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Abstract. Up to now, for most endoscopical computer aided celiac dis-
ease diagnosis approaches, image regions showing discriminative features
have to be manually extracted by the physicians, prior to their automa-
tized classification. This is obligatory to get idealistic and reliable data
which is free from strong image degradations. On the one hand such
a human interaction during endoscopy is subjective, expensive and te-
dious, but on the other hand state-of-the-art fully automatized selection
corresponds to decreased classification accuracies compared to experi-
enced human experts. In this work, a fully automatized approach is in-
troduced which exploits the availability of a significant number of subim-
ages within one original endoscopic image. A weighted decision-level and
a weighted feature-level fusion method are introduced and investigated
with respect to the achieved classification accuracies. The outcomes are
compared with simple decision-level and feature-level fusion methods and
the manual and the automatized patch selection. Finally, we show that
the proposed feature-level fusion method outperforms all other automa-
tized methods and comes close to manual patch selection.

1 Introduction

Celiac disease [15] is a disorder affecting the small bowel. After introduction of
gluten containing food, the disease leads to an inflammatory reaction in the mu-
cosa of the small intestine caused by a dysregulated immune response triggered
by ingested gluten proteins of certain cereals. During the course the disease, the
mucosa loses its absorptive villi completely and hyperplasia of the enteric crypts
occurs, leading to a strongly diminished ability to absorb nutrients. The overall
prevalence [5] of the disease in the USA is about 1:133. Figure 1 shows example
images, captured during endoscopy.

For most computer aided celiac disease diagnosis approaches [3, 4, 11, 21],
reliable image regions (e.g. patches with a size of 128× 128 pixels) showing dis-
criminative features have to be identified prior to the automatized classification.
This must be done to get idealistic data which is free from strong image degrada-
tions as in case of strong degradations the classification accuracy of the decision
support system decreases [9, 10]. The identification of reliable regions could be
done manually [11, 21] on the one hand or by means of a computer based method
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[9] on the other hand. Other approach for detection of ”informative” frames [2,
1], do not directly focus on a succeeding computer aided diagnosis and are cer-
tainly not optimized for celiac disease diagnosis. Although the manual method
seems to be beneficial if done by experienced medical doctors [9], there are two
incentives to use a computer based selection method: Firstly, a human interac-
tion during endoscopy is time consuming and tedious, which probably leads to
a diminished acceptance of the physicians. Apart from that, especially in case
of physicians which are inexperienced, inattentive or just unfamiliar with the
(new) decision support system, a weak selection automatically leads to weak
classification accuracies [9].

The reason for the decreased classification accuracies in case of randomly or
weakly selected patches (or if using the complete images) is the vulnerability of
image classification methods to various types of degradations which are prevalent
in endoscopic images [10]. It could be shown that image degradations definitely
affect the feature extraction and consequently lead to a reduced classification
accuracy. Such degradations are blur, noise, a lack of contrast and reflections
caused by the light of the endoscope.

In this work we exploit the availability of numerous small subimages (patches)
in each original endoscopic image. This availability of large data not just allows
to select the best patch per image, as done in previous work [9], but also facili-
tates a redundant processing (i.e. feature extraction and classification) of these
multiple images aiming at improving the overall accuracy. In order to generate
one final decision for each image, these redundant threads have to be fused.
This can be done on varying levels [19], such as feature-, score- or decision-level.
Whereas in celiac disease diagnosis, information fusion has not been investigated
so far, in biometric systems considerable improvements with these techniques
could be obtained by considering multiple modalities [19], multiple instances of
one modality [20] or multiple processing techniques [17]. As the simple fusion
methods do not lead to improved accuracies, we utilize patch quality measures
[9] to introduce a weighting. Based on this weighting, we propose a weighted
decision-level as well as a weighted feature-level fusion method. The training set
in each scenario investigated in this work consists of manually extracted idealistic
patches. It should be mentioned that this manual stage can be done beforehand

(a) (b) (c) (d)

Fig. 1: Endoscopic images of healthy mucosa (1a and 1b) clearly showing the
villi structure and images of diseased mucosa (1c and 1d).
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by experts and does not require any interaction during medical treatment. The
ground-truth, which has been determined by histological examination of biop-
sies, is available for each original image and can be directly taken for all patches
extracted from the respective image.

The paper is organized as follows: In Sect. 2 the two fusion approaches are
introduced and the quality measures are outlined. In Sect. 3 the experimental
results are analyzed and discussed. Finally, Sect. 4 concludes this paper.

2 Fusion Methods

Before introducing the two weighted fusion methods, sensible quality measures
have to be defined. In the following we use the same metrics as utilized in pre-
vious work [9] to identify one single ”best” patch, as these methods seem to be
appropriate for our problem definition.

2.1 Quality Measures

– The first measure addresses the problem of a too low illumination. As such a
weak illumination generally corresponds to images with a low average gray
value, we propose a quality measure being based on the mean of the pixel
intensities

qA(P ) =
1

|Z|
·
∑
z∈Z

P (z) , (1)

where Z comprises the coordinates of the image patch P .
– The next measure is utilized to detect image regions lacking from any sig-

nificant gray value differences. Such image patches can be identified by mea-
suring the contrast which is defined by

qC(P ) =
∑

i,j∈K

|i− j| · p(i, j) , (2)

where K comprises all gray values in P and p(i, j) stands for the probability
of these two gray values to be present in a certain image neighborhood in P .
In order to focus on real contrast rather than on noise, for this neighborhood
we use a quite large offset of four pixels in vertical and in horizontal direction
and average these two values.

– The next measure is based on a blur metric b [14]. For computing this metric,
first in one direction the edges are identified by extracting all local minima
and maxima. Finally the ratio between the lengths and the pixel differences
of the edges is computed which indicates the blur level. As all of our images
suffer from more or less significant sensor noise, the patches are previously
denoised using a Gaussian filter G2 with σ = 2.

qB(P ) = −b(P ∗G2) . (3)
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– To detect noisy image patches, we sum up the differences between the original
image and a denoised version of the same image

qN (P ) =
∑
z∈Z

|P −G1 ∗ P | . (4)

The denoised image is achieved by filtering the original image with a Gaus-
sian G1 with σ = 1.

– Finally, we need a measure to address the problem of reflections and ex-
tremely high illuminations. These regions can be detected quite easily by
considering the maximum gray values.

qI(P ) =

{
1, if max(P ) < T

0, otherwise .
(5)

T is set to 245 (eight bit gray scale), which turned out to be appropriate
for separating extremely bright regions (by manual inspection of a set of
training images).

As shown in [9], one single quality measure is unable to represent the “qual-
ity” of a patch with respect to the classification performance. Therefore, we do
not focus on single measures but instead utilize a weighted combination of the
proposed quality measures.

2.2 Weighted Fusion

Let Q be a matrix containing the row vectors (qA, qC , qB , qN , qI) of each patch
of one original image and let W be a properly chosen column vector contain-
ing a weight for each quality measure. Then the column vector Q · W is the
weighted summed overall quality measure as used in the original work on patch
selection [9]. In this previous work, the row with the maximum value of this
product is evaluated and the corresponding image is used for feature extrac-
tion and classification. Classification in this context refers to the discrimination
between images showing healthy and diseased mucosa. In the current work, by
computing the element-wise exponentiation of Q · W with the properly chosen
exponent k, the ratio between the impact of high and low quality patches can be
adjusted (◦ denotes the element-wise matrix exponentiation which corresponds
to the repeated Hadamard matrix product). In case of setting k to zero, the qual-
ity measures and the weights are ignored and each image finally has the same
impact. The thereby achieved fusion methods (unweighted decision-level (DLF)
and unweighted feature-level fusion (FLF)) are compared with the weight based
methods in the experimental section. If assigning a large value to k, the methods
converge to the patch selection strategy as small values are thereby suppressed.
In the following two subsections we show how the quality vector (Q ·W )◦k can
be used in patch fusion. For the experiments, W and k are evaluated during
exhaustive search based on a separate data set.
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2.3 Weighted Decision-Level Fusion (W-DLF)

The first method based on the computed quality vector (Q·W )◦k operates on the
decision level. That is, for each patch in an original image, first the classifier’s
decision is computed by means of traditional feature extraction and classification.
All decisions for one original image are stored in the row vectorD, where 1 stands
for a positive and −1 stands for a negative decision. By computing

Df = sgn(D · (Q ·W )◦k) , (6)

the single decisions are multiplied with the corresponding weights (image quali-
ties), summed up and finally thresholded using the sign function sgn. We have to
content with the rather simple sum rule, as more elaborate decision-level fusion
approaches like the Behavior-Knowledge Space [18] or Decision Templates [12]
are developed for fusing different classifiers and not different input data.

2.4 Weighted Feature-Level Fusion (W-FLF)

In opposite to W-DLF, W-FLF operates on the feature level. This implies that
the features are fused prior to the classification step. In this approach the clas-
sification step that corresponds to a loss of information is postponed and ap-
plied to the fused features, which could be a benefit compared to the simpler
decision-level fusion. The fused feature vector Ff which is used for classification
is calculated by

Ff = F · (Q ·W )◦k

||(Q ·W )◦k||
, (7)

where F is a matrix containing the feature vectors (columns) for each patch. The
quality vector (Q ·W )◦k is normalized to ensure that the sum of all contributions
is one. The column vector Ff contains the element-wise weighted sum of all
feature vectors and can be directly given to the classifier. Ff could be interpreted
as a weighted average feature vector. We pursue this strategy, as it intuitively
allows a weighting of the individual features, which cannot be achieved easily
in case of a feature concatenation. The averaging theoretically requires that the
decision boundaries are linear as otherwise the averaging of two features of one
class could lead to an averaged descriptor located in the subspace of the other
class. However, in the experiments we do not restrict to linear classification. To
investigate the impact of the decision boundary on our approach, the utilized
features are individually analyzed with respect to this problem in Sect. 3 with
variable classifier adjustments.

2.5 Runtime Analysis

The major steps, as far as computational effort is concerned, consist of quality
measurement (consisting of five single measures) and feature extraction. Whereas
in the fused approach the quality measures as well as the features must be
computed for each patch, in case of patch selection [9] the feature must be
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computed only for the best patch. The overall computation time3 for all quality
measures on 128 × 128 pixel gray value patches is 37 milliseconds (ms) (qA: 1
ms, qC : 16 ms, qB: 1 ms, qN : 1 ms, qI : 18 ms). The computation time for the
features ranges from 6 to 142 ms (6 ms (LBP), 6 ms (ELBP), 13 ms (SCH), 142
ms (MFS), 2 ms (FPS)). For example in case of fusion based classification with
LBP or ELBP and extracting 16 patches per original image, for each original
image the computation time would be about 688 ms where 592 of them are
consumed for quality measurement and only 96 are used for feature extraction.
In case of patch selection based classification, it would take 598 (592+6) ms which
is not significantly faster. Thus, we claim that the small additional computational
effort is justified if the fusion leads to increased accuracies.

3 Experiments

3.1 Experimental Setup

The image test set used contains images of the duodenal bulb and the pars
descendens taken during duodenoscopies at the St. Anna Children’s hospital
using pediatric gastroscopes (with a resolution of 768×576 (Olympus GIF Q165)
and 528× 522 pixels (GIF N180), respectively).

To generate the ground-truth, the condition of the mucosal areas covered
by the images was determined by histological examination of biopsies from the
corresponding regions. Severity of villous atrophy was classified according to the
modified Marsh classification as proposed in [15]. Although it is possible to dis-
tinguish between the several stages of the disease, we only aim in distinguishing
between images of patients with (Marsh-3) and without the disease (Marsh-0),
because this 2-classes case is more relevant in practice [21]. Another incentive for
preferring the 2-classes case is that the distinction between the different stages of
the disease is considerably subjective even as far as the histological examination
is concerned [22]. Thereby, the ground-truth and furthermore the evaluation in
a multi-classes case would be less reliable.

Our experiments are based on a balanced database containing 612 idealistic
patches (i.e. patches 306 per class) which are used for classifier training and 172
original images that are used for evaluation. From each original image, 16 non-
overlapping 128×128 pixel patches are automatically extracted and furthermore
used for fused classification. The patch size is chosen in order to be able to com-
pare the results with the manual extraction that is done by a highly experienced
endoscopist. The original images are captured during endoscopies from 72 differ-
ent patients. To allow an efficient parameter estimation, this database (consisting
of 612 idealistic and 172 original images) is divided into two equally sized sets
(DB 1 and DB 2). Each of them contains 306 idealistic images (patches) which
are used for training as well as 86 original images. In case of multiple images of

3 Runtime tests are executed on an Intel i5 architecture with 3.1 MHz. All functions
are implemented in MATLAB 2013a
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one patient, we had to ensure that they end up in the same set. The weight vec-
tor W as well as the exponent k are evaluated during exhaustive search, based
on the opposing data set as follows: In order to evaluate the accuracies based on
the original images of DB 1, the idealistic images of DB 2 are utilized for training
and the original images of DB 2 are used for parameter estimation. The same
procedure is applied (vice versa) to evaluate DB 2. Thereby a strict separation
between training set, test set and evaluation set is achieved. The search space
for each element of W is between 0.0 and 1.0 with a step-size of 0.33 and k is
within {2−1, 20, 21, ..., 26, 27}. The parameters of the quality measures are taken
from the previous work on patch selection [9] as described in Sect. 2.

We perform two different experiments. Experiment A corresponds to the
natural fusion of patches extracted from one distinct original image. Experiment
B should show if the accuracy improvements are limited by the correlations
within one original image. Such correlations are quite natural, as degradations
like blur or noise often do not occur only in a small region, but sometimes
even compromise a whole image. Therefore, in this experiment the patches of
each patient are randomly interchanged across the images leading to virtual
images consisting of patches from the same patient, but from different original
endoscopic images. This is done as the patches from the new virtual images are
supposed to be less correlated and the used database does not contain enough
patients to fuse all patches from one patient.

For classification the k-nearest neighbor classifier is used. We utilize this
simple classifier in order to focus on the effect of different settings rather than
on achieving the highest overall classification rates. For the first experiments (A
and B), the rates achieved with odd k values reaching from 1 to 31 are averaged,
to get highly stable results rather than to get the highest possible rates. In an
analysis (Fig. 4) we investigate the impact of different k values.

3.2 Feature Extraction Techniques

For the experimental analysis we deploy the following feature extraction tech-
niques which proved to the adequate for celiac disease classification in previous
work [6]:

– Local Binary Patterns [16] (LBP):
The commonly used Local Binary Patterns describe a texture by computing
the joint distribution of binarized intensity differences within a certain neigh-
borhood. This widely used feature extraction technique is used with eight
neighbors and a radius (i.e. the distance to the neighbors) of two pixels.

– Extended Local Binary Patterns [13] (ELBP):
ELBP is an edge based derivative of Local Binary Patterns. As LBP it is
used with eight neighbors and a radius of two pixels.

– Fourier Power Spectra Rings [8] (FPSR):
To get this descriptor, first the Fourier power spectra of the image patches
are computed, in a way that the low frequencies are in the image center.
Afterwards, a ring with a fixed inner and outer radius is extracted and the
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Fig. 2: Experiment A: These plots show the overall classification accuracies
achieved with patch selection (SELECT), decision-level fusion (DLF and W-
DLF), feature-level fusion (FLF and W-FLF), a random patch selection (RAND)
and the manual patch selection (MAN).

median of the values in this ring are calculated. For our experiments we use
an inner radius of seven and an outer radius of eight pixels, which turned
out to be suitable in previous work [8].

– Shape Curvature Histogram [7] (SCH):
SCH is a shape feature, especially developed for celiac disease diagnosis.
After detection of significant locations, a histogram collects the occurrences
of the contour curvature values in these regions. As in the original work, we
consider a histogram bin count of eight.

– Multi-Fractal Spectrum [23] (MFS):
The local fractal dimension is computed for each pixel using three different
types of measures for computing the local density. The feature vector is built
by concatenation of these fractal dimensions.

3.3 Results and Discussion

In Fig. 2 the overall classification accuracies achieved with patch selection (SE-
LECT), unweighted and weighted decision-level fusion (DLF and W-DLF), un-
weighted and weighted feature-level fusion (FLF and W-FLF), a random patch
selection (RAND) and the patch selection based on the human experts (MAN)
are shown for experiment A. It can be seen that the unweighted feature-level
fusion method FLF as well as the unweighted decision-level method DLF are
unable to compete with the single patch selection in case of any feature. The
rates obtained with the manual selection are totally out of reach. However, these
methods, which are not based on any (obviously highly important) quality mea-
sure, are at least able to outreach the random selection. Considering the weight
based methods we recognize that especially the weighted feature-level based
method W-FLF is able to outperform the single patch selection method SE-
LECT in case of all features and all databases with differing extent. Considering
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Fig. 3: Experiment B: These plots show the accuracies with the same strategies
as in Fig. 2. In opposite to experiment A, the patches of one patient are randomly
interchanged.

MFS, LBP and ELBP, the accuracies of the manual patch selection can be vir-
tually reached. Quite high differences are observed in case of SCH which does
not strongly benefit from fusion. A quite interesting aspect is the difference be-
tween the two weighted fusion techniques. In almost each case, the feature based
W-FLF corresponds to the higher accuracy compared to W-DLF. Obviously
the early fusion prior to the (information reducing) classification has a positive
impact on the final discriminative power.

In Fig. 3 the results of experiment B, which is based on randomly inter-
changed patches across images of the same patient, are shown. As in this experi-
ment not only patches extracted from the same image are fused, but patches from
different images, we expected that in this scenario more significant improvement
could be obtained in case of information fusion. Actually, on average (see Fig. 3f)
the rates with the weight based fusion methods are similar. Interestingly, it can
be observed that the expected accuracy increase holds off in case of the methods
DLF and FLF, not being based on weighting. However, as they are unable to
outperform the weight based ones, this observation has no practical relevance.

As especially the weight based feature-level fusion method in both experi-
ments leads to increased accuracies, we expect that a fusion on the one hand
across all patches in an image (derived from experiment A) and on the other
hand across all images, captured during endoscopy of one distinct patient (de-
rived from experiment B) could improve the rates from our experiments once
again. Unfortunately, the data currently available is not large enough for such
an experiment.

So far, we experimentally showed that theW-FLF approach is able to improve
the classification accuracies of state-of-the-art patch selection, without regard-
ing the theoretical issues in case of non-linear decision boundaries. Finally we
investigate the impact of the classifier’s decision boundary on the effectiveness of
W-FLF. As stated in Sect. 2.4, the feature averaging theoretically requires that
the decision boundaries are linear as otherwise the averaging of two features of
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one class could lead to an averaged descriptor located in the subspace of the
other class. To investigate how often an averaged feature of two correctly classi-
fied images would be incorrectly classified, now we consider all correctly classified
images (from the idealistic patches data set). For each pair of these images, the
average feature is computed and classified with varying settings (different k val-
ues). This is done as especially small k values correspond to highly non-linear
decision boundaries, whereas with higher k values this effect is softened. Figure
4a shows that especially in combination with low dimensional features (FPS,
SCH, MFS) and small k values (majorly for k=1), the feature averaging leads
to decreased classification accuracies (as 100 % accuracy is expected in case of
linear classification).

In Fig. 4b, the impact of a small k value (k=1) compared to the averaging
(with k reaching from 3 to 31) on the improvement achieved with W-FWF
compared to patch selection is shown. Apart from the classifier settings, the
same setup as in experiment A is used. As expected, if k is set to one, the
improvements of W-FLF are (especially in combination with the low dimensional
features) considerably smaller or even negative, which is expected to be due to
the highly non-linear decision boundaries. Therefore, we recommend to take care
about the classifier choice using the proposed method for weighted feature-level
fusion.

4 Conclusion

We have shown that information fusion in celiac disease classification is able to in-
crease the classification accuracies with small additional computation costs com-
pared to single patch selection. Whereas the simple decision-level and feature-
level methods are not able to improve the performance, the introduced weight-
based methods definitely are. Especially the feature-level fusion approach turned
out to be most appropriate on average. Thereby, this paper showed that the mea-
surement of image quality has a major impact not only in case of a single patch
selection, but also in case of information fusion. Getting nearer to the classifica-
tion rates of manual patch selection, this work brings us one step closer to fully
automatized non-interactive celiac disease diagnosis.
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