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Abstract. In the fields of computer aided celiac disease diagnosis, wide-
angle endoscopy lenses are employed which introduce a significant degree
of barrel type distortion. In recent studies on celiac disease classification,
distortion correction techniques are investigated which use interpolation
techniques, in order to maintain the rasterization of the image. Subse-
quent feature extraction is based on the new images. We introduce a
generic feature extraction methodology with intrinsic distortion correc-
tion, which does not include this rasterization for features which do not
need a regular grid. As distortion correction turned out to be disadvan-
tageous in most cases, we aim in investigating the (negative) effect of
the applied rasterization. In our experiments, the omission of rasteriza-
tion actually turns out to be advantageous. This fact is an incentive for
developing more features, which are not based on a regular grid.

1 Introduction

Celiac disease is an autoimmune disorder that affects the small bowel in ge-
netically predisposed individuals of all age groups after introduction of gluten
containing food. Characteristic for this disease is an inflammatory reaction in
the mucosa of the small intestine caused by a dysregulated immune response
triggered by ingested gluten proteins of certain cereals, especially against glia-
dine. During the course of the disease the mucosa looses its absorptive villi and
hyperplasia of the enteric crypts occurs leading to a diminished ability to absorb
nutrients. Computer aided celiac disease diagnosis relies on images taken during
endoscopy. The employed cameras are equipped with wide angle lenses, which
suffer from a significant amount of barrel type distortion. Whereas the distortion
in central image pixels can be neglected, peripheral regions are highly distorted.
Thereby, the feature extraction as well as the following classification is compro-
mised. Based on camera calibration, distortion correction (DC) techniques are
able to rectify the images.

In recent studies, the impact of barrel type distortion [1] and distortion cor-
rection [2] on the classification rate of celiac disease endoscopy images has been
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investigated. The authors showed that image patches in peripheral regions, which
are stronger affected by the distortion are more likely to be misclassified. How-
ever, with distortion correction, the classification rate on average even suffers.
In [3] and [4], different distortion correction techniques and in [5] additionally
various interpolation methods have been investigated.

Applying traditional distortion correction introduces the following advan-
tages (+) and disadvantages (–):

– Geometrical correctness (+):
The geometrical relations are rectified.

– Interpolation within rasterization (–):
As the mapping from distorted to undistorted points usually does not result
in discrete points, interpolation is necessary.

– Lack of data points in peripheral regions (–):
Due to the stretching of the image points, in peripheral regions, less real
data points are available.

In this work, we introduce a generic method to extract distortion corrected fea-
tures without the need of a previous rasterization. In order to measure the (neg-
ative) effect of interpolation in rasterization, the new approach is compared with
the traditional feature extraction based on distortion corrected images. More-
over, we compare the new approach with the method based on distorted images
which turned out to be mostly advantageous in recent work [2]. In experiments,
the competitiveness of the new approach is confirmed. We have to point out,
that the proposed approach requires features which are not based on a regular
grid, as otherwise the advantage would vanish. In experiments, we show that
the proposed intrinsic approach definitely is advantageous compared to the tra-
ditional approach based on DC images and for certain setups it is advantageous
compared to the approach based on original images.

The paper is organized as follows: In Sect. 2, the traditional way of distortion
corrected feature extraction and the new intrinsic technique is explained. In Sect.
3, experiments are shown and the results are discussed. Section 4 concludes this
paper.

2 Theory

2.1 Distortion Model

We utilize the distortion correction approach based on the work of Melo et al. [6].
In this approach, the circular barrel type distortion is modeled by the division
model [7]. Having the center of distortion x̂c and the distortion parameter ξ,
undistortion (DC) of distorted points xd and distortion (D) of undistorted points
xu is calculated as follows:

DC(xd) = x̂c +
(xd − x̂c)
||xd − x̂c||2

· ru(||xd − x̂c||2) . (1)



Feature Extraction with Intrinsic Distortion Correction 3

D(xu) = x̂c +
(xu − x̂c)
||xu − x̂c||2

· r−1u (||xu − x̂c||2) . (2)

||x− x̂c||2 (in the following r) is the distance (radius) of the point x from the
center of distortion x̂c. The function ru defines for a radius r in the distorted
image, the new radius in the undistorted image (for distortion (D), the inverse
function r−1u is required):

ru(r) =
r

1 + ξ · r2
. (3)

This approach is very robust, as only the parameters x̂c and ξ have to be esti-
mated.

2.2 Traditional Distortion Correction in Feature Extraction

In recent studies [1–3], first the undistorted image Iu is computed from the
distorted image Id. Intuitively, for each point xu in the undistorted image, the
corresponding point xd in the distorted image must be known. However, as Id(xd)
exists only for discrete points, the simple assumption Iu(xu) = Id(D(xu)) does
not hold in general (as D(xu) not necessarily is a discrete point).

First, a continuous signal Idcont must be generated from Id by e.g. a linear
interpolation method:

Idcont
(x) =

∑
z∈N

Id(z) ·K(x− z) . (4)

N is a set of discrete neighbors of x and K is an arbitrary interpolation kernel.
Having the continuous signal, the undistorted image can be computed as follows:

Iu(xu) = Idcont
(D(xu)) . (5)

The distortion corrected feature extraction is executed in the traditional way,
based on the undistorted image Iu.

2.3 Intrinsic Distortion Correction

In the tradition approach, before the feature extraction is applied, the undis-
torted image is generated. Thereby, the feature extraction can be executed in
the usual way, as in the new image the rasterization is retrieved. We introduce
a feature extraction methodology with intrinsic DC, which is not based on a
re-rasterization.

The main idea of intrinsic distortion correction is explained in the following.
We introduce two operations, which preserve geometrical correctness, although
pixel values are extracted from the distorted image.

Let xd be a reference point in the distorted image and v be an arbitrary offset
vector. xd⊕v adds a vector to a point in the image in consideration of geometrical
correctness. Both, the original and the resulting point are coordinates of the
distorted image:

xd ⊕ v = D(DC(xd) + v) . (6)



4 Michael Gadermayr, Andreas Uhl, and Andreas Vécsei

Otherwise, if two distorted reference points xd1 and xd2 are given, the geo-
metrically correct offset vector can be computed as follows:

xd1
	 xd2

= DC(xd1
)−DC(xd2

) . (7)

Using these two operations, each feature can be extracted, theoretically. How-
ever, although even a regular grid could be created by adding discrete offset
vector (v = (0, 1), (1, 1), (1, 0), (0, 2)...) to a reference point, intrinsic feature ex-
traction is only sensible if a regular grid is not required. If a grid was essential,
interpolation would be necessary in the same way as with the traditional DC.

Features Many features are based on regular grids (e.g. Fourier based and
wavelet based features). We identified the following features, being not based on
regular grids:

– Local binary patterns [8] (LBP)
– Local ternary patterns [9] (LTP)
– Rotational invariant Local binary patterns [10] (RLBP)

(a) Without DC: Feature
extraction based on dis-
torted images with a reg-
ular LBP operator.

(b) Traditional DC: Fea-
ture extraction based on
undistorted images with a
regular LBP (Sect. 2.2).

(c) Intrinsic DC: Fea-
ture extraction based on
distorted images, with a
distorted LBP operator
(Sect. 2.3).

Fig. 1: The three different feature extraction methodologies are illustrated with a
checkerboard image. The top column shows the utilized images and the bottom
column shows the applied enlarged LBP templates at the marked point (+).

For computing these features, each (reference) point is encircled by a given
number of equidistant circularly arranged samples with a defined radius. The
important thing is, that the exact positions of the samples do not necessarily
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comply with a regular image raster. That means, in each case, interpolation in
feature extraction is required. If the traditional DC approach is utilized, inter-
polation is applied twice (in rasterization and in feature extraction). With our
intrinsic approach, one interpolation step can be avoided. We exploit the oper-
ation ⊕, to get the neighboring points for each center patch, by adding vectors
v with a specific length (which is the radius of LBP) and different directions
(directly from the original image).

In Fig. 1, the approaches based on the distorted (Fig. 1a) and undistorted
images (Fig. 1b) and the intrinsic approach (Fig. 1c) are illustrated.

Whereas most texture features are based on regular grids new features could
be developed which directly exploit the operations ⊕ and 	. Moreover, existing
features which are based on regular grids can be modified.

(a) Marsh 3A-3C

(b) Marsh 0

Fig. 2: Example patches of patients with (a) and without the disease (b). In Fig.
2a, the villous structure (b) is missing and only blood vessels can be seen.

3 Experiments

3.1 Experimental Setup

The image test set used contains images of the Duodenal Bulb taken during
duodenoscopies at the St. Anna Children’s Hospital using pediatric gastroscopes
(with resolution 768× 576 and 528× 522 pixels, respectively). The mean age of
the patients undergoing endoscopy was 11.1 years (range 0.8-20.9 years). The
female to male ratio was 1.43:1. In a preprocessing step, texture patches with a
fixed size of 128× 128 pixels were extracted in a manual fashion (examples are
shown in Fig. 2). This size turned out to be optimally suited in earlier experi-
ments on automated celiac disease diagnosis [11]. In case of traditional distortion
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correction, the patch position is adjusted according to the distortion function.
With the intrinsic distortion correction, the original patches are preserved. In
traditional distortion correction, as well as in feature extraction, bi-linear inter-
polation is utilized. In our experiments, for feature extraction the patches are
converted to gray value images.

To generate the ground truth for the texture patches used, the condition of
the mucosal areas covered by the images was determined by histological exam-
ination of biopsies from the corresponding regions. Severity of villous atrophy
was classified according to the modified Marsh classification in [12].

Although it is possible to distinguish between the different stages of the
disease (called Marsh 3A-3C), we only aim in distinguishing between images
of patients with (Marsh3A-3C) and without the disease (called Marsh0). Our
experiments are based on a database containing 163 (Marsh 0) and 124 (Marsh
3A-3C) images, respectively. As we do not have a separate evaluation set, leave-
one-patient-out cross validation is utilized. Thereby we also do not apply any
feature subset selection, but instead evaluate various setups with the features
mentioned above. For classification, the k-nearest neighbor classifier is used. We
utilize this rather simple classifier in order to focus on the feature extraction
stage.

3.2 Results

In Fig. 3a - 3c, the results of our Experiments are shown. In each plot for one
feature and each configuration (applied on the x-axis), 2 bars are shown. A con-
figuration consists of the radius (first value which is reaching from 1 to 4 pixels)
and the number of samples (second value which is reaching from 4 to 10). The
bold vertical lines separate the considered radii. Whereas the dark-colored left
bars indicate the differences of the classification rates between the intrinsic DC
approach and the traditional DC approach, the light-colored right bars indicate
the differences between the intrinsic DC and the original approach without dis-
tortion correction. A positive value means that the classification rate of the new
intrinsic method is higher compared to the other method. The value on top of
each column shows the classification rate achieved with the original approach
without DC. Adding the respective difference, the absolute classification rates
of the intrinsic DC method can be estimated. It can be seen, that the left (dark-
colored) bars are almost always above zero. That means, the classification rate
definitely benefits from our new intrinsic DC approach compared to the tra-
ditional DC approach. The behavior of the right (light-colored) bars seems to
depend on the considered neighborhood (i.e. the radius). If radius 1 is chosen,
intrinsic DC is disadvantageous compared to the approach without DC for each
feature and each number of samples. However, in case of larger neighborhoods
(especially if radius is 3 or 4), the intrinsic DC turns out to be the better choice as
far as the classification rate is concerned. The overall best achieved classification
rates for each feature and each DC method are shown in Table 1.
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(a) Classification rates achieved with LBP.
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(b) Classification rates achieved with LTP.
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(c) Classification rates achieved with RLBP.

Fig. 3: Classification rates achieved with the different features.
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Table 1: Best configurations for each feature and each DC method.
Feature DC Method Radius Samples Rate

Without DC 2 8 91.64
LBP Traditional DC 2 10 88.85

Intrinsic DC 2 10 92.33

Without DC 2 4 91.99
LTP Traditional DC 2 4 89.55

Intrinsic DC 3 4 92.33

Without DC 2 4 89.55
RLBP Traditional DC 2 6 87.46

Intrinsic DC 2 8 90.24

3.3 Discussion

The new intrinsic DC method definitely is superior to the traditional DC ap-
proach. The omitted additional interpolation within rasterization improves the
classification rate in nearly each case, especially if larger radii are considered.
In comparison with the approach based on the original image, the intrinsic DC
approach profits from larger radii. If larger radii are considered, the geometrical
correctness takes precedence over the lack of data points. In opposite if small
radii are considered, the geometrical (in)correctness has less impact than the
missing data points. For an extended discussion on the impact of lens distortion
correction on feature extraction and following classification we refer to [5]. With
3 out of the 3 tested features, the best overall classification rates are achieved
with the intrinsic DC method.

4 Conclusion

With the introduced distortion correction intrinsic feature extraction, the ras-
terization which is applied in traditional distortion correction can be omitted for
specific features. We show, that the classification rate of celiac disease images
benefits from the better preservation of information. A benefit is achieved on
the one hand if compared to the traditional DC approach. On the other hand,
compared with the approach based on original images, intrinsic DC is advanta-
geous especially if larger neighborhoods are considered. This is an incentive for
developing more features which are not based on a regular raster.
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10. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(7) (July 2002) 971–987

11. Hegenbart, S., Kwitt, R., Liedlgruber, M., Uhl, A., Vécsei, A.: Impact of duodenal
image capturing techniques and duodenal regions on the performance of automated
diagnosis of celiac disease. In: Proceedings of the 6th International Symposium on
Image and Signal Processing and Analysis (ISPA ’09), Salzburg, Austria (Septem-
ber 2009) 718–723

12. Oberhuber, G., Granditsch, G., Vogelsang, H.: The histopathology of coeliac dis-
ease: time for a standardized report scheme for pathologists. European Journal of
Gastroenterology and Hepatology 11 (nov 1999) 1185–1194


