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Abstract. The endoscopes, utilized in computer aided celiac disease diagnosis
are equipped with wide-angle lenses, which introduce significant barrel-type dis-
tortions. Previous work is on rectifying the distortions prior to the feature ex-
traction. However, due to new arising inadequacies this often even decreases the
classification accuracy. The idea of this paper is based on the fact, that there is a
correspondence between the position of a patch in the image and the amount
(and orientation) of lens distortions. Therefore, in order to classify an image
patch, only a reduced training set of similarly distorted patches is considered.
We show that in most cases with the new approach higher classification rates can
be achieved compared to traditional distortion corrected and uncorrected image
classification.
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1 Introduction

Celiac disease is an autoimmune disorder that affects the small bowel in genetically
predisposed individuals of all age groups after introduction of gluten containing food.
Characteristic for this disease is an inflammatory reaction in the mucosa of the small
intestine caused by a dysregulated immune response triggered by ingested gluten pro-
teins of certain cereals, especially against gliadine. During the course of the disease the
mucosa loses its absorptive villi and hyperplasia of the enteric crypts occurs leading to
a diminished ability to absorb nutrients.

Computer aided celiac disease diagnosis relies on images taken during endoscopy.
The employed cameras are equipped with wide angle lenses, which suffer from a signif-
icant amount of barrel-type distortions. Whereas the distortion in central image pixels
can be neglected, peripheral regions are highly distorted. Thereby, the feature extraction
as well as the following classification is compromised. Based on camera calibration,
distortion correction (DC) techniques are able to rectify the images. However, although
the barrel-type distortion can be undone, especially in peripheral regions there remains
a lack of information, as the DC method stretches the image. The lack of information
has to be compensated using an interpolation technique.

In recent studies [1, 2], the impact of barrel type distortions and distortion correc-
tion on the classification rate of celiac disease endoscopy images has been investigated.
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In [1], the authors have shown that patches in peripheral regions, which are more af-
fected by the distortions are more likely to be misclassified. Furthermore, the higher
the distortion difference between a patch and its nearest-neighbor patch the more likely
a patch gets misclassified. With distortion correction, the classification rate on average
even suffers. In [3], different distortion correction techniques have been investigated.
The computer aided celiac disease diagnosis [1–3] is based on 128× 128 pixel patches,
which are manually extracted from reliable regions in the original images (with e.g.
768 × 576 pixels). A computer-aided detection of sensible patches is a separate prob-
lem definition.

In this paper, the focus is not on distortion correction, but on increasing the classifi-
cation performance (i.e. the overall classification accuracy), by considering the position
of the respective image patches. As the position of a patch correlates with the orientation
and strength of the barrel-type distortions, the classifier is enabled to adaptively han-
dle variably distorted patches. In the following, our new approach is called Distortion-
Adaptive-Classification (DAC). Actually, DAC is not limited to barrel-type distortions.
It can also be applied in case of other systematic image degradations in combination
with patch-based image classification, which has become an important field of research
(e.g. see [4]).

The paper is organized as follows: In Sect. 2, our new approach is introduced and
compared with distortion corrected and uncorrected classification. In Sect. 3, experi-
ments are shown and the results are discussed. Section 4 concludes this paper.

2 Distortion-Adaptive-Classification (DAC):
Classification Based on Patch Position Information

2.1 Barrel-Type Distortions
Fig. 1a shows a checkerboard pattern, captured with an endoscope used in celiac disease
diagnosis. Especially in peripheral regions, significant distortions can be recognized. It
can be seen, that e.g. the scale (i.e. the size of the squares) in these regions considerably
decreases.

(a) Original image (b) Rectified image

Fig. 1: Distorted and undistorted image of a planar checkerboard pattern.

A general model for barrel-type distortions is given by

xu(xd) = x̂c +
(xd − x̂c)
||xd − x̂c||2

· ru(||xd − x̂c||2) , (1)
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where xu is an undistorted point, xd is a distorted point and x̂c is the center of distortion.
The function ru, which maps a distance from the center of distortion in the distorted
image (||xd − x̂c||2) to a distance in the undistorted image, is modeled differently. For
comparisons in this work, the distortion correction approach introduced in [5], which
turned out to be appropriate for our purpose, is utilized. In this approach, ru is modeled
by the division model.

ru(rd) =
rd

1 + ξ · r2d
. (2)

Other well known approaches are based on polynomial or parameter free models. Figure
1b shows an undistorted image corresponding to the distorted image shown in Fig. 1b.
As can be seen, the geometrical properties are effectively rectified.

2.2 New Approach – an Alternative to Distortion Correction

In [1], the authors concluded, that there is a correlation between the misclassification
probability and the radial distance (see (5)) to the nearest neighbor patch, in case of
classifying barrel-type distorted celiac disease images. That means, if the patch with the
smallest feature distance (i.e. the nearest neighbor patch) has a large radial distance, the
patch is more likely to be misclassified. Although distortion correction techniques are
able to rectify the geometrical image properties quite well (see Fig. 1), problems within
computer aided diagnosis cannot be fully eliminated, as new difficulties arise within the
distortion correction. One major problem is that the image has to be distinctly stretched,
especially in peripheral regions. This leads to (variably) blurred images.

The basic idea of our new approach is based on the fact, that there is a correspon-
dence between the position of a patch in the image and the amount as well as the ori-
entation of the lens distortions. Therefore, in order to classify a certain image patch,
an individually reduced training set of similarly distorted patches is generated. Patches
with a high geometrical distance to the current patch show another level of distortions,
and therefore are not included in the training set.

For the geometrical distance between two patches, we consider their center points p1
and p2 in the original (distorted) image. We identified the following potentially sensible
metrics:

– Euclidean Distance:
The quite simple and commonly known Euclidean distance is given by:

dE = ||p1 − p2||2 . (3)

– Distortion Level Euclidean Distance:
The Euclidean distance does not incorporate the strengths of distortions, depend-
ing on the patch position (peripheral regions vs. center regions). This metric uti-
lizes undistortion to get higher distances in peripheral regions which correspond to
higher distortions.

dDLE = ||xu(p1)− xu(p2)||2 . (4)
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– Radial Distance:
Patches with a similar distance to the center of distortion are similarly distorted
as far as its strength is concerned (see (1): ru only depends on the distance to the
center of distortion x̂c). The idea of this metric is, to totally ignore the distortion
orientation and to focus on the strength only.

dRAD = abs(||p1 − x̂c||2 − ||p2 − x̂c||2) . (5)
– Distortion Distance:

This metric is based on the geometrical shape of the patch in case of undistor-
tion. Similarly warped patches have small distances and vice versa. For simplicity,
we only consider the diagonal lengths which are good indicators for distortions.
Experiments with other indicators (e.g. using the parameters of an approximated
affine matrix) did not lead to significantly different results. The diagonals diagi are
achieved by adding different offsets to the patch center point p and undistorting
these corner points (s denotes the side length of a patch (in our case 128)).

dDD(p) = |diag1(p1)− diag1(p2)|+ |diag2(p1)− diag2(p2)| . (6)

diag1(p) = ||xu(p+ (
−s
2
,
−s
2
))− xu(p+ (

+s

2
,
+s

2
))||2 . (7)

diag2(p) = ||xu(p+ (
+s

2
,
−s
2
))− xu(p+ (

−s
2
,
+s

2
))||2 . (8)

For DAC, one distance metric and one threshold must be chosen. The training set
for a certain patch consists of all patches with a distance below this threshold. All
other patches are simply ignored during classification. We have defined 20 sensible
thresholds (e.g. for the Euclidean metric between 80 pixels and infinity (infinity means,
DAC is disabled)) for each distance metric. For each feature, the best threshold has been
evaluated during exhaustive search.

The classification of images suffering from barrel-type distortions is only one ap-
plication scenario for DAC. Actually, the new approach is potentially sensible in each
case of classifying images with systematic image degradations. With such degradations,
we refer to the problem of having variable (average) image properties over the original
image where the patches are extracted from. For example, within endoscopy a source of
light mounted on top of the endoscope could cause a slightly varying exposure over the
image. Features being not invariant to illumination, might suffer from such slight dif-
ferences, and could profit from DAC. A crucial issue is the identification of an adequate
distance metric. The metrics defined in (3) - (6) have been identified to be potentially
useful in case of barrel-type distortions. However, especially the Euclidean distance (3)
is expected to be good choice in general.

2.3 Features for Classification

In order to investigate the effects of the proposed approach we utilize a couple of texture
and shape features. Instead of evaluating the best configuration for each feature, we are
computing classification rates with various configurations in order to make a general
statement on the effect of our new approach.

The following feature extraction methods are investigated:
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– Local binary patterns [6] (LBP):
LBP is used with varying radii (r) and a varying number of neighbors (s). The
feature vector’s dimensionality is 2s.

– Extended local binary patterns [7] (ELBP):
ELBP, which is an edge based LBP derivative, is used with varying radii and a
varying number of neighbors.

– Local ternary patterns [8] (LTP):
LTP is used with varying radii and a varying number of neighboring samples and a
fixed threshold (Θ = 3), which turned out to be a good choice for various configu-
rations. Although the authors proposed a coding scheme to get only 2·2s dimension,
to get a very high dimensional feature for our experiments, we implemented LTP
with 3s dimensions.

– Contrast [9] (CONTRAST):
The feature vector consists of the Haralick contrast feature [9] calculated for dif-
ferent offsets (0, r)T , (r, 0)T , (r, r)T , (r,−r)T (i.e. the feature has 4 dimensions).
Varying ranges r are investigated.

– Fourier power spectrum (FOURIER):
After computing the Fourier power spectrum, rings with varying radii and a thick-
ness of 2 pixels are extracted and the means of these values is calculated. For our
experimental usage, we only consider the discriminative power of single rings. (i.e.
the dimensionality of a single feature is 1).

– Shape Curvature Histogram [10] (SCH):
SCH is a shape feature, especially developed for celiac disease diagnosis. A his-
togram contains the occurrences of the contour curvature values. In our experi-
ments, we consider various histogram bin numbers (the bin number corresponds
with the dimensionality of the feature).

3 Experiments

3.1 Experimental Setup

The image test set used contains images of the duodenal bulb taken during duodeno-
scopies at the St. Anna Children’s Hospital using pediatric gastroscopes (with resolution
768×576 pixels). In a preprocessing step, texture patches with a fixed size of 128×128
pixels were extracted in a manual fashion. The size turned out to be optimally suited
in earlier experiments on automated celiac disease diagnosis [11]. Before features are
extracted, all patches are converted into gray value images. Using additional color in-
formation, no significant improvements are achieved. In case of distortion correction,
the patch positions are adjusted according to the distortion function.

To generate the ground truth for the texture patches used, the condition of the mu-
cosal areas covered by the images was determined by histological examination of biop-
sies from the corresponding regions. Severity of villous atrophy was classified accord-
ing to the modified Marsh classification in [12].

Although it is possible to distinguish between the different stages of the disease, we
only aim in distinguishing between images of patients with (Marsh 3A-3C) and without
the disease (Marsh 0). We decided for this strategy, as the two classes case is more
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(a) Marsh 0: Patches clearly showing the
villous structure of healty mucosa.

(b) Marsh 3A-3C: Patches showing the vil-
lous atrophy.

Fig. 2: Example patches of patients without (a) and with the disease (b).

relevant in practice. Our experiments are based on a database containing 135 (Marsh
0) and 115 (Marsh 3A-3C) images, respectively. Example texture patches are shown in
Fig. 2. To study the effect of our approach on the classification rate (accuracy), we use
leave-one-patient-out cross validation combined with the nearest-neighbor classifier.
This rather weak classifier is chosen, as its results can be easily interpreted (see [1]). In
an extended future work, the impact of various classifiers will be investigated.

3.2 Results

In Fig. 3, an overview about our results is given. The bars indicate the average im-
provements with a certain feature and a certain distance metric in comparison to the
approach being not based on DAC or distortion correction. The higher (white-colored)
top of the bars represent the results, achieved if the threshold is optimized separately
for each feature and each distance metric. The lower bars (colored in shades of gray)
indicate the mean above the best rate and its 4 neighbors (2 neighbors with smaller and
2 with higher threshold) as far as the distance-threshold is concerned. In order to avoid
over-fitting, we will primary focus on these lower values. The quite simple Euclidean
distance metric seems to be the best choice, as for each feature it delivers the best of
at least highly competitive results (if considering either the higher or the lower rate).
Although the differences are quite small, we decided to choose the Euclidean metric for
a more detailed comparison.
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Fig. 3: Overview about the features and the distance metrics.
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(a) LBP with varying radii (R) and samples
(S).
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(b) ELBP with varying radii (R) and samples
(S).
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(c) LTP with varying radii (R) and samples
(S).
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(d) FOURIER with varying frequencies.
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(e) SCH with varying histogram bin counts
(B).
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(f) CONTRAST with varying offsets (0).

Fig. 4: For each feature and each configuration, the center bar shows the classification
rates achieved with our new DAC approach in comparison to the traditional approach
without (left bar) and with distortion correction (right bar).
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In Fig. 4, the overall classification accuracy results achieved with varying configura-
tions for each feature are visualized. For comparability, the left of the three bars shows
the classification rate achieved without distortion correction (noDC) and the right bar
shows the rates achieved with distortion correction (DC). The center bar shows 2 dif-
ferent rates achieved with our new DAC approach. The higher (white-colored) top of
the bar indicates the best rate achieved with the Euclidean distance metric and vary-
ing thresholds. The threshold which corresponds to this rate is shown on top of each
column. The lower (dark-colored) bar indicates the mean above the best rate and its 4
neighbors (2 neighbors with smaller threshold and 2 with higher threshold) as far as the
distance-threshold is concerned. As in the overview, we will focus on the lower value.
A large higher value can be achieved in case of a deceptive search-space. With the av-
eraged lower value, this problem is circumvented. An indicator for the deceptiveness of
the respective search-space is given by the difference between the higher and the lower
rate. In our plots, a “+” indicates features which profit from our new approach (i.e. the
lower rate is greater than (>) the rate achieved with traditional classification).

With LBP and ELBP, especially with the smaller sample size 2, in each case an
improvement to noDC can be observed. With 8 samples, only with specific configu-
rations, DAC turns out to be advantageous. The best overall classification rate can be
improved with the location consideration. Considering LTP, our new approach seems to
be slightly less competitive (especially in combination with samples size 8). The best
overall classification rate cannot be outreached. With FOURIER, in most cases an in-
crease of the discrimination power can be achieved and the best overall classification
rate can be improved. Although DC also improves the results (in case of low frequen-
cies), our approach obtains the best overall rates. SCH profits from our approach in
case of a small histogram bin size (from B2 to B5). The best overall rate cannot be
improved. CONTRAST slightly profits in most cases. However, the best overall rate
cannot be improved, considering the lower classification value of DAC.

3.3 Discussion

For all features, considering specific configurations, our approach can improve the dis-
criminative performance, however, with some configurations no benefit can be achieved.

With LBP-like features, by tendency with a lower number of samples, the improve-
ment with our method is higher. A similar behavior can be observed with the histogram
bin count and the SCH feature. Seemingly, high dimensional features suffer from DAC.
Especially with the very high dimensional LTP feature in combination with 8 samples,
mostly an increase cannot be achieved. In opposite the 1-dimensional FOURIER fea-
tures on average lead to the highest benefit of DAC (see Fig. 3).

High dimensional features might suffer because with DAC the training-dataset size
is decreased (depending on the chosen threshold). In Fig. 5a, the average and the min-
imum considered patch counts are given for variable thresholds. Whereas the average
count for e.g. a distance threshold of 100 pixels is quite acceptable, the minimum count
(which typically corresponds with peripheral patches), is very low.

Figure 5b shows for some example features the average decrease of the classifica-
tion rate, in case of reducing the training-set randomly (in opposite to DAC where the
count is reduced intelligently). Therefore, we averaged the classification rates achieved
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Fig. 5: The decrease of the training-set size (a) with DAC and the impact in case of a
random (instead of an intelligent) decrease (b).

with 30 randomly chosen image sets for each training-set size. We notice that especially,
the high dimensional features (LTP and also LBP R3 S8) highly suffer from a reduced
training-set. In opposite, with the low-dimensional FOURIER and LBP R2 S2, the clas-
sification rate suffers less distinct. As expected, a randomly decreased training-set size
on average leads to a loss of discriminative power. This confirms that the increases of
the classification rates with DAC are definitely not due to advantages of small training-
set sizes. On the contrary, having a larger overall training-set, the patch counts (Fig 5a)
could be increased and therefore we anticipate an improvement with DAC even with
high dimensional features.

Another quite interesting aspect is to separately investigate features operating in a
smaller and others operating in a larger neighborhood. Distortion correction, by ten-
dency profits from larger neighborhood sizes (see LBP, LTP or ELBP with R4 (com-
pared to R1) and FOURIER with small frequencies (compared to large frequencies)).
Larger neighborhoods (i.e. lower image frequencies are considered) are more affected
by barrel-type distortions on the one hand and less affected by interpolation on the other
hand, which is a problem within DC. With DAC, this effect is at least less distinct which
is obvious as it is not based on distortion correction in combination with interpolation.

To put it in a nutshell, with DAC and our dataset the classification rate of 24 out of
27 features (88.9 %) with up to 4 dimensions and 29 out of 36 features (80.6 %) with
up to 16 dimensions can be robustly improved.

4 Conclusion

We introduced a Distortion-Adaptive-Classification approach, which considers the po-
sition of a patch (which corresponds to the distortion level) in the original image for
choosing patches for classification. For most features with a traceable dimensionality,
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the achieved classification rates are highly competitive. Whereas the traditional classi-
fication of barrel-type distortion corrected images leads to benefits only in few cases
(especially if lower image frequencies are considered), with DAC in most cases an in-
creased discriminative power can be observed. With very high dimensional features (es-
pecially LTP with 8 neighboring samples), we do not achieve systematically improve-
ments. We anticipate an even more advantageous behavior (even for high dimensional
features) in the case of a larger image database.
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