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Abstract

Hardness is an important characteristic of solid materials (e.g. metal), ex-
pressing its resistance to permanent deformation. In order to measure the
mentioned property, several approaches exist (e.g. Vickers, Brinell).

The basic idea of all approaches is to measure the deformation of a ma-
terial, produced by a standardized indenter. In a first step, a standardized
indenter is pressed into the material with a defined (known) force, which
leads to a deformation. To be able to provide a hardness measure, in a sec-
ond step, precise gauging of respective deformation (indentation) is done.
Knowing the size of the indentation as well as the pressure force, the hard-
ness of the material can be accurately determined.

We especially concentrate on Vickers hardness testing. In this approach,
a square based pyramidal indenter is pressed into the material. After me-
chanical deformation, a picture is taken (using a microscope), which shows
an approximately square shape. The size of the shape depends on the force
and the hardness of the material. In order to calculate hardness of the
material, both diagonals of the generated shape must be measured.

Conventionally, measurement of diagonals is executed manually, accord-
ing to standardized methods [9, 21]. This manual evaluation is not only
expensive, but also interpretive and subjective. Moreover, the operators
physical and psychical conditions (e.g. fatigue) potentially affect the hard-
ness evaluation process.

Hence we focus on developing image processing algorithms which replace
or at least support manual work. We start with images that are taken, which
should be segmented in order to identify the four corner points. Having these
corner points, diagonals can be calculated easily.

Different proposals have been made to compute results by the use of
image processing software. Target of this work is to investigate active con-
tours and level set algorithms with respect to Vickers images. Particularly,
an algorithm has been implemented which segments images accurately and
robustly. A measure for accuracy could be implemented as well, but this
issue has not been investigated so far.
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Chapter 1

Introduction

There are several proposals for image segmentation of Vickers indentations.

One group of algorithms rely on wavelet analysis [14, 23]. These methods
assume that object borders are perfectly straight lines. As this constraint
is not always redeemed perfectly, a precise segmentation cannot be assured.
While the assumption that images meet a geometric constraint introduces
robustness, accuracy decreases as the assumption is partially wrong.

Another approach [11] is based on edge detection followed by Hough
transform and least squares approximation of lines. Edge finding techniques
are based on the assumption that high differences between neighboring pixels
imply that these pixels are part of the border. This assumption is not right
at all. Highly noisy images, as well as very bright images (with low contrast),
do not subject this assumption. It might occur that noise has a higher edge
response than a real object boundary.

The method introduced in [15] applies thresholding followed by a Hough
transform. Thresholding suffers from one big problem. If this method is
applied to images, it is necessary to calculate a threshold value which de-
pends on the current image. Of course it is not possible to use one single
threshold for each image, as images differ too much. Unfortunately finding
a threshold that perfectly separates objects from a background is not only
very difficult, in fact, sometimes it definitely is not possible to segment im-
ages by using any threshold (assumption that object and background have
different brightness is wrong). This happens especially if the object is quite
bright and/or the background is dark or noisy.

Other suggested methods also binarise the image using thresholding [18,
24] (followed up by morphological closing).

Another approach is based on axis projection and Hough transform [26].
By summing up values of the same rows as well as values of the same
columns, two one dimensional functions are processed. The indentation
can be located, where the values are lower (as the object is darkly colored,
dark colors have a lower gray value). This method suffers when images are
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10 CHAPTER 1. INTRODUCTION

noisy or slightly rotated.
Methods relying on template matching ([17, 7]) are quite robust to noise.

This is because big templates suppress noise as large regions are summed up
(in contrast to small edge operators). In [17] square templates of different
sizes and different rotations are matched with the image. The results of this
approach are robust but only serve as approximations, as real Vickers are
no perfect squares. In contrast, the template matching approach introduced
in [7] provides robust as well as precise results. A high degree of accuracy is
achieved by applying four corner templates instead of one complete square
template.

Our work deals with different kinds of active contours algorithms. The
aim of these approaches is that a contour with a defined initialization con-
verges to real object boundaries within a number of iterations. The contour
is forced by different energy functionals, which depend on pixel values of the
image on the one hand and homogeneity criteria of the contour on the other
hand.

First (chapter 2) we investigate the traditional active contours approach
(snake), which is the most simple one and was introduced [12] first of all.
This chapter also covers improvements like the gradient vector flow approach
(GVF) [25], which avoids problems like the lack of edge propagation.

Chapter 3 deals with the level set approach [20], which is an alternative
to traditional active contours which handles parametrization in an intrinsic
way (i.e. by its level set).

As both, the snake and the level set methods highly depend on initializa-
tion, we identified that it is not adequate to use such an algorithm standalone
for Vickers segmentation, because initialization would have to be different
for different images (size, position, rotation). To deal with the initializa-
tion problem, a strict Shape-Prior gradient descent approach is proposed in
chapter 4, which is highly noise resistant, but does not find points exactly
(because of the strict shape). Moreover a Shape-Prior force was applied to
level set algorithms, which aims in noise resistance, but still suffers from a
poor initialization as well.

Chapters 5 deals with pre- and postprocessing of the images, in order to
optimize segmentation results.

To get both, independence of initialization and noise resistance on the
one hand and exact localization of points on the other hand, a multi-
resolution approach is proposed in chapter 6. The results of our proposed
approach are compared with those of the corner template matching strategy
introduced in [7].

In chapter 7 we focus on collecting additional information of indentation
images by regarding different focus levels. By applying a focus measure
to all different focus level images, depth information of the image can be
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gathered.
In chapter 8, we investigate the impact of unfocused images on the seg-

mentation process. Especially, we identify (un)focus setups which are even
beneficial for the segmentation.

In chapter 9, a gradual enhancement strategy is introduced, which is
based on differently focused images. The aim is to reduce the runtime of
the overall hardness test.

In chapter 10 the runtimes of different introduced algorithms are com-
pared.

Chapter 11 concludes this thesis.

1.1 Vickers images

The images to segment approximately fit the following description:

• square geometry of object to segment

• dark object, light background

• diagonals are horizontally and vertically aligned

• object is situated close to center

Figure 1.1 shows quite perfect images.

Figure 1.1: Images redeeming constraints

1.1.1 Noisy images

Images in figure 1.2 show many different kinds of noise.

1.1.2 Low contrast images

Some bright images lack of contrast, especially the diagonals’ gray scale is
the same as the background. Another inconvenience is the fact, that in
such images, possible noise is often darker than the imprint. Examples are
pictured in figure 1.3.
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Figure 1.2: Noisy images

Figure 1.3: Low contrast
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1.1.3 Violation of rotation

The diagonals are not always aligned horizontally and vertically. Some im-
ages are slightly rotated, like in figure 1.4.

Figure 1.4: Violation of rotation constraint

1.1.4 Shape violation

Whereas the first image (figure (1.5)) shows a concave curvature, the second
one shows a convex curvature. Moreover the first image does not exactly
represent a square, as the right sides are longer than the left ones. The sides
of the third image highly differ from straight lines. Examples are shown in
figure 1.5.

Figure 1.5: Shape violation

1.1.5 Different size

The following images represent the smallest and largest imprints in our
database (shown in figure 1.6).

1.2 Database

For testing different algorithms and setups 150 test images (resolution 1280x1024
pixels) provided to us were used. In order to compare the calculated re-
sults with the ground truth, these 150 images where manually evaluated by



14 CHAPTER 1. INTRODUCTION

Figure 1.6: Different sizes

four people independently. The ground truth was determined by taking the
mean of all four measures. For the first step of the multi-resolution approach
(chapter 6), these images are downscaled by factor 10 (resolution 128x102
pixels).

1.2.1 Image series

In the chapters 7 - 9, we need image series with different focus setups. For
this purpose, we have got 25 indentation series, each containing 40 images
of the same indentation but with different setups. The quality of this series
is considerably lower.



Chapter 2

Traditional active contours
approach

Intuitively, an active contour is a closed curve which iteratively converges at
the object’s borders, by means of gradient descent of an energy functional.
The curve is represented by a sequence of pairs containing x and y coordi-
nates, which are markers that are connected with straight line segments.

Traditional active contours (also called snakes as introduced in [12]) is
an attempt to minimize a cost (energy) function which depends on image
pixels and the contour’s shape by the use of gradient descent. Aim of that
algorithm is that minimization of the cost function leads to an appropriate
segmentation of the image. The energy function consists of an additive
weighted mixture of internal energy, image energy and external energy. The
weights can be adjusted in order to control the behavior of the snake. A
snake is represented parametrically by v(s) = (x(s), y(s)), where x(s) is
the x coordinate and y(s) is the y coordinate for a given element s of the
contour.

E∗snake =

∫
Snake

Esnake(v(s))ds (2.1)

E∗snake =

∫
Snake

Eintern(v(s)) + Eimage(v(s)) + Eextern(v(s))ds (2.2)

2.1 Internal energy

The internal energy consists of a linear combination of continuity (first order
derivation) and curvature (second order derivation).
The continuity term prevents the marker points v(s) from converging to few
points with low image energy (i.e. the contour acts like a membrane). v(s)
should be approximately equally distributed over the contour.

15



16 CHAPTER 2. TRADITIONAL ACTIVE CONTOURS APPROACH

The curvature term prevents the contour from developing sharp corners
(i.e. the contour acts like a thin plate). However, corners or curves can be
evaluated, but only if the image energy is strong enough to outweigh the
curvature energy.

Eintern = α · |v′(s)|+ β · |v′′(s)| (2.3)

Large weighted parameters α, β (in ratio to other weighting parame-
ters), make the contour more noise resistant, but details are segmented less
exactly. Slight bendings are more evolved than sharp corners and the speed
of convergence is declining. Small α and β, on the other hand, make the
snake more vulnerable to noise. However, details would be segmented more
exactly.

2.2 Image energy

This Energy is calculated from image pixels. Usually the image energy is
calculated by applying an edge operator to the original image. Pixels near
edges having a higher gradient represent a lower energy. The idea is that
edges are likely to be part of the object’s border. λ is a weighting parameter,
∇ is the gradient operator, || · || is the Euclidean norm and I is the image
gray value.

Eimage = λ · Eedge = −λ · ||∇I(v(s))|| (2.4)

In line drawings the energy can be calculated directly from the pixels. The
Energy is low at the lines and high everywhere else:

Eimage = λ · Egray = λ · I(v(s)) (2.5)

For segmentation of Vickers images, clearly the first energy criterion in equa-
tion 2.4 is used, as object borders correspond with edges, not lines.
When increasing λ, the image energy becomes more important. That leads
to faster convergence and potentially more exact segmentation, but to more
noise sensitivity as well.

2.3 External energy

External forces like user interaction might be used, but this is not further
investigated, as hardness image segmentation should run as batch process
without any human interaction at all.
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2.4 Analysis on indentation images

The OpenCV (V2.0.0) snake implementation algorithm was applied to Vick-
ers test images. Although there exist lots of examples which can be seg-
mented precisely, a real world test with actual Vickers images shows that
this simple approach does not lead to appropriate results, especially if the
starting configuration is not near to the real contour.

2.4.1 Problems

1. If the initial active contour is too far away from the actual image gra-
dients, it has no chance to converge to the real contour. This happens
because when the contour starts far away from the object’s border,
gradient descent does not succeed in finding the global optimum. Gra-
dients near to the active contour are not influenced by the real border
of the object. Consequently either the image energy is very low or
even influenced by noise in a wrong way. Without image energy, a
segmentation will never succeed. We call the region where gradient
descent succeeds “capture range“. This problem is shown in figure 2.1
(left).

2. Especially noisy images suffer, because the gradient image shows lots of
regions with low image energy (figure 2.1, middle), where the contour
potentially converges to.

3. Corners are not sufficiently detected. The active contour consists of
a number of straight line segments, which connect the parametrized
marker points. There is no reason for the marker points to move to-
wards the corners, as the internal energy and the image energy would
increase. The internal energy would increase because a corner in-
troduced a high energy. The image energy increases as the gradient
values at the corners are lower than edge pixels which are distant to
the corners. Consequently, the corners of the object are cut (figure
2.1, right).

2.4.2 Solutions

• The gradient image can be calculated in different ways. Using the
small standard operators like Sobel 3x3 etc. does not lead to sufficient
results, as this operator produces very fine gradient images (figure 2.2
top row). That means, a sharp edge in the input image leads to a very
thin response in the greadient image. Such thin gradients cannot be
”found” by the active contour (no gradient-descent possible from far
away).
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Figure 2.1: Problems: low capture range (left), noise (middle), cut corners
(right)

One way is to use larger templates for edge detection (instead of a small
3x3 operator), which results in a propagation of the gradients (figure
2.2 bottom row). Consequently, the active contour’s capture range is
increased, as the edge information is propagated over the image.

• The first solution helps to improve on problem 1 and 2, but not on
problem 3. Problem 3 occurs because the internal and the image
energy increases if the contour would exactly detect the corners. The
internal energy logically increases, because curvature inclines. The
image energy increases, because the edge energy increases if the square
partial derivation (dx or dy) would be small. At the corners, one square
partial derivation is low.

Eedge = −||∇I(v(s))|| = −

√
dI

dx
(v(s))2 +

dI

dy
(v(s))2 (2.6)

An idea to solve this problem is not to calculate the gradients dx and
dy, but the diagonal gradients. While the traditional approach suffers
from weaker gradients near the corners, now we have the opposite
effect. Unfortunately, this method suffers if the image is not correctly
rotated or no perfect square. Using the following energy criterion,
gradient pixels near corners become as large as others on average:

Eedge = −max(|dI
dx
v(s)|, |dI

dy
v(s)|) (2.7)

Nevertheless, the algorithm still tends to cut corners, as a corner in-
creases internal energy. In order to reduce computational complexity,
the calculation of the gradient in x direction only regards pixels in the
same rows as the current pixel and calculation of the gradient in y
direction only regards pixels in the same column as the current pixel.
This strategy is utilized and improves the segmentation performance.

Figure 2.2 shows 4 different images from left to right and different sizes
of gradient operators from top to bottom (3 pixels, 20 pixels, 100 pixels).
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The contour was initialized equally, intentionally far away from the object,
to show the effect of different sizes of edge operators. If the image has high
contrast, low noise and sufficient size, the use of a larger gradient operators
definitely is beneficial.

Figure 2.2: Different gradient operators

2.4.3 Remaining problems

Our solutions help segmenting perfect images of a certain size, as well es
slightly noisy images. Still very problematic are images with small objects
(the big gradient-operator does not work, as the size is limited by the object
size), or images that are very dark (with a lot of noise) or quite bright. Such
objects tend to disappear, when big gradient operators are used.
Moreover the problem of initialization of the contour is improved, but not
solved completely. The convergence radius still depends on the size of the
gradient operator. Consequently, one initialization for all images is still im-
possible, which implies that the traditional snake approach does not serve
as standalone application for Vickers image segmentation, anyway it might
serve as a second step of a multi-resolution algorithm if an approximation
of corners is already available.
Figure 2.3 shows the dependency on initialization. The top images show the
initialized contour whereas the bottom images show the results.



20 CHAPTER 2. TRADITIONAL ACTIVE CONTOURS APPROACH

Figure 2.3: Different initializations

2.5 Gradient vector flow approach (GVF)

One problem of the traditional snake is edge propagation. Using a small edge
operator for creating the edge map leads to a small zone of convergence. On
the other hand, big gradient operators destroy small detail information, es-
pecially if the objects are quite small.
While a snake, based on a (small) standard gradient operator might be a
good segmentation tool, if object borders are approximately known, it defi-
nitely is insufficient as a standalone application.
To avoid this inconvenience, the gradient vector flow approach (GVF) has
been introduced [25]. Instead of calculating an edge map, the authors pro-
pose a vector field, where vectors are pointing towards regions with higher
gradients.

In a first step an edge map f(x, y) is derived from the image (f(x, y) =
||∇I(x, y)||). Consequently, the vectors of ∇f (∇ is the gradient operator)
are pointing towards regions with a higher edge value f (as shown in fig-
ure 2.4). As the capture range of ∇f is still small, gradients have to be
“smeared” away from the actual gradient’s position.

In order to increase the capture range, the authors propose to minimize
the following energy criterion:

E =

∫
Y

∫
X
µ((

dr

dx
)2 + (

dr

dy
)2 + (

ds

dx
)2 + (

ds

dy
)2)+

||∇f ||2||v −∇f ||2dxdy
(2.8)

v(x, y) = (r(x, y), s(x, y)) is the resulting gradient vector field.
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Figure 2.4: ∇f (left), ||∇f || (right)

Now we investigate two classes of vectors:

• ||∇f || is very high: In this case, the energy E is dominated by the
second term and is consequenty minimized by setting v = ∇f .

• ||∇f || is very low or zero: In this case, the E is dominated by the first
term. Therefore, the square partial derivations of r and s should be as
small as possible (i.e. neighboring vectors v and v′ are pointing to sim-
ilar directions). A minimization of the energy leads to a propagation
of the gradient information.

The parameter µ adjusts the priorities of the two energy terms. Increasing
µ leads to a smoother function v and suppresses noise but also potential
important information.

The output vector field v is shown in figure 2.5.

The open source software Snake++ (http://sourceforge.net/projects/
snakecpp/) includes an algorithm, which calculates v by iteratively decreas-
ing the energy criterion E. We investigated this GVF implementation.

2.5.1 GVF evaluation

The main difference to the traditional active contours approach is the com-
putation of the edge map of the image, which is a vector field in case of
the GVF approach. Anyhow, the GVF vector field can easily be converted
into an edge map which can be handled by the traditional algorithm. That
was done, as we did not achieve acceptable results using the GVF contour
evaluation algorithm, even though the vector field looks acceptable:

edgemap(x, y) = ||GV F (x, y)|| (2.9)
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Figure 2.5: Gradient vector field v

Although there is a loss of information (direction), the snake implicitly cal-
culates the direction by regarding the neighboring pixels. Like with gradient
operators, pixel values are higher near to the actual object border.
As the vector field cannot be visualized straightforward, the following strat-
egy has been chosen:

edgemap(x, y,Red) = ||GV Fx(x, y)|| (2.10)

edgemap(x, y,Green) = ||GV Fy(x, y)|| (2.11)

Now the red channel of the RGB image contains the absolute gradients in
x direction, whereas the green channel contains the absolute gradients in
y direction. Surely there is a loss of information applying the mentioned
approach, as only the absolute values are regarded and so the direction of
the vectors gets lost.

2.5.2 Advantage

The generation of the gradient vector field is advantageous to simple gradi-
ent operators as far as edge propagation is concerned. With standard oper-
ators, small and bright objects might disappear, or edges might be blurred
too much. Calculation of a vector field does not blur boarders if the differ-
ence between object and background is too small. Instead, starting with an
edge map (small edge operator is applied), and proceeding with propagation
of gradients does not bring such negative effects. Moreover, a problem of
the traditional snake is the convergence into concave regions. This inconve-
niences can be improved using the GVF snake.

The higher the number of iterations, the higher the degree of edge prop-
agation (i.e. higher capture range). Figure 2.6 shows different numbers of
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iterations.

Figure 2.6: GVF different numbers of iterations, from left to right 80, 360,
3600

2.5.3 Problems

• One drawback of the GVF approach is the preservation of noise. While
large gradient operators remove noise (act as low-pass filters), GVF
propagates noise. That has advantages as even very small objects do
not disappear (this would happen in case of large gradient operators).
But one disadvantage is that the convergence to the global maximum
(real image border), is unsettled by local minima, especially if images
are noisy.

• Another drawback is the complexity of the calculation of a vector
field. As each step just compares neighboring pixels, lots of iterations
(103 − 104) must be applied to the original gradient image (to reach
usable capture ranges). More iterations lead to a larger capture range.

If images are downscaled, the GVF algorithm is less computationally
expensive within a defined number of iterations. Moreover the cap-
ture range which is necessary decreases as distances measured in pixels
are shrinking. Starting with high resolution images (1280x1024 pix-
els) without approximate knowledge of the placement of the object
definitely is too expensive with respect to computational costs.

2.5.4 Acceleration - gradient diffusion field (GDF)

One the one hand, the GVF approach is able to generate a vector field with
large zones of convergence (capture range), if the number of iterations is
high enough. On the other hand computational costs are extraordinarily
high (even for downscaled images).
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To reduce computational costs, [13] introduced the gradient diffusion
field (GDF). Like with GVF this approach aims at “smearing” gradients, in
order to increase the capture range. In opposite the GDF approach is not
based on a vector field, but on a scalar field.

It is defined by the following recursive scheme, whereGoG is the Gaussian-
of-Gradient operator, I is the image gray value and k is the total number of
iterations.

GDF0 = |GoG ∗ I| (2.12)

GDFi+1 = max(|α(i) · (GoG ∗GDFi)|, GDFi) (2.13)

α(i) = 1− i

k
(2.14)

For each iteration, the image is convolved with GoG operator, which
applies edge detection and blurring.

The authors argue that the number of iterations (and the computational
costs) required to reach a defined capture range is much lower.
Nevertheless, the capture range definitely is limited, as far as 8-bit gray
scale images are used. The capture range is generated by descending pixel
values (different pixel values are limited). Moreover operational experience
showed, that GDF’s limitation of the propagation zone is lower than GVF’s
one (if applied to Vickers images).
So like GVF, GDF will not serve as a standalone method for Vickers im-
age segmentation, as the capture range is still not sufficient (especially for
1280x1024 pixels images).

2.6 Analysis on indentation images - starting con-
straints

One straightforward approach is to let the snake start from a defined starting
region independent of the image. A big benefit would be that the snake
would work stand-alone! We only have to ensure that the object is withing
the starting contour, as otherwise the deformation reconstructs just one part
of the object. To keep that constraint, a simple idea is to start from the very
outside of the image. As the capture range in high resolution images does
not measure up, images are downscaled to reduce computational expenses
as well as to increase the capture range, in relation to the image size.
Figure 2.7 shows two different images (downscaled to 320x256 pixels) with
different starting configurations, using the GDF approach.

Although the capture range would be large enough, to guide the con-
tour to move towards the real object boundary, the GDF (and also GVF)
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Figure 2.7: Different starting configurations

approach suffers from artefacts, induced by even little noise in the original
image.
The more precise the initialization is, the better are the results. Therefore,
this method is not robust enough to segment images standalone, without
already approximate knowledge of the results. Accuracy definitely increases
if a starting region is determined by the respective image.

2.7 Results

Active Contours algorithms are divided into 2 major steps, the calculation
of a kind of edge map (or vector field) and the deformation of the contour
(gradient descent). In order to give the snake a chance to deform intention-
ally, the surface of the edge map must be accurate.
On the one hand, the gradient descent of the contour requires gradients.
Therefore, different approaches (GVF, GDF) propagate edge pixels to re-
gions without gradients, to make the edge map more steady. Just using
large gradient templates does not lead to enough propagation, as the size of
the templates is limited by the size of the images.
On the other hand especially using the GVF (or the GDF) approach does
not remove noise, which implies that the surface gets deceptive with many
local minima if the input image is noisy.
Consequently, there are two opportunities to improve the segmentation pro-
cess. One is to amend the snake deformation algorithm to be able to deal
with local minima (e.g. a balloon force as introduced in [4]). The other one
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is to use the snake algorithm as a second step for finding accurate results,
having approximations of the objects already been given. The first idea has
not been investigated with snakes but in the chapters 3 and 4 with similar
approaches. The second idea has been investigated in chapter 6, where a
multi-resolution approach is introduced.



Chapter 3

Level set approach

The level set method introduced in [20], is an alternative to the traditional
snake model. Apart from other inconveniences, traditional active contours
suffer from an explicit parametrization of the contour. The curve is given
by a series of frontier (marker) points which are evaluated in each iteration.
During the curve evolution significant problems may arise:

• Splitting
The contour is not able to split into two or more parts in a natural
way. To allow such a deformation, the algorithm has to be expanded.

• Regularization of parameter points
To ensure that distances between frontier points stay approximately
the same and do not collapse, the continuity regularization term is
necessary. Otherwise the frontier has to be re-parameterized periodi-
cally.

• Moreover the evolution of edges may fail, as the neighboring marker
points are connected by straight lines (details get lost).

In the level set formulation an explicit parametrization by frontier points
is circumvented by using an intrinsic formulation. The evolving contour is
given by its level set Γ.

Γ = {(x, y)|φ(x, y) = 0} (3.1)

φ(x, y) is a function which is 1 inside, −1 outside of the region and exactly
0 at the frontier of the evolved shape (figure 3.1). The points outside of the
contour are given by Γout:

Γout = {(x, y)|φ(x, y) < 0} (3.2)

The points inside of the contour are given by Γin:

Γin = {(x, y)|φ(x, y) > 0} (3.3)

27
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Figure 3.1: Level set function φ

Evolution of the frontier happens by moving the initial level set in normal
direction with a specified speed v.
It is represented by the following partial differential equation (PDE):

dφ

dt
= v · ∇φ

||∇φ||
(3.4)

Intuitively, with progressing time t, φ is moving with speed v (which is
variable) normally directed to the frontier ( ∇φ||∇φ||). ∇φ is divided by its

norm (||∇φ||) to normalize the vector.
Although the general curve evolution is defined, the level set approach

is highly flexible. There exist lots of different ways of calculating the speed
function v, which influences the behavior of the evolving level set.

3.1 Caselles - edge based approach

One commonly used edge based level set variation has been introduced in
[1].
It is defined by following equation:

E =

∫ 1

0
g(I(Γ(q))) · ||Γ′(q)||dq (3.5)

g(I) =
1

1 + ||∇(G ∗ I)||2
(3.6)

Γ is the evolving curve, G is a Gaussian operator, I is the image gray
value and ∇ is the gradient operator.

g(I) is high (converges to 1) if the gradient operator (∇) has no response,
i.e. the image has no gradients at the current position. g(I) is low in the
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case of high gradients. ||Γ′(q)|| is high at the evolving curve and low (Γ = 0)
everywhere else. To put it in a nutshell, g(I(Γ(q)))||Γ′(q)|| is high if the
contour is positioned where the image gradients are low. The minimization
of E minimizes such occurrences.

3.2 Chan-Vese - region based approach

Caselles’ level set method relies on gradient pixels, like the traditional snake
algorithm. As with the snake approach, the edge based level set algorithm
requires the propagation of edges to increase the capture range. Another
problem is that image gradients might be weak.
To bypass this issues, in [2] a region based approach has been introduced,
where the force of the contour is not based on image gradients. This method
is based on the assumption that the object’s surface as well as the surface
outside of the object are homogeneous as far as its gray value is concerned.

A simple region based approach is given by the following equation (I is
the image gray value, Īin and ¯Iout are the average values inside and outside
of the contour):

E =

∫
Γin

(I(v)− Īin)2dv +

∫
Γout

(I(v)− ¯Iout)
2dv (3.7)

Intuitively, energy is low if the gray values inside of the contour are equal
and the gray values outside of the contour are equal.

Whereas this criteria does not depend on a regularization (curvature)
criteria of the evolved curve, the criterion proposed by Chan-Vese does:

ECV =

∫
Γin

(I(v)− Īin)2dv+

∫
Γout

(I(v)− ¯Iout)
2dv+λ

∫
Γ
||∇φ(v)||dv (3.8)

I is the image gray value, ∇ is the gradient operator and λ is the curvature
weighting term. The higher λ the less is the probability to evolve sharp
corners.

3.3 Statistical approach

Chan-Vese’s approach is based on the assumption that images do not neces-
sarily have strong gradients at their boundaries, but the average color (gray
value) has to be different. This assumption usually is a quite good idea,
however it is inappropriate for some kinds of images, like these in figure 3.2.

All of these images contain noise which is darker than the object to
segment. Consequently, a region based model would state that such dark
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Figure 3.2: Inappropriate images

noise pixels are more likely to be part of the object than to be part of
background (as background average color is brighter). Obviously, this does
not match with reality.
To overcome that inconvenience, a statistical approach has been introduced
in [5]:

E = −
∑
i

∫
Ωi

log pi(f(v))dv (3.9)

Ωi is one region to separate from the others and pi is the probability
density function of a feature f in the region Ωi. While the region based ap-
proach only allows definition of two regions (outside, inside), the statistical
definition allows arbitrary disjunct regions.

Transforming the energy criterion gives a more intuitive representation:

E = −
∑
i

∫
Ωi

log pi(f(v))dv =

−
∑
i

∑
f(v)∈Ωi

pi(f(v)) log pi(f(v)) =
∑
i

HΩi

(3.10)

Consequently, the energy can be minimized, by minimizing the sum of the
entropies (HΩi) of all regions Ωi. While in the region based approach ho-
mogeneous colors in separate regions are assumed, the statistical approach
more generally assumes homogeneity based on feature vectors f(v) with
(theoretically) an arbitrary number of dimensions. The declared statistical
model is a generalization of the region based one.

Applying the commonly used regularization criteria (minimizing the
length of the contour |C|), gives the following energy functional.

E = −
∑
i

∫
Ωi

log pi(f(v))dv + α|C| (3.11)

In the case of Vickers segmentation we target in separating one object
from background, so two partitions Ωin and Ωout are claimed. We call them
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Γin and Γout.

E = −
∫

Γin

log pin(f(v))dv −
∫

Γout

log pout(f(v))dv + α|C| (3.12)

We replaced the continuity term α|C| by the functional proposed by
Chan-Vese to simplify implementation:

E = −
∫

Γin

log pin(f(v))dv −
∫

Γout

log pout(f(v))dv+

λ

∫
Γ
||∇φ(v)||dv

(3.13)

This formulation allows not only to use gray scale as feature, but each
feature which could be defined for a specific pixel might be included in a
feature vector of arbitrary length. Especially any kind of gradient informa-
tion is interesting. Using a gradient direction information e.g. segmentation
of an image like shown in figure 3.3 would become possible.

Figure 3.3: Structure image

In the case of only one single feature two one dimensional probability
densities are computed (one for the object, one for the background), using
sample data from the current position of the contour. In the case of a mul-
tidimensional feature vector, these densities have the same dimensionality
as the feature vector has.

3.3.1 Generation of densities pin and pout

pin and pout are probability densities. Unfortunately this densities are not
given, but have to be evaluated. What we have are 2 sets of feature vectors,
f(Γin) and f(Γout).
There are two major ways to model a distribution by a set of samples. The
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first is to evaluate the parameters of a specific distribution. Though this
requires the knowledge of the distribution. As we do not want to assume
a specific distribution, we decided for a non parametric method. Particu-
larly the empirical distribution is convolved with a Gaussian Parcen window
function of different sizes.
For each dimension of density, the Parcen window is applied separately. The
used size depends on the feature as well as the total number of dimensions.
This is because in higher dimensions, the same number of features would
lead to a sparse probability density matrix (deceptive surface), while in lower
dimensions an empirical distribution without any Parcen window could be
smooth enough.

You have to make aware that Parcen windows approximations are com-
putationally expensive (because of convolution) and have to be applied for
each step of iteration separately. Complexity increases exponentially with
respect to the number of dimensions. Consequently we mainly investigate
one and two dimensions.

Empirically, we proved that the following feature vector is a good choice:

f(v) = (I(v), ||∇I(v)||)) (3.14)

Feature vectors with a third dimension have been tested, but did not
improve the results.

As the computational expense of a Parcen window approximation could
not be accepted, we did not apply any windowing function, but used the
empirical distribution straightforward instead.

3.4 Analysis on indentation images

While the edge based functional (Caselles) turned out to be quite vulnerable
to initialization and noise, the Chan-Vese region based algorithm generates
quite robust and exact results. The statistical approach does not provide
better results, so the higher computational affords are not justified.

3.5 Software

Two different open source level set image processing software packages have
been tested and extended.

• Creaseg
This is a Matlab implementation of diverse level set algorithms like
Chan-Vese, Caselles, etc.
http://www.creatis.insa-lyon.fr/~bernard/creaseg
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• Ofeli
A very fast C++ implementation of Chan-Vese and Caselles algo-
rithms.
http://code.google.com/p/ofeli

First we investigated the Creaseg tool, as it deals with numerous different
algorithms. As the runtime of the algorithms did not satisfy our demands,
we later concentrated on Ofeli, which is a high performance implementation
in C++.
Ofeli implements the Caselles and the Chan-Vese level set algorithms.
We have extended the software by the presented statistical approach. Fur-
ther more, prior knowledge about shape has been introduced (chapter 4).

3.6 Initial configuration

Edge based algorithms definitely have to be initialized nearby the boundary
(as with snake). Although region based approaches are known to be less
vulnerable to initial configuration, starting with a general level set is not
advantageous. On the one hand, even region based algorithms do not suc-
ceed to converge at the desired boundary, if the contour is too far away from
it, because the image background often is quite dark near the image borders
(caused by exposure). On the other hand if such long distances must be
managed, computational costs are tremendous (runtime > 10s). To avoid
that inconveniences, in chapter 6 a multi-resolution approach is suggested,
which combines a robust shape-prior segmentation on downscaled images
as a first step and a level set approach as a second step for more accurate
results.
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Chapter 4

Introduction of Shape-Prior

The methods mentioned so far suffer from converging to local minima. Espe-
cially in noisy images the traditional active contours as well as the level set
methods lead to bad results, especially if the initialization is not appropriate.

Once again, the traditional active contours model is investigated. The
proposed model is based on image energy (supplied by edges) and internal
energy (curvature, connectivity).
For the general case of image segmentation this energy functional might be
a good approach. On the other hand, for a special kind of segmentation
(e.g. Vickers) we have some more information about the shape of the object
than just homogeneity.
The following three possibilities to introduce Shape-Prior knowledge are
discussed in the next chapters.

• Gradient descent method with limitation by parametrization

• Shape-Prior level set approach with gradient descent of prior level set
[3]

• Shape-Prior level set approach with direct computation of prior level
set [27]

4.1 Strict Shape Prior Gradient descent method

Different from other level set or snake based Shape Prior introductions, we
propose a quite different way for robust segmentation of shapes which are
known a priori. This approach requires a parametric description of the
prior shape. The object that will be segmented will have exactly the prior
shape, as not a contour (parametrized by points or level set), but the object
description parameters are directly evolved by gradient descent. While the
traditional active contours as well as level set algorithms allow arbitrary

35
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deformation of the initial contour, this approach only allows evaluation of
the following four parameters.

1. x0 ... translation x axis

2. y0 ... translation y axis

3. r0 ... scaling

4. α0 ... rotation

Figure 4.1: 4 degrees of freedom

• In the first equation we assume that the center of the object is given
by (0, 0) and it is not rotated. The separating contour is given by the
set of points (x, y), which the following property:

|x|+ |y| = r0 (4.1)

That means, every point of the contour has the same Manhattan-
distance from the point (0, 0). The parameter r0 has to be evolved.

• Now we assume that the image is not situated exactly in the middle,
but it is not rotated:

|x− x0|+ |y − y0| = r0 (4.2)

Now every point of the contour has the same Manhattan-distance from
the point (x0, y0). The parameters r0, x0, y0 have to be evolved.

• The following equation additionally allows rotation:

|(x− x0) · cos(α) + (y − y0) · sin(α)|+
|(x− x0) · sin(α)− (y − y0) · cos(α)| = r0

(4.3)

Of course, this algorithm will not be able to segment Vickers images per-
fectly, as Vickers’ shape often cannot be described by a perfect square.
Though this is not our objective, but the results could serve as good approx-
imations for another approach (snake, level set). Hence we do not target in
perfect accuracy, but in a pretty good segmentation of a very high rate of
images.
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4.1.1 Gradient descent based on edges

In order to allow translation, scaling and rotation, the following equation
defines the contour Γ:

Γ = {(x, y) : |(x− x0) · cos(α) + (y − y0) · sin(α)|+
|(x− x0) · sin(α)− (y − y0) · cos(α)| = r0}

(4.4)

x0, y0, r0, α are parameters of the evolving shape.
In the discrete case, the contour is defined in the following way: (e.g. with
ε = 1)

Γ = {(x, y) : ||(x− x0) · cos(α) + (y − y0) · sin(α)|+
|(x− x0) · sin(α)− (y − y0) · cos(α)| − r0| < ε}

(4.5)

E(x0, y0, r0, α) = − 1

|Γ|

∫
Γ
||∇I(c)||dc (4.6)

||∇I(c)|| is the norm of the image gradient. The energy is minimized by
gradient descent.

s = (x0, y0, r0, α) (4.7)

The initialization is given by the vector s0.

sn+1 = sn + λ(∇E) (4.8)

λ which usually is a multiplicative component, is called step size. To allow
lambda to act as a signum function (one pixel left, stay, one pixel right),
which can deal with numerical issues, it is more generally defined as function.
We use the following definition:

λ((x1, ..., xn)T ) = (sign(x1), ..., sign(xn))T (4.9)

The gradient ∇E is calculated numerically.

∇E = (
dE

dx
,
dE

dy
,
dE

dr
,
dE

dα
)T (4.10)

E.g. the partial derivation of the x dimension is calculated in the following
way:

dE

dx
((x, y, r, α)T ) = E((x+ 1, y, r, α)T )− E((x− 1, y, r, α)T ) (4.11)
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4.1.2 Gradient descent based on edges and balloon

Although this approach is better able to deal with local minima caused by
noise which introduce high gradients, gradient descent still suffers from small
or often no gradients far away from the object (that depends on the gra-
dients of the object and the gradient propagation algorithm). The balloon
approach, introduced in [4] for active contours, deals with this problem by
adding an energy term, forcing the contour to become smaller/larger.
Our simple model allows applying a kind of balloon force in an easy but
effective way: Instead of calculating r0 by gradient descent (a part of the
vector s), r0 is simply decreased by one in each step of descent. As the
contour starts near image boundaries, it necessarily has to cross objects
boundaries, when getting smaller and smaller.
Unlike unforced gradient descent, the proposed method does not stop before
r0 becomes small (zero). In a second step the history of the gradient descent
has to be analyzed to get the best fitting vector rn. Several strategies are
proposed later.

4.1.3 Gradient descent based on region property

On the one hand, gradient based active contours suffer from high computa-
tional costs (gradient must be propagated far, especially if no balloon force
is used). On the other hand, noise or little gradients affect the algorithm as
far as segmentation performance is concerned.
Although the balloon force slightly reduces this issues, the energy model
proposed by Chan-Vese for level set methods can also be allied with our
model:

ERegion(x0, y0, r0, α) =

∫
Γin

(I(r)− Īin)2dr +

∫
Γ

(I(r)− ¯Iout)
2dr (4.12)

Γin = {(x, y) : |(x− x0) · cos(α) + (y − y0) · sin(α)|+
|(x− x0) · sin(α)− (y − y0) · cos(α)| < r0}

(4.13)

Γout = {(x, y) : |(x− x0) · cos(α) + (y − y0) · sin(α)|+
|(x− x0) · sin(α)− (y − y0) · cos(α)| > r0}

(4.14)

I is the image gray value, Īin and ¯Iout are the average gray values of inside
and outside the contour. Surely our strict Shape-Prior approach does not
need any regularization term at all.

4.1.4 Gradient descent based region property and balloon

Although the problem of initialization can be improved in many cases, there
are some cases, where a general initialization does not lead to a convergence
to the global minimum. Especially images with small or bright foreground
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Figure 4.2: Region based approach

objects suffer. On reason is that the pixels, situated at image margins are
often darker than other background pixels (which are situated more in the
middle) and might be as dark or even darker than (parts of) the object to
segment.
To prevent the contour from descending into false local minima, again a
balloon force is implemented, similarly like above.

4.1.5 Gradient descent based directed gradients and balloon

This method has been derived from the general regional (Chan-Vese) model.
Based on the knowledge that objects are darker than backgrounds, a di-
rected edge operator is introduced into the Shape-Prior contour evolution.
“Directed” means that gradients have to be orthogonal to the contour in or-
der to generate a positive response only if the pixels inside are darker than
the pixels outside. This should introduce a higher level of noise resistance.
Moreover, as pixels are only regarded within a defined zone, ones very far
outside (which might be quite dark, although they do not belong to the
object) do not influence the segmentation process, at least when the radius
r of the vector s is not too big.
Figure 4.3 shows the shape of a template. The best results were achieved
with a template of thickness 3. That means pixels with a distance of maxi-
mal 3 pixels from the contour are regarded.

4.1.6 Gradient descent: statistical approach

The region based approach does not depend on edges, which implies that
it is less vulnerable to poor initialization and weak edges. Moreover object
and background color do not have to be known exactly. But the average
color of the object has to be different from the average background color,
which should be clear, when regarding the energy criterion. That is a huge
restriction when segmenting images (as mentioned in chapter 3). Although
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Figure 4.3: Directed edge template, thickness 1

Vickers images usually redeem that constraint, segmentation might profit
from a more general approach.
This formulation depends not just on different average gray values, but on
differences of the plausibility densities. Moreover not just the gray value,
but even other features of the image might be used for segmentation.

E(x0, y0, r0, alpha) = −
∫

Γin

log(pin(f(v)))dv−∫
Γout

log(pout(f(v)))dv

(4.15)

• 1-dimensional
The most straightforward approach uses only gray value as the single
feature (v is a pixel of the image):

f(v) = (I(v)) (4.16)

• 2 and more dimensional attempts:

f(v) = (I(v), ||∇I(v)||)) (4.17)

f(v) = (I(v),
dI

dx
(v),

dI

dy
(v)) (4.18)

f(v) = (I(v), ||dI
dx

(v)||, ||dI
dy

(v)||) (4.19)

The higher the dimensionality of the feature vector f , the higher the
computational costs, as for each step of the iterative gradient descent, the
probability densities pin and pout have to be calculated, which are n dimen-
sional. Moreover, a higher dimensionality causes the probability function
(which is a matrix of n dimensions) to become a sparse matrix, as the num-
ber of matrix elements is exponentially increasing whereas the number of
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features stays the same. When the elements of the matrix are rare, the
empirical distribution cannot be utilized straightforward.
Consequently, it is necessary to estimate the real probability density func-
tion. This is done by applying a Gaussian Parcen window in different sizes.

Empirical tests proved, that the following feature vector produces the
best results:

f(v) = (I(v), ||∇I(v)||)) (4.20)

A Gaussian Parcen window is applied to the second dimension (edge
information) with variance σ = 2. For the first dimension (gray value) the
empirical density function is being used.

4.1.7 Decision rules for the balloon approach

Strategies without balloon force do not lead to acceptable results. The
problem is, that simple gradient descent suffers from descending into local
minima. Hence we have proposed a kind of balloon force, which ensures
that the size of the contour is declining in each iteration. In contrast to
the traditional approach (without balloon force), now we do not stop if
the optimum is reached, but continue until a defined minimum size of the
contour is reached.

As this approach does not lead to one single minimum, but several local
ones, another exercise is to find out which of the local minima is the desired
one.

• Global minimum decision rule:
The simplest way is to use the parameters of the global minimum
(lowest of all local minima) as result parameters.

• Highest gradient decision rule:
On each local minimum, the gradients near the contour (edge inten-
sity) are calculated. The winner is the configuration with the highest
absolute gradients.

• Highest gradient decision rule followed by another attempt based on
region property:
As the balloon forces the contour to shrink in each iteration, when
the size of the object is reached, the rotational alignment might suffer.
This attempt allows the contour in a second step to rotate without the
balloon force, for more exact results. However, the results cannot be
improved.

• Single directed gradient operator:
This idea is based on the knowledge that inside of the object pixels are
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Figure 4.4: Edge based with balloon, highest gradient decision strategy

likely to be darkly colored, while background pixels should be brighter.
To decide for one minimum, the template introduced in section 4.1.5
is used.

4.1.8 Analysis on indentation images

Like mentioned above, a pixel accurate segmentation of Vickers images is
not possible using such a strict Shape-Prior method. But as we only want
to get a good approximation of objects (especially, an approximation of the
four corner points), the aim is that the number of corner points within a
given distance from the actual corner points is as high as possible. In oppo-
site, the number of corners detected farther away from their actual position
than a given threshold should be as low as possible.
This threshold has been chosen to be 5 pixels in the downscaled (factor 10)
image, i.e. 50 pixels in the original image. Nevertheless, most corner points
that are detected within this range are much more accurate (within 0 to 2
pixels (respectively 0 to 20 pixels)). As a metric, the Euclidean norm has
been used. Our database consists of 150 images, i.e. 600 edge points are
segmented.

In figure 4.4 - 4.13 different strategies are evaluated. For each deviation
in pixels (i.e. the distance between calculated and actual point), the number
of edge points with respective distance to the real points are shown. The
right most bar collects all the outliers (distance greater than 49 pixels). As
we focus on reducing outliers, in the bar charts especially the right most bar
is important for assessing the different segmentation strategies.

First we would like to point out that the balloon force improves per-
formance for all different models. The results of all methods without the
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Figure 4.5: Edge based with balloon, directed edge decision strategy
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Figure 4.6: Region based with balloon, with highest gradient decision rule
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Figure 4.7: Region based with balloon, with directed edge decision rule
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Figure 4.8: Directed edge with balloon, using global minimum
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Figure 4.9: Statistical method with balloon, 1 dimensional: f = (I(v)),
using directed edge decision strategy
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Figure 4.10: Statistical method with balloon, 2 dimensional: f = (I, ||∇I||),
no Parcen window, using directed edge decision strategy
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Figure 4.11: Statistical method with balloon, 2 dimensional: f = (I, ||∇I||),
Parcen window on gray value, using directed edge decision strategy
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Figure 4.12: Statistical method with balloon, 2 dimensional: f = (I, ||∇I||),
Parcen window on the second dimension and directed edge decision strategy
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Figure 4.13: Statistical method with balloon, 3 dimensional: f =
(I(v), dIdx ,

dI
dy ), using directed edge decision strategy
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balloon force are inferior and are not shown. As you can see, the simple
edge based (figures 4.4, 4.5) as well as the region based approaches (figures
4.6, 4.7) are not able to provide appealing results. Especially the edge based
calculation suffers from very bad segmentation for at least about 25 % of
all corners. But also the region based approach fails in about 15 % of all
attempts.
Much more successful results are produced by the directed edge method
(figure 4.8). Only 5 % of all calculations failed (distance from actual point
more than 5 pixels).
Additionally we investigated the effects of different decision rules (section
4.1.7). Figures 4.4 and 4.6 show results with “highest gradient” decision
strategy. Meanwhile figure 4.5 and 4.7 show results with “directed edge”
strategy which are better, especially as far as outliers are concerned. The
“directed edge” decision rule turned out to be most competitive for all dif-
ferent algorithms.

The statistical approach works with lots of adjustment parameters. First
we have to decide for a feature vector, after that a Parcen window function
has to be chosen for each dimension of the feature vector. While errors using
the straightforward one dimensional approach (figure 4.9) are moderate, but
not perfect, the two dimensional one (figures 4.10, 4.11, 4.12) delivers a quite
good error rate. Especially the version using a Parcen window (σ2 = 2) in
figure 4.12 delivers the best results of all with an error rate of about 2.5 %.
Hence this method is used in the multi-resolution framework (chapter 6), as
a first step to get good approximative results.
Tests with the statistical approach using feature vectors with more than 2
dimensions (e.g. figure 4.13) did not lead to better results, but caused ex-
traordinarily more computational complexity.

As a next step we compared the best configuration of our gradient de-
scent algorithm with the template matching algorithm introduced in [17].
The template matching method relies on square templates of different sizes
and rotations. As with our algorithm, the template matching is not used
for a precise segmentation, but for an approximate location of the indenta-
tions. Figure 4.14 shows, that the performances (cumulative curves) of the
methods are quite similar. However, our proposed gradient descent method
is slightly more reliable.

4.2 Shape Prior level set with gradient descent

Although the proposed strict Shape-Prior (section 4.1), in combination with
the balloon force introduces a high level of noise resistance, our scenario
requires more precise results. Precise results cannot be achieved, as real
objects slightly neglect the Shape-Prior restriction (i.e. the shape of the
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Figure 4.14: Comparison of the proposed strict shape prior gradient descent
method with template matching

object can not exactly be described by a square).
Consequently it is a good idea to use a strict Shape-Prior approach as a
first stage on a downscaled image to get an approximation of the result
points, and to use a non Shape-Prior algorithm, which is much more liable
to initialization, as a second step to get detailed results. This approach is
investigated in chapter 6.
Even though that might be a good idea, using the non Shape-Prior level set
algorithm has some problems:

• A small smoothing (curvature) term leads to exact segmentation, but
makes the algorithm vulnerable to noise. Although accurate initial-
ization can reduce effects, noisy images are still problematic.

• A large smoothing term decreases the vulnerability to noise, but leads
to a loss of accuracy, because edges as well as small details distinguish.

In order to get both, accuracy and robustness, a Shape-Prior level set
method which is scale, shift and rotation invariant is used, that has been
introduced in [3].

4.2.1 Functionality

In addition to the evolution of the level set function φ another level set func-
tion ψ is introduced, which represents the prior shape. For most applications
the prior shape cannot be represented as a simple fixed level set, as shifting
in x and y direction, scaling as well as rotation should be allowed. To archive
such an invariance at each evaluation step the current prior function must
be evaluated. One way to evaluate this function is gradient descent (in [3]),
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as brute force search is not acceptable as far as computational complexity
is concerned.
After evolving the Shape-Prior parameters, the traditional energy function
(e.g. Chan-Vese functional in [3]) is supplemented with the shape energy
Eshape.

E = Etraditional + λ · Eshape (4.21)

Eshape is defined by following equation:

Eshape(φ, ψ) =

∫
Ω

(H(φ)−H(ψ))2dx (4.22)

H(φ) =

{
1, if φ ≥ 0
0, else

(4.23)

The shape energy term is low if the two level set functions φ (evolving
curve) and ψ (Shape-Prior) are congruent and high otherwise. As the Shape-
Prior should be invariant to shifting (x̄, ȳ), rotation (ᾱ) and scaling (r̄), ψ∗

is a variable:

ψ = ψ∗(x̄, ȳ, r̄, ᾱ) (4.24)

Consequently, the following term is minimized by the gradient descent
algorithm:

Eshape(φ, ψ) =

∫
Ω

(H(φ)−H(ψ∗(x̄, ȳ, r̄, ᾱ)))2dx (4.25)

Minimizing the respective term means finding the best fitting parame-
ters for the prior shape in order to achieve the lowest shape energy.

As gradient descent is vulnerable on the one hand and computationally
expensive on the other hand, we did not apply this approach but concen-
trated on the approach introduced in the following chapter, which is an
improvement of this approach.

4.3 Shape-Prior level set: direct computation

Gradient descent of a prior level set function suffers from computational
complexity (surely a brute force search is much more complex), but also
the convergence to the global optimum cannot be guaranteed, as the search
space might be deceptive. Consequently, an a priori calculation of the prior
function would be advantageous.
In [27] a method was suggested to evaluate parameters of circles, which are
known to be rotation invariant. This makes the evaluation easier, as only
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scale and shift has to be known. The calculation of squares that are not
rotated is presented in the following equations:

x̄ = π̃x(x, y) (4.26)

ȳ = π̃y(x, y) (4.27)

The median (˜) of the projection πx (πx(x, y) = x) is assumed to be the
center of the x axis. The median of πy is assumed to be the center of the y
axis.

r̄ =

√∫
Ω
H(φ)/

√
2 (4.28)

The half length of a diagonal is labeled as r̄ (“radius”), which is calcu-
lated in a way that the area of the prior shape is equal with the contour’s
area.

In order to allow rotation of the prior shape, gradient descent has to
be applied, as rotation (ᾱ) cannot be calculated in an easy way like the
other parameters. The following term must be minimized, with respect to
ᾱ (other parameters are known):

Eshape(φ, ψ) =

∫
Ω

(H(φ)−H(ψ∗(x̄, ȳ, r̄, ᾱ)))2dx (4.29)

As gradient descent of ᾱ is quite expensive as far as computational costs
are concerned, it is recommended to ponder if rotation is really necessary. If
rotation of the prior shape is not calculated, slight rotations of the contour
do not cause any troubles. Only if the rotation is quite distinct, segmenta-
tion might suffer (depending on the weight of the Shape-Prior λ).

One step of gradient descent of ᾱ is given by the following instruction:

ᾱ = ᾱ′ + ι(
dEshape
dᾱ

) (4.30)

In our implementation we especially used the following function for ι.
This ensures, that the computational costs do not expand extremely, which
might happen if the step size would be very small.

ι(x) =


0.1, if x > 0
−0.1, if x < 0

0, if x = 0
(4.31)
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4.3.1 Weight of the Shape-Prior

When applying prior knowledge of the evolved shape, an important issue
is the determination of the weight parameter λ. While a small λ leads to
small influence of the prior shape, large λ effects higher influence, i.e. the
evaluated shape tends to be more similar to the prior. Figure 4.16 shows the
evolution of a circular shape (figure 4.15 left) using a square Shape-Prior
(figure 4.15 right). Increasing the prior weight λ influences the output of

Figure 4.15: Shape to segment and prior shape

the level set method (figure 4.16). While when using very little weight, the
Shape-Prior does not really influence the evolution and the result equals the
real shape, heavier weight restricts segmentation more.

Figure 4.16: Different Shape-Prior weights

Although this example has no practical relevance, it serves as a good ex-
ample. For real Vickers images, the prior shape and the actual shape do not
differ that much. The prior is like a kind of smoothing term, that sustains
the object corners (in opposite to the curvature term).

There are different ways to choose the weight λ:
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• Strategy 1: One way to introduce a Shape-Prior into a batch segmen-
tation algorithm (i.e. no human interaction) is to choose λ fixed for
all images.

λ = λ0 (4.32)

• Strategy 2: As the traditional force (e.g. Caselles, Chan-Vese) depends
on differences of gray values, λ should be adjusted so that images with
smaller gradient values are equally influenced by the Shape-Prior as
images with higher gradients. Otherwise low contrast images would
be stronger influenced by the prior shape than high contrast images.

λ = λ0 · diffimage (4.33)

• Strategy 3: Moreover image quality can be considered when λ is cal-
culated, because low quality images are likely to be segmented totally
wrong, whereas high quality images usually are not. The introduction
of a (highly weighted) Shape-Prior leads to less tweaked results, but
the results are more robust (fewer outliers).

Using the Chan-Vese approach, the following calculation for λ is used:

varintra =
1

|Γin|

∫
Γin

|I(v)− Īin|dv +
1

|Γout|

∫
Γout

|I(v)− ¯Iout|dv (4.34)

varinter = |Īin − ¯Iout| (4.35)

λ = λ0 · varintra · varinter (4.36)

Using the Ofeli C++ level set image segmentation library, λ0 = 1
2000

turned out to be a good configuration.

4.3.2 Exposure problem

Calculating the best fitting prior shape for a given level set has one more
advantage, as Vickers images have got one challenge: Image borders often
are quite dark (due to exposure). As the standard Chan-Vese model utilizes
each pixel outside of the object to calculate the average gray value, we
improved this inconvenience, by altering the calculation slightly. Originally,
the region outside of the object is given by the following equation:

Γout = {(x, y) : r > r0} (4.37)

r = |(x− x0) · cos(α) + (y − y0) · sin(α)|+
|(x− x0) · sin(α)− (y − y0) · cos(α)|

(4.38)

The new version only regards pixels nearby the object to be “outside” pixels:

Γ∗out = {(x, y)|r > r0 ∧ (x− x̄)2 + (y − ȳ)2 < 2 · r̄2} (4.39)
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As mentioned before, the prior shape has to be calculated to get x̄, ȳ
and r̄. We renounced to calculate the exact rotation of the object (which
would be computationally expensive), because the shape of the new “outside
region” is circular, and is consequently not influenced by rotation.

4.3.3 Analysis on indentation images

Without solving the exposure problem (section 4.3.2), introduction of prior
knowledge definitely improves the segmentation results. Especially the num-
ber of outliers can be minimized. The weight calculation strategy 3 turned
out to be the best option.
As the exposure problem has been solved, segmentation generally increased
and applying Shape-Prior weight no longer improves overall results. How-
ever, for specific noisy images, applying the prior knowledge is still benefi-
cial. But as overall result could not be improved, our analysis did not rely
on Shape-Prior. Nevertheless, solving the exposure problem requires the
calculation of the best fitting prior shape.



Chapter 5

Pre- and postprocessing of
images

5.1 Preprocessing: Blurring as noise reduction

The algorithm with strict Shape-Prior is highly resistant to noise, because
no single pixel is considered for one evaluation step, but always a set of
pixels. Such a policy does not require blurring at all, as noise resistance is
intrinsic as large areas are regarded instead of single pixels.
In contrast, level set algorithms do not regard a set of pixels for one step, but
only border pixels. To prevent this methods from over-segmentation, level
set methods contain a smoothing term (curvature term), which planes the
contour. As a high curvature term leads to a bad segmentation of corners,
a Shape-Prior force has been introduced, which also smoothes the contour
but also helps sustaining the intended shape’s characteristics.

Another approach to get a higher level of continuity and to reduce noise
in order to prevent the method from over-segmentation is to blur the image.
While the Shape-Prior introduces high level knowledge (of the shape), blur-
ring only reduces high frequency information (noise). As object frontiers
also represent high frequency information they are affected by blurring. But
on the one hand blurring is not done excessively, and on the other hand the
region based model (Chan-Vese), does not depend on gradients of the image.

In chapter 6, we propose a multi-resolution algorithm which approxi-
mately segments downscaled images (factor 10) as a first step (with gradient
descent method) and exactly segments original images with precomputed re-
sults (and a level set algorithm) as a second step.

Images for the first step of the segmentation are not blurred at all. First
of all, these images are downscaled (by averaging with a Lanczos filter),

53
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which reduces high frequency information (noise) as well. Moreover, as al-
gorithms work on large areas, averaging suppresses the residual noise.

As the second step operates on high resolution images (1280x1024) and
the corresponding algorithms (level set, snake) work on single pixels, blur-
ring should be considered. Experience proves that blurring acts similar to
raising the curvature term of level set algorithm.

Tests where done using different blurring operators. Blurring operators
of sizes from 3 to 20 pixels have been convolved with original images using
the Image-Magick blur function. Performance tests show that blurring does
not lead to better results. However, the results are quite similar. As blurring
implies computational costs, we do not preprocess our images in that way.

5.2 Postprocessing and adjustment of algorithms

After applying any kind of level set or snake algorithm a decision must
be made in order to identify the corners of the objects. Unfortunately,
depending on the configuration, objects are not always real squares, but
often incomplete or ragged.

In the following sections different solutions are discussed:

5.2.1 Extreme points

One straightforward approach is just to search for the highest, the lowest,
the right most and the left most point. As the diagonals of the objects are
aligned horizontally and vertically, if segmentation succeeded the calculated
points are the corners of the indentation (figure 5.1, left).

Figure 5.1: Extreme points: success (left) and failure (right)

That quite simple approach supplies acceptable results, if the image is
segmented well. That means that the border must not be ragged, which
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cannot always be assured. Two problematic cases has been observed (figures
5.1 (right), 5.2):

• Artefacts affect the calculation of the corner points. Such artefacts can
be reduced by applying either a higher curvature term, or a Shape-
Prior weight. However, doing this is known to affect the accuracy.
Increasing the curvature weight especially raises the problems outlined
next.

• Cutting of corners affects results. Often corners are not segmented
exactly, but approximated by a curve instead of a sharp corner.

Figure 5.2: Artefacts and cut corners

5.2.2 Adjust level set algorithm - smoothing term

An adjustment can be done by configuring the algorithm: To prevent the
level set from evolving into a ragged surface, the curvature term can be
increased. But a consequence of a high curvature term (i.e. that curvature
becomes heavier weighted than the image energy) is that corners are more
likely to be cut.

5.2.3 Adding Shape-Prior weight

An improvement can be attained by the use of a Shape-Prior energy. This
not only smooths, but also helps maintaining corners, in opposite to increas-
ing the smoothing term.

5.2.4 Morphologic operations

Mathematical morphology provides erosion (	) and dilation (⊕) as basic
operations on binary images.
These simple operations are not sufficient for many applications, as erosion
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just removes pixels from the image which leads to a decrease of object size,
whereas dilation suffers from the opposite effect. Consequently erosion and
dilation is usually used in combination:

• opening:
I ◦ Y = (I 	 Y )⊕ Y
Opening removes small artefacts and objects.

• closing:
I • Y = (I ⊕ Y )	 Y
In opposite to opening, closing adds area to the foreground object,
especially holes are filled.

I denotes the image and Y denotes the morphologic operator.
To achieve higher impact, the morphologic operations can be iterated in the
following way:

I 	n Y = (...(I 	 Y )...	 Y )	 Y (5.1)

I ⊕n Y = (...(I ⊕ Y )...⊕ Y )⊕ Y (5.2)

I ◦n Y = (I 	n Y )⊕n Y = (...(I 	 Y )...	 Y )⊕ Y )...⊕ Y ) (5.3)

I •n Y = (I ⊕n Y )	n Y = (...(I ⊕ Y )...⊕ Y )	 Y )...	 Y ) (5.4)

It is necessary to consider the morphologic operator used. The shape
of Vickers objects suggests the use of a diamond operator in order to sus-
tain edges, since (standard) circle operators would affect corners (figure 5.3).
With a large number of iterations, the effect is reinforced.

Figure 5.3: Different morphological operators (left diamond, right circle)

The following issues should be solved by morphologic operations:

• Filling cut edges (sometimes even holes):
The closing procedure is known to fill holes. Unfortunately, in our case
closing would not only have to fill a hole, but also have to reconstruct
the corners of the object. As shown in figure 5.4, closing is able to
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Figure 5.4: Closing with diamond operator (left original, right closed)

fill holes, but it definitely is not able to reconstruct objects corner.
Although when a diamond operator is used, closing does not solve this
problem.

• Another issue is removing artefacts produced by the level set algo-
rithms:
The opening procedure is known to remove such noise. Figure 5.5
shows, that opening actually succeeds to remove the artefacts. However,

Figure 5.5: Opening with diamond operator (left original, right opened)

we have to be aware that opening not only removes noise. Also useful
information might be affected, especially corner pixels, which are most
important (as the locations of this points should be calculated).
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Unfortunately closing does not succeed to reconstruct missing corners.
On the other hand, opening is able to remove noisy artefacts. But as per-
fect segmentation would require both exercises, morphologic methods alone
cannot deliver the desired results.

One idea is to first close the segmented image, and afterwards apply
a Hough transform locally (sections 5.2.5, 5.2.6). Although this seems to
be a good idea, results could not be improved significantly (compared to
applying only the Hough transform). Performance stayed about the same.
As morphologic operations are computationally expensive, we do not use
them for Vickers segmentation.

5.2.5 Hough transform global

While some Vickers segmentation algorithms rely on Hough transform [10]
alone, we investigated the method as a post processing method. Instead
of improving and adjusting the shape of the object, the Hough transform
calculates probable lines that cross many edge pixels. The corner points
should be situated, where these lines meet each other.
One simple approach is to calculate the Hough transform of the whole image.
As a result, most probable lines are delivered. In order to get the desired
lines, we extract first two parallel lines and then two lines that are normally
directed to the first lines. Moreover it is important to prevent getting lines
which are very close.

The lines are represented by an angle θ and a distance r from the origin
(figure 5.6).

Figure 5.6: Representation of straight lines

The 4 result lines are chosen by the following strategy:
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• Line 1: The line with the most edge points on it.

• Line 2: The line with the most edge points on it and with a difference
of rotation smaller than 0.2 (|θ1 − θ2| < 0.2) and a normal distance of
greater than 10 pixels compared to line 1.

• Line 3: The line with the most edge points on it and with a difference
of rotation to a normal line to line 1 of smaller than 0.2.

• Line 4: The line with the most edge points on it and with a difference
of rotation smaller than 0.2 and a normal distance greater than 10
pixels compared to line 3.

5.2.6 Hough transform local

Unfortunately, Vickers objects cannot be represented exactly by a square
consisting of four straight lines, as most edges are slightly arced or noisy.
To prevent this issue, our proposed local Hough approach just approximates
lines in a defined distance from the precalculated corner points.
This allows a better approximation especially if the image borders were
evolved quite exactly by a level set method.
In the first step, the Hough transform is computed separately for each corner
in a range (radius) of e.g. 60 pixels. In the second step, the right two lines
of the Hough transform have to be selected. The real corner is assumed to
be on the intersection of the selected two Hough lines (figure 5.7). The line
representation shown in figure 5.6 is utilized.

Figure 5.7: Local Hough transform applied to leftmost corner

Two different strategies of selecting the two lines where evaluated:

• The first line is the one with the best Hough rating and the second line
is the one with best Hough rating that meets the following constraint:

||θ1 − θ2| − π/2| < 0.3 (5.5)
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θ1 belongs to line 1 and θ2 belongs to line 2. Although this method is
quite simple, it works best and was chosen for our segmentation.

• Another idea is to maximise the following energy terms:

E1 = α · houghi
houghmax

− β · ||θi| − 45o| (5.6)

E2 = α · houghi
houghmax

− β · ||θi − θ1| − 90o| (5.7)

While the first term is influenced by the (relative) Hough rating houghi
(the greater the better), the second term depends on the angles of the
lines (difference to perfectly aligned square). Whereas the angle of
the first line selected should be similar to 45o(= π/4), the angle of
the second line should be about 90o distant from the first line’s angle.
Although this approach is quite flexible and was tested with different
weighting parameters α and β advantages to the simple first approach
could not be achieved. Consequently the first selection strategy is used
in the following.

Figure 5.8 shows the impact on the global Hough transform if the object
sides are not perfectly straight (green). The red lines are achieved with the
local Hough transform (radius = 60 pixels).

Figure 5.8: Local (red) vs. global (green) hough transform

5.2.7 Approximation of curves

Another way to reconstruct corners is to approximate curves instead of lines.
Especially if one line is calculated per side (global Hough transform), ap-
proximation of curves could improve the performance. But as we use a local
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Hough approach, which provides accurate results (in the case of acceptable
approximation), we did not consider the use of curves.

5.2.8 Analysis on indentation images - best strategy

The local Hough transform as mentioned, in most cases is able to locate
the corner points accurately. When the image is segmented appealingly, the
computed output is highly acceptable. Points are located far away from
actual points’ position only if the active contours segmentation produces an
unacceptable output. In this case mostly even humans would fail to locate
the points accurately. Consequently, as postprocessing only regards the seg-
mented image, a failure of the segmentation algorithm cannot be corrected.
So we are satisfied with the local Hough strategy.

If especially very bad results should be improved, a quality measure of
segmentation’s output could be used to identify those images which failed
the correct segmentation. In a second step, such difficult images could be
segmented again, by adjusting parameters to emphasize on robustness more
than on high accuracy. This might be done by increasing the Shape-Prior
weight, the smoothing factor, the Hough radius or by blurring the image
before segmentation. The main issue is to judge the segmentation’s result,
as the real results for comparison are naturally not available.

One idea is to calculate the best fitting prior shape for a given output
level set and to calculate differences from that shape. If a (high) Shape-Prior
weight is included, this surely does not provide any accuracy, as the level set
is forced (depending on the weight) to change its shape to the prior shape.
Doing this calculations only the result level set is regarded. Another way is
to include the input image, and to get a quality index by the response to a
template, which fits the output level set. This step has not been investigated
so far.

Another way to improve the performance especially for difficult images is
to calculate “difficulty” even before segmentation. In chapter 4, an attempt
was done to realize a flexible algorithm. The weight of the Shape-Prior
energy depends on the gray value variation inside, the gray value variation
outside and the difference of the average gray values. Segmentation results
of some images could be improved. However, the overall performance de-
creased.
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Chapter 6

Iterative multi-resolution
approach

On the one hand, the strict Shape-Prior image segmentation (on down-
scaled images) leads to a good approximation of image contours with little
influence of the starting configuration (with balloon force we always start
with the biggest radius). On the other hand different level set approaches
provide very exact segmentation, but hugely depend on the starting config-
uration. Consequently a combination of those two different, complementary
approaches is investigated.

We propose the following policy:

• Stage 1: Apply a strict Shape-Prior approach on the downscaled im-
ages, (factor 10) to reduce complexity, but maintain the basic image
features.

• Upscale the calculated results and generate an initial level set for the
second stage (level set method), by using the results from stage 1.

• Stage 2: A level set approach without (or with soft) Shape-Prior weight
now starts computation with the upscaled results on the original im-
age.

6.1 Stage 1

As stage 1 segmentation algorithm, the statistical gradient descent method
has been chosen, which provides the best results (section 4.1). Best results
means that the most of the detected corners where situated within a thresh-
old distance of 5 pixels in the downscaled image. That makes a distance of
up to 50 pixels in the original image. The chosen method is able to detect
97.5 % of all corners within that distance in the database declared in section
1.2. For exact results look at section 4.1.
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6.2 Stage 2

For stage 2 different types of level set and snake algorithms with different
setups were used:

• traditional snake

• level set Caselles

• level set Chan-Vese

– different smoothing terms

– with/without morphologic operations (open, close, open/close,
close/open, different operators)

– with/without Hough transform (global, local)

– different Shape-Prior weights

6.3 Analysis on indentation images

The multi-resolution approach has been evaluated using different stage 2 al-
gorithms (see below). The following figures show results of different strate-
gies. For each deviation in pixels (i.e. the distance between calculated and
actual point), the number of edge points with (exact) the respective dis-
tance to the real points are shown (red bars). The right most bar collects
all outliers (distance greater than 19 pixels). The blue curve represents the
relative cumulation, i.e. for each deviation the ratio of points with equal or
less deviation.

6.3.1 Traditional active contours (snake)

Using the straightforward OpenCV snake implementation as stage 2 algo-
rithm, the results shown in figure 6.1 can be achieved.

The best configuration of the snake approach produces the following
results (using local Hough transform (radius = 60 pixels)). Especially the
probability of very exact results (deviation 0 − 1 pixels) can be increased
with the Hough transform, because the traditional snake has the tendency
to cut the corners of objects during segmentation. Applying the Hough
transform, the cut corners can be reconstructed well. The results are shown
in figure 6.2.

The snake algorithm is not always able to detect corners perfectly, but
Hough transform is able to compensate this inadequacy (as shown in figure
6.3). The white dot marks the new adjusted corner point after the Hough
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Figure 6.1: Snake results
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Figure 6.2: Snake results with Hough transform

Figure 6.3: Improvements of Hough transform
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transform.

Figure 6.4 shows three steps of the evaluation. In the first step (left),
stage 1 of the multi-resolution algorithm has been applied, i.e. a good
approximation is calculated to serve as starting configuration for the snake.
In the middle you can see the output of the snake algorithm. Finally, the
Hough transform is applied (right).

Figure 6.4: Three steps of computation

6.3.2 Level set approach

The best results are achieved using the region based Chan-Vese algorithm.
The results of the Chan-Vese level set method, without a smoothing

Shape-Prior and any image pre- or postprocessing are shown in figure 6.5.
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Figure 6.5: Level set approach, λ = 8

Introducing the Hough transform (local, radius = 60 pixels) robustness
is inclining. This is because as with the snake, also the level set algorithm
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(especially without Shape-Prior) has the tendency to cut corners. Figure
6.6 shows the results with smoothing term λ = 8.
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Figure 6.6: λ = 8, hough transform (60 pixels)

Further improvements can be achieved (figure 6.7) by restricting the
Chan-Vese model from regarding the whole image at each iteration step.
When only regarding a circle around the object to segment, the dark back-
ground at the image boundary does not affect the segmentation. Shape-Prior
is not applied.

We propose using this configuration to get the best results, with limited
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Figure 6.7: Smoothing term λ = 8, hough transform (60 pixels)

computational costs.

Applying a small Shape-Prior weight does not influence the results strongly.
Without the improvement that the pixels outside are not regarded by the
region based algorithm (which is based on the calculation of the best fitting
prior shape), Shape-Prior definitely was advantageous, but now results are
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nearly the same. Surely, if the Shape-Prior gets too strong, results suffer.
However, the best fitting prior shape has to be computed, in order to ignore
pixels far away from the object.

Figure 6.8 shows differences between applying no Shape-Prior (left side)
and a strong Shape-Prior (right side). With a Shape-Prior, edges are more
likely to sustain in the segmentation process. But we have to be aware of
the risk of under-segmentation. A very strong Shape-Prior might imply that
only perfect squares are evolved and peculiarities of objects get lost.

Figure 6.8: Effect of the Shape-Prior

Figure 6.9 shows the steps of the multi-resolution algorithm. First the
original image is downscaled by factor 10 and the approximations of the
points are calculated (left part). After that the level set algorithm is applied,
which generates a binary image (middle part). The postprocessing step
(local Hough transform), generates exact output points.

6.3.3 Reference results

Now we compare the performance of our proposed multi-resolution algorithm
with an existent approach. The results, presented in figure 6.10 can be
achieved by the multi-resolution template matching algorithm (introduced
in [7]), which is known to be very robust.

In figure 6.11 you can see that the proposed multi-resolution level set
algorithm combined with the local Hough transform definitely is competi-
tive as far as segmentation performance is concerned. The chart compares
the cumulative distribution of the proposed level set method (red) and the
reference template matching method (blue):
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Figure 6.9: 3 stages of multi-resolution algorithm
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Figure 6.10: Reference results
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Especially the probability of a very exact segmentation of the corner points
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Figure 6.11: Comparison of new approach vs. multi-resolution template
matching

(Euclidean distances of 0 to 5 pixels) is considerably higher with our new
proposed method. The number of outliers is the same.

Moreover, we compare the results with an even more precise 3-stage
segmentation method proposed in [8]. The results of this method are shown
in figure 6.12.
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Figure 6.12: 3-stage segmentation approach

The cumulative curves of our proposed multi-resolution approach and the
3-stage approach are compared in figure 6.13. As the curves are crossing,
a winner cannot be determined. The new multi-resolution level set based
approach is slightly more exact (deviations < 2 pixels) and the number
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of outliers is slightly lower. However, the number of corner points detected
within a deviation of 3−5 pixels is slightly higher with the 3-stage approach.
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Figure 6.13: Comparison of new approach vs. 3-stage segmentation ap-
proach

6.3.4 Outliers

Now we know that the outliers ratio of our proposed multi resolution ap-
proach is the same as the outliers ratio in the referenced template matching
approach [7] (outliers ratio in [8] is slightly higher). However, we still have
not investigated, what types of images are likely to fail the segmentation
processes. First of all, figure 6.14 shows images which cannot be segmented
precisely by any of the two approaches. The left two images suffer from
heavy noise. The third one is difficult to segment, because of the thick
stripe in the left part of the image. The right most image borders cannot be
determined, because the noise in the lower half is darker than the imprint.

Next we would like to know, if there are any images which can be seg-
mented by one of the algorithms, but not by the other one. Actually there
are such images. The segmentation of the images in figure 6.15 fails, if the
template matching approach is applied, but not if the multi-resolution active
contours algorithm is applied. In all of these images, the template matching
method determines the corners to be placed farther outside than the actual
corners are. The problem is, that only the response of the template is con-
sidered. In opposite, our proposed statistical first stage algorithm focuses
on homogeneity (i.e. low entropy).

The images in figure 6.16 cannot be segmented by the proposed multi
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Figure 6.14: difficult images: both approaches fail

Figure 6.15: The template matching approach fails to segment the top im-
ages appropriately. The bottom level sets are successful outputs of our new
proposed level set algorithm. The remaining artefacts are compensated by
the Hough transform.
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resolution algorithm. The left two images are highly noisy, whereas the right
two image look quite nice. Actually, these two images are difficult to segment
because the artefacts are similarly colored as the object. Consequently, the
level set algorithm cannot distinguish the object from the artefacts. The per-
formance could be improved by adding the introduced Shape-Prior weight.
However, the superior segmentation performance of the level set algorithm
for high quality images would suffer.

Figure 6.16: The multi-resolution active contours approach fails to segment
the top images. The bottom (unsuccessful) level sets are computed.
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Chapter 7

Shape from focus

Straightforward image processing usually only relies on one image, which
has to be segmented. All the information must be gathered from this sin-
gle two dimensional signal. However, the real world cannot be described
by two dimensions, as space has got three dimensions. To overcome this
inadequacy, a more general approach [19] relies not only on one (focused)
image, but on a set of images, with different focus setups. This introduces
a kind of depth information, although the signal is sampled with a simple
2D-camera.

Focus can only be achieved for a specific defined region. That means,
it is not possible to focus an object in the foreground as well as an object
in the background simultaneously. Consequently, if pictures with different
focus setups of a three dimensional object are taken, information of the third
dimension can be obtained. To estimate the depth of an image point, the
picture with the highest focus measure (i.e. the point is in focus) at this
point has to be evaluated.

In the referenced approach [19], the shape of visibly rough surfaces is de-
termined. As focus can only be measured if differences of pixel values occur,
smooth surfaces cannot be segmented in this way. However, the authors
propose a special illumination strategy in order to create high frequency
signals. As our hardware should stay unchanged this detail has not been
investigated.

In the case of Vickers indentations, images are containing imprints, which
definitely are three dimensional (the middle of the object is most far away
whereas the background is nearer to the camera). The constraint of a visibly
rough surface (i.e. high frequency, noisy images, low contrast) often applies,
especially in case of low quality images which are likely to be mis-segmented
by the (proposed) traditional segmentation method. Segmentation perfor-
mance for the high quality images (i.e. low noise, high contrast) could not

75
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be improved, as high frequency information is missing. But as such images
usually can be segmented accurately by our so far proposed multi-resolution
algorithm, we decided to focus on low quality images (e.g. the image in
figure 7.1), with high frequencies on the one hand (necessary for this ap-
proach) and low contrast (hard to segment for traditional methods that rely
on different gray values) on the other hand.

Figure 7.1: Example image with noise and low contrast - it is even hard to
manually determine the object’s boundaries.

To include information from focus, 40 pictures with different focus set-
tings have been taken. Figure 7.2 shows the effect of different focus settings.
While in the left image the deepest part of the imprint, in the right image
the background (shallow part) is focused. Obviously, having pictures with
different focus settings, the depth relative to other pixels (which is sufficient)
can be estimated.

Figure 7.2: From left to right focus starts on the region far away (imprint)
and is pulled nearer

In figure 7.3 (middle and right image) regions are focused, which are fa-
ther away than any part of the image. As these images do not present regions
which are in focus, the images do not provide any depth information. Con-
sequently, they are not necessary for determination of the depth. Moreover
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to reduce computational costs, only 8 images are used for processing.

Figure 7.3: From left to right focus starts at the background and is pulled
nearer

7.1 Introduction of shape from focus

A method to determine the “shape from focus” has been introduced in [19].
First of all a focus measure is introduced to determine a degree of focus for
each pixel. In the sections 7.1.1 - 7.1.3 different alternatives are discussed.

7.1.1 Sum-modified-Laplacian (SML) operator

The authors propose a modified Laplacian which is calculated for each pixel
of each gathered image. It is based on the second order derivation.

ML(x, y) = |2 · I(x, y)− I(x− s, y)− I(x+ s, y)|+
|2 · I(x, y)− I(x, y − s)− I(x, y + s)|

(7.1)

The step size s defines the regarded distance between the pixels (e.g. s = 1).
The following focus measure has been proposed:

FSML(i, j) =
i+N∑

x=i−N

j+N∑
y=j−N

ML(x, y) if ML(x, y) ≥ T (7.2)

The threshold T should be set to a value greater than zero, in order to
suppress very weak responses. N defines the size of the regarded region
surrounding a pixel.

7.1.2 Tenengrad operator

Alternatively the Tenengrad focus measure could be used instead of the pro-
posed sum-modified-Laplacian, which is based on the first order derivation.

Sx =

 −1 0 1
−2 0 2
−1 0 1

 (7.3)
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Sy =

 −1 −2 −1
0 0 0
1 2 1

 (7.4)

FT (i, j) =

i+N∑
x=i−N

j+N∑
y=j−N

T (x, y) if T (x, y) ≥ T (7.5)

where T (i, j) = S∗2x (i, j) + S∗2y (i, j) and S∗x and S∗y are convolutions of the
Sobel operators Sx and Sy with the image.

7.1.3 Range metric

Moreover, we investigated the range metric, which is based on the histogram.
As we need a metric for each point separately and not for the whole image,
the region r surrounding the point is regarded:

r(i, j) = {(x, y)|(|x− i|+ |y − j|) ≤ N} (7.6)

The range metric is calculated in the following way:

Frange(i, j) = max(r(i, j))−min(r(i, j)) (7.7)

N defines the size of the regarded region.

We have compared these three focus measures in section 7.3.1.

7.1.4 Shape computation

First of all, to compute the shape of an object, a series of images Ik of this
object with different focus levels k ∈ L must be gathered (L is the set of
focus levels). After that, for each point v = (x, y) in each image Ik of a
series, a focus measure F (v) must be computed. Next, for each point v the
focus level k ∈ L with the highest focus measure Fk(v) is calculated. Each
focus level k represents a defined depth level d:

d(v) = k ∈ L : ∀l ∈ L : Fk(v) ≥ Fl(v) (7.8)

Although the depth is not measured absolutely, relative differences are suf-
ficient to determine peaks and valleys of the surface.

Whereas this method produces regions of the same discrete level, the au-
thors additionally introduced an approach that generates a smooth shape.
As our application does not allow a perfect reconstruction of the shape (im-
ages contain regions without high frequency) and a smoother approximation
is computationally more expensive, we content ourself with the simple dis-
crete version.
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7.1.5 Setup

Figure 7.4 shows the generated depth information gathered from the images
in figure 7.2 with the SML focus metric. While brightly colored regions have
been determined to be near to the camera, darkly colored ones are expected
to be far away. In the case of a weak response (no high frequencies available),
the determination is uncertain. This is the reason why even regions in the
foreground are darkly colored. The higher the degree of high frequency
information is, the higher is the certainty.

Figure 7.4: Depth measure applied to image (T = 0)

The threshold T was set to zero gathering the referenced image. Pursuing
this strategy leads to one big trouble: Each pixel is assigned to a depth plane,
independently from the focus measure’s best response. The level with just
a slightly higher response is the resulting depth level. To overcome this
inadequacy, the threshold T has to be set greater than zero. Consequently,
regions which cannot be assigned reliably are labeled to be uncertain. In
Figure 7.5 unreliable pixels are marked in red.

7.2 Only use depth information for segmentation

As the shape from focus approach does not perfectly segment the images, we
utilized the generated depth information in our active contours algorithms.
One straightforward approach just takes the gathered depth image in order
to segment the object from the background. Having images like in figure
7.5, this method might be a good idea, because regions inside the object
are assigned with a focus level far away from the camera (darkly colored),
whereas regions in the background are mostly determined to be near to the
camera (bright colored).
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Figure 7.5: Depth measure applied to image (T = 7)

7.3 Include depth as feature in segmentation

As depth information alone in the case of many images surely does not
provide enough information, our second approach does not only rely on
the gathered new information of the third dimension, but also uses the
traditional image information (gray value and edge information). Figure 7.6
shows images with large regions where the depth level cannot be reliably
determined.

Figure 7.6: Depth determination not reliable (SML measure: T = 7, N =
1, s = 3)

The existing multi-resolution approach (strict Shape-Prior gradient de-
scent followed by a level set method), has been slightly changed to allow
depth information as a new feature:
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7.3.1 Include focus information in gradient descent method

The first stage of our multi-resolution algorithm has been introduced in sec-
tion 4. Now we especially concentrate on section 4.1.6 where the statistical
approach is introduced. This method is not only able to consider just one
single feature (like e.g. the region based model), but a feature vector of arbi-
trary length (in practice the length is highly limited, due to computational
costs). Our experience has shown that the following feature vector yields
the best results, with the standard image database.

f(v) = (I(v), ||∇I(v)||) (7.9)

As we now concentrate on low quality images and we would like to add
information from focus (depth map), the following feature vectors has been
investigated:

f(v) = (I(v), ||∇I(v)||, depthfocus(v)) (7.10)

f(v) = (I(v), depthfocus(v)) (7.11)

We have compared the traditional version of the feature vector (shown
in equation 7.9) with the new versions (equations 7.10 and 7.11) comprising
gray, edge (only in equation 7.10) and additionally depth information (cal-
culated from focus).

Our standard database does not comprise different focus levels, but
only one focused image of each indentation. Consequently, the image-series
database (section 1.2.1) for evaluation is used instead with 25 mostly diffi-
cult images and different focus setups (40 for each indentation). We used
only 8 of the 40 images, as we do not need to perfectly reconstruct the shape
of the indentation. The 8 images consist of 7 images where the focused plane
is farther away than the background (figure 7.2) and the image where the
background is in focus.

7.3.2 Analysis on indentation images

We succeeded in achieving better results with the additional shape informa-
tion. Using the following feature vector in equation 7.11 and the SML focus
measure (T = 7, N = 1, s = 3) turned out to be the best strategy. The edge
information seems to be no longer required.

In figure 7.7 the impact of different focus metrics on the image-series
database (section 1.2.1) is shown. Although, the differences are very small
we identified the SML operator to be the best focus metric for our purpose,
as the number of outliers is slightly lower. In the following analyses, the
shape from focus approach based on the SML operator is compared with
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Figure 7.7: Different focus metrics

the traditional approach (section 4.1).

In figure 7.8 the results are shown, which are achieved with the mentioned
statistical method, which includes gray value information as well as shape
information. Figure 7.9 shows the best results that are gathered using our
proposed statistical gradient descent method including gray value and edge
information. In figure 7.10 these two different approaches are compared.
The (cumulative) curves represent the number of edges, which are detected
within (≤) a given distance. Whereas the number of edges detected quite
exactly (0-25 pixels) is similar, the number of outliers can be decreased
significantly with the shape-from-focus information. As we concentrate on
a low outliers ratio (i.e. a high degree of robustness) in the first stage, the
focus information is able to improve the segmentation performance.

Unfortunately, the execution runtime is high as the generation of the
depth information is computationally complex (discussed in chapter 10).

In Fig. 7.11 the impact of the initialization on the traditional region
based level set segmentation is shown. If the method is initialized with the
results achieved with the Shape Prior gradient descent method including the
depth information, the results are clearly superior (red line) to the tradi-
tional first stage. The depth information used by the Shape Prior approach
definitely increases the segmentation performance.

7.3.3 Include focus information in level set method

The second stage of the multi-resolution algorithm comprises an active con-
tours algorithm (section 3). In case of our standard database, the region
based level set approach produced best results, followed by the statistical
level set approach (section 3.3). The statistical approach is able to deal with
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Figure 7.8: Gradient descent method based on gray value and shape infor-
mation (SML focus measure, T = 7, N = 1, s = 3)
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Figure 7.9: Gradient descent method based on gray value and edge infor-
mation
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Figure 7.10: Comparison of both methods
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Figure 7.11: Level set: Impact of initialization

feature vectors, instead of only one feature. Hence, we (again) altered the
feature vector of the statistical approach by adding depth information. The
best results are achieved with the following feature vector:

f(v) = (I(v), ||∇I(v)||, depthfocus(v)) (7.12)

7.3.4 Analysis on indentation images

Now we compare the statistical level set approach including shape informa-
tion with the traditional region based level set method (section 3.2) and
the statistical level set approach (section 3.3) without shape information.
The methods are initialized with the results achieved with the Shape Prior
approach including the depth information. The results are shown in Fig.
7.12. In contrast to the approximative Shape Prior approach, the results of
the precise level set segmentation approach are more similar. The approach
including the depth information (red line) seems to be slightly more robust
than the region based approach (regarding deviations of e.g. ≤ 40 pixels).
However, the region based approach (green line) tends to be more accurate
(regarding deviations of e.g. ≤ 5 pixels). The statistical approach without
the depth information (based on gray value and edge information) tends to
be in the middle of the other mentioned approaches.

To understand this behavior, you should watch the different depth im-
ages provided by the shape-from-focus method (figures 7.5, 7.6). Images
with low noise and high contrast, which can be segmented well without any
depth information often have an unreliable depth information (noisy and
large regions without depth information (marked red)). Consequently this
images suffer from the additional information. In opposite the depth infor-
mation of highly noisy images usually is quite accurate, so the segmentation
performance can be increased.
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Figure 7.12: Comparison of level set methods

Consequently, we only recommend to use the shape-from-focus approach
if the image is hard to segment by the traditional algorithms (e.g. our pro-
posed traditional multi-resolution algorithm). To automatically determine
the quality of images, a measure must be introduced.

7.3.5 Shape from focus only in special cases

Unfortunately, the shape from focus approach is computationally expensive
and for high quality images (with low noise) even disadvantageous. How-
ever, for low quality images, the segmentation performance can be increased.
Consequently, we considered to apply the shape from focus approach (both
stages) only on specific “bad” images, whereas the “good” images are seg-
mented traditionally (as proposed in chapter 6).

We investigated a quite simple distinction method. If the sum of the SML
focus measures of all points ΣSML of the image I is higher than a defined
threshold Tbad, the shape from focus approach is applied. We observed that
“good” images usually have a low ΣSML whereas “bad” ones have a high
ΣSML.

ΣSML =
∑

(x,y)∈I

FSML(x, y) (7.13)

In figure 7.13 the results with different thresholds Tbad are shown. Thresh-
old 0 means that every image is segmented with the shape from focus method
whereas threshold infinity means that every image is segmented with the tra-
ditional approach. Moreover two more sensible thresholds in the middle has
been chosen. Actually, the high overall segmentation performance of the
shape from focus approach cannot be increased. The higher the threshold
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is, the less robust is the segmentation (as far as outliers are concerned).
The slightly less precise segmentation performance of the shape from focus
approach cannot be improved. However, this definitely decreases the compu-
tational costs as only some “bad” images are segmented with the expensive
shape from focus method. In our case, with a threshold of 1,000,000 only the
half of the images is segmented with the expensive method. In the case of
images of a higher quality, an even much smaller ratio would be segmented
with the shape from focus approach.
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Figure 7.13: Comparison of different thresholds

7.3.6 Depth from logarithmic image processing

In this section we investigate a model which provides new arithmetic op-
erations for image processing. The standard linear operators for addition
(+), subtraction (−) and multiplication (×) which are normally used, do
not correspond with the human visual system. In order to eliminate this
inconveniences, in [22] the logarithmic image processing (LIP) framework
has been proposed.

The operations are based on gray tone values (f ∈ S) (0 corresponds with
white, M (255) with black), i.e. the pixel values (I) must be inverted before
the operations are applied. Instead of the standard + (plus), − (minus), ×
(times) and | · | (absolute) operators the LIP operators ⊕, 	, ⊗, || · ||LIP are
defined by the following equations:

f = 256− I (7.14)

∀f, g ∈ S : f ⊕ g = f + g − f · g
M

(7.15)
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∀f, g ∈ S : f 	 g = M · f − g
M − g

(7.16)

∀f ∈ S,∀λ ∈ R : λ⊗ f = M −M · (1− (
f

M
))λ (7.17)

∀f, g ∈ S : f ⊗ g = φ(f) · φ(g) (7.18)

∀f ∈ S : ||f ||L = |φ(f)| (7.19)

∀f ∈ S : φ(f) = −M · ln(1− f

M
) (7.20)

M is the highest pixel value (in our case M = 255).

In [6] focus measures based on the logarithmic image processing model
were investigated. Moreover the authors concentrated on shape from focus
applications.

We get down to the two common focus measures Tenengrad (section
7.1.2) and sum-modified-Laplacian (SML) (section 7.1.1). We have already
investigated the traditional operators. Now we concentrate on the LIP ver-
sions. The LIP-Tenengrad measure is computed in the following way:

TENLIP (x, y) = ||δf
dx
||2L + ||δf

dy
||2L (7.21)

δf

dx
=

1

4
⊗ ((f(x−1,y−1) ⊕ (2⊗ f(x−1,y))⊕ f(x−1,y+1))	

((f(x+1,y−1) ⊕ (2⊗ f(x+1,y))⊕ f(x+1,y+1)))
(7.22)

δf

dy
=

1

4
⊗ ((f(x−1,y−1) ⊕ (2⊗ f(x,y−1))⊕ f(x+1,y−1))	

((f(x−1,y+1) ⊕ (2⊗ f(x,y+1))⊕ f(x+1,y+1)))

(7.23)

The LIP-SML measure is computed in the following way:

SMLLIP (i, j) =

i+N∑
x=i−N

j+N∑
y=j−N

ML(x, y) if ML(x, y) ≥ T (7.24)

MLLIP (x, y) = ||(2⊗ f(x,y))	 f(x−1,y) 	 f(x+1,y)||L+

||(2⊗ f(x,y))	 f(x,y−1) 	 f(x,y+1)||L
(7.25)

7.3.7 Analysis on indentation images

Although in some cases, the use of the LIP operators within our multi-
resolution algorithm leads to better results, this cannot be generally proven.
For both stages, significant performance improvements cannot be achieved,
as far as the whole database is concerned. So we propose to use the tradi-
tional SML measure.
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Chapter 8

Segmentation of unfocused
images

In order to acquire focused images, the Vickers hardness testing utilities rely
on auto-focus systems. Such systems apply a focus measure to images of the
same object with different focus setups to decide, which image is in focus.
In [16] different measures are investigated with reference to Vickers hardness
images.

Whereas most segmentation algorithms only regard focused images, we
have investigated an approach (chapter 7: shape from focus) that uses the
information from unfocused images as well, to improve the segmentation
results. The segmentation results can be improved, but the execution costs
(runtimes) are very high.

The next step is, to find out if it is possible to compute approximative
results from unfocused images. This might be a good idea, as the auto-focus
algorithm consumes a lot of time, which could be used by an approximative
segmentation algorithm based on an unfocused image.

We investigate the effect of wrongly focused images on the segmentation
algorithms. We have sorted the images according to their focus level (fl).
The exact step size between two consecutive focus levels cannot be generally
specified, as it depends on the optical zoom of the camera for the individual
image:

zoom step size

10 x 10,000 nm

20 x 5,000 nm

40 x 1,000 nm

For example, if an image is 10x enlarged, a step size of 10,000 nm is

89
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chosen (i.e. while the camera moves, every 10,000 nm a picture is taken).
The higher the zoom, the smaller the step size must be. For example fl = −5
means that the focused plane is five steps deeper than the best focus level.
In figure 8.1 the effect of different setups is shown. The same database as
in chapter 7 is used with 25 indentation image series (i.e. 100 corners). The
quality of the images is considerably lower than the quality of the standard
database.

Figure 8.1: Different focus settings, reaching from fl = −15 (top left) to
fl = +10 (bottom right)

8.1 Effect on the gradient descent method

First we would like to know the effect of unfocused images on our proposed
gradient descent algorithm (section 4.1), as this method serves as the first
stage of our multi-resolution algorithm to achieve approximative results. We
have tested the algorithm with different focus levels. We expected that the
accuracy slightly suffers but the robustness stays about the same (tests with
blurred images showed that the number of outliers stays about the same),
which is more important for us in the first segmentation stage.

Figure 8.2 shows results with settings which focus points that are far-
ther away from the camera compared with the best-focus strategy (red line).
The robustness (i.e. few outliers) of the segmentation did not only stay un-
changed as expected, but can actually be increased if the unfocused images
are used. However, the segmentation accuracy (e.g. the ratio of corner
points with a deviation of maximal 20 pixels) slightly decreases. As the
curves are crossing, we cannot identify a best configuration just by looking
at the results.
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Figure 8.2: Different focus setups (focal point far away)

The results in figure 8.3 are achieved with images where points are in
focus that are nearer than the image points. The segmentation performance
with these images definitely decreases. Consequently, we specialized on focus
levels shown in figure 8.2.
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Figure 8.3: Different focus setups (focal point near)

Now we know that the segmentation process even benefits from (the
right) unfocused images as far as outliers are concerned. However, the accu-
racy decreases. As the results of the gradient descent algorithm “only” serve
as initializations for the level set algorithm, in the next section we investigate
the impact of the different initializations on the level set algorithm.
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8.2 Effect of different initializations on the overall
performance

We initialized the level set method with the results, gathered from the gra-
dient descent with different focus levels to get a knowledge of the impact
on the overall performance of the multi-resolution algorithm. However, the
level set algorithm still operates on the focused images. The question is,
how accurate the first stage results have to be in order to achieve precise
overall results of the second stage. Figure 8.4 shows that the differences
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Figure 8.4: The level set method with different initializations

of the initializations definitely influences the overall segmentation output
of the multi-resolution algorithm. The multi-resolution algorithm does not
generate the best results if the best focused images are provided to the first
stage algorithm. Whereas when regarding the gradient descent algorithm
(figure 8.2) we cannot identify a winning focus-configuration, as the curves
are crossing, now we can. The focus level fl = −10 is superior to the others
for nearly each maximal deviation. Especially the number of outliers de-
clines considerably. So we come to the conclusion that the segmentation of
unfocused images with our proposed first stage gradient descent algorithm
is even superior to the segmentation of perfectly focused images, as far as
an appropriate focus level is chosen. The precomputed results with the
fl = −10 gradient descent strategy are just slightly less accurate (if small
deviations are regarded) than the best focus strategy, but the number of
outliers is minor, which is beneficial. Although the fl = −15 strategy has
even less outliers, the overall performance decreases, as the accuracy suffers
too much.
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8.3 Effect of focus on the level set method

So far we have investigated the impact of unfocused images on the first ap-
proximative stage of our multi-resolution algorithm. As the segmentation
performance even increases, next we investigate the impact on the proposed
stage 2 (level set) algorithm (section 3). We initialized the level set method
with the results achieved with the focus level fl = −10, as it turned out
to be the best choice for our database. The level set segmentation method
is evaluated with different focus levels. In figure 8.5 you can see that the
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Figure 8.5: The level set method with different focus setups

segmentation output definitely suffers, if the images for the second stage
algorithm are not focused.

To put it in a nutshell, the overall segmentation performance decreases
if the images for the second stage algorithm are not focused. However,
the performance even increases, if the approximative first stage algorithm
segments the (right) unfocused images.

8.4 Effect on the corner template matching ap-
proach

We have already compared our proposed multi-resolution approach with the
template matching method introduced in [7] (section 6.3.3). Now we inves-
tigate the impact of unfocused images on the template matching method. In
opposite to the newly introduced multi-resolution algorithm now we investi-
gate the influence on the whole algorithm, not just on one stage (approxima-
tive segmentation stage or precise segmentation stage). First of all we point
out that the referenced template matching method suffers from the lower
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Figure 8.6: The corner template matching approach with different focus
setups

quality of the images in the utilized database. As shown in figure 8.6 the
outliers ratio is huge compared with the outliers ratio of the multi-resolution
algorithm. The template matching of unfocused images results in a slightly
lower outliers ratio on the one hand. On the other hand, the accuracy highly
decreases. If an accurate segmentation is required we do not recommend to
segment unfocused images. Moreover if the image quality is as low as in our
database, we recommend to use the introduced multi-resolution algorithm
instead of the template matching approach.

8.5 Effect on the approximative template match-
ing approach

The corner template matching approach introduced in [7] is an algorithm to
precisely detect the corners of the Vickers indentations. As shown in figure
8.5, a precise segmentation algorithm suffers from unfocused images. Now we
investigate the impact of unfocused images on the approximative template
matching approach introduced in [17]. Whereas in [7] corner templates
are used to precisely detect the object’s corners, in [17] different square
templates are matched with the images. As the number of templates is
limited, a high accuracy cannot be achieved. However, the aim is to achieve
a low outliers ratio.

Figure 8.7 shows that the effect of unfocused images on the approxima-
tive template matching is similar to the effect on the approximative gradient
descent algorithm (shown in figure 8.2). The outliers ratio can be improved
with unfocused images (especially with fl = −10).
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Figure 8.7: The approximative template matching approach with different
focus setups

8.6 Effect on the template matching refinement

In [8] a refinement approach has been introduced which is based on the
results of the approximative template matching method. As with the level
set approach, we also investigate this approach with reference to different
initializations. The different initializations gathered with different focus
levels are discussed in section 8.5. The refinement method is always based
on the focused images. In figure 8.8 the results are shown. As with the level
set approach, the best results are not achieved with the best focused images
in the first stage. Especially with images of focus level -10, the outliers can
significantly be reduced.
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Figure 8.8: Refinement of corner template matching approach
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8.7 Compare multi-resolution with template match-
ing approach

In this section, we compare the best results of our proposed multi-resolution
active contours algorithm with the best results achieved with the 3-stage
method proposed in [8] (approximative template matching followed by re-
finement), as both methods seems to be quite robust and exact (compared
with the template matching approach introduced in [7]). The first approx-
imative stages of both methods are based on the images of focus level -10,
whereas the precise stages are based on the focused images, as with this
configuration, the best results are achieved. In figure 8.9, the approaches
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Figure 8.9: Refinement of corner template matching approach

are compared. Actually, we cannot determine a winner, as the curves are
crossing. Whereas the 3-stage method proposed in [8] is slightly more pre-
cise (deviations < 10 pixels), our proposed active contours multi-resolution
approach is more robust (deviations 15 − 30 pixels). In section 6.3.3, the
segmentation performance of both methods has been compared with ref-
erence to focused images and the database with images of a considerably
higher quality. Interestingly enough, on this images, the active contours
based approach is more precise (small deviations).

8.8 Compare with shape from focus

Finally, we compare the improved results which are achieved with unfocused
images (fl = −10) and the proposed shape prior gradient descent algorithm
(chapter 7), with the shape from focus results. Figure 8.10 shows that the
performances are quite similar. The shape from focus method is still slightly
more accurate. However, the number of outliers is about the same.
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Figure 8.10: Gradient descent approach: shape from focus vs. traditional
approach based on unfocused images

Although the differences are quite small, the shape from focus strategy
not only introduces robustness allied with the approximative gradient de-
scent algorithm, but also allied with the (precise) level set segmentation
algorithm. The segmentation of unfocused images only improves the re-
sults of approximative algorithms, as detailed information is missing in such
images. A comparison of the following three strategies is shown in figure
8.11:

• Strategy 1: Shape-from-focus in both stages

• Strategy 2: Shape-from-focus in first stage and region based approach
in second stage

• Strategy 3: Unfocused approach in first stage and region based ap-
proach in second stage

The first strategy is more robust, but less precise than the second strategy.
Actually, the overall performance of the third strategy yields the best overall
performance (robustness and accuracy)! Interestingly enough, the unfocused
strategy 3 is more competitive than strategy 2 although the first stage’s
results are rather the opposite (figure 8.10) and the second stage algorithm
is the same.

8.9 Conclusion

Approximative segmentation methods actually benefit from (the right) un-
focused images. However, the precise segmentation performance declines
when the input images are unfocused. Figure 8.12 shows the focused and
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Figure 8.11: Level set method

the corresponding unfocused images. Especially the unfocused images on
the left side are obviously easier to locate. The effect on the background is
similar to the effect of a Gaussian blurring filter (shown in figure 8.13). But
the most important fact is that the indentation is reinforced. The contrast
between the indentation and the background is higher with the unfocused
images. This effect definitely cannot be imitated with a blurring filter.
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Figure 8.12: Focused (fl = 0) an unfocused (fl = −10) images
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Figure 8.13: Unfocused image (fl = −10, left) vs. Gaussian blurred focused
image (right)



Chapter 9

Reducing runtime: gradual
enhance

In the last chapter we investigated the influence of unfocused images on the
segmentation performance of different algorithms. Actually, the segmenta-
tion performance can even be improved by using the right unfocused images.
This knowledge definitely is beneficial. However, our intention was to reduce
the runtime of the overall hardness testing method.

The auto-focus system takes pictures (and computes the focus metric)
and moves the camera for one step until the peak of the focus metric is
reached. We aim in utilizing the free cpu cycles (when moving of the cam-
era) for an approximate localization of the indentation. So far we know
which focus levels are beneficial for segmentation. But to identify the focus
level, first we have to know the best focus configuration. Consequently, an
approximative segmentation cannot start before the focused image is com-
puted.

Now we investigate the following strategy:

1. The focus starting setup is chosen that points are in focus which are
farther away than the surface of the material and even farther away
than any part of the imprint.

2. Start the proposed first stage gradient descent segmentation algorithm
on the unfocused image which is taken with the mentioned focus setup.
Approximative results are achieved.

3. Until the end-criterion is reached:

• Alter the focus setup by one step (to the direction of the best
focus) and get the image.

• Initialize the gradient descent algorithm with the current approx-
imative results and the new image.
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• Increase the initialization variable “radius” by 2 pixels.

• Run the algorithm with only 5 iterations to enhance the approx-
imative results.

• New approximative results are achieved.

The first image to segment is highly unfocused. Consequently, an exact
segmentation surely cannot be achieved. However, the blurred image can be
segmented robustly. Whereas the first image is segmented as proposed in
section 4, the enhanced images are not. These images are initialized accord-
ing to the current approximative results. As the balloon force is applied, the
radius of the shape has to be increased by some pixels (e.g. 2), to allow a
moderate growth. Otherwise the evaluated shape could only shrink, as the
balloon forces it to shrinks.

The proposed policy allows to start the segmentation even before the fo-
cused image is taken. As the auto-focus process takes a significant amount
of time, the available processor cycles can be used for an approximative seg-
mentation.

We identified the following two major issues:

1. Which is an appropriate end-criterion (for instruction 3).

2. Whereas all enhancement segmentations are fast as only 5 iterations
are necessary, the first initial step is computationally expensive (Run-
times are discussed in chapter 10).

These issues are discussed in the following sections.

9.1 Appropriate end-criterion

The end criterion should reliably determine, when the segmentation results
cannot be refined any longer. One straightforward approach is, to try to
refine the results, until the focused image is reached. This can be robustly
determined using a focus metric. Unfortunately, the results do not neces-
sarily improve until the best focused image is reached. The reasons for this
paradox behavior are discussed in section 8, where a similar behavior is ob-
served.

The results with different focus levels as stopping conditions are shown
in figure 9.1. Although the behavior is similar to the behavior in section
8, the effect is smaller. The outliers ratio generally is lower than with the
single image approach (shown in figure 8.2). The black line graph in figure
9.1 represents the best results, achieved with one single image (focus level
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is −10).

As with the single image approach (chapter 8), segmenting until the
focused image is achieved, is not advantageous as especially the number of
outliers potentially increases. With our database, the lowest outliers ratio
(no outliers) can be achieved when stopping at focus level −10 as shown in
figure 9.1. However, we would have to compute until the focused image is
achieved (i.e. the peak in the focus measure is reached), as not before this
image is detected, the focus levels can be determined. This is because the
focus levels are defined relatively to be focused image.

Even though the results seem to be more similar compared with the sin-
gle image approach, the impact of the different results, which are only the
initializations for the stage 2 algorithm, on the level set algorithm is consid-
erable, as shown in figure 9.2. In comparison with the single image approach
(black line graph), the gradual enhancement method’s outliers ratio (focus
level −10) is slightly lower, whereas the single image approach (focus level
−10) is slightly more accurate. However, the differences are very small.
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Figure 9.1: The effect of different stopping focus levels on the segmentation
performance of the first stage algorithm

9.1.1 Determine from the focus measure

Moreover, we investigated if it would be possible to determine the end cri-
terion by regarding the focus measure (Sum-modified-Laplacian). On the
one hand we tried to determine a stop criterion from the sum of the focus
measures of one image. The intention is, that highly noisy images, contain-
ing more high frequency information (i.e. higher focus measure) are stopped
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Figure 9.2: The effect of the different initializations on the level set algorithm

earlier because the focus threshold is earlier reached than high quality im-
ages. On the other hand we tried to determine a stop criterion based on the
maximal focus metric of any pixel of the image. Whereas the first method
is at least slightly more competitive than the best focus strategy, the second
method does not work at all. We also investigated if a stop condition could
be determined by regarding the first or second order derivation of the total
focus measure of an image. However, the achieved results are not worth
mentioning.

9.1.2 Determine from the extremums of gray value

We observed that especially the maximum gray value (brightest pixel) of
the image, is changing over the focusing process in an interesting way. First
of all, if the focused level is very far away (focus level is low, fl << −10),
the maximum value is low. When increasing the focus level, the maximum
value is increasing about until fl is between 10 and 15. After that, the
value is decreasing. We investigated if the extremum (maximum) of the
maximal pixel value corresponds with the ideal stopping condition of the
enhancement algorithm. Unfortunately, the results are less competitive than
when stopping at focus level -10.

9.1.3 Determine from a Gaussian fitting function

In this approach we try to fit (least squares) a Gaussian curve g to the points
consisting of a focus level (x-axis) and a focus measure (y-axis).

g(A,µ, σ) = A · e−
1
2
·(x−µ

σ
)2 (9.1)
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A Gaussian curve has been chosen, because it is similar to the focus-
measure curve. The advantage of this approach would be that the segmen-
tation could stop, if a defined distance from the maximum is reached. Our
aim is, to determine the average value µ of the fitting Gaussian distribution,
which should correspond with the maximum of the focus measure.

First, we investigate the easiest case, where all points “left to” the av-
erage value are already available. In the figures 9.3a and 9.3c results of
example images are shown. For each focus level (x-axis), the corresponding
focus measure (y-axis) is shown (red crosses). The blue lines represent the
Gaussian fitting functions. The real best focus level for the shown images
is 20. If all points (focus level 0 to 19) are available, an approximative de-
termination of the best focus level often is possible (as depicted). However,
for our application it would be necessary to determine the best focus level
some levels before the best focus level is reached. In the figures 9.3b and
9.3d, an approximation with fewer available points (2 points are missing) is
executed. Actually this highly affects the fitting process. The determined
µ very often varies more than 5 pixels from the actual highest focus metric.
In practice with even more missing points (e.g. 10 points) an approximative
determination would totally fail. The following problems were identified:

• The focus-level curve cannot exactly be described by a Gaussian curve.

• We only have points on the left side of the average value of the Gaus-
sian distribution available. In practice, the last (e.g. 10) points as well
are not given.

As we are not able to determine the averages of the fitting function robustly
even for only 2 missing points, we have to emphasize that this approach is
not appropriate for our (practical) usage.

9.2 Speeding up the initial segmentation

Whereas it is fast to enhance the approximative results (only some itera-
tions are necessary), the initial segmentation takes quite a long time. As the
initial contour starts at the boundary of the image (initial radius is about 50
pixels as the images are downscaled by factor 10), has to shrink until it col-
lapses and shrinks one pixel per iteration, about 50 iterations are necessary.
If the image for the initial segmentation could be even more downscaled, this
step could be accelerated, as downscaling does not only reduce the number
of iterations, but even reduces the costs per iteration.

Unfortunately, the statistical gradient descent approach suffers if the
number of pixels decreases. The major part is the computation of the prob-
ability density function for the two regions (inside and outside). In our case
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(a) Image 1, all points
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(b) Image 1, 2 points missing
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(c) Image 2, all points
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(d) Image 2, 2 points missing

Figure 9.3: Gaussian fitting of the focus curve
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the density function is 2-dimensional (gray value, gradient information).
The discrete probability density function is represented by a 256x256 (256
gray values and 256 different gradient values) matrix (i.e. the number of
values is 256 · 256 = 65536, independent of the image size). In the case of
very small images, the number of pixels is much smaller (e.g. 50x60 image:
3000 pixels) than the number of matrix elements. As the empirical density
function would be very rough and unsteady, a high degree of blurring would
have to be applied, which is computationally complex. Moreover, the ro-
bustness of the segmentation would suffer.

We decided to choose an alternative strategy. Whereas the reduction
of the image size affects the method, increasing the step size of the con-
tour does not, as far as robustness is concerned. Instead of modifying the
evolving shape parameters by one per iteration, we propose to increase the
step size (i.e. in one iteration, each parameter is adjusted by the positive
or negative step size or stays the same). Increasing the step size to 4, we
achieved less accurate results after the initial segmentation step, but after
the enhancement steps, the results were exactly the same. The runtime of
the first step can be reduced by factor 4.
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Chapter 10

Runtime analysis

Our framework is mostly implemented in Java, like all stage 1 algorithms,
the evaluation of the results and the shape from focus computation. The
level set methods are implemented in C++. We use the Ofeli level set library,
which implements the traditional Chan-Vese model. In order to investigate
alternative methods and improvements, the software has been expanded.
The code definitely is not optimized for execution speed but to allow easy
modification and experimentation.
The tests where executed on a notebook with an Intel Core 2 Duo T5500
1.66 GHz processor.

10.1 Stage 1 algorithms

Stage 1 algorithm average std. dev.

1. Proposed statistical 2 dimensional gradient de-
scent algorithm (figure 4.12)

2.28 s 0.20 s

2. Directed edge based gradient descent algorithm
(figure 4.8)

0.14 s 0.07 s

3. Statistical 1 dimensional gradient descent algo-
rithm (figure 4.9)

0.30 s 0.10 s

4. Statistical 3 dimensional gradient descent algo-
rithm (figure 4.13)

13.36 s 0.80 s

5. Shape-Prior 3 dimensional gradient descent
algorithm∗

13.45 s 0.82 s

6. Gradient descent with gradual enhancement
(chapter 9)

Initial segmentation 1.0 s

One single refinement step 0.14 s
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10.2 Stage 2 algorithms

Stage 2 algorithm average std. dev.

1. Proposed Chan-Vese algorithm with evaluation
of shape parameter

1.34 s 0.15 s

2. Statistical 2 dimensional approach without
Parcen window on probability density function

1.51 s 0.13 s

3. Shape-Prior 3 dimensional level set approach∗

with shape-from-depth information without Parcen
window

4.24 s 0.88 s

∗ If a Shape-Prior approach should be used, it is necessary to compute
the shape-from-focus depth information before. This takes about 8 seconds
with our Java implementation. The execution runtime do not depend on
the quality or focus level of the image.

The costs of the proposed local Hough transform are about 0.7 seconds.

10.3 Total costs

Multi-resolution algorithm average

1. Proposed multi-resolution algorithm (stage 1 algorithm 1,
stage 2 algorithm 1, Hough transform)

4.3 s

2. Stage 1 directed edge strategy (stage 1 algorithm 2, stage 2
algorithm 1, Hough transform)

2.2 s

3. Approaches relying on shape-from-focus information > 10 s

In the case of high quality images and if a runtime of about 4 seconds
per image is acceptable, the first multi-resolution algorithm in section 10.3
should be chosen in order to achieve the best results.

The second algorithm is a more effizient approach as far as runtime is
concerned. However, the segmentation performance is lower.

The third strategy which involves shape-from-focus knowledge, is com-
putationally expensive. As the approach with unfocused images (chapters 8
and 9) is competitive as far as segmentation performance is concerned and
much more effizient (as effizient as strategy 1) than the shape from focus
strategy, for lower quality images we recommend this approach.

The strategy 6 in stage 1 especially is interesting, if the approximative
segmentation on unfocused images could start even before the focused image
is achieved.



Chapter 11

Conclusion

First of all we have investigated different active contours and level set ap-
proaches. We perceived, that these methods are not able to segment the
Vickers indentations appropriately, without a suitable initialization. As one
general initialization for all images definitely is not suitable, we developed
a localization method, based on downscaled images and a strict shape. As
this method is highly robust but not accurate (not the intension), we initial-
ize the precise methods (level set approach) with the approximative results
and achieve very robust and highly accurate overall segmentation results
especially for high quality images but also for low quality images (compared
with approaches in literature).

Moreover, we have investigated the shape from focus approach which
determines the depth of the image points by regarding differently focused
images. As the determination of the shape information is not robust enough,
we allied our proposed approach with the shape information and achieved
even more competitive segmentation results for low-quality images.

Finally we explored the impact of unfocused images on the segmentation
process. Actually the overall segmentation performance even increases, if the
first approximative stage is based on the right unfocused images.
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