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Abstract

Due to the optics used in endoscopes, a typical degradation observed in endo-
scopic images are barrel-type distortions. In this work we investigate the impact
of methods used to correct such distortions in images on the classification accu-
racy in the context of automated celiac disease classification.

For this purpose we compare various different distortion correction methods
and apply them to endoscopic images, which are subsequently classified. Since
the interpolation used in such methods is also assumed to have an influence on
the resulting classification accuracies, we also investigate different interpolation
methods and their impact on the classification performance. In order to be
able to make solid statements about the benefit of distortion correction we
use various different feature extraction methods used to obtain features for the
classification.

Our experiments show that it is not possible to make a clear statement about
the usefulness of distortion correction methods in the context of an automated
diagnosis of celiac disease. This is mainly due to the fact that an eventual benefit
of distortion correction highly depends on the feature extraction method used
for the classification.

Keywords: Endoscopy, Celiac disease, barrel-type distortion, distortion
correction, medical image classification

1. Introduction

Today, medical endoscopy is a widely used procedure to inspect the inner
cavities of the human body. As a consequence different medical fields exist for
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which automated decision-support systems based on endoscopic images have
been developed [1]. But since images taken with endoscopes often suffer from
various kinds of degradations, a pre-processing of the images is often necessary
in order to make them useful for an automated analysis [2] (to cope with e.g.
sensor noise, focus and motion blur, and specular reflections [1]).

A different type of degradation, present in all endoscopic images, is a barrel-
type distortion. This type of degradation is caused by the wide-angle (fish eye)
nature of the optics used in endoscopes (although the strength of the distortion
varies depending on the endoscope used). Such a distortion is also claimed to
affect diagnosis since it introduces non-linear changes in the image, due to which
the outer areas of the image appear significantly smaller than they actually are
[3]. As a consequence the estimation of area or perimeter of observed lesions
can be significantly incorrect depending on the position in the image [4, 5].
With respect to an automated classification such distortions are also suspected
to lead to corrupted features due to an inhomogeneous magnification [6]. It
has also been mentioned in literature that barrel-type distortions might lead
to “complications using token matching techniques for pattern recognition” [4].
Since the seminal work on distortion correction (DC) for endoscopic images [6]
several distortion correction procedures have been developed to overcome the
problems caused by such distortions [4, 5, 7, 8].

To the best of our knowledge up to now there are only a few studies available,
which investigate the impact of barrel-type distortions and distortion correction
on the accuracy of automated classification systems for endoscopic images [9,
10, 11, 12].

In [9] the impact of distortion correction on the classification accuracy re-
garding celiac disease images has been investigated. Gschwandtner et al. showed
that most feature extraction methods evaluated failed to take advantage of ap-
plying distortion correction as a pre-processing step to the endoscopic images,
resulting in a decreased classification accuracy. In the follow-up work in [11] the
authors evaluated another distortion correction method with a similar outcome.
In [12] the authors evaluated the distortion correction methods from [9, 11] with
additional feature extraction methods. In this work the authors showed that
only a few feature extraction methods are able to take a slight advantage of
distortion correction (with respect to the overall classification rates). The work
presented in [10] investigated the impact of distortions and interpolation arti-
facts caused by distortion correction methods on the accuracy of a classification
of celiac disease images. The clear outcome was that there is indeed a negative
impact of barrel-type distortions on the classification accuracy. Moreover, this
negative effect gets more apparent the farther away from the center of distortion
(CoD) features are extracted. But it has also been shown that this also accounts
to distortion corrected images due to interpolation artifacts. The bottom-line
result of all four studies was that the interpolation artifacts caused by the dis-
tortion correction are very likely one reason why the classification results have
not been improved.

To facilitate a more thorough investigation of the effect of distortion correc-
tion on the accuracy of an automated diagnosis of celiac disease, the present
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work compares four different distortion correction methods (instead of two meth-
ods at most, like in earlier studies). In addition, this work is the first study which
also compares various different interpolation methods used for distortion correc-
tion (previous studies were based on bilinear interpolation only). To be able to
make solid statements about the usability of the different distortion correction
methods in the context of endoscopic image classification, we use various dif-
ferent feature extraction methods, which are evaluated on distortion corrected
images.

The remaining part of this work is organized as follows: In Section 2 we
briefly describe the medical background of celiac disease, the staging system
commonly used to diagnose this disorder, and the motivation behind automated
classification systems targeted at this disorder. After a discussion of barrel-type
distortions and the problems inherent to this type of degradations in Section
3, we describe the methods for distortion correction evaluated in this work in
Section 4. In Section 5 we then briefly summarize the feature extraction meth-
ods used throughout our experiments. Experimental results and configuration
details for our experiments are presented in Section 6, followed by a discussion
in Section 7 and concluding remarks in Section 8.

2. Automated Classification for Celiac Disease Diagnosis

Celiac disease, commonly known as gluten intolerance, is a complex autoim-
mune disorder that affects the small bowel in genetically predisposed individuals
of all age groups after introduction of food containing gluten. Characteristic for
the disease is an inflammatory reaction in the mucosa of the small intestine.
During the course of the disease the mucosa looses its absorptive villi and hy-
perplasia of the enteric crypts occurs, leading to a diminished ability to absorb
nutrients.

Endoscopy with biopsy is currently considered the gold standard for the diag-
nosis of celiac disease. During standard upper endoscopy at least four duodenal
biopsies are taken. Microscopic changes within these specimen are then clas-
sified in a histological analysis according to the Marsh classification proposed
in 1992 [13]. Subsequently, Oberhuber et al. proposed the modified Marsh
classification [14] which distinguishes between classes Marsh-0 to Marsh-3, with
subclasses Marsh-3a, Marsh-3b, and Marsh-3c, resulting in a total number of
six classes. According to the modified Marsh classification Marsh-0 denotes a
healthy mucosa (without visible changes of the villous structure) and Marsh-3c
designates a complete absence of villi (villous atrophy).

In accordance to the work in [9, 11, 10], we consider the four classes Marsh-0
and Marsh-3a to Marsh-3c only throughout this work, since visible changes in
the villi structure can be observed only for classes Marsh-3a to Marsh-3c (in case
of the classes Marsh-1 the number of intra-epithelial lymphocytes is increased
and in case of Marsh-2 the crypts of Lieberkuhn are proliferated). In addition,
in this work we focus on the 2-classes case only (i.e. Marsh-0 and Marsh-3) since
in this case the image database available is fairly well balanced with respect to
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the images in each class. In the remaining part of this work we denote these
classes by “No-celiac” and “Celiac”.

Throughout the past decades automated classification systems got an emerg-
ing field of research for endoscopic diagnosis and treatments [15]. An automated
system identifying areas affected by celiac disease in the duodenum would offer
the following benefits (among other):

• Methods helping to locate specific areas for biopsies might improve the
reliability of celiac disease diagnosis. Especially when considering that
biopsies are invasive and thus the number of biopsies taken should kept
small, assisted biopsy site targeting is desirable. Such a targeting can be
supported by an automated system for the detection of areas affected by
celiac disease.

• The whole diagnostic work-up of celiac disease, including duodenoscopy
with biopsies, is time-consuming and cost-intensive. To save costs, time,
and manpower and simultaneously increase the safety of the procedure it
would be desirable to develop a less invasive approach avoiding biopsies.
Recent studies [16] investigating such endoscopic techniques report reli-
able results. These could be further improved by analysis of the acquired
visual data (digital images and video sequences) with the assistance of
computers.

• The (human) interpretation of the video material captured during cap-
sule endoscopy [17] is an extremely time consuming process. Automated
identification of suspicious areas in the video would significantly enhance
the applicability and reduce the costs of this technique for the diagnosis
of celiac disease.

3. Barrel-type Distortions

As already mentioned earlier, barrel-type distortions are typical to endo-
scopic images. The reason for this is the optics used in endoscope devices. In
endoscopy it is usually desirable to have a wide field-of-view (FOV) in order
to be able to inspect as much as possible without the necessity of continuously
adjusting the direction of the tip of the endoscope. But the enlarged visible area
comes at the price of noticeable distortions, especially at very wide FOV values
as commonly used in endoscopes (typical values range from 100◦ to 170◦).

In addition, the level of distortion is also dependent on the distance of the
endoscope to the tissue in focus. Since endoscopes usually have a very short focal
depth (a few millimeters only), barrel-type distortions get even more amplified.
While moving the endoscope farther away from the tissue of interest would
theoretically help to reduce the barrel-type distortions, the resulting images
most likely will be out of focus since endoscopes usually also have a very narrow
depth of field (i.e. the range before and after the focal plane inside which objects
appear sharp).
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Figure 1: Illustration of the differently large object areas d1 and d2 imaged within two angular
slices of equal angular width (denoted by the blue slices).

Hence, depending on the FOV and the focal depth, barrel-type distortions
may vary significantly in strength between the CoD (which corresponds to the
optical axis) and the outer regions of an image (i.e. the image magnification
decreases with the distance to the CoD).

Figure 1 shows how the distance to the CoD affects the distortion. While
the object area imaged by the angular slice pointing toward the CoD is narrow,
we notice that the angular slice farther away from the CoD covers a much wider
object area. In other words, the object magnification is much higher in the
proximity of the CoD as compared to outer image areas.

An example for barrel-type distortions is shown in Fig. 2. This image shows
a checkerboard pattern captured with an endoscope. We immediately notice
that lines, which are usually straight in a checkerboard pattern, are not straight
anymore due to severe distortions. We also notice that – as already indicated
above – the tiles farther away from the image center are considerably smaller
as compared to the tiles close to the center of the image.

4. Correction of Barrel-type Distortions

The correction of barrel-type distortions consists of two integral parts, which
influence the appearance of the distortion-corrected images: the distortion cor-
rection method and the interpolation of missing information, once the distortion
has been estimated correctly.

4.1. Distortion Correction

Barrel-type distortions are radial distortions. That is, by neglecting possible
small non-radial defects in the optical system, the lenses in question exhibit
rotational symmetry. As a consequence distortion correction usually consists of
two steps: first, based on one or more distorted images, the camera parameters
(intrinsic and extrinsic, including the CoD) and the parameters for the assumed
radial distortion model are estimated. Then, according to the parameters found,
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Figure 2: An example for barrel-type distortions showing a checkerboard pattern captured
with an endoscope.

the distortion is corrected by applying a pincushion distortion, which is the
inverse to the barrel-type distortion and therefore exhibits rotational symmetry
too.

Due to the rotational symmetry of the pincushion distortion the correction
simply corresponds to shifting pixels farther away from the CoD. The direction
of this shift follows the direction from the CoD to the original pixel position.
However, the strength of the shift varies, depending on the distance of the
original pixel position to the CoD (see Fig. 3).

Since the pixels in an undistorted image lie on a regular grid, we need to
compute the distorted coordinates and use them to look up pixel values for
the undistorted image in the distorted image. Hence, assuming that the CoD
x̂c = (xc, yc)

T has been estimated, the computation of the coordinates for each
distorted point x′ = (x′, y′)T inside a distorted image can be written in its most
general form as

x′ = x̂c +
(x− x̂c)

||x− x̂c||2
· f(r), (1)

where x = (x, y)T denotes the respective undistorted point (i.e. the pixel co-
ordinates in the undistorted image), f(·) denotes a distortion function which
returns the strength of the distortion depending on the points x and x̂c, and r
denotes a parameter defining the strength of the distortion (e.g. the distance of
an undistorted pixel to the CoD).

In the past various different methods to eliminate barrel-type distortions in
images have been proposed. In the following we briefly describe each of the
methods we used for our experiments. The set of methods described below
has been chosen since in [18] it has been shown that the underlying models of
these methods are able to cope well with barrel-type distortions in endoscopic
imagery.
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(a) (b)

Figure 3: (a) Illustration of the shifts applied to distorted pixels (denoted by blue dots) to
obtain corrected pixel positions (denoted by squares) during distortion correction (the CoD
is denoted by the white circle in the image center). (b) An example of an endoscopic image
after applying distortion correction.

4.1.1. Even-order Polynomial Model

A very popular camera calibration method has been introduced by Zhang
[19]. In this work the camera parameters are estimated using a homography
estimation. It is common practice to model the lens distortion function by a
Taylor expansion of the form

L(r) = α0 + α1 · r + α2 · r2 + α3 · r3 + . . . . (2)

In [19], r = ||x̄||2 with x̄ being the normalized image coordinates of x. Zhang
also limits this expansion to second-order and fourth-order terms, yielding the
even order polynomial:

f(r) = k1 · r2 + k2 · r4, (3)

where ki denote the parameters of this model (i.e. k1 = α2 and k2 = α4). It
must be noted that, while the original work in [19] is based on Equ. (3), the
implementation used throughout our experiments also uses an additional 6-th
order term1, which results in

f(r) = k1 · r2 + k2 · r4 + k3 · r6. (4)

4.1.2. Polynomial Model

In the work, proposed by Alvarez et al. [20], the lens distortion function
is modeled in a way similar to Zhang. But the authors do not restrict the
polynomial to terms of an even-order degree. Their lens distortion function is
modeled as a polynomial of order four:

f(r) = k0 + k1 · r + k2 · r2 + k3 · r3 + k4 · r4, (5)

1In this work we used the implementation provided by the OpenCV library, which can be
downloaded from http://sourceforge.net/projects/opencvlibrary/
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with r = ||x−xc||2 being the distance between the CoD and an undistorted point
x. The implementation used throughout our experiments can be downloaded
freely2.

4.1.3. Parameter-free Model

In [21] a parameter-free distortion correction method is proposed. The au-
thors motivate this by the fact that the model based on the Taylor expansion
does not work well for strong distortions. This especially accounts to distortions
caused by fish-eye or wide-angle lenses since the approximate infinite distortions
in the periphery of these images can not be modeled well by a polynomial.

As a consequence the authors propose a parameter-free model which uses a
high number of point correspondences between distorted points x′ and undis-
torted points x. Based on these correspondences a scatter plot is generated,
which plots the radial distance between x′ and x (i.e. ||x′ − xc||2 − ||x− xc||2)
against the distance of x′ to the CoD (i.e. ||x′ − xc||2). Then for each point
in the scatter plot the right scale factor is computed for each available x′. In
case of points x′, which are not available, the respective values are interpolated
to some precision. The values computed this way are stored in a lookup table
T for the distortion correction process. Using T we can also compute a second
table T ′, to obtain distortion strengths for computing the points x′ from the
undistorted points x. The distortion function can then be formulated as

f(r) = L(r), (6)

with r = ||x−xc||2 and L(·) being a function which uses T ′ to find an appropriate
distortion strength for the given r. The implementation used for this method is
a custom software, which has already been used in [11, 12].

4.1.4. Division Model

The work proposed in [22] is based on the so-called division model, which has
been proposed in [23]. While this model is not an approximation to traditional
models, it is a good approximation to radial distortion. In contrast to the
polynomial models it only needs one parameter ξ to be estimated in order to
correct radial distortions. In this model the relationship between the radius of a
distorted point x′ (i.e. rd = ||x′ − xc||2) and the radius of an undistorted point
x (i.e. ru = ||x− xc||2) is formulated by the following simple equation:

ru =
rd

1 + ξ · r2d
. (7)

After some reordering of the terms we end up with the following distortion
function

f(r) = rd =
2 · r

1 +
√

1− 4 · ξ · r2
, (8)

with r = ru.

2The software can be downloaded from http://www.ipol.im/pub/art/2010/ags-alde/
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(a)

(b) (c)

(d) (e)

Figure 4: Result of the different distortion correction methods: (a) original checkerboard
image, (b) DC from [19] (see Section 4.1.1), (c) DC from [20] (see Section 4.1.2), (d) DC from
[21] (see Section 4.1.3), and (e) DC from [22] (see Section 4.1.4).

The implementation used throughout our experiments can be downloaded
freely3.

4.2. Brief Comparison of the Distortion Correction Methods

Figure 4(a) shows an example checkerboard pattern, recorded with an endo-
scope. In Figs. 4(b)-(e) we show the distortion correction results as produced

3The software can be downloaded from http://arthronav.isr.uc.pt/easycamcalib/
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by the different distortion correction methods. From these example images we
notice that the distortion correction works roughly equally well in case of each
method. Especially in the center region the lines of the checkerboard pattern
are rectified accurately. But towards the image borders the results yielded by
the methods differ slightly. In these regions we notice that the lines in the
undistorted images are not perfectly straight.

4.3. Interpolation Methods

During correction of a barrel-type distortion pixel positions, which are on a
regular grid in the distorted image, get moved farther away from the CoD. As
a consequence, there is information missing between the undistorted points and
some sort of interpolation must be performed.

Since the choice of the interpolation method used for distortion correction
also affects the texture properties of the correction result, we evaluate different
interpolation methods throughout our experiments. While we investigate a
small set of interpolation methods only there also exist other methods (for a
comprehensive overview see [24]).

The five methods we compare in our experiments are:

• Nearest-neighbor interpolation
This interpolation scheme is the simplest. In order to select the value for a
specific pixel it just assigns the color of the nearest neighboring pixel (i.e.
with the smallest distance in the sense of the Euclidean distance). While
being very simple, this method is also prone to introducing artificial high
frequency content in an image due to aliasing artifacts. Despite the visu-
ally less appealing results, such artifacts may also get problematic when it
comes to the extraction of features, which are then used for classification.

• Bilinear interpolation
Compared to nearest-neighbor interpolation, this method is a little bit
more involved but also results in visually more appealing results without
introducing too much artifacts. In our implementation the value for some
pixel is computed by taking the weighted average of the pixels in a 2× 2
neighborhood.

• Bicubic interpolation
Another interpolation method used in our experiments is bicubic inter-
polation. It is similar to bilinear interpolation but uses a 4 × 4 pixel
neighborhood for the computation of the weighted average. While being
computationally more complex, the results of this interpolation method in
general exhibit less interpolation artifacts as compared to bilinear inter-
polation. This method also performs better when it comes to preserving
edges.

• Lanczos interpolation
The Lanczos filter [25] of size 8x8 is known to imitate the perfect low pass
filter (sinc) quite effectively and reduces ringing artifacts. With this filter,
the available frequencies are retained, whereas aliasing is avoided.
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• Edge-preserving interpolation
The Lanczos filter is known to retain the available frequencies. However,
in this case due to the stretching of the image in peripheral regions, high
frequencies (sharp edges) are missing after undistortion. Consequently,
maintaining the available frequencies is not enough to reconstruct the real
edge information.

Therefore, an edge-preserving interpolation method by Wang et al. [26]
has been implemented. In contrast to usual (linear) interpolation kernels,
in this nonlinear approach the behavior of the interpolation depends on
the image properties. Near edges high frequencies are encouraged (similar
to nearest neighbor interpolation), whereas smooth regions are retained
smooth (similar to linear interpolation).

In Fig. 5 we show image regions cut out from an undistorted checker-
board pattern, using the different interpolation methods (undistorted using the
method by Melo et al. [22]; the region used for the patches shown in Fig. 5(c)-
(g) is indicated by a red rectangle in Fig. 5(b). As expected, we notice the
strongest artifacts in case of the nearest-neighbor interpolation (blocky appear-
ance of the interpolated pixels), while the other methods produce visually more
appealing results. When comparing the bilinear and the bicubic interpolation
we hardly notice any difference apart from a slightly sharper appearance in case
of the latter method (may be attributed to the edge-preserving property in case
of this method). The Lanczos interpolation is visually very similar to the bicubic
interpolation but produces ringing artifacts. The edge-preserving method, pro-
posed in [26], produces very sharp images. While being visually similar to the
nearest-neighbor interpolation, this method produces visually more appealing
results.

5. Feature Extraction Methods Evaluated

To facilitate an investigation of the impact of different distortion correction
methods on the classification accuracy of an automated classification system, we
use various different feature extraction methods to obtain features. In addition,
using a diverse set of features also allows us to investigate the effect of the
different interpolation methods on the resulting classification rates.

The features evaluated can be roughly divided in methods operating in the
spatial domain and those operating in the transform domain. In the following
we briefly sketch the basic methodology behind each feature extraction method
used. For a more detailed explanation we refer the reader to the original works
(given as reference).

5.1. Spatial Domain Features

5.1.1. Local Binary Patterns (LBP)

Local binary patterns (LBP) [27] are a powerful method to describe local
texture properties within an image. In its simplest form, this method compares
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(a) Original (b) Undistorted

(c) Nearest-
neighbor

(d) Bilinear (e) Bicubic

(f) Lanczos (g) Edge-preserving

Figure 5: Comparison of the different interpolation methods when used for a distortion cor-
rection of a checkerboard pattern: (a) original image, (b) the original image after applying
undistortion, (c) nearest-neighbor interpolation, (d) bilinear interpolation, (e) bicubic inter-
polation, (f) Lanczos interpolation, and (g) edge-preserving interpolation. The red rectangles
in (a) and (b) indicate the position of the patches used for (c)-(g).

the grayscale value of a pixel to the values of the eight nearest neighbors. If the
value of a neighbor exceeds the center pixel value, the respective neighborhood
position is set to one. The number resulting from the neighborhood bit sequence
corresponds to the LBP number. In other words, the neighbors of each pixel
are thresholded by the respective center pixel and the resulting binary sequence
is used to obtain the final LBP number. Based on the LBP numbers computed
for all pixels in the source image a histogram is generated, which then serves as
the feature vector.

In a subsequent work, Ojala et al. proposed a generalization of this idea
[28]. In contrast to the original LBP operator, this new operator allows to
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use more than eight neighbors. In addition, these neighbors are no more the
nearest neighbors, but circularly distributed around the center pixel. Since
the respective neighbor positions do not necessarily correspond to integer pixel
positions, interpolation is needed in order to obtain the respective grayscale
values. To investigate spatial dependencies beyond the nearest neighbors, this
operator also allows to enlarge the radius for the neighbors (in this case the
source image is usually blurred prior applying the LBP operator).

Throughout the remaining work we use the abbreviations LBP-NN and LBP-
I to distinguish between the nearest-neighbor variant and the subsequently pro-
posed LBP operator, respectively.

5.1.2. Local Ternary Patterns (LTP)

Following the idea of the LBP-NN operator, Tan and Triggs proposed an
extension which aims at an enhanced robustness in terms of image noise [29]. To
achieve this, the authors introduce a threshold value below which the absolute
pixel difference (between the center pixel and a neighbor pixel) yields zero. If
the neighbor pixel has a value above (below) the center pixel value plus (minus)
the threshold, the LTP operator yields 1 (-1) for this comparison. The resulting
pattern is a ternary one from which the histograms are computed.

5.1.3. Gray Level Co-occurrence Matrix (GLCM)

The GLCM, originally proposed in [30], is a 2D-histogram, which describes
the spatial relationship between neighboring pixels. The matrix is created based
on the co-occurring values of pixels across an image (for some fixed pixel offset).
In other words, for each possible combination of two pixel values the GLCM
stores the number of co-occurrences within an image for a given displacement
between the pixels. While the displacement is fixed for a single GLCM, it can
be adjusted with respect to the pixel distance and the direction.

To obtain features for the classification, we compute a GLCM for four differ-
ent directions (up, down, left, and right) and compute a subset of the statistical
features proposed in [30] (i.e. contrast, correlation, energy, and homogeneity)
on each GLCM. The final features used are composed by concatenating the
Haralick features extracted. In order to obtain features at multiple scales we
also carry out experiments with different distance values for the displacement
and concatenate the resulting feature vectors.

5.1.4. Shape-Curvature Histogram (SCH)

SCH [31] is a shape feature, originally developed in the context of automated
celiac disease diagnosis. The feature is based on the extraction of the geometric
property ”curvature” from previously detected edges. In order to compute the
feature, first an edge map is computed using the Canny-Edge detector. Based on
this map, for each edge pixel the orientation is estimated. Then, by investigating
the orientation values of neighboring pixels, the curvature is computed. Finally,
a histogram, based on the curvature values within the image, is created. This
histogram is then used as the feature vector for classification.
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5.1.5. Edge Co-occurrence Matrix (ECM)

The principle of ECM has been proposed in [32]. After applying eight dif-
ferently orientated directional filters (rotated Sobel filters) on the source image,
a gradient magnitude image is constructed for each direction. Based on these
the direction with the maximum response is determined for each pixel, followed
by masking out pixels with a gradient magnitude below some threshold. Then
the methodology of GLCM is used to obtain the ECM for one specific displace-
ment. As suggested in [32], we compute the element-wise sum of eight ECMs
(one for each direction) to obtain the final ECM for one specific displacement
distance. For the subsequent classification the whole ECM is used as the feature
vector. In order to obtain features at multiple scales we also carry out experi-
ments with different distance values for the displacement and concatenate the
resulting feature vectors.

5.1.6. Spatial Size Distribution (SSD)

The spatial size distribution as an image processing feature has been orig-
inally proposed in [33]. The features are computed as an autocorrelation of
the difference between the original image and an opened version (morpholog-
ical opening) of this image. The operator can be configured to meet certain
requirements by changing the type and size of the structuring element used
for the opening. According to the authors SSD combines properties of texture
(fine-grained) as well as shape features (coarse-grained), since different resolu-
tions can be considered by adjusting the size of the structuring element. For
simplicity we use circular structuring elements in different sizes only.

5.1.7. Gaussian Markov Random Fields (GMRF)

The features of this method, originally proposed in [34], are based on the
so-called Markov parameters. To obtain these features each color channel of
an image is subject to a parameter estimation of a GMRF. The neighborhoods
employed are of Geman-type [35]. The final feature vector is obtained by con-
catenating the Markov parameters estimated for each color channel along with
the respective approximation errors.

5.1.8. Joint-color LBP (JC-MB-LBP)

Due to the noise-sensitive nature of the LBP operator we developed an op-
erator which is less sensitive to noise [36]. This is achieved by computing LBP
numbers from averaged pixel blocks instead of single pixels (actually an ex-
tension of the LBP-NN operator). In addition, the resulting features also con-
sider inter-channel relationships between different color channels by constructing
joint-histograms across multiple color channels. More precisely, this operator
uses two different color channels, resulting in 2D-histograms which are used as
features.

5.1.9. Local Color Vector Patterns (LCVP)

The LCVP operator [37] is based on the idea of the JC-MB-LBP operator.
But instead of computing the LBP transform for each color channel separately
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or computing joint-histograms, this operator treats an image as a color vector
field. Based on suitable similarity measures between two color vectors (e.g.
length of difference vector between two color vectors in CIELAB color space),
a compact histogram descriptor, incorporating all color information available,
is computed for an input image. The histograms are used as features for the
classification.

5.1.10. Fractal Features (FRACTAL)

The method proposed in [38] is based on the computation of fractal features.
First an image is pre-filtered using the MR8 filter bank. Subsequently the local
fractal dimension for each pixel of the eight filter responses is computed. Then
a bag-of-visual-words approach is used to generate a histogram for an image.
These histograms are then used as features for the classification.

5.2. Transform Domain Features

5.2.1. Pyramidal Wavelet Transform (WPC)

This method [39] applies the pyramidal DWT to the input images. Based on
the resulting wavelet decomposition structures, we compute the energy or the
l-norm from the coefficients of a subband to obtain the feature for the respec-
tive subband. This method selects a subset of subbands for feature extraction
(chosen based on the l-norm computed from the coefficients within a subband).
The feature values computed from these subbands make up the feature vector.

When applied to color images, this operator is applied to each color channel
separately and the final feature vector for an image is obtained by concatenating
the feature vectors from the single channels.

5.2.2. Best-Basis Centroids Base (WT-BBC)

The Best Basis Centroids Base method [40] uses the Best-Basis algorithm
[41] to find an optimal basis for each image in a training set and computes
a centroid over all resulting wavelet packet decomposition structures. After
transforming all images into this basis, the most informative subset of the re-
sulting subbands is selected to compute a feature from all coefficients within
each subband (energy, variance, or l-norm). The selection of the subset of sub-
bands is based on a cost-function computed on all coefficients within a subband
(log-energy, entropy, or l-norm). The feature values computed from the most
informative subbands form the feature vector.

When applied to color images, this operator is applied to each color channel
separately and the final feature vector for an image is obtained by concatenating
the feature vectors from the single channels.

5.2.3. Local Discriminant Basis (WT-LDB)

This method [39] is based on the Local Discriminant Basis algorithm (LDB),
originally proposed in [42]. The LDB algorithm facilitates finding an optimal
wavelet packet decomposition basis with respect to discrimination between dif-
ferent classes of images. The LDB algorithm is therefore used to find an optimal
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basis into which all images are transformed to. Based on the resulting wavelet
decompositions for each subband we use the variance of the coefficients con-
tained within a subband as feature. Instead of using all subbands available for
feature extraction we select a subset of subbands which exhibit the highest dis-
criminative power. The feature values computed from these subbands make up
the feature vector. Similar to WT-BBC, the operator is applied to each color
channel separately and the final feature vector is obtained by concatenating the
feature vectors from the single channels.

5.2.4. Wavelet-based GMRF (WT-GMRF)

This method, proposed in [34], is an extension to the GMRF method. While
the GMRF method operates in the spatial domain, the WT-GMRF method
is based on wavelet-transformed color channels in order to be able to capture
texture details at different resolutions. For this purpose each color channel of
an input image is transformed using the pyramidal DWT. Then the Markov
parameters are estimated for each resulting subband (except for the approxima-
tion subband). In order to obtain the final feature vector for classification, the
parameter vectors (again containing the approximation errors too) from all sub-
bands and color channels are concatenated. The rather time-consuming feature
selection used in [34] is not carried out in this work.

5.2.5. WT-GMRF With Custom Neighborhoods (WT-GMRF-CNH)

This method is an extension to the WT-GMRF method [34]. In order to be
able to better capture details from the different wavelet subbands (horizontal,
vertical, and diagonal) this method uses neighborhoods specifically tailored to
the differently orientated subbands instead of the Geman-type neighborhoods
used earlier. Similar to WT-GMRF we carry out no feature selection, as done
in [34].

6. Experiments

6.1. Image Database Used

The image test set used contains images taken during duodenoscopies at the
St. Anna Children’s Hospital using pediatric gastroscopes without magnifica-
tion (two GIF-Q165 and one GIF-N180, Olympus, with resolution 768 × 576
and 528 × 522 pixels, respectively). The main indications for endoscopy were
the diagnostic evaluation of dyspeptic symptoms, positive celiac serology, ane-
mia, malabsorption syndromes, inflammatory bowel disease, and gastrointesti-
nal bleeding. The mean age of the patients undergoing endoscopy was 11.1
years (range 0.8-20.9 years). The female to male ratio was 1.43:1. Images were
recorded by using the modified immersion technique, which is based on the in-
stillation of water into the duodenal lumen for better visibility of the villi. The
tip of the gastroscope is inserted into the water and images of interesting areas
are taken. A study [43] shows that the visualization of villi with the immersion
technique has a higher positive predictive value. Previous work [44] also found
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Image class
NO NE NP

No-celiac 100 163 59
Celiac 67 124 23

Total 167 287 82

Table 1: The detailed ground truth information for the celiac disease image database used
throughout our experiments.

that the modified immersion technique is more suitable for automated classifi-
cation purposes as compared to the classical image capturing technique. Images
from a single patient were recorded during a single endoscopic session and differ
by the presented duodenal region only.

There are two duodenal regions with completely different geometric proper-
ties, i.e. the Duodenal Bulb and the Pars Descendens. Since the bowel resembles
a tube, the chosen perspective considerably changes among images. Textures
within images from the Bulbus region lie in the tangent plane to the surface,
therefore, the most important distortion is that caused by the endoscopes’ op-
tics. The mucosa texture seen within the Pars Descendens region varies between
a tangential orientation to a perspective that points out of the surface of the
image. Consequently, distortions with respect to texture homogeneity are also
caused by differences in perspective in addition to the optics’ distortion. Thus,
we concentrate on image material taken from the Duodenal Bulb in this work.

We have created a set of textured image patches with optimal quality to as-
sess if the required classification is feasible under “idealistic” conditions. Thus,
the captured data was inspected and filtered by several qualitative factors
(sharpness, distortions, visibility of features). In the next step, texture patches
with a fixed size of 128×128 pixels were extracted in a manual fashion (the size
turned out to be optimally suited in earlier experiments on automated celiac
disease diagnosis [44]).

To generate the ground truth for the texture patches used, the condition of
the mucosal areas covered by the images was determined by histological exam-
ination of biopsies from the corresponding regions. Severity of villous atrophy
was classified according to the modified Marsh classification in [14].

Table 1 shows the number of images available per considered image class,
where NO, NE, and NP denote the number of original endoscopic images, the
number of patches extracted from these images, and the number of patients,
respectively.

If we only use patches close to the CoD during the classification process,
the effect of distortion correction with respect to feature sizes together with its
potential benefits for texture analysis would be negligible, only artifacts caused
by interpolation might degrade the classification result. In order to clarify this,
we plot the center position of all texture patches used along with the boundary
all patches fall into in Fig. 6. The gray background in these images denotes the
area which actually shows the image as taken by the endoscope.
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(a) GIF-Q165 (250 patches) (b) GIF-N180 (37 patches)

Figure 6: Distribution of patch centers along with the boundary all used patches fall into.

We notice that especially for the GIF-Q165 endoscope, the patches are well
distributed (except for the areas where patient related information is overlayed
in the upper and lower left corner). In addition, from the boundary shown, we
notice that the patches used also cover the marginal parts of the visible endo-
scope region fairly well. For the GIF-N180 endoscope, a rather small number of
patches is used overall, but still these are sufficiently well distributed. Obviously
it turns out that it is not the case that only patches close to the CoD are involved
in our application, so there should be room for classification improvements by
distortion correction.

6.2. Classification Setup

In order to evaluate the different combinations of DC methods and interpo-
lation methods in conjunction with the feature extraction methods, we use the
nearest neighbor (NN) classifier for the classification process. This rather weak
classifier has been chosen to emphasize more on the effect of different combi-
nations of DC methods and interpolation methods and not on highest possible
overall classification rates.

To estimate the classification accuracies we use the leave-one-patient-out
cross-validation (LOPO-CV) [45] in order to avoid any bias during classification.
In this setup one image out of the database is considered as an unknown image.
The remaining images are used to train the classifier (omitting those images
which originate from the same patient as the image left out). The class of
the unknown image is then predicted by the system. These steps (training
and prediction) are repeated for each image, yielding an estimate of the overall
classification rate.

6.3. Distortion Correction Calibration and Setup

For the distortion calibration, performed prior to the distortion correction,
we used a set of images containing calibration patterns (i.e. checkerboard pat-
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terns, see Fig. 4(a)). The calibration has been carried out as follows (for each
endoscope used):

• Even-order polynomial model [19] (see Section 4.1.1)
Between 140 and 144 calibration points have been extracted out of four
different barrel-type distorted images. These points have then been fed
into the calibration software used.

• Polynomial model [20] (see Section 4.1.2)
This method requires sets of points which lie on a straight line in the
undistorted image. To this end we manually extracted three lines from an
undistorted image, each consisting of five points. This has been repeated
for four different calibration images. For the calibration process we used
the software provided by the authors.

• Parameter-free model [21] (see Section 4.1.3)
For an appropriate calibration of this method a significantly higher num-
ber of manually extracted points is necessary, as compared to the other
methods. Hence, we extracted between 326 and 429 points out of 9 to 14
different images. For the calibration as well as for the distortion correction
we used our own implementation [11, 12].

• Division model [22] (see Section 4.1.4)
In order to carry out the distortion calibration for this method, we used the
software as provided by the authors. This software allows an automatic
recognition of the calibration points. However, to ensure an accurate cal-
ibration, we manually corrected the points in case of recognition failures.
The calibration is based on 72 to 97 points extracted from three different
calibration images.

It must be noted, that for each DC method the number of calibration points
has been chosen such that the calibration was as accurate as possible (i.e. the
different numbers are no arbitrary choices).

As explained in the previous section, the texture patches as counted in Table
1 have been obtained by manually selecting 128×128 pixels sized squares. Since
after distortion correction these data do no longer correspond to squares these
cannot be used immediately for subsequent classification (most evaluated feature
extraction techniques implicitly assume at least a rectangularly shaped texture
patch).

Therefore we apply the following technique to generate square-shaped tex-
ture from distortion corrected image material: based on the original (distorted)
endoscopic images, we record the coordinates of the center of the extracted
128 × 128 pixels. Subsequently, distortion correction is applied to the entire
original images and the recorded center coordinates are mapped into the dis-
tortion corrected image. Using these coordinates, a 128 × 128 pixels texture
square is extracted from the distortion corrected image which is then used for
classification. This technique is also illustrated in Fig. 7.
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Figure 7: Generation of distortion corrected texture patches

6.4. Experimental Results

Figure 8 shows the minimum and maximum overall classification rates ob-
tained by our feature extraction methods, for all different combinations of DC
methods and interpolation methods. In this figure the black solid line shows the
results obtained on the original images (i.e. without any distortion correction
applied). The green areas denote rates which are higher as compared to the
results with the original images, whereas the red area shows rates below the
results of the original images.

From this figure we immediately notice that there is only one method for
which the results after distortion correction are always higher or at least com-
parable to the original rates (WT-GMRF-CNH). In case of this method we
consistently achieve higher accuracies, no matter which combination of DC and
interpolation method is used. For many other methods, applying distortion
correction sometimes improves and sometimes lowers the classification rates
(depending on the combination of the DC and interpolation method used). In
case of quite a few methods we even observe consistently lower results when
applying distortion correction (WT-LDB, WT-BBC, LCVP, ECM, SSD, SCH,
and FRACTAL).

Regarding the type of the features (i.e. spatial domain or transform domain)
there is no clear trend visible. Some of the feature extraction methods, which
are able to yield a result improvement by applying a DC method, analyze an
image at multiple resolutions (e.g. WT-GMRF and WT-GMRF-CNH). But
this also applies to methods, which perform rather poor when a DC method is
applied (e.g. WT-LDB and WT-BBC).

From Fig. 8 we also notice that the results of the different combinations
of DC methods and interpolation methods may exhibit a high variation from
feature to feature. Some features seem to be very sensitive to the right choice of
such a combination (e.g. WT-LDB, GMRF, and SCH). Other methods, on the
other hand, deliver roughly the same overall classification rates, no matter which
combination of DC method and interpolation method is used (e.g. JC-MB-LBP,
LBP, LTP, and GLCM).

The detailed overall classification rates from our experiments are given in
Table 2. In this table result improvements by distortion correction (as compared
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Figure 8: Minimum and maximum overall classification rates obtained after applying different
combinations of DC methods and interpolation methods (shown by the black dots) and the
results obtained by classifying the distorted images (solid black line).

to the original rates) are shown in bold face.
A more detailed view on the results from Fig. 8 is given in Fig. 9. This figure

shows the results obtained by the different feature extraction methods after
applying distortion correction. The differently colored bars show the minimum,
maximum, and mean classification rates for all DC methods among the different
interpolation methods used. For comparison purposes we also show the results
obtained by the different feature extraction methods when applied to the original
images (wide gray bars in the background). From this figure we notice that the
DC method by Melo et al. in most cases delivers the highest overall classification
rates among all DC methods tested (this applies to the minimum, maximum,
and mean rates). We also notice that in case of the WT-GMRF method the
different DC methods deliver roughly the same classification rates.

A similar view on the results is provided by Fig. 10. But, in contrast to Fig.
9, this figure compares the different interpolation methods evaluated. Hence,
the colored bars show the minimum, maximum, and mean classification rates
for all DC methods among the different DC methods used. Again, we also show
the results obtained by the different feature extraction methods when applied
to the original images. From this figure we notice that none of the interpolation
methods is able to consistently improve the classification rates when used for
distortion correction.

7. Discussion

The results presented in Section 6.4 showed that the classification rates ob-
tained after a distortion correction highly depend on the features used. In this
section we therefore aim at finding reasonable explanations for this outcome.

7.1. Impact of Distortions on the Features

Barrel-type distortions as well as a distortion correction induce distortions to
the endoscopic images (i.e. downscaling of image portions at the image borders
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JC-MB-LBP 78.7 78.4 78.4 78.7 76.0 77.7 75.3 78.4 78.0 78.0 75.3
WT-LDB 79.4 68.3 69.0 68.6 69.0 67.9 76.7 71.4 76.0 79.8 75.6
GMRF 70.4 62.4 62.4 64.8 64.1 69.0 65.5 62.0 73.2 68.3 71.4
WT-GMRF 78.7 84.7 84.0 83.3 82.2 83.6 84.7 84.3 84.7 83.3 84.3
WT-GMRF-CNH 80.5 83.6 83.3 88.2 85.4 87.5 87.1 82.6 88.2 86.1 87.5
WT-BBC 77.0 76.0 75.6 72.8 75.3 72.8 73.9 76.0 70.7 76.3 70.7
WPC 70.0 70.7 67.6 69.0 71.4 68.3 70.0 70.4 67.9 67.6 67.6
LCVP 70.0 63.1 63.8 62.7 70.4 63.4 67.6 66.6 68.6 69.3 66.2
LBP 84.7 85.7 87.1 87.5 84.3 88.2 87.5 87.5 85.4 86.1 87.8
LTP 82.9 84.0 86.8 85.7 83.6 84.7 84.7 83.3 86.4 82.2 84.7
ECM 86.1 77.4 79.1 75.3 80.5 79.1 83.6 84.7 82.9 82.9 81.5
GLCM 86.8 87.1 87.1 85.4 85.7 86.1 89.2 88.9 88.9 88.9 88.5
SSD 90.2 85.0 83.3 86.8 88.2 87.1 84.0 84.3 86.1 84.7 85.4
SCH 85.4 79.8 81.2 81.9 79.1 79.1 81.2 86.1 78.0 80.8 79.4
FRACTAL 93.0 84.7 88.5 87.1 88.5 88.9 89.5 87.1 90.2 87.1 90.9
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JC-MB-LBP 78.7 79.8 78.0 78.4 79.4 78.0 77.0 76.0 77.7 76.7 76.7
WT-LDB 79.4 64.5 64.5 69.0 76.7 71.8 74.2 61.0 68.6 72.1 72.8
GMRF 70.4 57.1 57.1 67.2 67.9 69.0 57.5 59.2 57.5 64.8 63.4
WT-GMRF 78.7 81.2 81.2 83.3 79.8 81.9 84.0 75.6 82.6 80.8 79.8
WT-GMRF-CNH 80.5 85.0 81.2 88.5 81.9 85.7 83.3 81.5 85.4 82.2 84.3
WT-BBC 77.0 73.2 75.3 70.4 75.3 70.7 71.8 74.6 70.7 71.4 72.1
WPC 70.0 66.6 66.2 67.2 69.7 65.9 71.8 72.8 71.4 72.5 72.8
LCVP 70.0 66.9 64.8 62.7 62.4 59.6 64.1 66.9 61.3 62.4 63.1
LBP 84.7 82.2 82.2 82.2 85.0 82.9 85.7 86.8 85.0 85.4 85.4
LTP 82.9 84.0 81.9 85.0 81.5 84.0 85.4 84.3 85.0 80.8 85.0
ECM 86.1 79.4 83.3 78.7 80.1 79.8 79.1 77.7 72.1 77.0 76.3
GLCM 86.8 85.7 85.4 83.6 85.7 83.6 85.0 84.7 85.4 86.4 84.3
SSD 90.2 82.6 83.3 82.9 85.4 84.3 83.3 85.0 83.3 83.3 81.5
SCH 85.4 77.7 78.4 77.0 82.2 78.0 75.6 77.0 73.5 78.4 71.8
FRACTAL 93.0 92.0 88.2 92.3 90.9 91.3 89.5 88.9 90.6 88.5 88.9

Table 2: Detailed overall classification rates for all combinations of feature extraction methods,
DC methods, and interpolation techniques evaluated.

in case of barrel-type distortions and interpolation artifacts in case of distortion
correction). Depending on the sensitivity of the feature extraction method used,
such distortions may also influence the resulting features. As a consequence
patches may potentially get misclassified since the distance between two feature
vectors is changing too in case of sensitive features. We therefore conducted an
analysis which aims at providing an answer to the following question: Does the
distance of a patch to the CoD influence the features (i.e. which features are
sensitive to different levels of distortions)? If this is the case we also want to
know whether applying a DC method is able to lower this effect.

Since all our images are suffering from distortions we had to simulate the
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Figure 9: Comparison of the overall classification rates for the different feature extraction
methods evaluated after applying the DC methods. The lines at the top of the bars indicate
the minimum, maximum, and mean rates over all interpolation techniques used.

different levels of distortion for our analysis. For this purpose we extracted a
patch with a size of 128 × 128 pixels centered at the CoD from an originally
sized distorted image (denoted here as P (c)). Since the distortion is rather small
around the CoD, it is a reasonable assumption that this patch is nearly free of
distortions.

Based on the division model (using bilinear interpolation) we then distort

the patch P (c) to obtain a distorted patch P
(d)
x,y centered at (x, y). Depending

on the distance of the patch P
(d)
x,y to the CoD we therefore obtain patches with

different levels of distortions. We carry out the distortion simulation for all
positions located on a regular grid across the image plane, which is centered at

the CoD. This way it is assured that the location of P
(d)
0,0 exactly corresponds

to the location of P (c). To obtain a high number of different patches P
(d)
x,y we

have chosen a grid spacing of two pixels.

Having computed the patches P
(d)
x,y for all grid points, we compute the fea-

ture distance between the feature vectors extracted from the patches P
(d)
0,0 and

P
(d)
x,y (for one specific feature extraction method). For a patch P

(d)
x,y we denote

this feature distance as Dx,y. Since we are interested in the feature distances
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Figure 10: Comparison of the overall classification rates for the different feature extraction
methods evaluated after applying the DC methods with different interpolation techniques.
The lines at the top of the bars indicate the minimum, maximum, and mean rates over all
DC methods used.

depending on the distance to the CoD we compute the mean feature distance
for different annuli of same width (i.e. concentric rings centered at the CoD)
based on Dx,y. As a consequence, the maximum possible Euclidean distance
from the CoD to the edges of the source image (≈ 360 pixels) is divided into 40
concentric rings. The number of rings used has been determined experimentally
and seems to be an appropriate choice to capture enough details without being
sensitive to noise.

This analysis has been carried out for all feature extraction methods used.
To be able to investigate the influence of a DC method on the feature distances,
we also carried out such an analysis for distortion corrected images. This has

been done by applying the DC method (division model) to the patches P
(d)
x,y

and again computing the mean feature distances for the different annuli. Since
images from healthy patients usually contain more high-frequency details we
carried out the analysis for a no-celiac image as well as for a celiac image.

The resulting plots for all feature extraction methods are shown in Fig. 11.
In these plots the results for the image class “No-celiac” are shown in black,
whereas the feature distances for the class “Celiac” are shown in green. The
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dotted lines show the results for the distorted patches P
(d)
x,y , while the solid lines

show the results after applying a DC method to the patches P
(d)
x,y . The x-axis

in these plots indicates the Euclidean distance of the patches P
(d)
x,y in a certain

annulus to the CoD. The y-axis shows the normalized mean feature distance

between the patches P
(d)
x,y and the center patch P (c). The normalization can be

justified by the fact that we are only interested in the relative differences. In
addition, the ranges for feature differences vary significantly depending on the
feature used. While in endoscopic images we usually have black borders of a
certain width, restricting the locations for meaningful patches, in our analysis
we investigated all possible patch positions within the image bounds. As a
consequence, our distance computations are also carried out for image regions
which are usually not used to extract patches. The respective range of distances
to the CoD (approximately distances greater than 295 pixels) is indicated by a
gray rectangle on the right of the plots in Fig. 11. It must be noted that the
gray regions are left out from the discussion below.

From Fig. 11 we immediately notice that the distance of a distorted patch
(i.e. dashed lines) to the CoD indeed has an impact on the feature distances.
For almost all methods the feature distances get significantly higher the farther
away the patches are located from the CoD (i.e. the more distorted the patches
are). While this accounts to celiac patches as well as to no-celiac patches,
for more than half the methods (LBP, LTP, GMRF, WT-GMRF, WT-GMRF-
CNH, SSD, SCH, GLCM, and WT-BBC) the feature distances are at least
slightly higher for no-celiac images as compared to celiac images (especially
for higher levels of distortion). An explanation for this phenomenon is the
fact that these images contain more high-frequency details as compared to the
images from the class “Celiac”. Since, as already mentioned earlier, areas of the
image appear significantly smaller than they actually are at the outer regions
of distorted images, the details are shifted towards higher frequencies in the
frequency spectrum, resulting in a change of the features. Images from the class
“Celiac”, on the other hand, do not contain many high-frequency details, thus
the impact of the distortions is not that pronounced.

If distortion correction is applied to the patches (i.e. the solid lines) we again
notice that the feature distances get higher for patches farther away from the
CoD. This is most probably caused by the interpolation artifacts induced by
the DC method as these get stronger the farther away a patch is from the CoD.
But for most features this effect is not as dramatic as observed for the distorted
patches. Now for almost half of the methods (JC-MB-LBP, LCVP, WT-GMRF,
WT-GMRF-CNH, ECM, and FRACTAL) the feature distances are at least
slightly higher for celiac images as compared to no-celiac images (especially
for higher levels of distortion). But for the remaining methods the distances
are now roughly equal when comparing the different image classes. This may
be explained by the fact that applying a DC method introduces interpolation
artifacts which potentially cancel out high-frequency details in no-celiac images.
In case of celiac images this effect is not that pronounced since these mostly
contain low-frequency details only.
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Figure 11: Normalized feature distances in dependence of the distance to the CoD (x-axis).
The distances for the distorted and undistorted patches are shown as dotted lines and solid
lines, respectively. Distances for non-celiac and celiac patches are shown in black and green,
respectively (for interpretation of the references to color in this figure, the reader is referred
to the web version of the article).
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When comparing the distances for distorted and undistorted patches (dashed
vs. solid lines) we notice that distortion correction leads to smaller feature dis-
tances for the majority of feature extraction methods. Hence, although the
interpolation artifacts introduced by DC lead to higher distances for patches
farther away from the CoD, the distances are nevertheless in most cases signif-
icantly lower as for the distorted patches (especially for higher distances to the
CoD). But there are a few methods for which this applies to one image class
only (LBP, LTP, WT-GMRF-CNH, SSD, and SCH). And for one method the
distances are on average even getting higher (WT-GMRF).

The bottom line of this analysis is that the majority of the features used is
indeed very sensitive to the level of distortion present in an image patch. In
addition, we showed that, by employing a DC method, we are able to lower this
effect to some extent for the majority of methods used.

7.2. Impact of the Level of Distortion on the Classification Accuracy

In the previous section we showed that the majority of features used is
sensitive to barrel-type distortions and that we are able to cancel out this effect
to some extent. In this section we want to investigate the impact of barrel-type
distortions and distortion correction on the classification rates for our methods.
More specifically we aim at answering the following questions: What is the
distortion difference between patches found as nearest neighbors by the NN-
classifier used? How do the distortion differences affect the classification rates?
If there is an impact of distortions on the classification rates, we also want
to examine whether we are able to lower the number of misclassifications by
using a DC method. Hence, the following analysis is similar to the one already
conducted in [10].

In case only patches equidistant to the CoD would be used for classification,
an analysis regarding the CoD distances and the according levels of distortion
of the patches would be meaningless. This is due to the roughly equal level of
distortion the patches would exhibit in such a case. As we notice from Fig. 6 the
majority of patches in our image database has been acquired with the endoscope
GIF-Q165 (250 patches). Compared to this, the number of patches for the
second endoscope is quite low (35). As a consequence we restrict our analysis to
the first endoscope. It must be noted that the images are actually based on two
GIF-Q165 endoscopes with slightly different CoDs. These differences are most
probably caused by marginal differences in the optics used in the endoscopes.
However, the distance between the two CoDs is minimal with about 4 pixels,
hence we neglect it for the present analysis.

From Fig. 6(a) we notice that the patches are well distributed (except for
the areas where patient related information is overlaid in the upper and lower
left corner). Moreover, the distribution is sufficient to perform an analysis since
this figure also shows that it is not the case that the set contains patches close
to the CoD only.

In the distorted case as well as in the undistorted case the Euclidean distance
of a patch to the CoD D(Pi, CoD) also reflects the level of distortion of the patch
– in the distorted case due to the barrel-type distortion and in the undistorted
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Figure 12: Distortion differences between patches and the chosen nearest neighbor patches
(distorted (a) and undistorted case (c)) and the probabilities of misclassification depending
on the distortion differences (distorted (b) and undistorted case (d)).

case due to the interpolation artifacts generated. Hence, it is reasonable to
consider the difference |D(Pi, CoD) − D(NN(Pi), CoD)| to be the distortion
difference between Pi and NN(Pi), where NN(Pi) denotes the nearest neighbor
patch for Pi. Figures 12(a) and 12(c) show the distribution of the distortion
differences between each classified patch Pi and NN(Pi). From these plots we
notice that the NN-classifier favors patches as nearest neighbors which exhibit
rather low distortion differences to the patch to be classified (in the distorted
case as well as after applying a DC method). Figures 12(b) and 12(d) show
the probability of classifying a patch Pi wrongly depending on the distortion
difference to NN(Pi). From these figures we notice that the probability for the
misclassification of a patch does not really depend on the distortion difference
between Pi andNN(Pi) (i.e. the fractions of errors in these plots remain roughly
equal for different distortion differences). This applies to distorted patches as
well as to undistorted patches. This may be a reasonable explanation why there
is no clear trend visible in the classification results when applying distortion
correction.

It must be noted that the plots in Fig. 12 are accumulated across all fea-
ture extraction methods used. For the undistorted images the plots are also
accumulated over all combinations of DC methods and interpolation methods.
The reason for accumulation is that otherwise the number of patches for the
analysis would be rather low, resulting in noisy histograms without a chance for
an interpretation.
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8. Conclusion

In this work we compared various different feature extraction methods in the
context of the correction of barrel-type distortions in endoscopic images. The
special focus was a comparison of different combinations of DC methods and
interpolation methods.

Our experiments showed that the classification results after a distortion cor-
rection are highly feature dependent. While for certain features we observe
a consistent improvement of the classification results (e.g. WT-GMRF-CNH),
there are also features for which the results always drop as soon as a DC method
is applied to the imagery (e.g. ECM). We also saw, that some feature extraction
methods are rather sensitive to the right combination of the DC method and
interpolation method, while for other features the resulting variations in the
classification rates between different combinations are not very high.

When comparing the results between the different DC methods, we notice
that there is only one DC method which almost always yields comparable or even
better results as compared to the other DC methods for each feature extraction
method (i.e. the method by Melo et al.). This may be attributed to the fact that
this method is the simplest one among all DC methods evaluated since only one
distortion parameter has to be estimated. This in turn makes the estimation
process more robust. A comparison of the different interpolation methods shows
that there is no interpolation method which is consistently superior to the others
in terms of the classification rates (among the interpolation methods evaluated).

The bottom line of our experiments is that it is not possible to make a
clear recommendation on whether distortion correction in the context of an
automated celiac disease diagnosis should be used or not, in order to improve the
classification accuracies. This is due to the fact that we showed that the feature
distances indeed depend on the distance of a patch to the CoD. But we also
showed that the distortion difference between a patch and its nearest neighbor
patch has no significant influence on whether the patch gets misclassified or not.
Hence, at least for most of the feature extraction methods evaluated in this work
and the underlying imagery it seems that in general we are not able to draw a
benefit from distortion correction.

Since the present study is restricted to celiac disease images only, we plan to
conduct similar studies on other image databases as well (e.g. high-definition
colonoscopic images) in order to be able to assess if the results shown are generic
or restricted to specific types of imagery. In addition, we also aim at investigat-
ing features, which can be computed from pixels located on an irregular grid,
thus alleviating the need for an interpolation.
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