2, the fractal dimension of E is de-
fined as

dimðEÞ ¼ lim
d!0

log Nðd; EÞ
� log d

;

where N(d, E) is the smallest number of sets with diameter less than
d that cover E. The set is made up of closed disks of radius d or
squares of side length d. In Fig. 10 we present some examples for
the fractal dimensions of different objects.

Intuitively, the fractal dimension is a statistical quantity that
gives a global description of how complex, how irregular or how
rough a geometric object is. However, the fractal dimension alone,
as defined before, does not provide a rich description. It is just a
single value.



Fig. 8. (a) Different scale factors are used for the training set images and for the
evaluation set images. Each node denotes two elements, a sum of means and a sum
of standard deviations. (b) The sliding of evaluation set image feature vector along
augmented training set image vector.

Fig. 9. The log-polar transformation.

Fig. 10. Fractal dimension D in 2D space. (a) Smooth spiral curve with D = 1, (b) the
checkerboard with D = 2 and (c) the Sierpinski-Triangle with D � 1.6.
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The local fractal dimension or also called the local density func-
tion, used in two of the three methods presented in this section,
provides a more powerful and adaptive description. Let l be a fi-
nite Borel regular measure on R2. For x 2 R2, denote B(x, r) as the
closed disk with center x and radius r > 0. l(B(x, r)) is considered
as an exponential function of r, i.e. l(B(x, r)) = c rD(x), where D(x)
is the density function and c is some constant. The local density
function (or also called local fractal dimension) of x is defined as

DðxÞ ¼ lim
r!0

log lðBðx; rÞÞ
log r

:

The density function measures the ‘‘non-uniformness’’ of the inten-
sity distribution in the region neighboring the considered point.

The local density D is invariant under the bi-Lipschitz map,
which includes view-point changes and non-rigid deformations
of texture surface as well as local affine illumination changes. A
bi-Lipschitz function f must be invertible and satisfy the constraint
c1kx � yk 6 kf(x) � f(y)k 6 c2kx � yk for c2 P c1 > 0. Consequently,
local fractal dimensional based approaches are especially interest-
ing for developing scale-invariant feature descriptors, and so also
for the classification of celiac disease.

By choosing different measures l, the local density function can
be adapted to different image processing tasks. As we will see,
measures based on derivative information work best for our data-
set, since their contrast sensitiveness is a good feature to differen-
tiate between images with or without celiac disease. The reason for
that is that images of patients with celiac disease have less or en-
tirely no villi and therefore a lower amount of contrast compared
to images of patients without celiac disease.

4.1. The multi-fractal spectrum

First, the local fractal dimension is computed for each pixel of
an image (Xu et al., 2009b). Let Ea be the set of all image points x
with local density in the interval a:

Ea ¼ fx 2 R2 : DðxÞ 2 ag:

Usually this set is irregular and has a fractal dimension
f(a) = dim(Ea).

We denote the convolution ⁄ between an image I = I(x, y) and a
Gaussian kernel Gr ¼ Gðx; y;rÞ ¼ 1

2pr2 e
x2þy2

2r2 (i.e. Gaussian blur) as
follows:

Iðx; y;rÞ ¼ IðrÞ ¼
Z 1

�1

Z 1

�1
Iðxþ u; yþ vÞGðu; v;rÞdudv

and Ix(r) is the first derivative of I(r) in the direction of x.
In the original approach (Xu et al., 2009b) three different types

of measures l(B(x, r)) are defined for the computation of the local
density:

lðBðx; rÞÞ ¼
Z

Bðx;rÞ
IðrÞdx

lðBðx; rÞÞ ¼
Z

Bðx;rÞ

X4

k¼1

ðfk � IðrÞ2Þ
1
2 dx

lðBðx; rÞÞ ¼
Z

Bðx;rÞ
jðIxxðrÞ þ IyyðrÞÞjdx;

ð1Þ

where {fk, k = 1, 2, 3, 4} are four directional operators (derivatives)
along the vertical, horizontal, diagonal, and anti-diagonal direc-
tions. The feature vector of an image I consists of the concatenation
of the fractal dimensions f(ai) for the three different measures
l(B(x, r)).

In case of our dataset, it turned out that the Laplacian measure
(Eq. (1)) is the only one of the three measures which leads to sen-
sible results. The reason for that is very probably the comparatively
highest contrast sensitiveness of the Laplacian measure. So con-
trasting to the original proposal (Xu et al., 2009b), the employed
feature vector only has entries of the third type. We use 14 non-
overlapping intervals a and so the length of the feature vector
per image is 14.



Fig. 11. The process of construction and discretization of the orientation histogram
when using a neighborhood of size 3 � 3.
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4.2. Fractal analysis using filter banks

Instead of partitioning the local densities of images in sets E(a)’s
and computing their fractal dimensions, we first convolve the
images with the MR8 filter bank (Varma and Zissermann, 2005;
Geusebroek et al., 2003), a rotationally invariant, nonlinear filter-
bank with 38 filters but only 8 filter responses, and compute local
fractal dimension afterwards (Varma and Garg, 2007; Uhl et al.,
2011b). Filters can smooth over image noise and lead to more ro-
bust features. However, they also have the drawback of lowering
the level of bi-Lipschitz invariance.

Let us introduce the measures

lðBðx; rÞiÞ ¼
ZZ

Bðx;rÞ
jf ðiÞjdx ð2Þ

lðBðx; rÞiÞ ¼
ZZ

Bðx;rÞ
jðSx þ SyÞ � ðGr � f ðiÞÞjdx; ð3Þ

where f(i) is the i-th MR8 filter response image with 1 6 i 6 8.
Sx = [�1, 0, 1; �2, 0, 2; �1, 0, �1]/4 and Sy = �S(x)T are Sobel filters.
The first measure (Eq. (2)) is the measure originally proposed in
Varma and Garg (2007), while the second measure (Eq. (3)) is pro-
posed in Uhl et al. (2011b), where the original fractal method of
Varma and Garg (2007) has been optimized for the celiac disease
database. We follow the optimized approach using the second mea-
sure and computing the local density for each of the 8 filter re-
sponses (in Varma and Garg (2007), only 5 of the 8 filter
responses are used, in our experiments the results are better using
all 8 responses). For each pixel of an image, we result in an 8-
dimensional local density vector. For each class of the training set
we aggregate the local density vectors of the images of this class
and learn cluster centers (called textons) by k-means clustering.

The next step is to learn models for each image of the training
and evaluation sets. Given an image, its corresponding model is
generated by first convolving it with the filter bank, computing
the local density of each filter response and then labeling each local
density vector with the texton that lies closest to it. Distances be-
tween two frequency histograms (models) are measured using the
v2 statistic. The length of the feature vector per image is the num-
ber of classes of the according image database multiplied by 10 (10
clusters per class).

4.3. Fractal dimensions for orientation histograms

Similar to SIFT features (see next section), this method (Xu et al.,
2009a) is based on computing local orientation histograms. First
the gradient magnitude and the orientation of a given pixels neigh-
borhood are computed. The orientation histogram from the neigh-
borhood of the given pixel is formed by discretization of
orientations by weighing the gradient magnitude (see Fig. 11).
The histogram is then assigned to one of 29 orientation histogram
templates, which are constructed based on the spatial structure of
the orientation histogram (the number of significant image gradi-
ent orientations and their relative positions). We now have for
each pixel (for a given neighborhood size) a value between 1 and
29, depending on the template it is assigned to. By setting a pixel
to one if it is assigned to template i (i 2 {1, . . . , 29}) and to zero
otherwise, 29 binary images are generated, from which we com-
pute the fractal dimensions (by means of the box-counting
method1). This process is applied for eight different neighborhood
sizes (scale levels). In order to get better robustness to scale changes,
finally a wavelet transform (a redundant tight wavelet frame sys-
tem) is applied across the scale dimension (the different neighbor-
hood sizes) of the fractal dimensions. The final feature vector of an
1 rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/BoxCounting.htm.
image consists of the detail and approximation coefficients of the
wavelet transform. This feature vector can be viewed as the informa-
tion about the changes with respect to scale (the neighborhood sizes
represent the scale levels). According to (Xu et al., 2009a), this en-
hances the scale invariance, since the scale changes are often consis-
tent across multiple scales for natural textures. The length of the
feature vector per image is 1160 (29 orientation histogram tem-
plates � 8 neighborhood sizes � 5 (2 different high-pass filters each
with 2 decomposition levels and a low-pass filter using only the sec-
ond decomposition level).
5. Further approaches

In this section we will present approaches that are neither
based on wavelet transforms nor on fractal analysis. The first two
approaches are based on the widely used SIFT features (Lowe,
1999) and affine invariant region detectors (Zhang et al., 2006),
two approaches work with neural networks (Ma et al., 2010; Zhan
et al., 2009) and one approach analyzes characteristics of con-
nected regions (blobs) (Xu and Chen, 2006). Finally we cover the
affine invariant Local Ternary Patterns which are based on the
analysis of multi-scale second moment matrices in a Laplacian
scale space (Hegenbart and Uhl, 2013).

5.1. SIFT features and region detectors

The Scale Invariant Feature Transform (SIFT) (Lowe, 1999) is
probably the most popular feature used in computer vision (Ved-
aldi and Fulkerson, 2008). SIFT detects salient image regions (key-
points) and extracts discriminative yet compact descriptors of their
appearance. SIFT keypoints are invariant to viewpoint changes like
translation, rotation, and rescaling of an image.

First an image is convolved with Gaussian filters at different
scales r. By means of detecting the maxima/minima of the Differ-
ence of Gaussians (DoG), local scale space extrema are found. The
DoG is given by

DoGðx; y;rÞ ¼ IðkrÞ � IðrÞ:

Local scale space extrema which have low contrast or are poorly
localized are eliminated, the rest are used as keypoints. Using the
Gaussian filtered image (with keypoint scale r), gradient magni-
tudes and orientations are computed from the neighboring region
of the keypoint to form an orientation histogram. Now the gradient
information is rotated according to the dominant orientation of the
orientation histogram and weighted by a Gaussian function. A local
descriptor uses 16 histograms, aligned in a 4 � 4 grid, each with 8
orientation bins. This results in a feature vector containing 128
(16 � 8) elements for each keypoint of an image.

The original approach Lowe, 1999 is suited for object recogni-
tion, in this work however we are interested in texture classifica-
tions, SIFT keypoints do not make sense in our context. We apply
two different ways to deal with that problem:

http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/BoxCounting.htm
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1. We use dense SIFT features (Fei-Fei and Perona, 2005), that
means that we compute SIFT descriptors for each pixel of an
image.

2. We use a region detector that is suited for texture images and
then apply the SIFT descriptor to the detected regions (Zhang
et al., 2006).

A region detector suited for texture recognition is the Harris
detector (Lazebnik et al., 2005; Mikolajczyk and Cordelia, 2004).
The Harris detector is based on the second moment matrix MI. This
matrix must be adapted to scale changes to make it independent of
the image resolution:

MIðr; cÞ ¼ Gr �
I2
x ðcÞ IxðcÞIyðcÞ

IxðcÞIyðcÞ I2
yðcÞ

 !
;

The Harris corner measure l is defined as follows:

lðr; cÞ ¼ detðMIðr; cÞÞ � a trace2ðMIðr; cÞÞ:

Note that l simultaneously lives in two scale spaces (caused by the
Gaussian kernel G) with parameters c and r. The inner scale c,
which is less critical than the outer scale r, is set to a constant va-
lue. Local maxima of this measure determine the location of Harris
interest points, and then the Laplacian scale selection procedure is
applied at these locations to find their characteristic (outer) scale
r. The Laplacian scale selection finds the characteristic scale at a gi-
ven point (x, y) by maximizing the Laplacian-of-Gaussian:

Lðx; y;rÞ ¼ r2jIxxðrÞ þ IyyðrÞj: ð4Þ

The elliptic region around a found location is described by its prin-
cipal axes corresponding to the eigenvectors of MI and axis length
depending on the eigenvalues. For affine invariance, a region is nor-
malized by mapping it onto a unit circle and using a rotational
invariant descriptor, the SIFT descriptor.

So for both ways, using dense SIFT features or using the Harris
detector (combined with the affine invariant mapping and the SIFT
descriptor), we get features from the SIFT descriptor as output. For
both approaches we follow the strategy applied in Section 4.2, as
opposed to the classical dense SIFT approach (Fei-Fei and Perona,
2005). For each class of the training set we aggregate the SIFT
descriptors of the images of this class and learn cluster centers
(textons) by k-means clustering. Given an image, its corresponding
model is generated by labeling its SIFT descriptors with the texton
that lies closest to it. Distances between two frequency histograms
(models) are measured using the v2 statistic. For both approaches,
the length of the feature vector per image is the number of classes
of the according image database multiplied by 10 (10 clusters per
class).

It should be noted that instead of using the Harris detector it
would be possible to use other region detectors (e.g. Laplacian
(Zhang et al., 2006) and Hessian region detectors (Mikolajczyk
and Schmid, 2002)) and descriptors (e.g. SPIN and RIFT features
(Zhang et al., 2006)), the principle of the approach however re-
mains the same. Following the terminology in the original papers,
we denote the approach using the dense SIFT features as ‘‘Dense
SIFT Features’’ and the approach using the Harris detector as ‘‘Local
Affine Regions’’.

5.2. Pulse-coupled neural networks based methods

Pulse-coupled neural networks (PCNN’s) (Ranganath et al.,
1995) are neural models proposed by modeling a cat’s visual cor-
tex. PCNN is a neural network algorithm that produces a series of
binary pulse images when stimulated with an image. The intersect-
ing cortical model (ICM) (Ma et al., 2010) and the spiking cortical
model (SCM) (Zhan et al., 2009) are two methods derived from
the PCNN, which are faster and provide better or similar results
as compared to the PCNN (Ma et al., 2010; Zhan et al., 2009).

The ICM model consists of two coupled oscillators, a small num-
ber of connections and a non-linear function. F is the state oscilla-
tor and H the threshold oscillator. Together they constitute the
neurons pulse sequence Y. The mathematical model of ICM is de-
scribed as follows:

FijðnÞ ¼ fFijðn� 1Þ þ Iði; jÞ þ
X

kl

MijklYklðn� 1Þ;

HijðnÞ ¼ gHijðn� 1Þ þ hYijðn� 1Þ;

YijðnÞ ¼
1 for FijðnÞ > HijðnÞ;
0 otherwise:

�

where f, g and h are scalars, M = [0.5, 1, 0.5; 1, 0, 1; 0.5, 1, 0.5] is the
connection function through which the neurons communicate, I is
the input image and n 2 {1, . . . , N}. The pair (i, j) stands for the posi-
tion of the neuron in the map and (k, l) is that of its neighboring
neurons. The outputs of ICM are N binary images, which represent
features like texture, edges, and segments.

The mathematical model of the SCM is described as follows:

FijðnÞ ¼ fFijðn� 1Þ þ Iði; jÞ þ Iði; jÞ
X

kl

MijklYklðn� 1Þ;

HijðnÞ ¼ gHijðn� 1Þ þ hYijðn� 1Þ;

YijðnÞ ¼
1 for FijðnÞ > HijðnÞ;
0 otherwise:

�

As for ICM, the outputs of SCM are N binary images. The final
feature vectors of the SCM and ICM, respectively, consist of the
entropies of the N = 37 binary output images.

The authors (Ma et al., 2010; Zhan et al., 2009) state that their
approaches (ICM and SCM) are scale invariant (and rotation and
translation invariant), however their manuscripts miss a valid jus-
tification for this statement. They reference a further publication
(Johnson, 1994) in which scale invariance is explained. The prob-
lem is that there a special kind of PCNN is considered and that scale
invariance is only shown for objects on a uniform background, not
for textures.

5.3. Multiscale blob features

In order to derive multiscale blob features (Xu and Chen, 2006),
we apply a series of flexible threshold planes to a textured image
and then use the topological and geometrical attributes of the gen-
erated blobs in the obtained binary images to describe image tex-
ture. The flexible threshold planes FP are determined by Gaussian
blurring:

FPðx; y; r; bÞ ¼ bþ Iðx; y;rÞ;

where r2 is the variance to control the spread of the window and b
is the bias. By applying the flexible threshold planes to the grayscale
image I, we obtain binary images

gbðx; y; rÞ ¼
1 if Iðx; yÞ > FPðx; y;r; bÞ;
0 otherwise:

�

In each binary image, all 1-valued pixels and 0-valued pixels are
grouped into two sets of connected regions called blobs (see
Figs. 12 and 13).

The original approach uses two features to describe an image,
the number of blobs and the shapes of the blobs. The shape feature
indicates how compact the blobs of an image are (the compactness
of a blob is here defined as the maximum of the distances from the
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pixels of a blob to the centroid of the blob, divided by the square
root of the number of pixels of the blob). The multiscale blob fea-
tures are invariant to rotation and gray-level scaling (the bias b of
FP(x, y; r, b) is depending on the standard deviation of the input
image). The shape features are invariant to spatial scaling within
a small range (the compactness is similar for spatial scaling within
a small range), but the number of blobs change to some extent. As
opposed to the original approach (Xu and Chen, 2006), we sepa-
rately classify the images for the two blob features, since the shape
feature is scale invariant and the number of blobs is not. The length
of the final feature vector is 480 (30 values for r � 8 values for
b � 2 (black and white regions of a binary image)).

5.4. Affine invariant local ternary patterns

The Local Binary Pattern approach as introduced by Ojala et al.
(1996) as well as the Local Ternary Patterns method proposed by
Tan and Triggs (2007) are not affine invariant. An extension to
the method suggested by Mäenpää (2003) uses multiple Gaussian
filters with varying sizes to improve the support area of the oper-
ator. This extension adds multi resolution to the operator but
misses a scale selection mechanism. We propose an affine
invariant method based on Local Ternary Patterns that employs
scale-normalized derivatives of local scale space maxima for scale
selection. We compute the multi-scale second moment matrices at
given scales to analyze textures according to their affine shape
along an ellipse. The method shares the idea of using the scale
space framework with methods such as the SIFT feature detector
and other region detectors as discussed in Section 5.1. The idea
of combining scale space maxima with Local Binary Patterns has
also been explored by Li et al. (2012).

Instead of using the DoG (difference of Gaussian) approximation
to the Laplacian of Gaussians as used by SIFT we construct the scale
space by computing the scale-normalized Laplacian (see Eq. (4)) of
each image I at each location x 2 N2 at different scales with
r ¼ 1:5ffiffi

2
p k

; k 2 f1; . . . ;20g denoted as ð�MIðx;rÞÞ. The initial scale is
chosen such that it corresponds to the standard radius of LBP (1.5).

Due to the fact that not all locations in an image attain a local
maximum and a maximum between scales, we compute a scale
mask to improve the reliability of the scale estimation. This is espe-
cially useful when textures are not strictly periodic and attain mul-
tiple scales as is the case in celiac disease. The computation
involves the detection of local maxima at each scale. We exploit
the fact that pixels in close spatial proximity to a maximum are
at the same or a relatively close scale to the detection scale of
the corresponding maximum.

We compute the multi-scale second moment matrices at each
location x of an image I which is attaining a local scale space max-
Fig. 12. Process of extra
imum. We use the detection scale of the maximum as the local
scale t, the integration scale s ¼

ffiffiffi
2
p

t is depending on the detection
scale.

lðx; t; sÞ ¼
Z

n2R2
ðrIÞðx� n; tÞðrIÞTðx� n; tÞ gðn; sÞdn:

With (rI)(x; t) denoting the gradient of the scale space orientation
at scale t and g denoting a Gaussian function. The second moment
matrix summarizes the gradient distribution of the area around a
pixel location at a given scale. The eigenvalues of the matrix charac-
terize the length of the axes of an ellipse (up to some constant mul-
tiplier) while the eigenvectors describe the orientation of the axes.
Due to the fact that the orientation of the ellipse described by the
second moment matrix is normal to the detected blob we compute
the inverse of the second moment matrix. The inverse results in a
rotation by ninety degrees without modifying the ratios of the axis
lengths.

The absolute sizes of the axes given by the second moment
matrices are unknown, we therefore normalize the ellipses such
that the circumference is equal to the circumference of the de-
tected maxima treated as circle (the radius at scale r is

ffiffiffi
2
p

r). To
do so, we apply Ramanujan’s formula for approximating the cir-
cumference of the ellipse (with axes a and b) and solve the qua-
dratic equation for a constant scaling factor c

ffiffiffi
2
p

r2p ¼ p 3ðac þ bcÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ac þ bcÞðac þ 3bcÞ

q� �
:

The axes of the ellipse are then re-scaled by the appropriate
solution of c.

After the computation of the support area of a local maximum
(the ellipse given by the second moment matrix at the position
and scale of the maximum), all locations within this area are as-
signed to the scale and response of that maximum (we call this a
corresponding maximum for a location). In our methodology it is
possible that a single location contains multiple possible scales
and responses, this is due to the fact that the support areas of mul-
tiple maxima might overlap.

We observed that the reliability of a location attaining the same
scale as a corresponding maximum decreases with spatial distance.
To compensate for this, we compute the reliability of a scale at a
distance d from a corresponding maximum using a Gaussian prob-
ability density function choosing rp such that the reliability of a gi-
ven scale at a distance of the length of the semi minor axis b of the
corresponding maximum’s normalized support area is 0.5. We
additionally use the responses of all corresponding maxima for a
pixel location to ensure that maxima with lower responses have
lower reliabilities.
cting binary blobs.



Fig. 13. Binary blob images with different sigmas and biases denoted by b, where s denotes the standard deviation of the original image. 0-valued pixels are displayed as
black pixels and 1-valued pixels are displayed as white ones.
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rðx; lÞ ¼
�MIðx; lÞ

maxt �MIðx; tÞ e
�d2

2r2
p and rp ¼

� b
2

	 
2

2 logð0:5Þ

 !1
2

:

The reliability measure is finally used to assign a weight con-
trolling the contribution of each computed pattern to the histo-
gram. Once the scales of each location have been determined we
apply an adaptive Gaussian filter to the data, prior to computing
the LTP code at a location. We select the width of the Gaussian fil-
ter such that the area covered by the operator in relation to the lo-
cal scale is the same across all scales. This gives invariance to
uniform scaling. The width of the Gaussian filter (fw) is selected
in a way that 90% of the area of the Gaussian function are in the
area of the computed filter.

fw ¼
ffiffiffi
2
p

r2p
n

and rGauss ¼
fw 0:5ffiffiffi

2
p

erf�1ð0:9Þ
:

For n being the number of considered LTP neighbors, r being
the scale at the location.

To compute a pattern at a location we estimate the second mo-
ment matrices using the detection scales of all corresponding max-
ima at that location. We distribute the sample points of the
operator such that they lie along the normalized ellipses described
by the second moment matrices. By using this approach non uni-
form scaling of the data can be compensated, because this type
of transformation would change the shape of the ellipses accord-
ingly. We then distribute sample points so that the distance in
terms of arc length between adjacent points is equal, giving n-
equidistant points along the ellipse. To speed up the computation
we define four support points on the ellipse which lie on the ends
of the major and minor axes respectively. The definition of support
points limits the method to distribute a number of 4N + 4 equidis-
tant points along the ellipse but reduces the computation to N
points. We use the fact that all ellipses can be described as a scaled
and rotated version of a canonical ellipse. To distribute the points
on a canonical ellipse in parametric form, the positions of N points
in the first quadrant are computed and symmetries are exploited to
gain the other 3N points. To find the offset on the x-axis of the n-th
point (Dxn) from the center of the ellipse the equation

n
N þ 1

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx ¼
Z Dxn

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx
is solved for Dx, where a is the length of the horizontal semi-axis, N
is the number of points to distribute per quadrant and the second
additive term is the derivative of the canonical implicit equation
of an ellipse.

The definition of support points also provides the possibility of
defining a fixed starting point for the computation of the patterns.
Due to the ambiguous orientation of an ellipse we define two start-
ing points (computing two patterns per position) to compensate.
These are by definition the points on the intersection of the major
axis with the ellipse.In case of ellipses that are close to a circle this
definition becomes unreliable, we therefore treat second moment
matrices with a ratio of eigenvalues kmin

kmax
P 0:95 as a circle treating

the vertical axis as the major axis. By defining a starting point we
are able to compensate rotations, this is due to the fact that this
kind of affine transformation is reflected by the orientation of the
computed ellipses. Please see Hegenbart and Uhl (2013) for a more
thorough explanation of the method. The feature vector of an im-
age consists of a single histogram with 59 bins.
6. Experimental results

We use the software provided by the Robotic Research Group2

for region detection (Harris detector) and description (SIFT) in Sec-
tion 5.1, the VLFEAT implementation (Vedaldi and Fulkerson, 2008)
for the dense SIFT features in Section 5.1 and the implementation
of Geusebroek et al. (2003) for the MR8 filter in Section 4.2. For
the remaining algorithms custom implementations from earlier
work (Kwitt and Uhl, 2007; Uhl et al., 2011b) (DT-CWT, Fractal Anal-
ysis using Filter Banks) or specifically developed for this work have
been used (all using Matlab except for the affine invariant LTP meth-
od which we developed using Java).

The original manuscripts employ a wide variety of different
classifiers. Since higher developed classifiers (e.g. the SVM classi-
fier) will mostly produce better results than more simple classifiers
(e.g. the k-NN classifier) and since the focus lies on scale invariant
feature extraction strategies and not on classification methods, all
methods are classified using the k-NN classifier. The advantage of
that approach is the better comparability of the results with re-
spect to feature expressiveness.

Classification accuracy is computed using an evaluation set and
a training set. An image from the evaluation set is classified into
2 http://www.robots.ox.ac.uk/vgg/research/affine.

http://www.robots.ox.ac.uk/vgg/research/affine


Table 2
Results of the different methods in OCR (%) and AUC. In the 4-class case we only
present the OCR.

Method 2-Class case 4-Class case

OCR AUC OCR

Fractal analysis using filter banks 91.7 95.0 65.8
Multi-fractal spectrum 89.0 90.5 62.0
D3T-CWT with DCT 88.3 92.9 63.0
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the class, where most of the k nearest neighbors from the training
set belong to. The k for the k-NN classifier, used to classify the eval-
uation set, is optimized on the training set (the k with the highest
overall classification rate (OCR) using leave-one-out cross-
validation (LOOCV) on the training set).

The algorithms using k-means clustering provide different re-
sults each run. For these methods we provide average results from
10 runs per method.
Multiscale blob features (number) 86.3 89.9 57.7
DT-CWT with DCT 86.0 92.7 63.0
Affine invariant LTP 85.6 92.4 61.3
Fractal dim. for orientation histograms 84.0 90.6 62.7
Dense SIFT features 83.6 87.5 62.0
D3T-CWT with DCT (local) 82.3 89.3 60.0
Cyclic shifting of local features 81.0 88.4 61.7
Log-polar approach 80.0 86.9 57.0
Dominant scale approach 78.3 87.5 56.7
D3T-CWT with DFT (local) 78.3 86.4 55.7
Slide matching (original) 76.3 81.7 57.3
Slide matching (modified) 74.7 85.5 62.3
Local affine regions 70.9 88.1 56.3
Multiscale blob features (shape) 70.8 76.2 54.3
ICM 67.7 71.7 52.3
D3T-CWT with DFT 66.0 70.2 50.0
SCM 64.0 66.4 51.3

DT-CWT 84.7 90.2 60.3
D3T-CWT 82.3 90.1 58.0
WT-LBP 88.0 – 63.7
LBP 84.0 – 61.4
6.1. Celiac disease

We use a database of duodenal endoscopic images employed in
earlier work (Hegenbart et al., 2011) to enable easier comparison.
Table 1 lists the number of image samples and patients per class.
To avoid overfitting and to test the methods in a practice-related
context, the images of a patient are either all in the evaluation
set or all in the training set. In this way it is impossible that the
nearest neighbors of an image and the image itself come from
the same patient. This is important to avoid any bias in the result,
the setup of this data set resembles in a way how LOPO (Leave-
one-patient-out) and LOOCV (Leave-one-out cross-validation)
work.

The original endoscopic images (which are of size 620 � 530 or
520 � 510 depending on the used endoscope) often exhibit only
small areas that permit a distinction between healthy mucosa
and mucosa affected by celiac disease. This is due to the facts, that
endoscopic images in general show a high amount of distortions
such as bubbles, specular reflections and occlusions due to the geo-
metric properties of the duodenum. Additionally, the distribution
of villous atrophy caused by the disease could be restricted to cer-
tain areas within the visible area (this is known as patchy distribu-
tion of celiac disease). Therefore we extract non overlapping
patches of size 128 � 128 (under supervision of a physician). Our
celiac disease database consists of these patches.

We observed that the overall classification rate (OCR) varies sig-
nificantly depending on the chosen number of nearest neighbors of
the k-NN classifier. Therefore, we use a second measure for the
2-class case to evaluate the methods, the area under the ROC
(receiver operating characteristic) curve (AUC) (Bradley, 1997).
We generate the ROC curve by considering the class membership
of the 20 nearest neighbors for each image of the evaluation set,
where the area under the ROC curve is calculated by trapezoidal
integration (Bradley, 1997). The AUC uses the information how
many of the 20 nearest neighbors of each evaluation set image
are positive (celiac disease) or negative (healthy), whereas the
OCR only uses the information if more or less of the k nearest
neighbors are positive than negative.

The results in Table 2 are sorted according to the OCR results of
the 2-class case. In the last four rows of the table we display meth-
ods not designed to be scale invariant, DT-CWT, D3T-CWT and two
earlier results using the same database (Hegenbart et al., 2011).
One method is the original LBP approach, the other one, denoted
‘‘WT–LBP’’, is the best performing approach for this dataset so
far. (Except for the approach ‘Fractal Analysis using Filter Banks‘‘,
Table 1
Number of image samples per Marsh type (ground truth based on histology).

Data set: Marsh type 0 3a 3b 3c Total

Training set
Number of images 155 50 56 51 312
Number of patients 66 6 7 8 87

Evaluation set
Number of images 151 45 58 46 300
Number of patients 65 5 6 8 84
which is proposed in Uhl et al. (2011b).) WT–LBP is a combination
of Local Binary Patterns and the discrete wavelet transform (for de-
tails see Hegenbart et al., 2011).

The two fractal methods using the local density function per-
form best for our celiac disease database, especially ‘‘Fractal Anal-
ysis using Filter Banks’’ works very good. Also the second fractal
method (‘‘Multi-Fractal Spectrum’’) performs reasonably well.
However, the AUC of the latter fractal method is not high compared
to other methods. This is because this method has the highest OCRs
when we consider many nearest neighbors (30 6 k 6 70 in the kNN
classifier), while the AUC only uses information of the 20 nearest
neighbors (all other methods have their highest OCRs for ks be-
tween one and thirty). The third method using fractal features,
‘‘Fractal Dimensions for Orientation Histograms’’, also provides
useful results. Overall, the considered fractal methods are quite
well suited for classifying celiac disease.

When we consider the results of different strategies for achiev-
ing scale invariance using the DT-CWT or the D3T-CWT, we see that
DCT computed across the scale dimension of the statistical sub-
band features (DT-CWT and D3T-CWT with DCT) can clearly en-
hance the results compared to the DT-CWT or the D3T-CWT
without any further feature manipulation. All other modifications
of the DT-CWT or D3T-CWT decrease the results. The results of
the methods, where operations for achieving scale invariance are
applied to the local subband coefficients of the D3T-CWT (‘‘D3T-
CWT with DCT (local)’’, ‘‘D3T-CWT with DFT (local)’’, and ‘‘Cyclic
Shifting of Local Features’’), are in the middle of the results range
and give pretty similar OCR. The results of the methods, where
operations for achieving scale invariance are applied to the global
statistical subband features (e.g. mean and standard deviation) of
the D3T-CWT, differ a lot. Some are better than their local counter-
parts (‘‘DT-CWT and D3T-CWT with DCT’’), some are worse (‘‘Slide
Matching’’ and ‘‘D3T-CWT with DFT’’), while the others (‘‘Log-Po-
lar’’ and ‘‘Dominant Scale Approach’’) give comparable OCR.

‘‘Multiscale Blob Features’’ using the scale dependent number of
blobs as feature works well whereas using the scale invariant
shape of the blobs as feature did not provide useful rates for
classifying celiac disease. This result, together with the well



Fig. 14. Results of the McNemar test for the 2-class case. A white square in the ith
row and jth column or in the jth row and ith column of a plot means that the ith and
the jth method are significantly different with significance level a. If the square is
black then there is no significant difference between the methods. The methods are
sorted beginning with the best ones (OCR 2-class case) like in Table 2.
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performing DT-CWT and D3T-CWT techniques without any tech-
nique for further scale invariance being applied, questions the
importance of scale invariance in general for our dataset. ‘‘Dense
SIFT Features’’, which do not use any keypoint selection, provides
a clearly better result compared to ‘‘Local Affine Regions’’ using a
keypoint selection strategy specifically tuned for textured data.
‘‘Affine Invariant LTP‘‘ shares the same idea of key point detection
with ‘‘SIFT’’ and ‘‘Local Affine Regions’’, the computed scales mask
however increases the reliability in case of non periodic textures.
Overall it provides a better performance as compared to these
two methods.

The results of the neural nets approaches (‘‘ICM’’ and ‘‘SCM’’)
and the two slide matching variants are not competitive at all.

If we compare results of the 4-class case to the 2-class case,
then we see that the differences among the results are smaller in
case of the 4-class case. The ranking among the different ap-
proaches is similar to the 2-class case. Overall, the OCRs in the 4-
class case are not suited for any application scenario and do not
improve over earlier work.

Having applied DT-CWT and D3T-CWT instead of the originally
proposed transforms for several techniques, we shed light on the
reason for this decision. In Table 3 we show classification results
of the wavelet based methods, which originally did not use CWTs.
We compare the OCRs (2-class case) of the methods using the orig-
inally proposed wavelet transforms with the results using DT-CWT
variants instead of the original transforms.

As we can see in Table 3, using CWTs works distinctly better for
classifying celiac disease as compared to the originally proposed
transforms.

Finally, we want to assess statistical significance of our results.
The aim is to analyze if the images from the celiac disease database
are classified differently by the various methods considered or if all
techniques fail for the same set of images. We use the McNemar
test (McNemar, 1947), to test if two methods are significantly dif-
ferent for a given level of significance (a) by building test statistics
from incorrectly classified images. Tests were carried out for the 2-
class case with three different levels of significance (a = 0.05,
a = 0.01 and a = 0.001). Results are displayed in Fig. 14 (the meth-
ods are sorted according to the OCR results of the 2-class case),
where we can observe, that methods with similar OCRs are never
found to be significantly different. Fig. 14 shows that only methods
with clearly different OCR results are rated as significantly differ-
ent. That indicates that for methods with similar OCR results, al-
most the same images are classified wrong, independent of the
extracted features.
6.2. Testing scale invariance explicitly

We have employed a set of methods, explicitly introduced to
provide scale invariance, motivated by the observation that our ce-
liac disease database contains features at various scales. We want
to investigate if these methods are really as scale invariant as they
theoretically should be. Further, we want to assess if the tech-
niques’ scale invariance really enhances the results for detecting
celiac disease, or if the obtained results depend primarily on the
Table 3
Results of the wavelet based methods in % (2-class case). The column ‘‘original’’ shows
the results using the originally proposed wavelet transforms, the column ‘‘CWT’’
shows the results using CWTs instead of the original transforms.

Methods Original CWT

Log-polar approach 58.0 80.0
Dominant scale approach 74.3 78.3
Slide matching approach 74.0 76.3
general feature extraction ability, independent of scale invariance
properties.

The training and the evaluation sets of the celiac disease data-
base both contain images with features at different scales (as well
as various orientations, brightnesses and viewpoints). Since each
class in the training or evaluation sets has at least 45 images, for
almost every image in the evaluation set there might exist images
of the same class in the training set with rather similar scales. That
means, that a technique does not necessarily have to be scale
invariant to work well on our dataset. Therefore, for assessing
the scale invariance of a method it is not adequate to test if the
method works well for a database containing images with various
scales. We need to use two databases, where one database contains
differently scaled images as compared to the other.

A further problem of testing scale invariance of the employed
approaches with the celiac disease database is that we do not have
the information which actual spatial scale an image belongs to (i.e.
the distance and perspective of the camera to the mucosal wall)
therefore it is difficult to separate the database into two disjoint
sets depending on the scale of the images. Another possibility to
get two data sets with different scales would be to synthetically
scale the database, but this changes the characteristics of the
images too much (e.g. interpolation effects, eventual contrast
changes, etc.).
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We solved this problem by extracting patches from frames of
endoscopy videos instead of extracting them from endoscopic
images (like done for the celiac disease database). Since it is possi-
ble to choose any (suitable) frame of a video from an endoscopy
session, it is easier to find patches with a specific distance to the
mucosal wall as compared to choosing the patches of some images
taken during the endoscopic session. Additionally it is easier to
estimate distances in a video than estimating them by means of
single images.

As a second texture database to verify the scale invariance of
the employed methods, we use parts of the CUReT database (Dana
et al., 1999). The advantage of this database compared to our celiac
disease scale database is that we have the exact information to
which scale an images actual belongs to and that images of one
texture class are gathered under exactly the same scale conditions.

That is why we decided to test scale invariance by using two
different databases, the celiac disease scale database and parts of
the CUReT database.
6.2.1. CUReT database
The cropped version of the CUReT database3 contains 92 images

per texture with different viewing and illumination conditions.
There are four texture classes from the CUReT database (material
numbers 2, 11, 12, and 14), for which additional scaled data is avail-
able (as material numbers 29, 30, 31, 32). The scale difference be-
tween these two sets is approximately 1.7. These materials are
shown in Fig. 15. The material classes are evenly divided into one
part for the evaluation set and one part for the training set, where
the images of 46 viewpoint and illumination conditions are used
for the training set and the images of the remaining 46 viewpoint
and illumination conditions are used for the evaluation set.

For explicitly testing scale invariance, two experiments are per-
formed following ideas in Varma and Zisserman (2009). In the first
experiment (E1), the training set consists of original textures
(4 � 46 images of material numbers 2,11,12, and 14, each with
46 different viewpoint and illumination conditions), while the
evaluation set consists of original textures and scaled versions of
the original textures (8 � 46 images, images of material numbers
2, 11, 12, 14, 29, 30, 31 and 32 with the remaining 46 viewpoint
and illumination conditions). For this experiment, scale invariance
is obviously crucial since half of the evaluation set consists of data
scaled differently than the data in the training set. In the second
experiment (E2), the evaluation set is like in the first experiment,
but this time the training set consists of original textures as well
as scaled versions of the original textures. The lower the difference
between the classification results of the first and the second exper-
iment, the higher the scale invariance of a method is.

The classification results are shown in Table 5.
6.2.2. Celiac disease scale database
The celiac disease scale (CDS) database consists of patches ex-

tracted from endoscopy videos. To determine the scale invariance
of the employed approaches, we divided the patches into the two
categories ‘‘Regular‘‘ and ‘‘Far‘‘, depending of the distance to the
mucosa wall. Images of the category ‘‘Regular‘‘ have optimal dis-
tances to differentiate between ’’healthy’’ and ’’affected’’ tissue. Be-
cause of the larger distances, the differentiation between the two
classes is harder for images of the category ‘‘Far’’. The assessment
of distance was performed manually based on the visibility of fea-
tures (there is no ground truth about the actual distance of the
endoscope to the mucosal wall).

We only used images of sequences showing the same mucosal
area at a regular distance as well as at a further distance (like done
3 www.robots.ox.ac.uk/vgg/research/texclass/data/curetcol.zip.
in Hegenbart et al. (2012)). That means for each extracted image of
regular distance, we extracted exactly one image with further dis-
tance (and vice versa). Similar to the CUReT database, the CDS
database consists of a training set (named training set ‘‘Regular–
Far’’), consisting of images with far and regular distances, a second
training set (training set ‘‘Regular‘‘) consisting of images with only
regular distances (the images of training set Regular–Far with reg-
ular distance), and an evaluation set consisting of images with reg-
ular and far distances (evaluation set ‘‘Regular–Far‘‘) (see Fig. 16).

In parallel to the celiac disease database, the images of the
training sets are gathered from different patients as of these con-
tained in the evaluation set. Table 4 lists the number of image sam-
ples and patients per class.

For explicitly testing scale invariance we perform two experi-
ments. In the first experiment, we use training set Regular–Far
and evaluation set Regular–Far. In the second experiment, we use
training set Regular and evaluation set Regular–Far. Similar to the
CUReT database, scale invariance is only needed for the second
experiment and not for the first, since only in the second experi-
ment the training and evaluation set are gathered under different
scale conditions. The Classification results are shown in Table 5.
The lower the difference between the classification results of the
first (E3) and the second experiment (E4), the higher is the scale
invariance of a method.

6.2.3. Results of testing the scale invariance
The presented results in Table 5 are the mean values of the re-

sults using a k-NN classifier with k = 1–20. In that way we balance
the problem of varying results depending on the number of nearest
neighbors of the k-NN classifier. The lower the difference between
the classification results of experiment 1 (E1) and experiment 2
(E2) respectively experiment 3 (E3) and experiment 4 (E4), the
higher is the scale invariance of a method.

The methods showing the highest degree of scale invariance for
a database are marked with a ‘‘+‘‘, the ones showing the least de-
gree of scale invariance are marked with a ‘‘�‘‘, and the methods
showing average scale invariance are marked with a ‘‘�’’. The ones
that are hard to interpret, because they even do not work without
scale changes (E1 or E3), are marked with a ‘‘?’’.

Results shown in Table 5 are quite unexpected, especially the
ones of the CUReT database.

The absolute OCR results of the first (E1 respectively E3) and
second experiments 2 (E2 respectively E4) are not relevant for
us, but the differences between them, indicating the extent of scale
invariance, are very interesting.

In case of the CDS database, some results are hard to interpret
(the two slide matching approaches, D3T-CWT with DFT and
SCM), because even the results without scale changes (E3) are pret-
ty near to the results of randomly classifying images (50%).

In case of the CUReT database, the three methods using fractal
analysis are rated as not scale invariant (except of ‘‘Fractal Analysis
using Filter Banks’’, which is rated as average). In case of the CDS
database all three methods are rated as scale invariant. So the rat-
ings with respect to scale invariance of the CUReT database are
contrary to those of the CDS database.

When we consider the methods based on DT-CWT or D3T-CWT,
we also see a clear difference between the two databases. In case of
the CUReT database the original (not scale invariant) approaches
(DT-CWT and D3T-CWT) are more scale invariant than their varia-
tions (except of the Dominant Scale Approach). In case of the CDS
database, the methods applying a transformation to the local
wavelet features or shifting them across the scale dimension
(D3T-CWT with DCT (local), D3T-CWT with DFT (local) and Cyclic
Shifting of Local Features) provide more scale invariance than the
original approaches. The methods which apply the transformation
to global wavelet features or shift them across the scale dimension

http://www.robots.ox.ac.uk/vgg/research/texclass/data/curetcol.zip


Fig. 15. The top row shows one image each from material numbers 2, 11, 12, and 14 from the CUReT database, while the bottom row shows the textures with higher zoom
factor (as material numbers 29, 30, 31, and 32).

Fig. 16. Example images of the CDS database gathered from regular and further
distances.

Table 4
Number of image samples and patients of the CDS database.

Data set: Class Healthy Celiac disease Total

Training set Regular–Far
Number of images 40 40 80
Number of patients 20 12 32

Training set Regular
Number of images 20 20 40
Number of patients 20 12 32

Evaluation set Regular–Far
Number of images 38 38 76
Number of patients 19 10 29
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are either average scale invariant (DT-CWT with DCT and D3T-CWT
with DCT), not scale invariant (Dominant Scale Approach) or they
are hard to interpret, because already the results without scale
change (E3) are rather low (the two slide matching approaches
and D3T-CWT with DFT). The Log-Polar-Approach turned out to
be scale invariant for both databases.

The methods ICM and SCM are rated as average scale invariant
or unratable for both databases.

The Multiscale Blob Features are rated as quite scale invariant
(the shapes of the blobs) or as average scale invariant (the number
of blobs) in case of the CUReT database (corresponding to the the-
oretical considerations). But in case of the CDS database they are
both rated as not scale invariant (especially when using the shape
of the blobs).

The Dense SIFT Features are for both databases more scale
invariant as compared to the Local Affine Regions. In case of the
CUReT database both methods are rated as average scale invariant,
in case of the CDS database the Dense SIFT are rated as quite scale
invariant and the Local Affine Regions are rated as not scale
invariant.

The Affine Invariant LTP is rated as quite scale invariant for both
databases.

Overall, the results of the two databases with respect to the
scale invariance are quite different. Of course the two databases
for testing the scale invariance are very different.

The intra-class variability of the CUReT database is significantly
smaller than those of the CDS database. The visual distinction be-
tween images with or without celiac disease is quite different,
since there are many images that do not look like typical represen-
tatives of their class or they even look like belonging to the other
class. In case of the CUReT database the visual distinction between
the classes is quite easy. Another difference between the two dat-
abases is, that the images of the CUReT database are much more
homogeneous than those of the CDS database (an image of the
CUReT database looks similar at different positions of the image,
that is usually not the case for images of the CDS database). One
additional problem is, that one of the most important feature to
differentiate between the two classes of the CDS database, the villi,
are often less visible at bigger distances of the endoscope to the
mucosal wall. This complicates the differentiation between images
showing healthy mucosa from further distances to those showing
celiac disease affected mucosa from closer distances Hegenbart
et al. (2012).

Because of these big differences between the two databases,
there are features proving to be more scale invariant for one data-
base than for the other. The scale invariance of the extracted fea-
tures of a method vary with the application of the method.

7. Conclusion

It seems that especially contrast sensitive methods work very
well for the celiac disease database, specifically the fractal meth-
ods. The ‘‘Multi-Fractal Spectrum’’ is originally using a combina-
tion of three different measures (l(B(x, r))), but we only use the
Laplacian measure, which is the most contrast sensitive of the
three. The second fractal method, ‘‘Fractal Analysis using Filter
Banks’’ behaves similarly. Other contrast sensitive methods are
the third fractal method ‘‘Fractal Dimensions for Orientation Histo-
grams’’ and the method ‘‘Multiscale Blob Features (number)’’, both
methods performed well for our celiac disease database. The affine
invariant LTP method performed comparably to the best methods.



Table 5
OCR results for the CDS and CUReT database.The columns ‘‘E1’’ and ‘‘E3’’show the results of the experiments using same scale levels in training and evaluation set, and the
columns ‘‘E2’’ and ‘‘E4’’ show the results of the experiments using different scale levels in training and evaluation set. The columns ’’Diff’’ show the relative differences between
the results of E1 and E2 respectively E3 and E4. The column ‘‘SI’’ rates the scale invariance of the methods as high (+), low (�), average (�) or unratable (?).

Method CUReT CDS

E1 E2 Diff SI E3 E4 Diff SI

Fractal analysis using filter banks 91.1 85.8 5.8 � 71.8 70.5 1.8 +
Multi-fractal spectrum 91.4 77.0 15.8 � 69.1 71.1 �2.8 +
D3T-CWT with DCT 98.3 88.7 9.8 � 76.1 73.8 3.0 �
Multiscale blob features (number) 97.2 89.6 7.8 � 65.9 59.9 9.1 �
DT-CWT with DCT 98.4 87.1 11.5 � 75.3 70.9 5.8 �
Affine invariant LTP 99.0 95.7 3.3 + 74.4 75.8 �1.9 +
Fractal dim. for orientation histograms 86.9 74.1 14.7 � 71.7 70.6 1.5 +
Dense SIFT features 71.5 67.4 5.7 � 68.1 66.7 2.1 +
D3T-CWT with DCT (local) 97.7 92.9 4.9 � 72.2 71.1 1.5 +
Cyclic shifting of local features 98.8 95.1 3.7 + 73.3 72.8 0.7 +
Log-polar approach 90.7 88.3 2.6 + 72.6 73.4 �1.1 +
Dominant scale approach 92.7 93.9 �1.3 + 72.4 64.8 11.7 �
D3T-CWT with DFT (local) 96.3 89.7 6.9 � 72.9 73.0 �0.1 +
Slide matching (original) 93.5 81.4 12.9 � 58.8 54.3 7.6 ?
Slide matching (modified) 97.6 75.3 22.8 � 63.2 60.5 4.3 ?
Local affine regions 96.1 89.8 6.6 � 67.6 59.0 12.7 �
Multiscale blob features (shape) 96.9 93.9 3.1 + 72.0 62.0 16.1 �
ICM 90.2 81.4 9.8 � 64.8 59.8 7.7 �
D3T-CWT with DFT 95.9 89.2 7.0 � 63.7 69.1 �8.5 ?
SCM 97.9 92.6 5.4 � 60.3 56.5 6.3 ?

DT-CWT 99.2 97.0 2.2 + 72.4 68.4 5.5 �
D3T-CWT 99.1 96.8 2.3 + 73.0 69.7 4.5 �
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When we consider the methods using the DT-CWTs, we see that
many of the techniques designed to be scale invariant perform
worse than the original CWTs without any specific tuning, except
for the methods applying DCT across global subband descriptors,
for which it is not even theoretically clear why they should en-
hance scale invariance of the DT-CWT.

Our results indicate that scale invariance is not important for
the classification of celiac disease, at least when considering our
dataset to be representative. There is no positive correlation be-
tween the performance of the methods (in terms of OCR) and their
(determined) scale invariance.

There is a big difference between theoretical concepts for scale
invariance and practical scale invariance actually achieved in
experiments. It also turned out that the practical scale invariance
of a method is not fixed, it depends on the application the method
is used for. The determined scale invariance of the methods using
the CUReT database (application texture recognition) is quite dif-
ferent to the determined scale invariance using the CDS database
(application endoscopic image classification).

In case of endoscopic image classification, it turned out that the
methods which have not been designed to be scale invariant are
nearly as scale invariant than those explicitly designed to be scale
invariant. The affine invariant LTP method exhibited the highest
degree of scale invariance.

The behavior of methods is interesting in the case of texture
recognition. Our results indicate that scale variant methods turn
out to be more effective than their scale invariant counterparts.
This is quite surprising, since these methods were especially de-
signed to be scale invariant for texture recognition tasks. From this
point of view we have to state that techniques claimed to be scale
invariant should be actually tested for this property in properly de-
signed experiments. It contradicts good scientific practice to state
properties which do not hold in actual applications.
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