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ABSTRACT

We investigate different Vickers indentation segmentation methods and especially concentrate on active contours

approaches. In order to circumvent the initialization problem of active contours, we introduce a localization

stage. Furthermore, traditional active contours based segmentation approaches are incorporated with the Shape

from Focus approach to improve robustness. In order to decrease the overall runtime, moreover, a gradual

enhancement approach based on unfocused images is introduced. With three different databases, we compare

the proposed methods and we show that the segmentation performances of these methods are highly competitive

compared with other approaches in literature.

1. INTRODUCTION

Hardness, which is an important characteristic of solid materials, can be determined with the Vickers Hardness

test. A pyramidal indenter is pressed into the material with a defined force and causes an indentation. An

important issue is to measure the size (diagonal length) of the approximately square indentation to determine

the Vickers Hardness1 (depends on the applied force and the diagonal length). As the manual measurement

of the indentation images not only is expensive, but also interpretive and subjective, a robust and accurate

automatized measurement method is highly beneficial. Segmentation algorithms are used to get the positions of

the four vertices of the indentation. Having the four vertices, the diagonal lengths can be calculated easily.

There are several proposals for image segmentation of Vickers indentations. One group of algorithms rely on

wavelet analysis.2,3 These methods assume that object borders are perfectly straight lines, which is not always

true. Another approach4 is based on edge detection followed by Hough transform and least squares approximation

of lines. Edge finding techniques are based on the assumption that high differences between neighboring pixels

imply that these pixels are part of the border. Especially in case of noisy images, this assumption is not right

at all. The method introduced in5 applies thresholding followed by a Hough transform. If thresholding is

applied to images, it is necessary to calculate a threshold value which depends on the current image, because

a fixed threshold surely does lead to good results. Often a separation of the object from the background with

thresholding is not possible. Other suggested methods also binarise the image using thresholding,6,7 followed up



by morphological closing. Another approach is based on axis projection and Hough transform.8 This approach is

based on the assumption that the objects are perfectly aligned (diagonals vertical/horizontal). Methods relying

on template matching (9,10) are quite robust to noise. This is because big templates suppress noise as large

regions are summed up. The template matching approach introduced in10 provides robust as well as precise

results, but requires an accurate alignment (diagonals horizontal/vertical). A high degree of accuracy is achieved

by applying four corner templates instead of one complete square template. In9 square templates in different

sizes and different rotations are matched with the image. The results of this approach are robust but only serve

as approximations. In,11 a refinement strategy is introduced.

This work deals with different kinds of active contours algorithms. The aim of these approaches is that a

contour with a defined initialization converges to the real object boundaries. The contour is forced by different

energy functionals, which depend on pixel values of the image on the one hand and homogeneity criteria of the

contour on the other hand. As this method suffers from bad initializations, we introduce a Shape Prior approach,

which produces robust, but not accurate results. These results can deal as initializations for an active contour.

Moreover, we incorporate the active contours with the Shape from Focus approach, which extracts additional

information of the image, that could increase the segmentation performance. Furthermore, we propose a gradual

enhancement approach based on different unfocused images in order to decrease the overall runtime and also

increase robustness.

In section 2, different active contours approaches are investigated with reference to Vickers indentation images.

In section 3, a new approximative Shape Prior segmentation approach is proposed to achieve good initializations.

In section 4, the Shape from Focus approach12 is incorporated with traditional segmentation methods, in order

to improve robustness. In section 5, a new gradual enhancement approach is introduced. Experiments are shown

in section 6. Section 7 concludes this paper.

1.1 Vickers images

The images to segment approximately fit the following description:

• square geometry of object to segment

• dark object, bright background

• diagonals are horizontally and vertically aligned

• object is situated close to the center



Figure 1a shows quite perfect images. Images in Fig. 1b show different kinds of noise. Some bright images lack

of contrast (Fig. 1c), especially the diagonals’ gray scale is the same as the background. Another inconvenience

is the fact, that in such images, possible noise is often darker than the imprint. In Fig. 1d, the diagonals are not

aligned horizontally and vertically. In Fig. 1e, a concave and a convex curvature is shown. The images in Fig.

1f represent the smallest and largest imprints in our databases.

(a) Images redeeming constraints (b) Noisy images (c) Low contrast

(d) Violation of rotation constraint (e) Shape violation (f) Different sizes

Figure 1: Different categories of Vickers indentation images

2. ACTIVE CONTOURS APPROACHES

2.1 State of the Art Methods

The traditional active contours (snake) model has been introduced in.13 A snake is a closed curve which iteratively

converges at the object’s borders, by means of gradient descent of an energy functional. The curve is represented

by a sequence of pairs containing x and y coordinates. connected with straight line segments.

Traditional active contours is an attempt to minimize the cost (energy) function Es which depends on image

pixels and the contour’s shape by the use of gradient descent. The energy function consists of an additive

weighted mixture of internal energy, image energy and external energy. The weights can be adjusted in order to

control the behavior of the snake. A snake is represented parametrically by v(s) = (x(s), y(s)), where x(s) is the

x coordinate and y(s) is the y coordinate for a given element s of the contour.

Es =

∫
Snake

Eintern(v(s)) + Eimage(v(s)) + Eextern(v(s))ds . (1)

The internal energy Eintern consists of a linear combination of continuity (first order derivation) and curvature

(second order derivation). The continuity term prevents the marker points v(s) from converging to few points



with low image energy (i.e. the contour acts like a membrane). The curvature term prevents the contour from

developing sharp corners (i.e. the contour acts like a thin plate).

The image energy Eimage is computed from image pixels. Usually the image energy is determined by applying

an edge operator to the original image. Pixels near edges having a higher gradient represent a lower energy. The

idea is that edges are likely to be part of the object’s border. λ is a weighting parameter, ∇ is the gradient

operator, || · || is the Euclidean norm and I is the image gray value.

Eimage = λ · Eedge = −λ · ||∇I(v(s))|| . (2)

External forces like user interaction might be also regarded (Eextern), but this is not further investigated, as

hardness image segmentation should run as batch process without any human interaction at all.

The level set method introduced in,14 is an alternative to the traditional snake model. Apart from other

inconveniences, traditional active contours suffer from an explicit parametrization (by frontier points) of the

contour. In the level set formulation an explicit parametrization is circumvented by using an intrinsic formulation.

The evolving contour is given by its level set Γ.

Γ = {(x, y)|φ(x, y) = 0} . (3)

φ(x, y) is a function which is 1 inside, −1 outside of the region and exactly 0 at the frontier of the evolved shape.

The points outside (inside) of the contour are given by Γout (Γin):

Γout = {(x, y)|φ(x, y) < 0} . (4)

Γin = {(x, y)|φ(x, y) > 0} . (5)

Evolution of the frontier happens by moving the level set Γ in normal direction ∇φ
||∇φ|| with a specified speed

v. Although the general curve evolution is defined, the level set approach is highly flexible. There exist lots of

different ways of calculating the speed function v, which influences the behavior of the evolving level set.

One commonly used edge based level set variation has been introduced in.15 As with the snake approach,

this formulation is based on edge information.

As with the snake approach, the edge based level set approach requires the propagation of edges to increase

the capture range (region where the contour converges to the real boundary). To bypass this issues, in16 a

region based approach has been introduced, where the force of the contour is not based on image gradients.



This method is based on the assumption that the object’s surface as well as the surface outside of the object are

homogeneous as far as its gray value is concerned. The energy term is given in the following equation:

ECV =

∫
Γin

(I(v)− ¯Iin)2dv +

∫
Γout

(I(v)− ¯Iout)
2dv + λ

∫
Γ

||∇φ(v)||dv . (6)

Γ is the image, I is the image gray value, ¯Iin ( ¯Iout) is the average image value inside (outside) of the contour, ∇

is the gradient operator and λ is the curvature weighting term.

The region based approach is based on the assumption that images do not necessarily have strong gradients

at their boundaries, but the regions inside and outside of the contour have to be homogeneous as far as the gray

value is concerned. This assumption usually is quite appropriate, however it is inappropriate for some kinds of

images (e.g. the image in Fig. 2: background consists of regions which are darker than the object).

Figure 2: Indentation image with inhomogeneous background

Consequently, a region based model would state that such dark noise pixels are more likely to be part of the

object than to be part of background (as background average color is brighter). Obviously, this does not match

with reality. To overcome that inconvenience, a statistical approach has been introduced:17

Estat = −
∫

Γin

log pin(f(v))dv −
∫

Γout

log pout(f(v))dv + α|C| . (7)

α|C| is the regularization term. pin and pout are the probabilities of feature vectors f inside and outside of the

contour. Intuitively, the energy is low, if both regions are homogeneous with respect to the feature vectors f .

This formulation allows not only to use the gray value as feature, but each feature which could be defined

for a specific pixel might be included in an arbitrary feature vector. The following feature vectors are used:

f(v) = (I(v), ||∇I(v)||) . (8)

f(v) = (I(v),
dI(v)

dx
,
dI(v)

dy
) . (9)

2.2 Vulnerability to Initialization

First we discuss the edge based approaches (traditional active contours and edge based level set methods). These

approaches are based on the gradients of the image. That means, the contour moves into the direction, where



the gradients are increasing. Close to the object boundaries, this actually is appropriate. However, we do not

already know where the objects are located approximately. In Fig. 3 (left), the gradient image and a possible

initial contour is shown. Surely, a gradient descent of the contour would never be successful as the capture range

is to small. Especially the segmentation of noisy images suffers, because the gradient image shows lots of regions

with low image energy (Fig. 3, right), where the contour potentially converges to.

Figure 3: Problems: small capture range (left), noise (right)

To increase the capture range and decrease the effect of noise, large edge operators instead of small ones

(Sobel 3x3) are investigated. This causes a propagation of the edge information and thus makes a gradient

descent of the contour possible. However, the size of the gradient operator is limited as small objects are blurred

too much and moreover, the computational costs become high. The effect is shown in Fig. 4. However, although

a big gradient operator is used in the right image, the segmentation fails. In,18,19 strategies to increase the

Figure 4: Different gradient operators

capture range are proposed. One big problem of these methods is, that not only edge information is propagated,

but also noise. Noisy edge images affect the active contours as shown in Fig. 5.

Figure 5: Segmentation failed because of noisy edge image

Edge based algorithms have to be initialized nearby the boundary. Although region based approaches (and the

statistical approach) which do not rely on gradients, are known to be less vulnerable to the initial configuration,

starting with a general level set is not advantageous. On the one hand, even region based algorithms do not

succeed to converge at the desired boundary, if the contour is too far away from the indentation. The contour

often does not shrink to converge at the boundaries, but grows instead. This is because the average gray value



of the background might be darker than the average gray value within of the contour. Such an initialization is

shown in Fig. 6. On the other hand if such long distances must be managed, computational costs are tremendous

(runtime > 10s).

Figure 6: Region based approach fails (left: initialization, right: wrong segmentation)

3. AN APPROXIMATIVE SHAPE-PRIOR METHOD

The methods mentioned so far suffer from converging to local minima if the initialization is inappropriate. In

existing Shape Prior level set approaches,20,21 a weighted shape term is added to the energy function. This

increases the robustness, but for a standalone segmentation even these methods are inappropriate. We propose

a quite different way for robust segmentation of shapes which are known a priori:22

Our approach requires a parametric description of the prior shape. The object that will be segmented will

have exactly the prior shape, as not a contour (parametrized by points or level set), but the object description

parameters are directly evolved by gradient means of descent. Whereas the traditional active contours as well as

level set algorithms allow arbitrary deformation of the initial contour, our approach only allows the evaluation

of the following four parameters (the effect on the contour is shown in Fig. 7).

1. r0: scaling

2. x0: translation x axis

3. y0: translation y axis

4. α0: rotation

Figure 7: The four degrees of freedom

The contour of the square is given by the points (x, y) with the distance d = r0 to a center (x0, y0). d is

calculated in the following way, to ensure that the evolved contour has a square shape:

d = |(x− x0) · cos(α) + (y − y0) · sin(α)|+

|(x− x0) · sin(α)− (y − y0) · cos(α)| .
(10)



Of course, this algorithm will not be able to segment Vickers images perfectly, as Vickers’ shape often cannot

be described by a perfect square. Though this is not our objective, but we aim at a pretty good approximative

segmentation of a very high rate of images. These approximations deal as the initializations for a precise

segmentation method.

The regions in- and outside of the square are given by Γin and Γout:

Γin = {(x, y) : d < r0}. (11)

Γout = {(x, y) : d > r0}. (12)

As with the level-set approach, we define an energy criterion which is minimized by gradient descent. We

investigated different energy functions (edge based, region based). Tests showed that the following statistical

criterion, which is derived from the statistical level set approach proposed in,17 is the best choice:

E = −
∫

Γin

log(pΓin(f(v)))dv −
∫

Γout

log(pΓout(f(v)))dv . (13)

f(v) is an arbitrary feature of the point v. We investigate the feature vectors in equation (8) and (9). The

evolved parameters are collected in the vectors si = (x0, y0, r0, α). The vector s0 is the initialization. sn+1 is

defined recursively:

sn+1 = sn + λ(∇E) . (14)

λ which usually is a multiplicative component, is called step size. To allow λ to act as a signum function (one

pixel left, stay, one pixel right), which can deal with numerical issues, it is more generally defined as function:

λ((x1, ..., xn)T ) = (sign(x1), ..., sign(xn))T . (15)

∇E = (
dE

dx
,
dE

dy
,
dE

dr
,
dE

dα
)T . (16)

e.g. the partial derivative of the x dimension is calculated as:

dE

dx
((x, y, r, α)T ) = E((x+ 1, y, r, α)T )− E((x− 1, y, r, α)T ) . (17)

Figure 8: Directed edge

template

Although the introduced approach is already able to deal with local minima

caused by noise, we still have not achieved a total invariance to the initialization

s0. Local minima still prevent from a proper localization of the indentation in

several cases. The balloon approach23 introduced for active contours, deals with

this problem by adding an energy term, forcing the contour to become smaller or

larger. Our approach allows to apply a kind of balloon force in an easy but effective



way: Instead of calculating the radius r0 by gradient descent, r0 is simply decreased

by one in each iteration of the gradient descent. If the contour starts at the image

boundaries (r0 is large), it necessarily has to cross the object’s boundaries, when

getting smaller and smaller.

Unlike unforced gradient descent, the proposed balloon-method does not stop before r0 becomes zero (or a

defined minimum). In a second step the history of the gradient descent has to be analyzed, to get the best fitting

vector sres from a set of several local minima. In our case the best results are achieved when using the vector si

with the highest response (achieved by convolution) of the image information to the template (parametrized by

si) shown in Fig. 8 with a thickness of 3 pixels.

4. INCLUDING SHAPE FROM FOCUS

The approaches mentioned so far only rely on one image, which has to be segmented. All the information

must be gathered from this single two dimensional signal. However, the real world cannot be described by two

dimensions, as space has got three. To overcome this inadequacy, the Shape from Focus approach12 uses a set

of images, with different focus setups (as shown in Fig. 10) to generate a depth map.

A focus can only be achieved for a specific defined region. That means, it is not possible to focus an object

in the foreground as well as the background simultaneously. Consequently, if pictures with different focus setups

of a three dimensional object are taken, information of the third dimension (depth) can be obtained, as in the

different images, different regions are focused. To estimate the depth of an image point, the image with the

highest focus measure (i.e. the point is in focus) at this point has to be evaluated. In order to measure the focus,

high frequency information (i.e. differences between neighboring pixels) is necessary.

4.1 Shape Computation

First of all, to compute the shape of an object, a series of images Ik of an object with different focus levels k ∈ L

must be gathered (L is the set of focus levels). After that, for each point v = (x, y) in each image Ik of a focus

series, a focus measure F (v) must be computed. Next, for each point v the focus level k ∈ L with the highest

focus measure Fk(v) is calculated. Each focus level k represents a defined depth level d:

d(v) = k ∈ L : ∀l ∈ L : Fk(v) ≥ Fl(v) . (18)

Although the depth is not measured absolutely, relative differences are sufficient to determine peaks and valleys

of the surface.



4.2 Focus Measures

As mentioned, a focus measure F is necessary to determine the focus level k with the highest response. In12 the

Sum-modified-Laplacian (SML) operator FSML is proposed, which is based on the second order derivation:

FSML(i, j) =

i+N∑
x=i−N

j+N∑
y=j−N

ML(x, y) if ML(x, y) ≥ T . (19)

ML(x, y) = |2 · I(x, y)− I(x− s, y)− I(x+ s, y)|+ |2 · I(x, y)− I(x, y − s)− I(, y + s)| . (20)

s is the step size of the metric, which can be adjusted according to the image properties.

The SML operator not only consists of a simple gradient operator. To increase the robustness, a threshold T

is introduced, which suppresses very small responses. Moreover some neighboring pixel responses are summed

up to achieve a more steady output (adjustable with N).

Alternatively, we investigate a generalization of the Tenengrad focus measure FT that is based on the first

order derivation, which could be used instead of the proposed SML measure.

FT (i, j) =

i+N∑
x=i−N

j+N∑
y=j−N

T (x, y) if T (x, y) ≥ T . (21)

T (i, j) = S∗2x (i, j) + S∗2y (i, j) and S∗x and S∗y are convolutions of the Sobel operators in x and y direction with

the image.

Moreover, we investigate the Range metric, which is based on the histogram:

Frange(i, j) = max(r(i, j))−min(r(i, j)) . (22)

r(i, j) = {(x, y)|(|x− i|+ |y − j|) ≤ T} . (23)

T defines the size of the regarded region.

4.3 Introduction of Shape from Focus Knowledge into Segmentation

As shown in Fig. 9, the depth estimation based on the Shape from Focus approach often is not able to appro-

priately separate the indentation from the background. The depth in regions marked white cannot be reliably

determined (i.e. region is homogeneous). Otherwise, the darker the region, the farther it is away. Especially in

case of high quality images, the shape information often is very unreliable, whereas in case of (noisy) low quality

images, the shape information seems to be more reliable than the original image. Consequently, we incorporate

the active contours and the Shape Prior method with the Shape from Focus approach.24 We concentrate on the

statistical energy criteria (equation (6), (13)), which allow (unlike the other criteria) the inclusion of arbitrary



Figure 9: Original images (top) and corresponding depth informations (bottom): Reliable (left) and unreliable

(middle, right) depth information

Figure 10: Different focus settings, reaching from fl << 0 (left) to fl >> 0 (right)

feature vectors. Now we investigate the following feature vectors, instead of the traditional ones in equations 8

and 9:

f(v) = (I(v), depthfocus(v)) . (24)

f(v) = (I(v), ||∇I(v)||, depthfocus(v)) . (25)

5. GRADUAL ENHANCEMENT WITH UNFOCUSED IMAGES

The Shape from Focus method reconstructs the shape (depth information) of surfaces by regarding differently

focused images of the same surface.

The following two facts motivate us to propose one more approach dealing with differently focused images:

• Actually, with appropriately unfocused images the segmentation robustness can even be improved (see

section 6). This is because the unfocused images are not just similar to low pass filtered images, but in

addition the indentation is reinforced if the focus plane is chosen appropriately (see Fig. 10, left images).

• Furthermore, the autofocus system takes a significant amount of time, to provide the focused image. To get

the focused image, our system starts with a focus plane farther away than the surface and incrementally

gets nearer.

Active contours incrementally converge at the object boundaries. That means, the image might be changed

during the segmentation process. Our intention is, to start with unfocused images, which can be segmented

robustly. Incrementally, when a “better” image is available, the segmentation approach continues to process the

new image in order to refine the results. The focused image is defined to have the focus level zero (fl = 0). If



the focus plane is farther away from the camera than the specimen, the focus level is smaller than zero and vice

versa. The chosen step size between two focus levels is explained in section 6.

We propose the following 3 steps based on the Shape Prior gradient descent approach:

1. The focus starting setting is chosen that the focus plane is farther away than any part of the specimen

(fl << 0).

2. Start the proposed first stage gradient descent segmentation algorithm on the unfocused image which is

taken with the mentioned focus setting. Approximative results are achieved.

3. Until the end-criterion is reached:

• Increase the focus level by one step and get the image.

• Initialize the gradient descent algorithm with the current approximative results and the new image.

• Increase the initialization variable “radius” by 2 pixels. As a balloon force is used, otherwise the

contour could only shrink.

• Run the algorithm with only 5 iterations to enhance the approximative results.

• New approximative results are achieved.

The first image to segment is highly unfocused. Consequently, an exact segmentation surely cannot be

achieved. However, the blurred image can be segmented robustly. Whereas the first image is segmented as

proposed in section 3, the enhanced images are not. These images are initialized according to the current

approximative results and only 5 iterations of the gradient descent approach are applied. The proposed policy

allows to start the segmentation before the final focused image is available.

5.1 Appropriate Endcriterion

The intention is, that the results could be enhanced until the focused image is reached. Actually, this is not true.

The best results are achieved, when stopping with the image of a focus level below zero. In practice, this is not

possible, as the focus levels are defined relatively to the focused image. However, when saving the result history,

these results can be recovered.

5.2 Speeding up the initial segmentation

Whereas the enhancement steps (3) are fast, the initial step (2) takes quite a long time. As the initial contour

starts at the boundary of the image (initial radius is about 50 pixels as the images are downscaled by factor 10),



has to shrink until it collapses and shrinks one pixel per iteration, about 50 iterations are necessary. Whereas a

further reduction of the image size affects the segmentation accuracy, increasing the step size of the contour does

not, as far as robustness is concerned. Instead of modifying the evolving shape parameters by one per iteration,

we propose to increase the step size (i.e. in one iteration, each parameter is adjusted by the positive or negative

step size or stays the same). Increasing the step size to 4, we achieved less accurate results after the initial

segmentation step, but after the enhancement steps, the results were exactly the same (the results are shown in

Sect. 6).

6. EXPERIMENTS

6.1 Database

For testing, two different databases with 150 (DB1) and 216 images (DB2) respectively (resolution 1280x1024

pixels) provided to us were used. These images have been evaluated manually by four people independently.

The ground truth was determined by taking the mean of all four measures. Moreover, one more database (DB3)

consisting of 25 indentation series, each consisting of 40 images with different focus settings is used to evaluate

the Shape from Focus and the Gradual enhancement approach. The quality of these images is considerably

lower.

Our aim is to detect the four vertices of the approximately square Vickers indentations. In the following

analyses, the distances between detected vertices and the ground truth are measured. In these Figures, for each

deviation bin (Euclidean distance in pixels) on the x-axis, the number of vertices detected within the deviation

is shown on the y-axis.

6.2 Two Stage Approach without Shape from Focus

The following strategy turned out to be competitive as far as segmentation performance is concerned:

• Stage 1 - Localization: Approximative segmentation with the Shape-Prior algorithm (section 3) on down-

scaled images (factor 10).

• Stage 2 - Refinement: The precise region based level set method based on the results (as initializations) of

the localization stage.

• For a further improvement of the segmentation accuracy, the local Hough transform4,8 is applied in an

area of 60 pixels around the corners as a postprocessing strategy.



The approximative Shape Prior localization stage already is highly robust, as the number of outliers (e.g.

deviation > 50 pixels) is low, as can be seen in Fig. 11a and 11b. The region based refinement stage based on

the Shape Prior results but without a Hough transform, is able to improve the accuracy (e.g. deviations ≤ 5

pixels). With the local Hough transform, the accuracy can be improved further more.

In Fig. 11c and 11d, different energy criteria of the refinement stage are compared. The region based

criterion is the best choice. The edge based criterion is very vulnerable even with good initializations, as small

edge operators are used. In this case, the traditional active contours approach (snake) is used instead of the level

set approach. The edge based level set approach is more competitive, but not as competitive as the statistical

or the region based level set approach.

In Fig. 11e and 11f, we compare the proposed 2-stage active contours approach with two existing template

matching approaches.10,11 In the high accuracy range (0 − 1 pixels) our 2-stage approach is the best choice.

As far as deviations of about 3 to 8 pixels are concerned, the 3-stage template matching approach11 is slightly

more competitive. However, when regarding higher deviations, the corner template matching approach10 and

the proposed method are more reliable. Over the whole range, the proposed 2-stage method seems to be the

best alternative. The deduced knowledge seems to be reliable, as both databases show a similar behavior.

6.3 Shape from Focus

We compare the traditional proposed 2 stage approach without depth information with the versions with depth

information. As the Shape from Focus approach requires series of images with different focus levels, for the

experiments the image database DB3 is chosen. We decided to utilize only 7 images per indentation with the

focus plane farther away than the specimen and the focused image.

First we investigate the impact of the depth information on the first approximative stage. The best results

are achieved with the 2 dimensional feature vector (equation (24)). The distributions pin and pout are calculated

by convolving the empirical distributions with a Gaussian Parcen window (σ = 2).

The choice of the focus measure is not very decisive as the results are quite similar. The achieved segmentation

performance with the different measures is shown in Fig. 12a. The Shape-from-Focus method in the following

experiments is based on the SML focus measure (T = 7, N = 1, s = 3) which is slightly more competitive as far

as outliers are concerned. In Fig. 12b the results of the statistical method with depth information (equation (24))

is compared with the statistical method without depth information (equation (8)). Whereas the number of edges

detected quite exactly (0-25 pixels) is similar, the number of outliers (deviation ≥ 50 pixels) can be decreased

significantly with the Shape-from-Focus information. As we concentrate on a low outliers ratio (i.e. a high degree
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(c) DB1, different energy criteria in stage 2
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(d) DB2, different energy criteria in stage 2
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Figure 11: Comparisons



of robustness) in the localization stage, the achieved results seem to be more appropriate as initialization for the

exact segmentation stage.

Now we investigate the impact of the shape information on the second stage. First of all, in Fig. 12c the

impact of the initialization on the traditional region based level set segmentation is shown. If the method is

initialized with the results achieved with the Shape Prior method including the depth information, the results

are superior. The depth information used by the Shape Prior approach definitely increases the segmentation

performance as far as robustness is concerned.

In Fig. 12d, we compare our methods from Fig. 12c with the corner template matching approach10 and

the 3-stage template matching approach.11 The corner template matching approach definitely suffers from the

low quality of the images. The robustness highly declines. The 3-stage template matching approach is slightly

more accurate than the 2-stage active contours approach applied to the low quality images. However, the active

contours approach additionally based on the shape information delivers even better results than the 3-stage

approach, especially as far as outliers are concerned.

Now we compare the statistical level set approach including shape information (best results are achieved

with 3 dimensional feature vector in equation (25) and the empirical distributions) with the traditional region

based level set method11 and the statistical level set approach without shape information (best results with

equation (9)). The methods are initialized with the results achieved with the Shape Prior approach including the

depth information. The results are shown in Fig. 12e. In contrast to the approximative Shape Prior approach,

the results of the precise level set segmentation approach are more similar. The approach including the depth

information seems to be slightly more robust than the region based approach (regarding deviations of e.g. ≤

40 pixels). However, the region based approach tends to be more accurate (regarding deviations of e.g. ≤ 5

pixels). The statistical approach without the depth information tends to be in the middle of the other mentioned

approaches.

To understand this behavior, we regard the different depth images provided by the depth from focus method

(Fig. 9). Images with low noise and high contrast, which can be segmented well without any depth information

(middle and right image) often have bad depth information (large regions without reliable depth information

(marked white)). Consequently, the segmentation of these images suffer from the additional information. In

opposite, the depth information of highly noisy images (left image) usually is quite accurate, so the segmentation

performance increases. Such an image is also shown in Fig. 13. In this image, the addition of depth information

leads to a successful segmentation. Consequently, we only recommend to use the second stage Shape-from-Focus

approach only if the image is very hard to segment by the traditional algorithms as the execution runtime
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(b) Comparison of stage 1 methods
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(c) Stage 2: Impact of initialization
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Figure 12: Comparisons

Figure 13: Achieved corner points with traditional method (⊕) and Shape from Focus based approach (⊗) (left)

and the corresponding depth information (right)



increases considerably (section 6.5) if the second stage is based on shape information. In the first approximative

stage the additional computational costs are low and the performance significantly raises.

6.4 Gradual Enhancement with Unfocused Images

As this approach also requires differently focused image, DB3 is chosen with the low quality images. The step

size between two focus levels is chosen dependently from the optical zoom of the camera (see Table 1). E.g.

with a magnification of 10, one focus level less means that the camera with a fixed-focus lens moves 10,000 nm

towards the specimen.

Table 1: Focus step size dependent on the optical zoom factor

zoom factor step size

10 x 10,000 nm

20 x 5,000 nm

40 x 1,000 nm

First of all, we investigate the effect of single unfocused images instead of focused ones on the proposed

approximative Shape Prior indentation segmentation approach. Figures 14a and 14b show results of the approx-

imative methods. In Fig. 14a, the focus plane is farther away from the camera compared with the best-focus

setting. The robustness (i.e. the number of outliers is low) of the segmentation did not only stay unchanged, but

can actually be increased The segmentation accuracy (e.g. the ratio of vertices with a deviation of maximal 20

pixels) slightly decreases. In opposite, if the focus plane is nearer to the camera compared with the best-focus

setting (Fig. 14b), the accuracy and the robustness significantly decreases.
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Figure 14: Single unfocused images: Advantageous settings (2 approaches)

Now we regard the proposed gradual enhancement approach: The results with different focus levels as stopping
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(a) Different stopping levels: first stage
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Figure 15: Gradual enhancement approach

conditions are shown in Fig. 15a. Although the behavior is similar to the behavior with one single unfocused

image (best stopping level: fl = −10), the effect is smaller. The outliers ratio generally is lower than with

the single image approach. In Fig. 15b, the gradual enhancement approach with the best stopping focus level

(fl = −10) is compared with the best results achieved with one single (unfocused) image and with the results with

the focused image. The gradual enhancement approach definitely is more competitive as far as the approximative

stage is concerned than the best focus approach and even more robust (less outliers) than the single unfocused

image approach.

The results seem to be more similar compared with the single image approach. However, the impact of the

different initialization results, on the level set algorithm is considerable, as shown in Fig. 16a. Especially the

number of outliers can considerably be decreased when stopping earlier (fl = −10). The slightly lower accuracy

of the first stage can be compensated by the second stage. Consequently, we define the stop level -10 to be the

best choice. In Fig. 16b the achieved results of best configurations (gradual enhancement and single unfocused

image) are compared with the traditional approach with focused images. The performance of the methods using

unfocused images definitely are higher than the performance of the simple approach dealing with the focused

image. The gradual enhancement approach is even slightly more robust (very few outliers) than the single

unfocused image approach.

In Fig. 17, the Shape from Focus and the gradual enhancement approach are compared with the traditional

method. Only the first stage varies. The second stage is always the same (region based level set approach). As

shown, with the gradual enhancement approach in the first stage, the robustness of the overall segmentation can

be improved once again.
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Figure 16: Gradual enhancement approach: Effect on the precise stage
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Figure 17: Overall comparison after second stage

6.5 Runtimes

In Table 2, the average runtimes of the different approaches are shown. The traditional 2-stage approach takes

about 4.3 seconds per image. If the Shape from Focus approach is included in the first stage, the overall runtime

slightly increases, as the shape information must be computed. If the Shape from Focus approach is included in

both stages, the runtime significantly raises, as the shape information must be computed from the originally sized

images, which is computational expensive. If the gradual enhancement approach based on unfocused images is

used, the traditional Shape Prior approach (2.2 seconds per image) is replaced by the initial step which takes

Table 2: Execution runtimes (Intel Core 2 Duo T5500 1.66 GHz)

Process traditional

2-stage approach

stage 1 with

Shape from

Focus

both stages with

Shape from Fo-

cus

Shape Prior approach 2.2 s 2.2 s 2.2 s

Level set approach 2.1 s 2.1 s 4.2 s

Shape computation (not required) 0.8 s 7.3 s

Average total runtime 4.3 s 5.1 s 13.7 s



1.0 seconds and a number of enhancement steps (0.14 seconds per step). The runtimes cannot be compared, as

with this approach the segmentation could start earlier.

7. CONCLUSION

We showed, that active contours are a precise segmentation approach especially if a good localization of the

indentation is already available. The introduced Shape Prior approach provides very robust approximative

results, which are used as initialization for the active contours. On the high quality databases, the introduced 2-

stage approach produces better results, than existing approaches. When incorporating the mentioned approaches

with Shape-from-Focus information, robustness can even more be improved. Especially the localization stage

benefits from the additional information. On the low quality database, the traditional 2-stage active contours

approach is slightly less competitive than an existing high performing template matching based method. However,

with the shape information, the 2-stage active contours approach is even more competitive than this existing

approach. Similar results are achieved with the gradual enhancement approach. Nevertheless, the additional

advantage of this method is that the overall execution runtime potentially can be reduced.
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