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ABSTRACT

We propose, discuss, and evaluate a range of techniques for media encryption for still
visual data. Two classes of visual data are used in the investigation: natural still im-
ages and �ngerprint data. In terms of representational format, we focus on scalable
representations of the source data.

We propose di�erent security techniques for visual data coded with the wavelet-
based scalable jpeg2000 standard, some of which are exclusive to jpeg2000, whereas
others are more generally applicable. We discuss techniques for format-compliant
jpeg2000 encryption and propose a bitstream-oriented packet header protection
scheme that can overcome security �aws present in virtually all existing format-com-
pliant encryption scheme for jpeg2000. We then turn to compression-integrated en-
cryption of wavelet-coded visual data. We propose and evaluate the utility of two
classes of key-dependent transform domains for encryption: parameterized wavelet
�lters and wavelet packets. We show that the former are insecure because they are vul-
nerable to a symbolic transform attack, whereas the latter can achieve high levels of
security while retaining competitive compression performance, especially in the case
of anisotropic wavelet packets.

A major focus of this thesis is the analysis and evaluation of the proposed schemes,
but also of existing media encryption schemes. One area where the severity of the
compromise in security that is introduced by design mistakes is especially evident
is the protection of biometric data, where revocation is usually impossible. In this
context we analyze an image-based selective encryption scheme that has recently been
proposed in the context of �ngerprint encryption. We discuss severe design mistakes
and present an e�cient attack.
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1INTRODUCTION

�e aim of this thesis is the development and evaluation of encryption techniques
for two classes of visual data: natural images and �ngerprint data. �e main focus
with respect to the representational format is on scalable representations. jpeg2000
has been established as the most recent and most advanced standard for scalable still
image coding and a large part of this thesis will focus on security techniques for visual
data coded with jpeg2000. Some of the discussed security techniques are exclusive
to jpeg2000, others are more generally applicable also in other formats, and we only
use jpeg2000 as an exemplary format in this case.

Apart from proposing a selection of new media protection methods, a major focus
of this thesis is the analysis of security �aws in existing media encryption schemes.
One area where the severity of the compromise in security that is introduced by design
mistakes is especially evident is the protection of biometric data, where revocation of
(biometric) key data is usually impossible. We will discuss this issue at the example of
a lightweight encryption scheme recently proposed for �ngerprint images.
�e topic of this thesis is situated in the �eld of media encryption, which in turn

is a subtopic of multimedia security. In this introductory chapter, we will �rst brie�y
introduce both topics before we then present outline and organization of this thesis.

1.1 multimedia security

Multimedia security is a young research area, dealing with various �elds that share the
common goal for providing security techniques for multimedia data. �e individual
research areas are widespread, but typically the following �elds are mentioned among
the core areas.

▸ Media Encryption provides the means for protecting multimedia �les, e.g., for
private communication. �is is the subject area of the presented work, and we
will introduce it in detail in the next section.

▸ Watermarking deals with embedding data into existing multimedia �les. Di�er-
ent methods for watermarking are grouped into visible and invisible as well as

3



4 introduction

fragile and robust watermarking. In robust watermarking the watermark is de-
signed to be detectable a�er modi�cations to the image that go beyond simple
alterations like scaling or compression. An application for robust watermarking
is the proof of ownership. In fragile watermarking, any modi�cation destroys
the watermark. An application for the fragile watermarking is tamper detection
– the watermark serves as a digital seal.

▸ Fingerprinting uses invisible watermark embedding techniques to embed
unique identi�ers in a set of copies of multimedia data. An application of �n-
gerprinting is the so-called traitor tracing that tries to detect the source of (e.g.,
stolen or illegally recorded) data.

▸ Perceptual Hashing maps a piece of multimedia data to a much smaller numer-
ical set with the aim of giving a di�erent hash to each di�erent source content.
Perceptual hashes di�er from cryptographic hashes in that they only relate to
the visual content – transcoding to a di�erent representation format should not
alter the hash. Two di�erent kinds of hashes can be distinguished: authentica-
tion hashes that are used for example in proof of ownership and retrieval hashes
that are used for classifying, indexing, and retrieving visual data, e.g., from a da-
tabase.

▸ Digital Forensics develops techniques to expose forged material. It comprises
techniques to verify or �nd the source that produced a piece of multimedia
data, e.g., tests to determine with which camera model a digital image was taken.
Another area is the detection of forgery in multimedia data, e.g., the use of photo
editing programs to alter photographs.

▸ Steganography deals with methods to hide secret messages in inconspicuous
covertexts. Other than watermarking, steganography can select or create the
host material. �e goal is to avoid detection and preserve the statistics of the
original inconspicuous cover object. Steganalysis deals with the detection of se-
cret messages in cover data.

�ere are many other other research topics related to multimedia security, but which
are not subsumed under it. An example is the �eld of biometrics, which is o�en dis-
cussed as related to the �eld of multimedia security. �is is not surprising as many of
the objectives of biometrics can also be found in a similar way in multimedia security.
Another point of overlap can be found in the representational formats that for preva-
lent biometric features, such as �ngerprint and iris data are visual at least in one of the
processing stages. In this respect, multimedia security and biometrics serve comple-
mentary objectives: while biometrics is concerned with the authentication part, meth-
ods from multimedia security can be used to secure the visual representation involved



1.2 media encryption 5

in the authentication process.�e discussion of security for �ngerprint images re�ects
this overlap between the �elds in this thesis.

Cultural and legal issues are related to multimedia security on a di�erent level. As
Delp (2005) argues in a pointed paper on the objectives and future of multimedia
security, technical aspects are only one side of the issue and “new laws will need to be
developed to combat this but also protect the rights of consumers” (p. 97). An example
for the relation of these �elds can be seen in the collection by Dittmann et al. (2006),
which originated from a research program in the context of the EU-India Economic
Cross Cultural Programmer.�e papers in this collection discuss multimedia security
as well as biometrics and also add a cultural perspective to the research.
�ere are several international conferences dedicated to multimedia security. Uhl

and Pommer (2005) list the following conferences as the core forums: “ACM Multi-
media & Security”, which was �rst held in 1998, “Security, Steganography and Wa-
termarking of Multimedia Content”, a subconference of the SPIE Electronic Imaging
symposium, and “Communications and Multimedia Security (CMS)”, organized by
IFIP. A comprehensive textbook with contributions of many researchers working in
the �eld has been edited by Furht and Kirovski (2005). Dittmann et al. (2000) discuss
approaches to multimedia and security and describe the security requirements that
arise in modern multimedia systems.

Apart from a number of special issues that have been devoted to the �eld of mul-
timedia security, a number of journals dedicated exclusively to the topics of multi-
media security have been established recently. �e IEEE Transactions on Information
Forensics and Security1 �rst appeared in 2006. �e EURASIP open access Journal on
Information Security2 �rst appeared in 2007. IET Information Security3 �rst appeared
in 2005 (but before 2007 its name was “IEE Proceedings – Information Security”).

1.2 media encryption

Media encryption has as its goal the development of security schemes that di�er from
conventional encryption in that they are tailored to the representational format of
the source media. Conventional encryption schemes are oblivious to what is being
encrypted. Speci�c encryption schemes for media encryption take the representation
into account and therefore can provide additional features. One feature could for ex-
ample be the possibility to perform rate-adaption in the encrypted domain. In turn,
media encryption scheme almost always sacri�ce some of the security that can be
obtained with full classical encryption.

1http://www.signalprocessingsociety.org/publications/periodicals/forensics/
2http://www.hindawi.com/journals/is/
3http://www.ietdl.org/IET-IFS

http://www.signalprocessingsociety.org/publications/periodicals/forensics/
http://www.hindawi.com/journals/is/
http://www.ietdl.org/IET-IFS


6 introduction

Several of the published review papers are located in the �eld of mpeg encryption,
providing a more or less complete overview of the techniques proposed so far. Kunkel-
mann (1998) and Qiao and Nahrstedt (1998) provide overviews, comparisons, and
assessments of classical encryption schemes for visual data with emphasis on mpeg
proposed up to 1998. Bhargava et al. (2004) review four mpeg encryption algorithms
published by the authors themselves. �e survey by Lu and Eskicioglu (2003) focuses
on shortcomings of current schemes and future issues, the one by But (2004) assesses
the suitability of available mpeg-1 ciphers for streaming video, and Lookabaugh et al.
(2003) focus on cryptanalysis of mpeg-2 ciphers.

In this section we give something of a taxonomy of encryption schemes that exist
in the area of media encryption. As the �eld is rather young, there is not a substantial
number of comprehensive review books that speci�cally deal with media encryption.
�e book by Uhl and Pommer (2005) is one of the �rst books dedicated exclusively
to the �eld. Another consequence of media encryption being a young �eld is that the
nomenclature is not yet fully consistent. We will mention if di�erent terms are used
in parallel or if a term is used with di�erent meanings in the following.

1.2.1 So�, Partial, and Lightweight Encryption

One way to classify media encryption is by which cryptographic primitives are used
for encryption.

So� encryption versus hard encryption

In so� encryption, as opposed to hard encryption, cryptographic primitives are used
that are less demanding than classical cryptographic primitives.�ese primitives lower
the computational demands of the encryption, but of course they also lower security.

Partial / Selective Encryption

Another distinction is, if only some parts of the source data are encrypted and other
parts are le� in plaintext. In partial and selective encryption only some portions of
the source data are encrypted. �e classical motivation for this is to lower compu-
tational demands, but the reason to use partial / selective encryption could also be
to leave some parts in plaintext (e.g., the base layer) that can be used to decode a pre-
view image (i.e., provide transparent encryption, see below). Partial / selective encryp-
tion may also target only certain parts of the bitstream, e.g., packet bodies as opposed
to packet headers, to facilitate functionality for the encrypted bitstream, e.g., format-
compliance (see Section 1.2.3).�e di�erence between partial and selective encryption
is academic. Sometimes partial encryption is de�ned as comprising only schemes that
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encrypt one contiguous part in the source data, whereas selective encryption might
select di�erent portions of the source data with plaintext data in between. However,
mostly the two are used synonymously.

Said (2005) gives a critical view on partial / selective encryption schemes, especially
under the consideration of the availability of side channels (such as thumbnail im-
ages).

In the area of jpeg2000, there is a number of approaches: for example, to employ a
traditional cipher to encrypt di�erent parts of the packet data has been proposed, e.g.,
by Grosbois et al. (2001); Wu and Deng (2004) and Norcen and Uhl (2003). Ou et al.
(2007) propose two methods for region-based selective encryption in the context of
medical imaging.

Lightweight encryption

�e term lightweight encryption is used to denote encryption schemes which (delib-
erately) provide security on a much lower level than classical cryptography. In some
settings, there might even exist relatively e�cient attacks against these schemes.�ese
schemes provide limited access control for a limited time and against attacks of limited
computational resources. In turn they are usually computationally very cheap (some-
times they come nearly for free) and provide high levels of functionality. Note that
lightweight encryption can theoretically be combined with partial encryption to de-
note an encryption scheme that provides only little security by processing only parts
of the source data.

An example for lightweight encryption in jpeg2000 is the permutation of the or-
der of wavelet coe�cients during compression (Norcen and Uhl, 2004a). �e com-
putational demands of this approach, although of course higher than the operation
of unencrypted jpeg2000, stay far below full AES encryption and can be tuned to
preserve some scalability properties of the unencrypted jpeg2000 bitstream.

1.2.2 Levels of Security

Depending on the intended application scenario, encryption schemes may o�er dif-
ferent levels of security.

Cryptographic security / Full con�dentiality

Cryptographic security means that the security provided by the scheme is equivalent
to security provided by a classical crpytographic cipher, e.g., AES. No information on
the visual data may be leaked through the ciphertext. �is high level of security can
usually only be achieved if actually a cryptographically strong cipher is used to encrypt
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the full bitstream. Other terms for cryptographic security are full security, full privacy,
full con�dentiality, and also conventional encryption.
�e DVD encryption scheme based on CSS was meant to provide this property;

however, a weak cipher turned the scheme unintentionally into so� encryption (see
below). In multimedia applications a digression from full cryptographic security is
o�en deliberately accepted, if it comes with an increase in functionality or greatly
reduces computational demands.

Content security

Content security, a term introduced by �omas Stütz, refers to security schemes in
which the visual data is not accessible in any form. No visual information, like shape
or color information, may be derived from the plaintext.

However, it may be possible to link ciphertext and plaintext. It could, for example,
be possible to �nd the corresponding plaintext of a given ciphertext from a set of a mil-
lion images. For example, in Engel et al. (2007a) we have shown that this is possible in
the context of format-compliant encryption schemes for jpeg2000 by using header
information that remains in plaintext. Of course, such a �ngerprint in the ciphertext
is not a property that is desirable in high security applications. In high security appli-
cations, no link between ciphertext and plaintext should exist (arguably apart from
maybe the �lesize). �is is important for deniability: if Alice wants to keep a cipher-
text for her archives a�er exchanging visual data with Bob, she does not want Bob to
be able to later link the plaintext image with the ciphertext in her archive (which he
could, even if Alice used a di�erent encryption key for the archived ciphertext than
for the communication with Bob).

Su�cient encryption

A scheme provides security of this level, if visual information can be decoded without
key from the ciphertext, but the quality of the visual data gained in this way is too low
for an enjoyable viewing experience. �is type of security o�en is enough for media
applications, in which the existence of a distorted version of the source media does
not imply a security threat.

Apart from encryption schemes that are deliberately targeted at su�cient encryp-
tion, another group of algorithms can be categorized into this class: encryption algo-
rithms, which were originally meant to provide cryptographic security, but for which
security �aws have been found that allow to obtain visual information. Examples are
many partial / selective encryption schemes that were proposed to provide security
equivalent to full encryption but for which it turned out that discernible variants of
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the visual data could be decoded from the portions of the data that were le� in plain-
text (and that had been meant to be useless without the encrypted parts).

Note that the distinction between su�cient and transparent encryption is slight,
and lies in the minimum quality that can be decoded without the key. Some authors
subsume su�cient encryption under transparent encryption.

Transparent encryption

�e term was introduced by Macq and Quisquater (1994, 1995) in the context of TV
broadcasting and denotes encryption schemes for which public access is granted for
a preview image, i.e., anyone can decode an image of reduced quality from the en-
crypted stream, even without the key data. �e di�erence to su�cient encryption is
that the preview image has to be of a (speci�ed) minimum quality, i.e., apart from
the security requirement, there is also a quality requirement (cf. Stütz and Uhl, 2007).
Broadcasting applications, for example, can bene�t from transparent encryption, as
they, rather than preventing unauthorized viewers from receiving and watching their
content completely, aim at promoting a contract with non-paying watchers, for whom
the availability of a preview version (in lower quality) may serve as an incentive to pay
for the full quality version.

Numerous contributions for transparent encryption of various formats exist.
Droogenbroeck and Benedett (2002a) propose to encrypt the LSB bitplanes of the
binary representation of raw image data. With respect to jpeg encoded images, the
authors suggest to encrypt sign and magnitude bits of medium and high frequency
DCT coe�cients. Droogenbroeck (2004) extends the latter idea to “multiple encryp-
tion”, where di�erent sets of DCT coe�cients are encrypted by di�erent content own-
ers, and “over encryption”, where these sets do not have an empty intersection (i.e.,
coe�cients are encrypted twice or even more o�en). In the context of scalable or
embedded bitstreams, transparent encryption is achieved by simply encrypting the
enhancement layer(s). �is has been proposed by Kunkelmann (1998) and Kunkel-
mann and Horn (1998) who use a scalable video codec based on a spatial resolution
pyramid. Dittmann and Steinmetz (1997a,b) propose using a SNR scalable mpeg-2
encoder/decoder. Yuan et al. (2003) propose to use mpeg-4 FGS for transparent en-
cryption in the same manner. Stütz and Uhl (2006a) and Fisch et al. (2004) propose
methods for progressive jpeg. For jpeg2000, Uhl and Obermair (2005) propose to
encrypt packet data from the end of the bitstream, which corresponds to encryption
of enhancement layers. Since the major part of the packet body data needs to be en-
crypted, this approach is demanding in terms of computational complexity. We will
propose more e�cient methods in Parts ii and iii. Stütz and Uhl (2007) discuss ef-
�cient methods for transparent encryption of jpeg2000. A comparison of classical
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Original Image Data Compression

Bitstream

Encryption

Encrypted Bitstream

0100100010001011010110100100 0100100010001011010110100100

(a) Bitstream-oriented encryption

Original Image Data Compression with Integrated Encryption

Encrypted J2K Bitstream
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(b) Compression-integrated encryption

Figure 1.1: Bitstream-oriented versus compression-integrated encryption

bitstream-oriented approaches to the encryption of jpeg2000 to some of the meth-
ods proposed here can be found in Engel et al. (2008b).

1.2.3 Format-compliant Encryption

A format-compliantly encrypted bitstream still complies to the syntactical rules of
the original visual format. �e encrypted bitstream can be decoded with a standard
decoder (but of course the resulting reconstruction will not be the original media
plaintext). For scalable formats, for example, this means that tasks like rate adaptation
can be performed directly on the encrypted media without the need for decoding.

In the context of jpeg2000 encryption, there is a number of approaches that pro-
pose format-compliant encryption: Grosbois et al. (2001); Wu and Mao (2002); Sa-
dourny and Conan (2003); Kiya et al. (2003); Dufaux and Ebrahimi (2003); Norcen
and Uhl (2003); Wu and Deng (2004); Wu and Ma (2004); Conan et al. (2005); Deng
et al. (2005); Liu (2006); Stütz and Uhl (2006b); Grangetto et al. (2006); Yang et al.
(2007). Segment-based encryption as proposed by Wee and Apostolopoulos (2001a,b)
does not ful�ll the requirement for full format-compliance in the strict sense, as in this
case rate-adaption can only be performed by a jpsec-compliant decoder. In Part i, we
will turn to format-compliant encryption of jpeg2000 in more detail.
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1.2.4 Compression-oriented versus Bitstream-oriented Encryption

Depending on whether encryption is applied during compression or operates on the
compressed codestream4 a�er compression, two classes of media encryption schemes
can be distinguished, as illustrated in Figure 1.1.

Bitstream-oriented Encryption

Bitstream-oriented techniques only operate on the �nished codestream. Although
they may parse the codestream and for example use meta-information from the code-
stream, they do not access the encoding (or decoding) pipeline. Classical methods
for encryption fall into this category, and also many selective / partial encryption that
only encrypt parts of the bitstream.

Header encryption, which has the goal of securing meta-information in the code-
stream, is also classi�ed as bitstream-oriented encryption. We will present a method
for header encryption in the �rst part of this thesis.

Compression-integrated Encryption

Compression-integrated techniques apply encryption as part of the compression step,
sometimes going so far that part of the compression actually is the encryption. One
possibility is to apply classical encryption a�er the transform step (which in most

4Note that to be exact, one should not use the terms “codestream” and “bitstream” as synonyms. �e
meaning of “bitstream” is simply an arbitrary concatenation of bits. A “codestream” adds syntacti-
cal constraints to the organization of a bitstream. In the context of jpeg2000, “bitstream” has an
alternative de�nition:

�e actual sequence of bits resulting from the coding of a sequence of symbols. It does
not include the markers or marker segments in the main and tile-part headers or the
EOC marker. It does include any packet headers and in stream markers and marker
segments not found within the main or tile-part headers.
(ISO/IEC 15444-1, 2000, p. 2)

Whereas “codestream” is de�ned as

A collection of one or more bit streams and the main header, tile-part headers, and the
EOC required for their decoding and expansion into image data. �is is the image data
in a compressed form with all of the signalling needed to decode.
(ISO/IEC 15444-1, 2000, p. 3)

We do not strictly adhere to these de�nitions throughout this thesis (as is evident in the present
section on “bitstream-oriented encryption” which clearly should better be termed “codestream-
oriented encryption” according to the general meanings). It should be clear from the context if
we refer to a bitstream with or without syntactical constraints.
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cases inevitably destroys compression performance). For other approaches the trans-
form step is also the encryption step at the same time. Norcen and Uhl (2004a) pro-
pose compression-integrated encryption by permutation of zerotrees. An example of
compression-integrated encryption for jpeg2000 are methods that change the me-
chanics of the arithmetic coder (Grangetto et al., 2006; Liu, 2006).

Another possibility to achieve compression-integrated encryption is by selecting
the transform domain to be used for encoding based on a key. �e principal idea of
such schemes is that without the key the transform coe�cients cannot be interpreted
or decoded and therefore no access to the source material is possible (or only a con-
struction of limited quality is possible if su�cient or transparent encryption is the
goal).

Fridrich et al. (1998) introduce the concept of key-dependent basis functions to
protect a watermark from hostile attacks. �is approach su�ers from signi�cant com-
putational complexity. Fridrich (1999) develops the idea further and proposes a faster
method for the generation of key-dependent orthogonal patterns. Cancellaro et al.
(2007) propose a technique for data hiding using a key-dependent basis function in
the tree structured Haar transform domain.�ere are also some propositions that use
secret Fourier transforms: �e embedding of watermarks in an unknown domain is
discussed by Djurovic et al. (2001), and Unnikrishnan and Singh (2000) suggest to
use this technique for encryption of visual data. Vorwerk et al. (2000) propose the
encryption of the �lter choice used for a wavelet decomposition. However, this sug-
gestion remains vague and is not supported by any experiments. Pommer and Uhl
(2001) propose encrypting the �lterbanks used for an NSMRA decomposition. �e
use of parameterized wavelet �lters for lightweight encryption is proposed by Uhl and
Pommer (2004), the use of key-dependent wavelet packet decompositions is proposed
by Pommer and Uhl (2002, 2003).

In the context of jpeg2000, the degrees of freedom in the wavelet transform are a
prime candidate for constructing a secret transform domain. Parameterized wavelet
�lters have been employed for jpeg2000 lightweight security by Köckerbauer et al.
(2004) and Engel and Uhl (2005a,b). Key-dependent wavelet packet structures in
jpeg2000 have been discussed for the same purpose by Engel and Uhl (2006a,b,
2007a). �e proposed schemes can be seen as a form of header encryption, as only
the information pertaining to the frequency domain needs to be encrypted, the rest
of the data remains in plaintext. �is approach has the advantage that only the pa-
rameters of the secret transform domain needs to be kept secret, so the demands for
the encryption stage are minimal. Another advantage is that these approaches are well
suited for signal processing in the encrypted domain, a research area that has gained a
lot of attention recently, simply because the encrypted domain is a transform domain.
We will propose, discuss and evaluate compression-integrated encryption techniques
that use key-dependent transform domains in Parts ii and iii.
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1.2.5 On-line versus O�-line encryption

In applications where the data is acquired before being further processed the plain
image data may be accessed directly for encryption a�er being captured by a digitizer.
Following Uhl and Pommer (2005), we denote such applications as on-line. Exam-
ples for this scenario are video conferencing and on-line surveillance. On the other
hand, as soon as visual data has been stored or transmitted once, it has usually been
compressed in some way. Applications where compressed bitstreams are handled or
encrypted are denoted as o�-line. Examples are video on demand and retrieval of med-
ical images from a database.

1.2.6 Other Functionality

We have already mentioned format-compliant encryption and transparent encryption
as features that might be traded in for security in (lightweight) encryption schemes.
Other functionality might include the reduction in computational demands or the
possibility to do signal processing in the encrypted domain.

Reduced computational demands for encryption is especially interesting in mobile
environments, where at least one party in the communication uses processors of low
processing capabilities. In order to still give a certain level of security in these envi-
ronments, encryption schemes that signi�cantly lower computational demands (e.g.,
through selective encryption) are desired. In the vast majority of cases this implies a
reduction in security.

Signal processing in the encrypted domain is a functionality that has recently received
a lot of interest. For example, a special issue of the EURASIP Journal on Information
Security edited by Piva and Katzenbeisser was dedicated to the topic in 2007. �e
possibility of performing signal processing in the encrypted domain allows to apply
a (restricted) set of operations on the encrypted bitstream, with the same e�ect as if
the set (or an equivalent set) of operations had been applied to the plaintext bitstream.
�is allows untrusted nodes in networked communication, for example, to perform
adaptations without the need of a key.

1.3 quality metrics

A lot of quality metrics for assessing visual quality have been proposed in recent years.
�e high number of proposals is due to the fact that so far no metric has been found
to be reliable in all application contexts.�e peak-signal-to-noise-ratio (PSNR) is the
most widespread quality metric. However, the PSNR is inadequate under a number



14 introduction

(a) PSNR 9.2 dB (b) PSNR 9.2 dB

Figure 1.2: An example for PSNR being unsuited for assessing images of extremely low quality

of conditions (e.g., shi�ing or shearing), among them assessing the quality of recon-
structed or attacked images with high distortion levels.

Because in media encryption, images with very high distortion levels are typically
obtained by attacks, the PSNR is a very mediocre measure in this case. We have dis-
cussed full con�dentiality and content security above. In schemes that aim at provid-
ing full con�dentiality or content security, two attacked images of very low quality
might have the same PSNR, but in one image some contours are preserved whereas
in the other image, no visual content can be discerned. Even though these two im-
ages have the same PSNR, one of them invalidates the associated encryption scheme,
that strived for content security or even full con�dentiality.�e situation is illustrated
in Figure 1.2 for attacked encrypted Lena images: both images have exactly the same
PSNR when compared to the unencrypted source image, but whereas for Image 1.2(a)
no visual information can be discerned, Image 1.2(b) reveals de�nite facial features
(the examples were created with the jpeg2000 header protection scheme discussed
in Part i). In this section, we give a brief overview of some metrics for visual quality
that have been suggested as alternatives to PSNR.

In the context of evaluating watermarking systems, Kutter and Petitcolas (1999)
discuss a variety of measures for visual quality. In a section on pixel-based metrics they
present a list of di�erence distortion metrics, correlation distortion metrics, and other
pixel-based metrics. �ey also give a brief discussion of perceptual quality metrics.
Under di�erence distortion metrics, Kutter and Petitcolas (1999) subsume Maximum



1.3 quality metrics 15

Di�erence, (Normalized) Average Absolute Di�erence, (Normalized) Mean Square
Error, Lp-Norm, Laplacien Mean Square Error, Signal to Noise Ratio, Peak Signal to
Noise Ratio, and Image Fidelity. �e authors identify this group of measures as the
ones most o�en used in visual information processing, with the PSNR being the most
popular. An assessment of di�erence distortion metrics can be found in Eskicioglu
et al. (1993).

Kutter and Petitcolas (1999) argue that while sophisticated watermarking method
exploit the human visual systems (HVS) in one way or the other, this is not re�ected
in the di�erence-based metrics. �erefore, for a fair benchmark of watermarking sys-
tems, they make the case for perceptual quality metrics which are adapted to the HVS.
�is statement need not be limited to watermarking systems. Generally, the measures
that are mostly used to assess the quality of visual data, like the Peak Signal to Noise
Ratio (PSNR), are not well correlated with �ndings that relate to the working of the hu-
man visual system.�erefore, most “objective” measures recently suggested for the as-
sessment of visual quality incorporate HVS-models to some degree.�e degree varies
to which the HVS-model is used as reference and re�ected in the quality measure.
Many of the suggested approaches also include some reference to subjective evalua-
tion: the success of many of the proposed metrics is evaluated by a comparison to
subjective quality tests. Some approaches also incorporate data from subjective tests
to �ne-tune the proposed quality metrics.

Lambrecht and Verscheure (1996) suggest a metric based on a multi-channel spatio-
temporal model of the HVS, that has been parameterized by psychophysical experi-
ments. Winkler (1998) proposes a perceptual distortion metric (PDM) for color im-
ages based on a model of the human visual system that incorporates color perception.
In Winkler (2000) the suggested PDM is evaluated in more detail.�e author reports
results from a subjective evaluation and reports good correlation of the presented mea-
sure with subjective data for natural images. In Winkler et al. (2001) a perceptual dis-
tortion metric is discussed that accommodates mechanisms of both metrics: color
perception, temporal and spatial mechanisms in multiple channels, contrast sensitiv-
ity, and pattern masking in each channel.

Wang and Bovik (2002) argue that as the main function of the human eyes is to
extract structural information from the visual input, a good measurement for quality
should regard structural distortion. �ey propose a simple quality index which mod-
els distortions as a combination of three factors: loss of correlation, mean luminance
distortion and variance distortion. �is quality index is applied to the whole image
with a sliding window approach, leading to a quality map of the image. �e quality
index of the image is de�ned as the average of the quality map. �e resulting measure
is called structural similarity index (SSIM).
�ere is an abundant amount of other approaches to quality measures of visual data.

Some of them lean more towards the di�erence-error-based approaches, for example,
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Caramma et al. (2000) propose a measure for video quality similar to PSNR that is
weighted by motion vectors and evaluated in subjective tests. On the other side of the
spectrum there are measures that try to incorporate a model of the HVS as closely as
possible. For example, Carnec et al. (2003) propose a “perceptual subband decompo-
sition” that aims at simulating the working of the perceptual system and incorporate
neurocognitive pathways in their measure.
�e quality metrics mentioned so far are targeted towards images of su�cient qual-

ity, and are therefore of limited use to assess the quality of attacked images in media
encryption. Mao and Wu (2004) propose an alternative measure for low quality im-
ages that separates evaluation of luminance and edge information into a luminance
similarity score (LSS) and an edge similarity score (ESS), re�ecting properties of the hu-
man visual system. According to the authors, this measure is well suited for assessing
distortion of low quality images, which are typically obtained by attacks on encrypted
visual data.�e more similar two images are in terms of their luminance information,
the closer LSS is to 1. Negative values of LSS re�ect signi�cant dissimilarities in lumi-
nance. ESS is computed by block-based gradient comparison and ranges, with increas-
ing similarity, between 0 and 1.�e authors use Sobel edge detection to determine the
gradient of a given block.
�e in�uence of a perceptual model in LSS/ESS is weak. �e proposed measure is

in fact very similar to PSNR in the LSS component. However, the added component of
edge similarity is an interesting feature. ESS is the more interesting part in the context
of the work presented here, as it re�ects the extent for structural distortion.�erefore,
for a number of evaluations in this thesis, we will use the ESS as a quality measure
along with the PSNR. We use the weights and blocksizes proposed by Mao and Wu
(2004) in combination with Sobel edge detection. However, not too much hope should
be given to this quality measure to present a substantial improvement over PSNR. For
the two images in Figure 1.2, the ESS scores are very close with 0.24 for 1.2(a) and ESS
0.27 for 1.2(b) (but at least there is a di�erence, as opposed to the PSNR scores).

1.4 organization of this thesis

�is thesis is organized in four parts, with a prologue and an epilogue. Each of the
main parts deals with a di�erent method for media encryption: bitstream-oriented
format-compliant jpeg2000 encryption, lightweight compression-integrated encryp-
tion with parameterized wavelet �lters, compression-integrated encryption with key-
dependent subband structures, and bitplane-based encryption.

As already mentioned, we chose jpeg2000 not only as the main representational
format but furthermore also partly as the object of our research. �is wavelet-based
compression standard provides rich functionality and scalable representation. Encryp-
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tion techniques tailored to jpeg2000, which can preserve some of its functionality,
form a major part of this thesis. As visual data encoded with jpeg2000 is the subject
of investigation in several chapters, we give an overview of the standard in Chapter 2.

Part i is on format-compliant encryption of jpeg2000. It has been shown that pre-
viously proposed format-compliant encryption approaches (both bitstream-oriented
and compression-integrated) leak information that can compromise the security level
of the scheme. In some cases the extent of leaked information is so large that even
schemes that only aim at providing content security are compromised. We review this
situation and propose a method for header encryption to alleviate the information
leakage.

In Parts ii and iii the focus stays on format-compliant jpeg2000 encryption, and
we turn to compression-integrated methods that use key-dependent transform do-
mains. We propose and evaluate two secret transform domains in the context of light-
weight jpeg2000 encryption. In Part ii, parameterized wavelet �lters are used to cre-
ate a key-dependent transform domain. In Part iii, we investigate the utility of key-
dependent subband structures, in our case isotropic and anisotropic wavelet packets,
for the same purpose. In both parts we �rst present the method, investigate compres-
sion performance and keyspace size and quality and then discuss possible attacks and
applicability.

Part iv to some degree stands apart from the other parts. We turn away from
jpeg2000 and to the security of �ngerprint data, which in the other parts we only
use as examples (one of the reasons for which is that �ngerprint images have been re-
ported to be well suited for compression with wavelet packets). We analyze a recently
published lightweight encryption scheme that is targeted at �ngerprint images (but
could be used for natural images as well). We show that the security of the scheme is
insu�cient and present an e�cient attack that results in a total break.

In the �nal part, the epilogue, we summarize our results, give an outlook on possible
future research directions and conclude.





2THE JPEG2000 STANDARD

As many of the security techniques we discuss in this thesis directly or indirectly
relate to the jpeg2000 standard, in the following chapter we will give an overview
of jpeg2000. �ere are many sources providing comprehensive information on the
jpeg2000 standard:�ere are the documents of the ISO and ITU-T (ISO/IEC 15444-1,
2000; ITU-T T.800, 2002) and the standard book by Taubman and Marcellin (2002).
�e book by Acharya and Ray (2004) also provides a good introduction. Christopou-
los et al. (2000) provide an overview of part 1 of the standard. In the following brief
introduction we will only refer to those portions of each part of the standard that are
relevant to our work.

2.1 basics

One of the most important properties of jpeg2000 is that it is a scalable format. Scal-
ability means that source data is encoded only once but can be decoded in multiple
ways to �t di�erent needs.�is is important, for example, for serving a variety of com-
monly used display devices ranging from PDAs and mobile phones to HDTV cinema
displays – each with distinct capabilities, e.g., in terms of display resolution and com-
puting power. In a scalable format, the same encoded bitstream can be used to decode
versions of the original source media in the suitable resolution or quality, or, if we are
dealing with video data, framerate. Other modes of scalability exist, but resolution
and quality scalability are the most important modes in the context of still visual data.
�e di�erent modes of scalability can be combined, e.g., to form a bitstream that is
scalable in both resolution and quality.

Two – sometimes contrary – requirements have to be ful�lled. On the one hand, it
is important that the scalable coding is not less e�cient than the coding for a target
resolution or bitrate.�e embedded bitstream, which can be cut o� to produce a target
rate or resolution, should not be (much) larger than the bitstream produced for the
full rate or resolution. On the other hand, in an embedded bitstream we expect each
of the versions of lower bitrates and resolutions to be e�ciently coded, (nearly) as ef-
�ciently as if the embedded rate or resolution had been the overall target resolution
or rate. It is clear that realizing full scalability is a tough problem, and it is impres-
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Figure 2.1: Scalable coding

sive to what extent jpeg2000 realizes scalability (albeit the embeddedness is not of
arbitrary granularity). jpeg2000 supports both resolution scalability and quality scal-
ability. Resolution scalability is realized through the multiresolution property of the
wavelet transform. For each resolution, qualitative scalability is realized by introduc-
ing (a discrete set of) quality layers. jpeg2000 also provides other modes of scalability,
e.g., scalability by component or position.

Information on the history of the jpeg2000 standardization process can be found
in Taubman and Marcellin (2002). �e �rst call for contributions to jpeg2000 were
issued in March 1997. An ad hoc working group lead by Touradj Ebrahimi was instan-
tiated to formulate the requirements. �e requirements that were established by the
group included

▸ superior low bit-rate performance,

▸ progressive transmission by pixel accuracy and resolution,

▸ lossless and lossy compression, and

▸ random code-stream access and processing.

�e decision for a wavelet-based approach was made soon during the standardization
process in December 1997. �rough a series of veri�cation models jpeg2000 was de-
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veloped between the years 1998 and 2000. In December 2000, Part 1 of the jpeg2000
standard was passed.

Apart from the name, jpeg and jpeg2000 do not have much in common. Where
jpeg is based on the discrete cosine transform (DCT), jpeg2000 is based on the
wavelet transform. jpeg2000 uses mechanisms for coe�cient encoding which are a
lot more complex to create a scalable bitstream. Furthermore, jpeg2000 performs
especially well at (extremely) low bitrates and outperforms jpeg by an order of mag-
nitude or more. Other than with jpeg and jpeg-ls, in jpeg2000 lossy and lossless
compression are integrated into the same algorithm. Contrary to other image coding
standards, jpeg2000 goes beyond the speci�cation of the mere image coding proce-
dure, and in di�erent parts (see below) provides a whole suite of standardized meth-
ods for diverse areas of application, like motion jpeg2000, �le formats or interactivity
tools (jpip).

On a more technical note, jpeg2000 also di�ers from other wavelet-based image
codecs like ezw (Shapiro, 1993) or spiht (Said and Pearlman, 1996) in its principal
approach. While the latter are based on the zerotree hypothesis, jpeg2000 codes the
wavelet coe�cients in groups called codeblocks. Each codeblock is coded indepen-
dently of the other blocks and an embedded bitstream is produced for each of them.
In a subsequent step, rates are allocated to each of the bitstreams and a progression
order is �xed. �is allows for scalability on di�erent levels, which arguably is one of
the most important features of jpeg2000.

Although jpeg2000 was intended as the successor of jpeg, rather than replacing
jpeg it �lled areas of application that jpeg could not provide for, especially where
applications require a scalable representation of the visual data. It took some time
for jpeg2000 to really gain momentum, but recently jpeg2000 has evolved into the
format of choice for many specialized and high end applications. For example, the Dig-
ital Cinema Initiative (DCI), an entity created by seven major motion picture studios,
has adopted jpeg2000 as the (video!) compression standard in their speci�cation
for a uni�ed Digital Cinema System (Digital Cinema Initiatives (DCI), LLC, 2007).
jpeg2000 is well suited for digital libraries and has for example been evaluated for
Google Books (Langley and Bloomberg, 2007). A very recent report by the Digital
Preservation Coalition investigates jpeg2000 as a possible standard format for digi-
tal preservation (Buckley, 2008). For biometric data in the new generation of EU pass-
ports, jpeg2000 is the recommended format for digitally storing the portrait image
as a biometric feature on the passport1. In the area of medical imaging jpeg2000 pro-
vides important functionality like region of interest coding (Foos et al., 2000; Norcen

1�e speci�cation for the EU-passports has been adopted by 18 member states. See
http://ec.europa.eu/justice home/doc centre/freetravel/documents/doc/c 2006 2909 de.pdf
[accessed on 18 March 2008] for the German version. As the United Kingdom and Ireland so far
have not adopted the speci�cation, the English version is available only as a “working document”,

http://ec.europa.eu/justice_home/doc_centre/freetravel/documents/doc/c_2006_2909_de.pdf
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et al., 2003). As Buckley (2008) states, “[i]nstead of replacing jpeg, [jpeg2000] has
created new opportunities in geospatial and medical imaging, digital cinema, image
repositories and networked image access” (p. 2).

2.2 parts

�e jpeg2000 standard is a comprehensive set of documents that cover all areas of
still image coding, but also standardize advanced functionality. �ere are 13 parts,
numbered 1 to 6 and 8 to 14, because part 7 has been abandoned and integrated into
another part. Part 1 of the standard deals with the core coding system. �e content
of this part follows the tradition of image coding standards and exclusively focuses
on image coding. Part 2 extends this functionality with more �exible mechanisms for
image coding, like arbitrary subband decomposition structures, and custom wavelet
�lters.�e other parts focus on di�erent areas like volumetric imaging (Part 10), wire-
less applications (Part 11) or XML representation (Part 14). As of this writing all parts
are �nished with the exception of Parts 10 and 14. Of the 13 parts, apart from Part 1 and
Part 2 two parts are relevant to the work presented here: Part 4, which deals with con-
formance testing and speci�es when a codestream can be denoted format-compliant,
and Part 8 (jpsec), which deals with security aspects in jpeg2000.

2.2.1 Part 1: Core Coding System

jpeg2000 Part 1 (ISO/IEC 15444-1, 2000; ITU-T T.800, 2002) de�nes the core coding
system. As already mentioned, jpeg2000 breaks with the tradition of wavelet-based
codecs to utilize the zerotree hypothesis.�e basic zerotree hypothesis was formulated
by Shapiro (1993), and later generalized by Said and Pearlman (1996). According to
this hypothesis child coe�cients in a subband of higher resolution are more likely to
be insigni�cant if their parent in the subband of lower resolution at the same spatial
location is also insigni�cant. �e good compression performance of wavelet-based
schemes was attributed to a signi�cant extent to the zerotree hypothesis.

Taubman and Marcellin (2002) argue, however, that although the children of in-
signi�cant coe�cients tend to be insigni�cant, “this is more a property of the energy
compaction property of good transforms, and less a property of speci�c image data
dependencies” (p. 323). �ey show that compression performance of spiht remains
competitive even if the detail subbands are alternately transposed (and thus the parent-
child-relationships destroyed). Good compression results obtained a�er permuting ze-
rotrees as reported by Norcen and Uhl (2004a) support this observation. In jpeg2000

see http://ec.europa.eu/justice home/doc centre/freetravel/documents/doc/c 2006 2909 en.pdf
[accessed on 18 March 2008].

http://ec.europa.eu/justice_home/doc_centre/freetravel/documents/doc/c_2006_2909_en.pdf
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Figure 2.2: �e jpeg2000 coding pipeline

zertotree coding is replaced by embedded block coding, based on a concept called Em-
bedded Block Coding with Optimal Truncation (ebcot) which was proposed by one
of the later developers of jpeg2000 (Taubman, 2000).
�e coding pipeline, which is separated into tier 1 and tier 2 coding, is shown in a

simpli�ed version in Figure 2.2. A�er the source image has been acquired, it undergoes
tiling and component transform. For both lossless and lossy compression a wavelet
transform is performed. Part 1 de�nes two kinds of wavelet �lters: in the lossless case
a reversible 5/3 integer wavelet is used, in the lossy case the non-reversible 9/7 CDF
wavelet is used. In jpeg2000 Part 2 more �lters are possible.

A�er the wavelet transformation codeblocks are formed. Note that from this point
onwards, each codeblock is coded independently of the other codeblocks. �e next
step is quantization (only for the lossy case, of course). In this step the wavelet co-
e�cients are mapped to quantization indices. �ere are two ways of signalling the
quantization step size, expounded and derived. In chapter 5, we will turn to the two
signalling methods again in the context of parameterized wavelet �lters.
�e next step in the coding pipeline is region of interest (ROI) scaling. In this step

the bitplane representation of the (quantized) wavelet coe�cients that are in a region
of interest can be shi�ed to give them higher prioritization.

Entropy coding marks the end of tier 1 coding. �e transform coe�cient data are
coded with an adaptive arithmetic coding scheme, the MQ Coder.

Tier 2 coding refers to the packetization and rate allocation. �e rate-distortion
characteristics are computed for each codeblock and valid truncation points are de-
�ned. Depending on the requested number of quality layers, the contribution of the
codeblocks to each quality layer are de�ned (as illustrated by Figure 2.3).�e contribu-
tions are portioned into units called jpeg2000 packets. Each packet corresponds to a
quality layer at a certain resolution (or precinct to be exact), as illustrated by Figure 2.4.
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�e notion of packets will be important for Chapter 3. Finally, the packets are ordered
according to the requested progression order and the �nal bitstream is written.

Note that the standard only de�nes the elements of a valid jpeg2000 bitstream and
how they have to be interpreted. Accordingly, the coding pipeline could (theoretically)
be realized di�erently.

2.2.2 Part 2: Extensions

Part 2 of the jpeg2000 standard (ISO/IEC 15444-2, 2004; ITU-T T.801, 2002) is termed
“Extensions”. It adds additional and, one could say, more exotic options. Part 2 gives a
wide range of options to �ne-tune jpeg2000 processing. For example, it introduces
variable DC o�set, variable scalar quantization and trellis coded quantization and al-
lows to specify multiple component transformations as well as non-linear transfor-
mation and single sample overlap discrete wavelet transformations. Furthermore it
provides for visual masking to enhance image quality especially for displays. It also
de�nes an extended �leformat and metadata de�nitions.
�e extensions introduced by part 2 that are relevant to the work presented here are

arbitrary wavelet transforms and arbitrary decomposition structures. �e former in-
troduces the possibility to de�ne custom wavelet �lters to be used for transformation.
�is not only allows for transcoding of the output of other wavelet-based compression
algorithms to jpeg2000, but can also be used as a method for providing lightweight
security, as we will discuss in detail in Part ii. jpeg2000 allows to specify arbitrary
wavelet packet decomposition structures used for transformation, both isotropic and
anisotropic. As a major part of our work relates to wavelet packets, we will discuss this
in more detail in Part iii.

2.2.3 Part 4: Conformance Testing

jpeg2000 Part 4 (ISO/IEC 15444-4, 2004; ITU-T T.803, 2004) deals with “confor-
mance testing”.�is part speci�es compliance testing procedures for encoding and de-
coding jpeg2000 (Part 1) codestreams. In the context of our work this part of the stan-
dard is important because it gives guidelines to determine if a codestream is strictly
format-compliant. �ese guidelines complement the available reference implementa-
tions, which we use to verify if a given (encrypted) codestream is format-compliant.

2.2.4 Part 8: JPSEC

jpeg2000 Part 8 (ISO/IEC 15444-8, 2007; ITU-T T.807, 2006) has the title “Secure
jpeg 2000” and is referred to as jpsec. It “intends to provide tools and solutions in
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terms of speci�cations that allow applications to generate, consume, and exchange Se-
cure jpeg 2000 codestreams” (p. vi). Speci�cally, the scope of this part of the standard
is given as to de�ne:

▸ a normative codestream syntax containing information for interpreting secure
image data;

▸ a normative process for registering jpsec tools with a registration authority
delivering a unique identi�er;

▸ informative examples of jpsec tools in typical use cases;

▸ informative guidelines on how to implement security services and related meta-
data.

In this respect jpsec deals with many of the topics of multimedia security that we
mentioned in Chapter 1. jpsec extends the codestream syntax to allow parts which
are created by security services, e.g., encryption or watermarking. Furthermore, com-
plementing the normative part, informative examples for algorithms are given.

We will take jpsec into account in part i, when we turn to jpeg2000 packet header
protection (which is missing from jpsec). Further investigation of the interplay be-
tween encryption in jpsec and di�erent compression parameters can be found in
Engel et al. (2007a).

2.3 implementations

Several implementations of jpeg2000 exist, most are restricted to part 1.
jj20002 and JasPer3 are implementations in Java and C, respectively, and cover part

1 of the standard. While the license under which jj2000 is released contains a number
of restrictions, the JasPer license is very permissive.

Kakadu4 is the implementation by David Taubman. It also covers many topics of
part 2 and 3 of the jpeg2000 standard. Di�erent licensing models are available, a
binary distribution is provided for evaluation purposes.
�e veri�cation models provide implementations of the standard that re�ect the

progress at the time.
OpenJPEG5 is another implementation in C, which covers part 1 and is released

under BSD license.

2http://jj2000.ep�.ch/
3http://www.ece.uvic.ca/∼mdadams/jasper/
4http://www.kakaduso�ware.com/
5http://www.openjpeg.org/

http://jj2000.epfl.ch/
http://www.ece.uvic.ca/~mdadams/jasper/
http://www.kakadusoftware.com/
http://www.openjpeg.org/
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�ere are also a number of purely commercial implementations.
Our own experiments are mainly conducted with jj2000 and modi�cations of

jj2000. For example, we added support for parameterized wavelet li�ing and arbitrary
wavelet packet decomposition structures to jj2000. �e experiments on jpeg2000
header protection are also based on a version of jj2000 which we extended with the
necessary methods.





Part I

JPEG2000 PACKET HEADER PROTECTION





3JPEG2000 PACKET HEADER PROTECTION

All proposals for format-compliant encryption schemes for jpeg2000 that have been
made to date only encrypt packet body data, but leave packet header data in plaintext.
In this chapter (cf. Engel et al., 2007a,b) we show that for providing strict con�dential-
ity, leaving the packet headers in plaintext severely compromises the security of these
schemes, as discriminative – and for some settings even visual – information can be
extracted from the headers. We propose a set of format-compliant transformations of
the packet header data that con�nes this information leakage.

3.1 introduction

As already mentioned in Section 1.2.3, a signi�cant number of approaches have been
proposed which aim at achieving fully format-compliant encryption (sometimes in
conjunction with a reduction in computational demands). All of these approaches,
including the informative example of jpeg2000, Part 8 (ISO/IEC 15444-8, 2007) and
to the best of our knowledge all related approaches that have been put forward to date,
propose the exclusive encryption of the packet body data. �e packet header data are
invariably le� in plaintext.

In Section 3.2 of this chapter, we will discuss to what extent leaving the packet
header data in plaintext is problematic in terms of security for approaches that aim at
providing full con�dentiality. (As opposed to approaches that only o�er a degradation
in visual quality, these approaches aim at actually ful�lling the same function as full
encryption and not disclosing any of the visual content, cf. Chapter 1.)

In Section 3.3, we propose a set of transformations that allows to protect the
jpeg2000 packet header data in a fully format-compliant way, i.e., the resulting bit-
stream can be processed like a “normal” jpeg2000 bitstream, by any decoder compli-
ant with jpeg2000, Part 1.

In Section 3.4, we �rst discuss general security considerations and then evaluate the
proposed scheme with respect to the �rst of three scenarios: we look at how header
protection can con�ne the leakage of information from the packet header for encryp-
tion schemes that aim at providing full con�dentiality in a format-compliant way.

31
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A second scenario can be found in approaches that aim at format-compliant en-
cryption that provides su�cient degradation in quality, rather than full con�dentiality
(and trades o� security for a decrease in computational demands). �ese approaches
can be improved by a combination with the proposed header transformation. We dis-
cuss the possibilities and limitations of the proposed scheme with respect to this sec-
ond scenario in Chapter 4.�is chapter will also introduce the third scenario, namely,
the utility of header protection as an encryption scheme on its own that can be used
to provide transparent encryption.

3.2 information in the jpeg2000 header

�e main jpeg2000 header contains general information on the bitstream, e.g., the
coding style settings.�e information is too general to infer from it anything substan-
tial with regard to the speci�c visual content.�e same is true for the tile and tile-part
headers.
�e situation is di�erent for the packet headers. �e packet headers contain infor-

mation on four properties of the packet. We will refer to each di�erent kind of header
information as a “class” in the following. �e four classes are:

▸ the length of the contribution of each codeblock to the packet (CCP),

▸ the number of leading zero-bitplanes (LZB),

▸ the inclusion information of each codeblock,

▸ and the number of coding passes that are contained in the packet for each code-
block.

From the sum of the CCP lengths, the length of the packet body can be derived.
�e packet header information is speci�c to the visual content, and it is speci�c

enough to be used as a �ngerprint. Some suggestions have been made in this direc-
tion in the context of indexing, retrieval and classi�cation. Tabesh et al. (2005) use
the number of bytes spent on each subband for texture classi�cation. Descampe et al.
(2006) use a set of classi�ers based on the packet header and packet body data to re-
trieve speci�ed textures from jpeg2000 image databases. Liu and Mandal (2001) use
the number of leading bitplanes as a �ngerprint to retrieve speci�c images. Any class
of header information alone is discriminative enough to be potentially used as a �n-
gerprint (as will be illustrated in Section 3.4).�e combination of all classes de�nitely
is.

In the context of a security application, the fact that the information contained in
the packet headers can be used as a �ngerprint for a speci�c image is quite problematic,
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(a) wlev=0 (b) wlev=1

Figure 3.1: LZB images, codeblock size 4 × 4

as it means that an attacker can link an encrypted image to its plaintext. �e more
distinctive the �ngerprint, the more accurate is this assignment.

Such a �ngerprint alone is problematic enough. �e situation is even worse with
respect to the leading zero bitplanes. While the other classes of header information
do not reveal any visual information, the number of leading zero bitplanes can be
used to get a rough estimate of the original image from which, especially for small
codeblock sizes, the visual content is discernible. Figure 3.1 shows images that can be
created from the information on the number of leading zero bitplanes for the Lena
image coded with a small codeblock size of 4 × 4. �e LZB images are created by in-
terpreting the number of leading zero-bitplanes as pixel values (normalized over the
range of grayscale values). Figure 3.1(a) shows the LZB image that can be created if no
wavelet transform is employed. It can be seen that the LZB image is a crude quanti-
zation on a codeblock basis, from which the basic visual content is easily discernible.
Coding settings that employ no wavelet transform are not very likely to be employed
in practice, but also if the image is wavelet transformed, the edge information in the
highpass subbands (which are not further processed regardless of the decomposition
depth) that is revealed by the LZB-information is enough to spoil full con�dentiality,
as shown in Figure 3.1(b). For larger codeblock sizes less information is leaked through
the number of leading zero bitplanes, but in order to provide full con�dentiality, this
data should generally not be accessible.
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3.3 format-compliant header protection

In the format-compliant encryption scheme we propose here, on the one hand, the
aim is to destroy the information needed to create a strong �ngerprint. On the other
hand, the information needed to perform such tasks as rate adaption should be kept
intact: the distinction between packet body and packet header and the distinction
between individual packets has to be made available to the decoder. �e resulting
bitstream also needs to be fully format-compliant, i.e., the transformed header infor-
mation has to be consistent with the available (encrypted) packet body data.

Furthermore, it should of course be possible to reconstruct the original packet head-
ers from the encrypted packet header data by the use of a key. In the following sub-
sections we propose a reversible, key-dependent transformation for each class of in-
formation in the packet header. �ereby the key is used to create a (pseudo-)random
keystream. �e choice of random generator can range from a physical source of ran-
domness to using a symmetric cipher like AES in output feedback mode. In our tests
we use the standard (linear congruential) random generator provided by Java 2 Stan-
dard Edition 5.0.

3.3.1 CCP Lengths and Number of Coding Passes

jpeg2000 explicitly signals both, the number of coding passes and the length of each
codeblock contribution. (Depending on the block coding, in other codecs these num-
bers can be derived from each other, in jpeg2000 they are independent, see Taubman
and Marcellin (2002)). In order to prevent access to this information, we distribute
the CCP lengths and number of coding passes in each packet among all non-empty
codeblocks. �e number of coding passes gives only little information to a potential
attacker; the lengths of the codeblock contributions are a more valuable source of in-
formation, as they are more distinctive.�e algorithm we propose here can be applied
to both (for clarity of reading we give the description for lengths only).

We need an approach that is key-dependent and reversible. Adding a random num-
ber modulo the total length of all CCPs to the o�set of each CCP in the packet is
not feasible: some o�sets might change their relative positions during this procedure
and the decoder would lack information about which random number is associated
with which CCP.�e situation leads to rather unique requirements for the transforma-
tion: given a vector of non-zero positive integers (the CCP-lengths or the number of
coding passes) and a random keystream, we want an output vector that randomly re-
distributes these number among all positions (using all possible mappings), preserves
the overall sum of the original vector, and has the same number of elements, each of
which has to be a non-zero positive integer.
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To achieve a transformation that adheres to these requirements, we change packet
lengths (and number of coding passes, respectively) in overlapping pairs, starting with
the �rst and the second length, moving on to the second and the third length, and so
on. We redistribute the lengths between a pair of lengths by adding a random number
from 0 to the total length of the two packets. �is addition is performed modulo the
packet size minus one and a�er the modulo operation we add one. �us the size of
any packet can never become zero. To avoid that an attacker can obtain the original
sum of the pairs, we shu�e the lengths before and a�er redistributing them. We give
the procedure in pseudo-code below. v[] is a vector of non-zero positive integers
(indexing starts at 1). random(0,1) returns a random �oat number in [0, 1). mod is
the modulo operation, which can return a negative residual (as is the case in many
programming languages).
s h u f f l e ( v )
b o r d e r s : = s i z e ( v ) −1
f o r i : = 1 t o b o r d e r s

sum : = v [ i ] + v [ i + 1 ]
r : = ⌊random ( 0 , 1 ) ⌋* sum
newBorder : = ( ( v [ i ]+ r ) mod ( sum− 1 ) ) + 1
v [ i ] : = newBorder
v [ i + 1 ] : = sum − newBorder

end f o r
s h u f f l e ( v ) �
�e transformation can be reversed easily by unshu�ing the input, traversing it from
end to start, using the random numbers in reverse order, setting newBorder as:
newBorder : = ( v [ 1 ] − r − 1 ) mod ( sum− 1 )
i f ( newBorder <= 0) t h e n

newBorder : = newBorder + ( sum− 1 )
end i f �
and �nally unshu�ing the result again.
�is approach allows to completely redistribute lengths and coding passes among

the codeblocks in a packet. �e number of possible alterations depends on the num-
ber of codeblocks, and how they make their contributions to the individual packets.
If a small number of packets contains many contributions, more alterations are pos-
sible than if a large number of packets only contain a small number of contributions
each. Two non-empty codeblock contributions in a packet are enough to hide their
lengths and number of coding passes. �erefore, in practical scenarios there will al-
ways be ample opportunity to su�ciently randomize CCP lengths and numbers of
coding passes.
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3.3.2 Leading Zero Bitplanes

�e number of leading zero bitplanes (LZB) for each codeblock is coded by using tag
trees (Taubman and Marcellin, 2002). As discussed above, this information is even
more critical than the other classes of header information, as by using the number of
LZB an attacker can obtain information on the visual content of the encrypted image
(for small codeblock sizes).

For the transformation of the number of leading zero bitplanes, two options are
investigated. One option is to adapt the method proposed above for CCP lengths and
number of coding passes (and allow zeros). For the other option, we simply use the
keystream to generate random bytes. We then add a random byte to the number of
leading zero bitplanes modulo a previously determined maximum number of skipped
bitplanes. For decoding, the random byte is subtracted instead of added.
�e maximum number of skipped bitplanes needs to be signalled to the decoder,

e.g., by inserting it into the key or by prior arrangement. Note that the maximum
number of skipped bitplanes needs to be greater or equal to the original maximum
number of skipped bitplanes (otherwise the modulo operation cannot be reversed).
�eoretically the new number could be arbitrarily high (we found no restrictions in
that respect in the standard), but most implementations will have a maximum number
of bitplanes for the representation of coe�cient data that must not be exceeded.

When the number of leading zero bitplanes is changed, the length of the output
from the associated tag tree might change as well. �is change in length has to be re-
�ected in the tile header, otherwise the decoder will complain. Alternatively, if only
a single tile is used, the length in the tile header can be set to be unspeci�ed. Fur-
thermore, the maximum number of bitplanes needed to represent the coe�cients in
each subband can be derived from information contained in the main header: “�e
maximum number of bit-planes available for the representation of coe�cients in any
subband, b, is given by Mb as de�ned in Equation E.2” (ISO/IEC 15444-1 (2000), p. 70).
Equation E.2 in ISO/IEC 15444-1 (2000) basically derives the number Mb from infor-
mation contained in the QCD and QCC marker segments in the main header.�erefore,
to achieve full format-compliance, the main header needs to be changed accordingly.
Otherwise decoding will still work, but the decoder might issue a warning. Note, how-
ever, that neither of the reference implementations jj2000 and JasPer, which we used
in our tests, issued a warning.
�e total number of possible changes for all packets depends on the number of

available codeblocks. If more codeblocks exist, more information can be randomized.
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3.3.3 Inclusion Information

Each packet contains the inclusion information for a certain quality layer for all code-
blocks in the precinct associated with the packet. For the sake of simplicity, we assume
that no precinct partitioning is used. In this case each packet contains inclusion infor-
mation for all codeblocks of all subbands in the resolution associated with the packet.
�ere are four types of inclusion that codeblock c can have in packet p:

FI – c is included in p for the �rst time, i.e., c has not been included in any previous
packet,

NI – c is not included in p and has never been included in any previous packet,

PI – c has been included in a previous packet and is also included in p, and

PN – c has been included in a previous packet but is not included in p.
�e sequence of inclusion information of each codeblock is coded depending on the
type of inclusion. FI and NI are coded by an inclusion tag tree. For PI and PN, i.e., the
codeblock has been included in a preceding packet, a 1 is coded in the header if the
codeblock is included again in the current packet, and a 0 is coded if the codeblock is
not included in the current packet.
�e goal of the proposed approach is to permute inclusion information for each

packet in such a way that the original inclusion information cannot be derived with-
out the key and that the resulting “faked” inclusion information complies with the
semantics of jpeg2000. We limit the approach to permutation of the original inclu-
sion information and do not split available packet body data from one codeblock to
more codeblocks, and we also do not merge contributions from distinct codeblocks in
a single codeblock. Also, the permutation is applied per packet, i.e., we do not merge
the packet body data from di�erent packets, as this would have a detrimental e�ect
on the scalability properties of the resulting bitstream. �ese restrictions do not inter-
fere with the aim to prevent the creation of a strong �ngerprint from the sequence of
inclusions (although they would help to hide the number of inclusions of each type)
and have the advantage of facilitating straightforward reversibility.

We distinguish two kinds of packets: an empty packet is a packet for which a header
is written, but which does not contain any codeblock contributions, i.e., all codeblocks
are included as NI or PN. In a non-empty packet there is at least one contribution from
one of the codeblocks, i.e., at least one codeblock is included as FI or PI.

We de�ne the inclusion vector vp for a packet p as the sequence of the inclusion
information for each codeblock associated with p (i.e., each codeblock in the subbands
of the resolution associated with p):

v = [Ic i ],∀ci ∈ p, Ic i ∈ {FI,NI,PI,PN}.
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�e order of elements in the inclusion vector follows the order in which the code-
blocks are scanned during image coding. In JPEG2000 this is an ordering by subband
in the sequence HL, LH, HH followed by a lexicographical ordering over the 2-D co-
ordinates of all codeblocks in the subband. Obviously, the order in which subsequent
items of the same inclusion type appear are irrelevant, and count as the same permu-
tation. We give the number of possible distinct permutations further below.

An arbitrary permutation of the inclusion vector of each packet would not produce
a format-compliant bitstream. Consider the following example: A�er the permutation
of the inclusion vectors for two packets pl and pl+1 let codeblock c be included in
packet pl as FI. An arbitrary permutation could assign inclusion type NI to c in pl+1.
�is would lead to a contradiction because c can never be NI a�er its �rst inclusion.

Only the �rst permutation in a resolution r may be an unrestricted permutation
(but permutations do not necessarily have to start at the �rst packet of the �rst layer).
A�er the �rst permutation, the permutations for the subsequent packets have to re-
gard the inclusion information that has been signaled in the directly preceding packet.
�e following transitions are possible:

pl FI NI PI PN

pl−1 NI NI FI,PI,PN FI,PI,PN

A codeblock can only be included as FI or NI in pl if it has been included as NI in
packet pl−1. PI and PN can follow a previous inclusion of FI,PI, or PN. It follows that
permutations can only be performed for non-empty packets, because for empty pack-
ets the positions of the inclusions of types NI and PN are fully determined by the
previous packet. Also note that the number of inclusions of type FI plus the number
of inclusion of type NI in pl is always equal to the number of inclusions of type NI in
pl−1. �e same is true for inclusions of type PI and PN: their number in pl is equal to
the number of inclusions of type FI, PI, and PN in pl−1.

We perform the permutations in compliance with these transition rules to produce
a – syntactically as well as semantically – consistent sequence of inclusion information
over the packets of each resolution. First, in each resolution, the �rst packet suitable
for permutation is searched: �is packet has to have at least one non-empty code-
block contribution (FI or PI) and one empty inclusion (NI or PN). Packets for which
the codeblocks all have the same inclusion information are obviously not suitable for
permutation, and packets with mixed FI and PI only occur a�er the �rst candidate
packet. �e inclusion information in the �rst candidate packet is permuted.

For the subsequent non-empty packets, the inclusion information of the immedi-
ately preceding packets is regarded in the permutation. �e inclusion vector v for a
packet pl is split into two vectors: v(1) contains all FI and NI inclusions, and v(2) con-
tains all inclusions of type PI and PN. Both vectors are permuted randomly (using the
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key-stream) to form v̂(1) and v̂(2). According to the possible transitions given above,
the elements of v̂(1) are assigned (in the randomized order) to the positions that are
marked asNI in the packet of the previous layer, pl−1.�e elements of v̂(2) are assigned
to the remaining positions (again in the randomized order). �e inclusions in pl that
mark a non-empty codeblock contribution, i.e., FI and PI, are assigned the length and
number of new coding passes of the non-empty codeblock contributions of the cor-
rect inclusion vector v in the order in which these contributions appear in v (these
CCP lengths and number of coding passes may be subject to transformation later, or
maybe have already been transformed). All �rst inclusions (FI) in v̂(1) are assigned
the number of leading zero-bitplanes in the order of FI-inclusions in v. A�er all pack-
ets have been processed, the new header information is written. If the key that has
been used for the permutation is known, this procedure is reversible. Note that the
permutation in this approach crosses subband boundaries: the inclusion information
is reassigned over all codeblocks in the packet.

For empty packets, no permutation is possible. For these packets, the inclusion in-
formation only needs to be updated based on the inclusion information in the previ-
ous packet, according to the possible transitions.

To illustrate the process of format-compliant permutation we give an example. Let
vp l = [FI,NI,NI] be the inclusion vector of the �rst candidate package pl in a resolu-
tion with three codeblocks c0, c1, c2. A�er permutation the new inclusion information
is v̂p l = [NI,NI, FI]. �e length of the codeblock contribution and number of leading
zero-bitplanes is transferred from c0 to c2. In the next packet pl+1 let the real inclusion
information be given by vp l+1 = [PI, FI,NI]. �is vector is split into v(1)p l+1 = [FI,NI]
and v(2)p l+1 = [PI]. Considering the “faked” inclusion information v̂p l of the previous
packet, the positions of codeblocks c0 and c1 are the candidate positions for inclusions
of type FI and NI. v(1)p l+1 is permuted to form v̂(1)p l+1 = [NI, FI] and the new inclusion
information is assigned to the respective positions of c0 and c1. �e length of the con-
tribution and the number of coding passes and leading zero-bitplanes are updated for
the non-empty contribution. In this example, v(2)p l+1 only has one element which has
to be assigned to the position of codeblock c2 to form a consistent sequence of inclu-
sion information. �e length of the contribution and the number of coding passes is
updated for this codeblock. �e new inclusion information for pl+1 is [NI, FI,PI].

We now turn to the investigation of the number of possible permutations. For the
lower resolutions, there will typically be only few codeblocks that contribute to each
packet, so the number of permutations will be very limited. As the permutation of
packet headers is only used in conjunction with the encryption of packet bodies, this
is not a problem.�e �ngerprint that could be derived from the inclusion information
in the lower resolutions is not very distinctive, the main point is to destroy �ngerprints
in the higher resolutions.



40 jpeg2000 packet header protection

We can give the number of possible permutations for a packet pl which contains
the codeblock contributions for layer l (for a speci�c resolution). Let ∣Cp l ∣ be the to-
tal number of codeblocks that are relevant for pl , and ∣FIp l ∣, ∣NIp l ∣, ∣PIp l ∣, ∣PNp l ∣ the
number of codeblocks in pl with inclusion type FI, NI, PI and PN, respectively. If p is
the �rst packet to be permuted, we have no restrictions in the possible permutations.
Furthermore, in this case the inclusion information in p will consist of either only FI
andNI or of PN and PI (because otherwise a previous packet would have been the �rst
to be permuted).

Without loss of generality, we assign the positions for inclusions of type FI and PI.
�e number of possible permutations is then given as:

(∣Cp l ∣
∣FIp l ∣

)( ∣Cp l ∣
∣PIp l ∣

). (3.1)

If p is a packet that pertains to a higher layer than the �rst candidate, the inclusion
information of the preceding packet pl−1 has to be taken into account. Inclusions of
type FI and NI in p can go into positions that are included as NI in pl−1. �e rest of
the positions can be assigned to inclusions of type PI and PN in pl . �e number of
possible permutations is determined by

(∣NIp l−1 ∣
∣FIp l ∣

)(∣FIp l−1 ∣ + ∣PIp l−1 ∣ + ∣PNp l−1 ∣
∣PIp l ∣

). (3.2)

�e actual number of permutations for a given input image depends on a variety
of factors.�e used compression parameters in�uence the number of codeblocks that
are available for permutation in the �rst place. With small codeblock sizes the num-
ber of available codeblocks increases. If the number of quality layers is increased, then
there are also more packets and therefore more permutations can be performed. �e
bitrate with which the image is encoded also in�uences the number of packets that are
included in the codestream. Finally, the number of permutations that can be applied
to the packets of a resolution is in�uenced by the point at which the �rst candidate
packet is found, and by how diverse the inclusion information is in this packet and the
following packets. If all the codeblocks of a resolution always have the same inclusion
information in each packet, then no permutation of inclusion information is possi-
ble. Luckily, this case is extremely unlikely in practice. Table 3.1 shows the number
of possible permutations (perm.) for the Lena image (512 × 512 pixels) with di�erent
compression settings (codeblock size, rate, number of quality layers).

3.3.4 Combined Format-Compliant Header Transformation

�e format-compliant transformation of the di�erent pieces of information in the
packet headers can and should be combined.�e format compliance of the combined



3.3 format-compliant header protection 41

Cblk. size rate (bpp) layers perm.

64 × 64 3 32 10217

32 × 32 3 32 10938

64 × 64 3 12 1056

32 × 32 3 12 10257

64 × 64 0.25 32 1042

32 × 32 0.25 32 10146

Table 3.1: Number of possible format-compliant permutations of the inclusion information for
Lena (wlev=5)

format-compliant header encryption has been veri�ed experimentally by decoding
the encrypted �les with the reference implementations JasPer and jj2000. �e order
in which they are applied is arbitrary, only decoding has to apply the reverse transfor-
mations in the reverse order.

3.3.5 Visual Examples

In order to give an illustration of the extent of information contained in the header we
give some visual examples of reconstructed plaintext images for which only the packet
headers have been encrypted and the packet bodies have been le� unencrypted (this
setup can be used in a lightweight encryption scheme, we will discuss this point in
more detail in Chapter 4). As the number of coding passes has only very little impact
on the visual quality, we have combined their transformation with the transformation
of the CCP lengths. For the transformation of the number of leading zero bitplanes,
we used the (slightly adapted) algorithm for CCP and NCP. Examples for the second
option, adding random bytes from the key-stream, are given in the following chapter.
Figure 3.2 shows the reconstruction for large codeblocks and few quality layers, Figure
3.3 for medium-sized codeblocks and more quality layers and Figure 3.4 for very small
codeblocks. It can be observed that the impact of the transformations is increased
with the number of codeblocks, especially for inclusion information and leading zero
bitplanes (at least visually, PSNR, and in this case also ESS, fail to express the di�erence
in quality).
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(a) CCP lengths (& number of coding passes),
PSNR 11.9db, ESS 0.26

(b) Number of lzb, PSNR 12.8db, ESS 0.23

(c) Inclusion information, PSNR 16.95db, ESS
0.36

(d) All transformations, PSNR 9.2db, ESS 0.24

Figure 3.2: Visual examples of reconstructions with transformed packet headers for Lena, rate
1 bpp, cblk. size 64 × 64, 16 layers
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(a) CCP lengths (& number of coding passes),
PSNR 12.8db, ESS 0.26

(b) Number of lzb, PSNR 12.1db, ESS 0.32

(c) Inclusion information, PSNR 16.0db, ESS
0.31

(d) All transformations, PSNR 8.5db, ESS 0.27

Figure 3.3: Visual examples of reconstructions with transformed packet headers for Lena, rate
1 bpp, cblk. size 32 × 32, 32 layers
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(a) CCP Lengths (& number of coding passes),
PSNR 10.4db, ESS 0.27

(b) Number of lzb (shu�ed and redistributed),
PSNR 9.2db, ESS 0.27

(c) Inclusion information, PSNR 15.4db, ESS
0.26

(d) All transformations, PSNR 8.2db, ESS 0.23

Figure 3.4: Visual examples of reconstructions with transformed packet headers for Lena, rate
1 bpp, cblk. size 8 × 8, 32 layers
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(a) Number of LZB transformed, wlev=0 (b) Number of LZB transformed, wlev=1

Figure 3.5: Visualization of attack a�er LZB transformations (for wlev=0 and codeblock size
4 × 4)

3.4 evaluation

Generally it should be noted that the proposed key-dependent transformations use
permutations, which are principally vulnerable to known-plaintext attacks.�erefore,
the key for the transformation of header information should under no circumstances
be derived from the key that is used for the encryption of the packet bodies.

In the following, we evaluate the proposed scheme in the �rst of the three – very dif-
ferent – scenarios. Here, we look at format-compliant packet body encryption schemes
that aim at providing full con�dentiality. In this scenario we deal with a situation in
which all packet body data are encrypted. �e motivation to use header protection in
this scenario is to avoid the creation of a �ngerprint.
�e second scenario is format-compliant partial / selective encryption that aims

at a reduction in computational complexity. �e third scenario is jpeg2000 header
protection as a lightweight transparent encryption scheme on it own. Both of these
scenarios are discussed in the next chapter.
�e visual information contained in the packet header as the number of leading

zero bitplanes is a severe security problem for applications that require full con�den-
tiality, as this information is preserved in the encrypted bitstream a�er packet body
encryption.�e proposed header protection scheme solves this security problem: the
LZB information is completely destroyed by the transformation. Figure 3.5 shows the
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same LZB-images for Lena as Figure 3.1, but with the headers transformed. As can be
seen, no visual content is discernible anymore.

As discussed in Section 3.2, the information contained in the header information
can also be used as a distinctive �ngerprint. �is �ngerprint remains even if all of
the packet body data is encrypted. Figure 3.6 illustrates this point. We have tested 175
images, all taken with the same camera model and cropped to 512 × 512 pixels at 8 bpp.
All of the images are encoded with JPEG2000 at a bitrate of 0.25 bpp with 32 quality
layers and a codeblock size of 32 × 32. �e header information in all the packets of
each image is recorded. We then compare the header information of a single image
from the set to the header information of each other image in the set. �e ratio of
the number of items in the header information that have the same value (at the same
position) to the total number of items is recorded. In the plots, the ordinate shows
this value for each class of header information and each image. Note that for CCP
lengths and number of coding passes we ignore positions in the header for which the
information is 0 for both the reference and comparison image. Figure 3.6 shows the
similarity in header information of one image (# 23) with the other images. It can
be seen that the similarity measures to other images are con�ned within a certain
range of variance. It is not surprising to see that the similarity of the CCP-lengths is
very small for di�ering images. Interestingly, the number of corresponding items in
the inclusion information is very large. �is is due to the fact that for the inclusion
information we also counted all the inclusions of type NI which at this bitrate occur
a lot. �e variance of the similarity of the inclusion information is con�ned relatively
strictly and therefore also the inclusion information may serve as a discriminating
feature.

Obviously the situation will be di�erent if the reference image is re-encoded with
di�erent compression parameter settings. But as this illustration shows, any class of
header information can be used to link a known JPEG2000 plaintext to a packet-body
encrypted ciphertext. For many applications that require full con�dentiality such a
leak of information constitutes a major compromise of security.
�e proposed transformations can be used to prevent the creation of a �ngerprint

which uses the details of the packet headers, such as proposed by Liu and Mandal
(2001), Descampe et al. (2006) and Tabesh et al. (2005). Figure 3.7 shows the same
comparison as Figure 3.6, but this time with the header information of the reference
image transformed. It can be observed that the proposed transformation methods
obstruct the identi�cation of the image in the set of 175 images: the transformed header
bears no similarity to the original header. Only for the codeblock lengths a minute
trace remains. �is is due to packets of the lowest two resolutions which only contain
a single codeblock each. For the used compression settings no transformation was
possible for these packets.
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Figure 3.6: Comparison of similarity in header information for 175 images

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180

S
im

ila
rit

y 
in

 H
ea

de
r I

nf
or

m
at

io
n

Image #

Inclusion Info
Skipped LZB-planes

CCP lengths
No. of Coding Passes

Figure 3.7: Comparison of similarity in header information for transformed header informa-
tion
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Note that as the proposed scheme preserves packet boundaries and does not merge
or split the data in the packets, some information does of course remain. A �ngerprint
that uses the size of the individual packets can still be created. Furthermore, the num-
ber of inclusions of each inclusion type stays the same as in the plaintext image. �is
information could be used to obtain a �ngerprint, albeit a much weaker one than if the
order of inclusions was known. If packet boundaries were crossed and furthermore
inclusion information was split up among codeblocks, a possible �ngerprint would
be further weakened. However, the downside would be a loss in semantics for the
encrypted version (which would make rescaling more unreliable, for example). �e
highly discriminative �ngerprints based on the detailed packet header information
are successfully prevented.

3.5 conclusion

In this chapter, we have proposed a fully format-compliant protection scheme for
jpeg2000 packet headers. �e proposed scheme can be used to con�ne the infor-
mation leakage that is present in all encryption scheme that selectively encrypt packet
body data. �e visual information contained in the jpeg2000 packet header is de-
stroyed. Furthermore, the strong �ngerprint based on the details of the packet headers
is prevented by the scheme. As the scheme preserves packet boundaries, �ngerprints
based on more general information like overall packet lengths are not destroyed. How-
ever, if format-compliance is desired in a sense that allows to perform tasks like rate
adaption in the encrypted domain, the information needed for these tasks will always
need to be preserved to some extent. �erefore, while the proposed scheme signi�-
cantly improves the security of format-compliant encryption schemes that rely on the
encryption of packet body data, the combined schemes can never be as secure as full
encryption (but it can improve the content security).�e straightforward approach to
encrypt the full bitstream with a cryptographically strong cipher is and remains the
only option that is secure in the strong cryptographic sense.



4APPLICATIONS OF JPEG2000 HEADER PROTECTION

In the last chapter we introduced a method to protect the jpeg2000 packet headers
and showed how it can be used to restore security of format-compliant packet-body-
based encryption schemes. In this chapter (cf. Engel et al., 2007b,c) we will investigate
the utility of the proposed header protection scheme with respect to two other appli-
cation scenarios.

First, we look at if and how header protection can improve partial / selective packet
body encryption, where full con�dentiality is not the goal, but rather a reduction in
computational complexity. As portions of the data remain in plaintext, partial / selec-
tive encryption schemes are not suited for full con�dentiality (even if the data cannot
be used to create a visual reconstruction, they can always be used as a �ngerprint).�e
aim here is to introduce su�cient reduction of the visual quality to prevent a pleasant
viewing experience (i.e., su�cient encryption). Traditional approaches encrypt packet
bodies in a format-compliant way.

Second, we will investigate to what extent header protection is useful on its own
in terms for providing transparent encryption. �e resulting encryption scheme is
lightweight and necessarily transparent, but comes at very low cost.

4.1 improvement of partial / selective packet body encryption

As has been detailed before, the aim of partial / selective encryption is not to provide
full con�dentiality. For schemes that do not strive for providing full con�dentiality in-
formation leakage in the header is not problematic, as long as the information remains
reasonably secure. �erefore, in this case we employ header protection not to restore
full security, but to counteract known attacks and possibly lower computational de-
mands.

Before we go into detail, we need to look at the computational demands of the
header transformations compared to packet body encryption. As the array-based per-
mutations are all of low complexity, the header transformations are computationally
cheap. �e necessary operations in each substep are the generation of a random num-
ber and exchanging the places of two items in the array. �e cipher used for packet
body encryption will usually be computationally more demanding. Furthermore, for

49
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Cblk. Size Layers Packet Header Packet Body

64 × 64 16 0.84% 99.02%
64 × 64 32 1.15% 98.71%
32 × 32 32 2.97% 96.98 %
16 × 16 32 7.94% 91.94%

Table 4.1: Distribution of data between packet header and packet body in percent of the total
bitstream

practical compression settings the ratio of packet header data to packet body data is
very small, as illustrated by Table 4.1 for the Lena image, which shows the percent-
age of packet body data and packet header data, respectively, to the size of the total
bitstream (compression at full rate, nearly lossless).

Typical partial / selective encryption schemes for jpeg2000, like the one proposed
by Norcen and Uhl (2003), encrypt a certain percentage of the packet body data, start-
ing from the beginning of the bitstream.�is can be done either in layer or resolution
progression mode (for a comparison see Norcen and Uhl (2003)). Even if small por-
tions of the bitstream are encrypted, high distortion in visual quality can be achieved.

A straightforward attack is discussed by Norcen and Uhl (2003): �e concealment
attack discards all encrypted parts of the bitstream.�e authors simulate the attack by
using JPEG2000 error concealment. During encoding, an error resilience segmenta-
tion symbol is inserted at the end of each bitplane. If the decoder cannot decode the
segmentation symbol, an error has been detected. We have adapted the error conceal-
ment to handle encrypted bitstreams: If the segmentation symbol cannot be decoded
correctly, then the a�ected codeblock contribution is discarded as a whole (“zero con-
cealment”).�e attack lowers the level of reduction in visual quality for the encryption
scheme.�is is illustrated by Figure 4.1, for which 1% of the packet body data has been
encrypted: (a) shows the direct reconstruction without error concealment. It can be
seen that there is a high degree of visual distortion. However, as (b) shows, the zero
concealment achieves a reconstruction that is of a higher visual quality.
�e concealment attack can be completely prevented if, apart from a part of the

packet body data, all packet headers are encrypted. �e header transformation of a
packet causes the error concealment procedure to regard the packet body data as er-
roneous and discard it. Figure 4.2 shows the comparison between packet body only
encryption and packet body encryption combined with full packet header encryption
(for Lena at a compression rate of 0.25 bpp). As the peak-signal-to-noise-ratio (PSNR)
is not suitable as a measure for images of such low quality (see Section 1.3), we have
used the edge similarity score (ESS) proposed by Mao and Wu (2004).
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(a) direct reconstruction (b) zero concealment

Figure 4.1: 1% of body data encrypted

It can be seen that for low encryption rates the partial packet body approach pre-
serves a lot of edge information. �e visual examples for di�erent percentages of en-
crypted packet bodies that are shown in Figures 4.3(a) to 4.3(d) support the ESS scores.
If, however, the packet body approach is combined with full packet header protection,
then the edge information disappears from the reconstruction even for very small
packet body encryption rates, and a high minimum level of distortion can be guar-
anteed. Some visual examples are shown in Figure 4.4. It can be seen that compared
to the packet body only approach, the additional packet header encryption prevents
both, direct reconstruction and zero concealment attacks.

Of course, this comes at the cost of encrypting all headers. But, as we discussed
above, for practical coding settings, the size of the packet header data will be only a
small fraction of the packet body data. So, rather than encrypting a larger portion
of the packet body data, it is advisable for most compression settings to encrypt all
packet headers, as for this approach the costs are low and the distortion is high. As an
example we take the 512×512 pixel Lena image at 0.25 bpp, 32 quality layers and a code-
block size of 64 × 64 pixels. In this case, the packet header data is 3.5% and the body
data is 94.7% of the total bitstream (the rest is main header data). As Figure 4.2 illus-
trates, the distortion introduced by 1% packet body encryption and full packet header
encryption is comparable to the distortion introduced by approximately 45% packet
body encryption. Encrypting 45% of the packet body data in these settings amounts
to encrypting 42% of the total bitstream. �e combined approach of encrypting 1% of
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Figure 4.2: ESS comparison of concealment attack with encrypted header and without en-
crypted header

the body data and transforming all header data amounts to dealing with data that cor-
responds to 4.4% of the total bitstream (the corresponding reconstructions are shown
in Figure 4.4).

In combination with the encryption of a small portion of the packet body data, the
packet header protection scheme can be used in applications that do not strive for full
con�dentiality. �e overall number of possible transformations is too high for a suc-
cessful brute-force attack. Only the packets in the lowest resolutions have few enough
codeblocks to make trying all possible headers an option. So while an attacker could
gain an idea of the visual content by attacking the packets of the lower resolutions for
which only the packet headers but not the packet bodies have been protected, the full
visual quality version of the original content remains protected.�is is also true in the
presence of a preview image that could have been obtained from side information. As
Said (2005) points out, many partial encryption schemes are vulnerable to low com-
plexity attacks based on the availability of such side information. In the context of
the proposed scheme, a low quality preview image cannot be used to reconstruct the
jpeg2000 packet header information. We have also found no way to reconstruct the
packet header from the unencrypted packet body data.
�e question arises whether, as the header transformation guarantees a high level of

reduction in visual quality, it would be a good approach to only use packet header pro-
tection for the whole bitstream and leave the packet bodies in plaintext. Because the
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lower resolutions in the bitstream only have a small number of possible transforma-
tions, for practical coding settings, the lowest resolution will o�en only be constituted
of a single codeblock. In this case, the packets of this resolution will invariably only
have a single entry of inclusion information, CCP length, LZB information and num-
ber of truncation points. �erefore, a basic visual quality will always remain if only
header encryption is employed. For high visual distortion it is therefore inevitable to
use packet body based encryption at the beginning of the bitstream. However header
encryption can clearly be used to provide transparent encryption, a case which we
discuss in the following section.

4.2 transparent jpeg2000 encryption with packet header pro-
tection

In this section we investigate the utility of header encryption if it is not used in combi-
nation with another (packet-body-based) method, but on its own for providing trans-
parent encryption. In this case, for encryption the transformations of the packet head-
ers are applied to the jpeg2000-coded source image, but this time the packet body
data is le� in plaintext. Without the header data the packet body data cannot be in-
terpreted correctly. Especially the higher resolutions o�er a wide range of di�erent
permutations preventing the decoding of the full quality image (in the sense of mak-
ing decoding computationally too expensive; the proposed encryption method is def-
initely lightweight). For the lower resolutions the header data is le� in plaintext to
provide a preview image. Control over the extent of transparency can be exerted by
choosing at which point in the jpeg2000-codestream to start with the header trans-
formations.

Employing the set of header transformations for transparent encryption promises
some advantages. Apart from low computational complexity and a fully format-
compliant ciphertext, the proposed method has several bene�cial properties, e.g., it
allows to perform tasks such as rate-adaptation and visual hashing in the encrypted
domain. We evaluate the security of the proposed approach and discuss possible at-
tacks. �e proposed approach succeeds in protecting the full-quality version of the
visual content reasonably well, especially considering its low computational demands.

We have already given some visual examples of the impact of header protection on
the (subjective) visual quality of the image. In Figures 4.5 and 4.6 we give some more
example to illustrate the e�ectiveness of the scheme for transparent encryption. �e
test image1 is shown in Figure 4.5(a). It is an 8 bpp grayscale image of 1024×1024 pixels.
For the illustration we used a bitrate of 1 bpp, a codeblock size of 32×32 and 32 quality
layers. For the transformation of the number of leading zero bitplanes, we used the

1Courtesy of Jumeirah, http://www.jumeirah.com/.

http://www.jumeirah.com/
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option of adding random bytes from the key-stream (other than in the last chapter,
where we used the shu�ing algorithm).

Figures 4.5(b) to 4.5(d) show direct reconstructions of the image with a single piece
of header information encrypted (with header transformation for the encrypted im-
age starting at the �rst resolution). �e impact of transforming the di�erent parts
of the header information can be observed. Figures 4.6(a) to 4.6(c) show the direct
reconstruction for all header transformations combined, with the start of the trans-
formation set to a di�erent resolution level for each �gure. It can be seen that if the
transformations start at a higher resolution level, lesser distortion is introduced. It
should be noted that the direct reconstructions do not represent the preview images,
but rather the result of reconstructing all of the available (transformed) data (in a way,
it is the attacker’s view). In order to get a preview image, the portion of the bitstream
that has not been distorted needs to be decoded. An actual preview image is shown in
Figure 4.6(d). �is preview image was taken from a bitstream where the transforma-
tions start at resolution 3, so the preview image is equal to resolution 2 of the original
image (i.e., the third resolution contained in the bitstream).

4.2.1 E�ciency

�e transformations used in the proposed scheme are computationally cheap. �e
array-based permutations used in the transformations are all of linear complexity.�e
necessary operations in each substep are the generation of a random number and ex-
changing the places of two items in the array.�e size of the packet headers compared
to the packet bodies depend on the compression settings. Similar to the table for Lena
in the last section, Table 4.2 shows the number of header and body bytes and the ratio
of header bytes to the total number of bytes in the bitstream for the test image shown
in 4.5(a) of 1024 × 1024 pixels and at a compression rate of 1 bpp.

Cblk. Size Layers Header Bytes Body Bytes Ratio

64 × 64 16 1823 129072 1.4%
32 × 32 32 4603 126283 3.5%
16 × 16 32 11379 119510 8.5%
8 × 8 32 25748 105176 18.6%

Table 4.2: Ratio of header bytes to total number of bytes in the bitstream for di�erent compres-
sion settings))

As can be seen, the size of the headers increases with the number of codeblocks
and the number of layers. With more information in the headers to be permuted, the
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scheme needs more computational complexity, but also gives more security, as the
number of possible transformations increases. �e proposed scheme is signi�cantly
more e�cient than the straightforward approach that needs to encrypt the major part
of the packet data.

4.2.2 Security

�e complexity of a brute-force attack that tries to obtain the full quality version of
the image depends on the number of possible transformations. For practical settings
the obtained number of possible combined transformation will be very high (2987 for
the inclusion information alone in the example used above). However, the complexity
of a brute-force attack can only give an upper-bound for security, o�en there will be
easier attacks. �is is especially true for partial encryption.
�e proposed key-dependent transformations use permutations, which are princi-

pally vulnerable to known-plaintext attacks. Another security threat for the proposed
scheme is the fact that an attacker can iteratively try to get a better quality than allowed.
�e attacker can make a guess on the header information (using the information that
is preserved by the encryption, e.g., the types of inclusions in the packet), and then
iteratively perform systematic alterations on the header information and reconstruct
an image. In each iteration, if the quality improves compared to the previous construc-
tion, the alteration is accepted, otherwise the previous state is restored.
�e problem for the attacker is that there is no measure with which to assess the

quality of the obtained image (apart from using a human observer). �e demands for
an attack increase with the number of resolutions. �e lower resolutions will have sig-
ni�cantly fewer packets than the higher resolutions, therefore an attack will be easier
(and possibly be performable by a human observer) on the lower resolutions, while
the protection of the higher resolutions is stronger. However, it should be taken into
account that obtaining a version of better visual quality than the preview image is
possible without too much e�ort, and (compression) settings should be chosen ac-
cordingly.

Full con�dentiality, i.e., no preview image at all and high security for the visual
data, cannot be provided by the proposed scheme, even if the packet body data for the
lowest resolution is encrypted.�is is because the protection for the lower resolutions
is signi�cantly weaker than the protection of the higher resolutions, and it will almost
always be possible for an attacker to get a rough estimate of the visual content from
these lower resolutions.
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4.2.3 Applicability

Apart from the advantages that are normally gained with format-compliant encryp-
tion, the fact that the packet body data remains in plaintext also enables techniques
that can be used for indexing, retrieval and classi�cation. For example, visual hashing
Norcen and Uhl (2004b) can be applied without the need to decrypt.

Generally, applications that use the packet body data for classi�cation, indexing
and retrieval will work with the proposed scheme. Also, schemes that use general in-
formation from the header will work. For example, the scheme proposed by Tabesh
et al. (2005) uses the number of bytes spent on each subband as a texture classi�ca-
tion tool. Although this data is retrieved from the header, this scheme will still work
with encrypted headers, as the sum of all codeblock contributions is preserved by the
proposed encryption scheme. �e possibility to perform these tasks in the encrypted
domain can be an important feature, which the packet-body-based techniques cannot
provide.

On the other hand, classi�cation, indexing and retrieval techniques based on de-
tailed features of the packet header can be disabled by the proposed scheme. For ex-
ample, the approach by Liu and Mandal (2001), which uses the number of leading
zero bitplanes as a �ngerprint, can be disabled, just as the approach by Descampe et al.
(2006) which uses a set of classi�ers based on the packet header and packet body data.
�e proposed transparent encryption scheme o�ers two advantages: e�ciency and

format-compliance. As only the header information needs to be encrypted, the pro-
posed scheme has low computational demands, even compared to other partial en-
cryption schemes. Full format-compliance allows to perform various tasks in the en-
crypted domain, including indexing, classi�cation and retrieval techniques. �e qual-
ity of a preview image for transparent encryption can be controlled quite precisely
by choosing an appropriate point in the sequence of packets where to start header
transformation.

As regards security, the scheme de�nitely and expressly has to be denoted light-
weight. �e use of permutations makes it vulnerable to known-plaintext attacks, iter-
ative attacks can obtain higher quality images than the preview image. However, the
full quality version remains reasonably secure, considering the low e�ort used for en-
cryption.

4.3 conclusion

In the context of encryption schemes that aim at su�cient distortion of visual quality
rather than at providing full con�dentiality, we have shown that the proposed header
protection scheme can help to improve the level of guaranteed visual distortion.
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We have also shown that if applied on its own the proposed method can be used as
a lightweight transparent encryption scheme that provides reasonable protection of
the full quality visual data at very low computational cost.
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(a) 1% of body data encrypted, PSNR 13.7, ESS
0.57

(b) 10% of body data encrypted, PSNR 12.9, ESS
0.4

(c) 60% of body data encrypted, PSNR 12.6, ESS
0.003

(d) 85% of body data encrypted, PSNR 12.5, ESS
0

Figure 4.3: Visual examples of packet body only encryption (reconstructions use zero conceal-
ment, histogram equalized for (c) and (d))
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(a) direct reconstruction (b) zero concealment

Figure 4.4: 1% of body data encrypted plus all packet headers transformed
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(a) Test image (b) CCP lengths (& number of coding
passes), PSNR 9.7 dB

(c) Number of lzb, PSNR 10.6 dB (d) Inclusion information, PSNR 12.1
dB

Figure 4.5: Test image & visual examples of reconstructions with transformed packet headers:
1 bpp, cblk. size 32 × 32, 32 layers
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(a) Transformations start at resolution 0,
PSNR 7.2 dB

(b) Transformations start at resolution 2,
PSNR 9.7 dB

(c) Transformations start at resolution 3,
PSNR 9.8 dB

(d) Preview image for 4.6(c) (yields resolu-
tion 2), PSNR 10.2 dB

Figure 4.6: Visual examples of reconstructions for all transformations and di�erent levels of
transparency
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We shi� the focus from bitstream-oriented methods to compression-integrated meth-
ods in the two following parts. In this �rst chapter (cf. Engel and Uhl, 2005a), we
present a lightweight compression-integrated transparent encryption scheme for
jpeg2000 that is based on and integrated into the wavelet li�ing scheme. Parameter-
ized biorthogonal �lters are constructed based on a key.�e proposed method comes
at extremely low computational cost and provides natural support for transparent en-
cryption.

A wavelet parameterization based on the li�ing scheme (Sweldens, 1996; Daube-
chies and Sweldens, 1998) is used to produce a family of biorthogonal wavelet �l-
ters and construct a key from the parameters. �e employed �lters signi�cantly im-
prove the compression performance as compared to previously suggested parameter-
ization types. Additionally, we increase the size of the available keyspace by using se-
cret non-stationary and inhomogeneous wavelet decompositions.�is method, which
produces a bitstream compliant to jpeg2000 Part 2, can be regarded as a special kind
of header encryption since only the de�nitions of the �lters used during wavelet de-
composition need to be encrypted, the data itself (i.e., packet bodies, packet headers)
remain in plaintext. As a consequence, only minimal computational encryption e�ort
is required. In terms of realizing transparent encryption, the proposed approach pro-
duces bitstreams from which images of degraded visual quality can be decoded with
any decoder that is compliant to jpeg2000 Part 1. In order to get the full quality ver-
sion, the correct key has to be obtained and a codec compliant to jpeg2000 Part 2 has
to be used for decoding.

We discuss the advantages and disadvantages of this encryption scheme with re-
spect to keyspace, computational demands, compression performance, and security.

5.1 related work

Recent work by Köckerbauer et al. (2004) assesses the feasibility of using parame-
terized orthogonal �lters (adapted from Schneid and Pittner (1993)) for lightweight
encryption within jpeg2000. �e compression performance of the obtained orthog-
onal �lters remains markedly below the established biorthogonal �lters and varies

65
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considerably over the range of parameter values. To overcome the latter de�ciency, a
heuristic is proposed to avoid �lters with low compression performance. Uhl and Pom-
mer (2004) use a parameterization of biorthogonal �lters (as proposed by Hartenstein
(1997)) which yields some �lters that can compete with the established �lters. Still the
parameterization is ill-suited for the aforementioned purpose as the variation of the
obtained �lters with regard to their compression performance is even worse than in
the orthogonal case, with the worst �lters going down below 5 dB in a PSNR compari-
son. In all of the above approaches, the algorithm for parameterization of the wavelet
�lters introduces signi�cant computational overhead. Furthermore, with their focus
on providing full con�dentiality rather than realizing transparent encryption they dif-
fer from the approach presented here.

Di�erent parameterization schemes have been employed for various security tech-
niques in a number of wavelet-based codecs. Apart from lightweight encryption,
which we discuss below, wavelet parameterizations are also used in other areas of
multimedia security: For increasing the security of watermarking schemes, di�erent
parameterizations have been investigated by Meerwald and Uhl (2001), Dietl et al.
(2002, 2003a,b), Brachtl et al. (2004) and Huang et al. (2004). �e li�ing scheme has
been used in constructing a watermarking method for jpeg2000 (Seo et al., 2001).
Meixner and Uhl (2005) aim at increasing security for visual hashes. Laimer and Uhl
(2008) use the same li�ing parameterization that we use here to construct a secure
key-dependent hash in jpeg2000 (based on our modi�ed version of jj2000).

5.2 parameterized wavelet lifting in jpeg2000

In our approach we use a li�ing parameterization of the well-known CDF 9/7 wavelet
�lter that is presented by Zhong and Jiao (2001) and is based on work by Daubechies
and Sweldens (1998). �e authors use the construction theorem presented by Cohen
et al. (1992) to formulate conditions for the lowpass and highpass �lter taps, h and g,
respectively,

h0 + 2
4
∑
n=1

hn =
√

2, g0 + 2
3
∑
n=1

gn =
√

2 (5.1)

h0 + 2
4
∑
n=1

(−1)nhn = 0 (5.2)

g0 + 2
3
∑
n=1

(−1)ngn = 0 (5.3)

2
3
∑
n=1

n2(−1)ngn = 0. (5.4)
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A possible transformation of the CDF 9/7 wavelet into li�ing steps is presented in
Daubechies and Sweldens (1998).

s(0)n = x2n (5.5)
d(0)n = x2n+1 (5.6)
d(1)n = d(0)n + α(s(0)n + s(0)n+1) (5.7)
s(1)n = s(0)n + β(d(1)n + d(1)n−1) (5.8)
d(2)n = d(1)n + γ(s(1)n + s(1)n+1) (5.9)
s(2)n = s(1)n + δ(d(2)n + d(2)n−1) (5.10)
sn = ζs(2)n (5.11)
dn = d(2)n /ζ (5.12)

�ese li�ing steps can be used to express the �lter taps of h and g as functions of the
four parameters α, β, γ, δ and a scaling factor ζ . By combining these functions with
conditions (5.1)-(5.4), Zhong and Jiao (2001) derive a parameterization that is only
dependent on a single parameter α.

β = −1
4(1+2α)2 (5.13)

γ = −1−4α−4α2

1+4α (5.14)
δ = 1

16(4 − 2+4α
(1+2α)4 + 1−8α

(1+2α)2 ) (5.15)

ζ = 2
√

2(1+2α)
1+4α (5.16)

Figure 5.1 shows examples of parameterized biorthogonal �lter taps. By setting α
to the value originally proposed by Daubechies and Sweldens (1998), −1.58613 . . ., the
original 9/7 wavelet is obtained. As the parameterization is based on the li�ing scheme,
it comes at virtually no computational cost. �e only computations needed are the
evaluations of the four functions for the scaling factor and the parameters other than α,
and the calculation of the lowpass and highpass synthesis �lter taps for normalization.

Since one of the stated requirements is the retention of compression performance
that is comparable to the performance of the original 9/7 wavelet, we �rst assess the
potential range that can be used for α. As illustrated by Figure 5.2, we found that with
the exception of the open interval ] − 1.4, 0.2[ the �lters produced by the 9/7 parame-
terization all achieve compression results that are competitive with the original CDF
9/7 wavelet.�e �lters within the interval ]−1.4, 0.2[ are not stable and do not achieve
highpass and lowpass separation. �erefore they are not suitable for compression, in-
dependent of the visual data to be transformed.

Figure 5.3 shows the compression performance for parameterized �lters in terms
of the LSS/ESS measure. For the evaluation of the compression performance of the
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Figure 5.1: Examples of parameterized biorthogonal wavelet �lter taps
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Figure 5.2: Compression performance (PSNR) of parameterized 9/7 wavelet �lters for “Lena”,
rate 0.1 bpp

parameterized wavelet �lters both measures behave in a similar way to the PSNR mea-
sure. In the next section we employ the measure for the evaluation of attacks.

5.3 keyspace

�e potential range for α is further restricted by the fact that in both positive and nega-
tive direction the variation of the produced �lters drops rapidly with higher α. Figure
5.4 illustrates the problem for encryption. If the source image has been encrypted with
a small absolute value for α, the PSNR curve of the reconstructed image with di�erent
parameters shows a steep peak for the correct value. Obviously an isolated peak is a
favorable situation for encryption as only the correct parameter value will yield the
full quality image, while even with small deviation the quality is reduced considerably.
With increasing absolute parameter values the peak �attens, making larger absolute
values for α increasingly less useful for encryption. �ese results are in contrast to
the results reported by Huang et al. (2004), who use the same parameterized li�ing
scheme for watermark security and report that even a minute change in the value of
α makes correct watermark detection virtually impossible.
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Figure 5.3: Compression performance (LSS/ESS) of parameterized 9/7 wavelet �lters for
“Lena”, rate 0.1 bpp

In consideration of the transparent encryption scheme, the reduction in quality
should not occur as high frequency distortions that alter the image beyond recogni-
tion. Figures 5.5 and 5.6 show the image quality for the same attacks as shown in the
previous �gure, but measured in LSS and ESS, respectively. Whereas the graph for LSS
is very similar to that of PSNR, it can be seen that the peaks for ESS are less steep than
those for LSS and PSNR. �is means that distortion is introduced in terms of loss of
luminance information rather than loss of structural (i.e., edge) information. Images
obtained with a wrong parameter still contain most of the structure of the original
image, but lack the correct luminance information. �is interpretation is congruent
with the visual impression, as illustrated by Figure 5.7, which shows some examples
of reconstructed images for “Lena” encrypted with parameter α = 2.5: (a) shows the
image reconstructed with the correct parameter, (b), (c) and (d) show the image recon-
structed with incorrect parameters. For (b) and (c), both of which are reconstructed
with a parameter that has the same sign as the parameter used for encryption, it can
be seen that, while there is a de�nite loss of luminance information, much structural
information is preserved. �e reconstructed image shown in (d) illustrates the fact
that for images encrypted with a negative parameter value, image reconstruction with
a positive parameter value leads to severe distortion. Still, the little similarity to the
original image that remains is structural.
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Figure 5.4: Attacks on “Lena” (PSNR), rate 0.1 bpp
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Figure 5.5: Attacks on “Lena” (LSS), rate 0.1 bpp
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Figure 5.6: Attacks on “Lena” (ESS), rate 0.1 bpp

In order to �nd a sensible range for α that uses as many values as possible while
keeping vulnerability of individual values at a minimum, we introduce a measure for
the usability of values of α. In the application setting described in the introduction, it
is acceptable to gain access to the visual data with a wrong key, as long as the obtained
version is su�ciently degraded in quality. In our test runs, we assume that it is accept-
able if the quality of an image decoded with the wrong parameter is below 80% of
the PSNR value of the image reconstructed with the correct key. Figure 5.8 shows an
evaluation of the parameter space, in which for each α used for encoding, we consider
decoding values from the direct neighborhood in the interval [−6 + α, α + 6] (with
a sampling step size of 0.1). For all values in this interval for which the quality loss is
less than 20%, the PSNR value above the 80% level of the correct value is added to the
unweighted measure, which is plotted by the �rst line.�e second line shows the same
measure, but with the contributions of individual decoding values weighted by their
distance from the correct value. While the unweighted measure re�ects the overall
performance of a single value, the weighted measure also re�ects how fast the PSNR
quality degenerates with the distance from the correct value. To a certain degree, the
choice for the range of α to be used for encoding will depend on the security require-
ments of the actual application. In our test runs we use the interval [−6, 6], which, as
illustrated by Figure 5.8, comprises most of the usable keys.
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(a) Reconstruction with correct αdec = −2.5
(PSNR 38dB, LSS 0.997, ESS 0.95)

(b) Reconstruction with αdec = −1.58613 (PSNR
14.7dB, LSS -1.25, ESS 0.46)

(c) Reconstruction with αdec = −6.0 (PSNR
12.5dB, LSS -1.73, ESS 0.37)

(d) Reconstruction with αdec = 2.5 (PSNR 9.3dB,
LSS -2.51, ESS 0.1)

Figure 5.7: Reconstructed images and quality measure results for “Lena” (αenc = −2.5), rate 1
bpp
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Figure 5.8: Accumulated quality measure of parameterized 9/7 wavelet �lters, “Lena”, rate 0.1
bpp

As the employed measure is dependent on the properties of the �lter rather than on
the visual data to be encrypted, we can safely use this interval regardless of the source
image. Considering the earlier evaluation of compression performance, we thus get
a range of [−6,−1.4] ∪ [0.2, 6] that can be used for encryption. As parameters in the
immediate vicinity of the value used for encoding still yield more than the desired
quality, a large enough stepsize between the discrete values of α has to be chosen.

Altogether, the obtained keyspace in one dimension is quite restricted and hardly
suitable for real-life application. In order to enlarge the keyspace, we use di�erent pa-
rameters for the horizontal and the vertical wavelet decomposition on di�erent decom-
position levels. �ese techniques have been called “non-stationary” (varying on each
decomposition level) and “inhomogeneous” (varying in vertical and horizontal orien-
tation) in the context of adaptive compression (Uhl, 1996). Pommer and Uhl (2001)
use this idea without parameterization for selective encryption. Neither of these meth-
ods results in a deterioration of compression performance. Similar to the 1D case we
get steeper peaks for smaller absolute values. In order to show that non-stationary
and inhomogeneous variations of parameters are principally useful, we present the
results of test runs with relatively small values for α. For the inhomogeneous case,
Figure 5.9 shows the results for encoding values of αhor = −1.6 and αver = −2.1 on all
decomposition levels and a step size of 0.1 in the interval [−6, 6] in each direction for
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decoding. It can be seen that with one correct parameter, results of degraded quality
can be obtained, but the full quality version can only be accessed with both param-
eters correct. Figure 5.10 shows the situation for non-stationary variation of α. �e
sequence of encoding parameters is shown in the caption of each plot. For decoding,
we le� all parameters on the correct position and only varied the parameter α for lev-
els 1, 3, and 5, respectively, with a stepsize of 0.1 in the interval [−6, 6]. Surprisingly,
there is little di�erence between a variation of parameters on a low, medium or high
subband. �e fact that for all levels a clear peak is produced encourages the use of
non-stationary variation. In both, inhomogeneous and non-stationary variation, im-
ages reconstructed with wrong parameters retain a certain quality. �is is favorable
for transparent encryption. However, the sign chosen for encoding has an important
impact: if the image was encoded using a negative value for α, then decoding it with a
positive value yields worse quality than any negative value. It depends on the require-
ments of the application, if decoding with an arbitrary parameter, especially the pa-
rameter for the original CDF 9/7 �lter, is required to always produce an image above
a minimum quality level. If this is the case, the parameter range may have to be re-
stricted to negative values of α to ensure decodability with su�cient quality when
using a decoder compliant with jpeg2000 Part I.
�e combination of non-stationary and inhomogeneous variation of α leads to 2l

parameters from which the keyspace can be constructed, where l is the number of de-
composition levels. Depending on the minimum acceptable quality degradation, the
number of partitions p for each of these parameters can be chosen. �e size s of the
resulting keyspace is p2l . Reversely, the size of the used keys is log2(s)bit. For example,
using a two-digit hexadecimal number to describe each parameter, we could construct
an 80 bit key for a 5 level wavelet decomposition. �e resulting discretization of the
range of each individual parameter into 256 partitions leads to a step size of approx-
imately 0.04 and largely avoids full quality results for similar values. However, near
the edges of the parameter range, we found that this partitioning tends to be too �ne.
Possible solutions are a non-uniform partitioning, a restriction in parameter space, a
higher number of wavelet decomposition levels, or the use of smaller partitions (a sin-
gle hexadecimal number still yields 40 bit keys, inducing a step size of approximately
0.65).

5.4 security

Figure 5.11 shows the result of a brute force attack that uses three partitions for each pa-
rameter. �e encryption was done using a key with two decimal digits per parameter,
the compression result of the correct key was added for reference. For the attack shown
in this �gure, a key with individual parameters of low absolute values was chosen. For



76 parameterized wavelet filters

 5

 10

 15

 20

 25

 30

 35

-6
-4

-2
 0

 2
 4

 6-6
-4

-2
 0

 2
 4

 6

 5

 10

 15

 20

 25

 30

 35

PSNR (grid, norm 4)

αhor

αver

PSNR (grid, norm 4)

Figure 5.9: Inhomogeneous variation of li�ing parameters for “Lena”, rate 1 bpp

keys that contain more parameters at the border of the range, similar problems occur
as in the 1D case and near-hits achieve high PSNR results. Figure 5.12 shows such a
case for a bitrate of 1 bpp. �e used key contains values near the border of the range,
most notably αhor,2 = −4.1, αver,3 = 4.5, αhor,5 = 4.3 and αhor,5 = −5.1. As compared to
the previous key, the PSNR of the attacks is signi�cantly higher over the whole range,
and the quality of the reconstructed images for key values with many near-hits for the
individual parameters (the last third in Figure 5.12) is just below the correct key.

An obvious problem with the presented encryption scheme is that the parameters
that make up the key are independent and the searches for the right individual pa-
rameter values are separable. Keys that are congruent with the secret key in some
positions yield degraded versions of the original visual data. �is makes the scheme
very vulnerable to known plain text attacks. If the target visual content is not known
in plain text, the attack of the full quality version of the source image is more di�-
cult. A conceivable attack is the use of a heuristic search that assesses the “perceptual
quality” of reconstructed versions to �nd the parameters one by one in the relatively
small 1D parameter space. A possible choice for such a heuristics is a measure for the
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Figure 5.10: Non-stationary variation of li�ing parameters for “Lena”, rate 0.1 bpp
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Figure 5.11: Brute force attack on “Lena”, rate 0.1 bpp
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Figure 5.12: Brute force attack on “Lena”, rate 1 bpp

smoothness of the reconstructed image, which has been reported to yield expedient at-
tacks on images encrypted using parameterized orthogonal �lters (Pommer and Uhl,
2003). �e implicit assumption of such an attack is that there is a strong correlation
between PSNR and smoothness, and ideally a coincidence of a single maximum in
PSNR with a single maximum in smoothness.�is being the case would make a num-
ber of attacks based on this heuristics feasible, ranging from naive stepwise search for
steepest descent to elaborate gradient techniques. Even a simple attack based on such
a heuristics would reduce the complexity of the search considerably and could impose
a signi�cant degree of vulnerability on the presented approach. To assess the potential
of such an attack, we use the sample variance s2 as an inverse measure of smoothness
to test the validity of the correlation assumption,

s2 = 1
N

N−1
∑
i=0

(xi −m)2,

where m is the mean pixel value in the reconstructed image and N is the number of
pixels.

Figure 5.13 shows the correlation between PSNR and variance for a single parame-
ter. It can be seen that the strong inverse correlation between a minimum in variance
and a maximum in PSNR, which is necessary for the attack described above, does not
exist.�e attack can be adapted to use the weaker correlation that can be observed: the
peak in PSNR never occurring in regions of relatively high variance. �is can be used
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(a) α = −1.6

 0

 5

 10

 15

 20

 25

 30

-8 -6 -4 -2  0  2  4
 0

 2000

 4000

 6000

 8000

 10000

 12000

P
S

N
R

V
ar

ia
nc

e

Parameter α

PSNR
Variance

(b) α = −5.9
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(c) α = −4.1
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Figure 5.13: Correlation of PSNR and variance
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to make a few “guesses” for each parameter over the whole range and eliminate the
ones with high variance to obtain a combination of parameters that will yield an im-
age of comparatively good quality. For a scheme aiming at transparent encryption this
vulnerability is not critical, as long as the obtained quality stays below the maximum
acceptable quality. As can be seen in Figure 5.13, the correlation between smoothness
and PSNR is not strong enough to substantially reduce search complexity for the full
quality visual data. Other than for orthogonal �lter parameterization, the li�ing pa-
rameterization is not vulnerable to a heuristic using variance as a measure.�is is due
to the fact that in the former case, which aims at providing con�dentiality rather than
transparent encryption, images decoded with the wrong key contain a high amount
of high frequency noise. For the presented approach, no such noise is added, rather
luminance information (along with a portion of the edge information) is lost.

5.5 conclusion

�e main advantage of the presented lightweight encryption scheme is that, while
maintaining competitive compression performance, it comes at extremely low com-
putational overhead and innately supports transparent encryption. �e relatively re-
stricted keyspace that results from the li�ing parameterization can be enlarged by
using di�erent parameter values for for the vertical and horizontal wavelet decompo-
sition on each decomposition level. �e main problem of our scheme is the separa-
bility of these parameters which allows relatively low-cost attacks. However, in many
settings that require “so�” encryption, e.g., in the area of mobile multimedia applica-
tions, the level of security will su�ce.

In the following chapter, we will aim at enlarging the keyspace. A possible approach
is a non-uniform partitioning of the possible range of α with more parameters of low
absolute value, which produce �lters that are less vulnerable to attacks. Another ap-
proach which we will investigate is to use wavelet packet decompositions in combi-
nation with the best basis algorithm and enlarge the keyspace by using a di�erent
parameterized �lter for each individual subband.



6SECURITY ENHANCEMENT FOR PARAMETERIZED
WAVELET FILTERS

In this chapter (cf. Engel and Uhl, 2005b), we present improvements in lightweight
transparent jpeg2000 encryption with li�ing parameterized biorthogonal wavelet �l-
ters. As discussed in the previous chapter, if inhomogeneous and non-stationary varia-
tion are used, the parameter space is of dimension 2l where l is the number of wavelet
decomposition levels. A full search of all discrete parameter values (the exact num-
ber of which depends on the discretization function used) in this space is not feasible.
Only a search with larger discretization bins can be performed, but as has been shown,
such a search technique cannot be used to obtain the full quality version of the image.
However, for encoding values at the border of the parameter range, close hits in the
attack achieve results that are near the original quality, which rules out application
scenarios that require a guaranteed degradation in image quality. We will discuss dis-
cretization strategies for the parameter range that better re�ect the properties of the
parameterization and therefore present better security.

Security is further enhanced by a combination with the wavelet packet transform.
�e wavelet packet transform will be discussed in its own right in all detail in Part
iii. In the present chapter, we only use the wavelet packet transform to enhance key-
space size. Di�erent methods for the selection of a suitable wavelet packet basis are
presented, which also make a certain amount of control in the trade-o� between se-
curity and computational complexity possible. �e combined approach of parameter-
ized �lters and wavelet packets is evaluated with regard to compression performance,
complexity and security.

6.1 tuning the parameter range

In the previous chapter we have established the possible range for α that yields good
compression results and maximizes keyspace size as [−6,−1.4]∪ [0.2, 6.0]. Discretiza-
tion is performed in intervals of equal size.�e admissible size of the intervals depends
on the quality degradation required by the application. In our tests we use 255 bins for
discretization. We have found that compression performance for the parameterized
�lters is in�uenced by the quantization step signalling strategy chosen for jpeg2000

81
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Figure 6.1: Compression performance of parameterized �lters for di�erent quantization sig-
nalling strategies (“Lena”, rate 0.25 bpp)

encoding. jpeg2000 part 1 de�nes two strategies: if expounded signalling is used then
quantization steps are coded for each subband individually, whereas if derived is used,
quantization step signalling is only done for the approximation subband, and the step
size is inferred from this value for the detail subbands. As illustrated by Figure 6.1,
low positive parameter values generate �lters for which derived signalling fails. If this
strategy has to be used (which is the case for complex wavelet packet decompositions
at low bitrate), then the parameter range has to be adapted accordingly.

Interestingly, we also found combinations of parameterized �lters, that when used
together (by non-stationary and inhomogeneous combination) produced non-com-
petitive results for the expounded signalling strategy. Each of these �lters achieves
normal compression quality when used “alone” in a classical DWT. Surprisingly, the
combinations also work �ne with the derived strategy. Apparently the combination of
these �lters produces coe�cient data that makes the analysis of the expounded strategy
fail. In all of these combinations at least one positive �lter value is contained, but not
necessarily of low value. �is leaves two options:

(a) One option is to check the quality of the reconstructed image a�er encryption.
�is introduces computational overhead, but preserves keyspace size. If an un-
suitable combination occurs, encryption has to be repeated. �is event is un-
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Figure 6.2: Compression performance for random parameterization with expounded sig-
nalling, (“Lena”, rate 0.25 bpp)

likely, but still the potential overhead in computational complexity might make
this option infeasible in some scenarios.

(b) Discarding the positive range leads to a severe reduction in keyspace, but this
option completely avoids the unsuitable parameter combinations.

In our tests, we use equal sizes for the negative and positive range, [−6,−1.4] ∪
[1.4, 6.0]. For this range, Figure 6.2 shows the results of 8000 test runs with random-
ized non-stationary and inhomogeneous variation for the pyramidal wavelet decom-
position with expounded signalling. It can be seen that the combinations for which
this strategy fails are relatively rare (about 0.1%).

Large absolute values of αenc used for encoding have been shown to be vulnerable
to attacks that try to approximate αenc. �e environment of values near αenc that yield
results of high quality when used for decoding increases in size with larger absolute
value of αenc. In order to make the encryption scheme more robust and have parameter
values with similar security, we use the square function to partition the range of αenc.
Bins nearer the outer borders of the parameter range are made larger than bins near
the center (where the �lters show more variation).

Figure 6.3 shows that by this measure, simple attacks like probing the keyspace with
a number of values for each of the parameters become less e�ective.�e results shown
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(b) Square discretization

Figure 6.3: Examples of discretization strategies, “Lena”, rate 1 bpp

are for Lena at rate 1 bpp, with the attack using three guesses for each parameter. Fig-
ure 6.3 also shows that the scheme cannot be used for providing strict con�dentiality,
as any combination of parameters will yield images in which the original content is dis-
cernible. For some combinations quality degradation is small, which is not acceptable
for most application scenarios.

6.2 wavelet packets

�e wavelet packet (WP) transform (Wickerhauser, 1994) is a generalization of the
pyramidal (or Mallat) wavelet transform. In the case of the wavelet packet transform,
recursive decomposition is not restricted to the approximation subband, but can also
be applied to any of the detail subbands. �is results in a larger space of possible de-
composition structures, of which the pyramidal decomposition structure is only one
element. As all of Part iii is concerned with wavelet packets, we will discuss the wave-
let packet transform in more detail there. For now we restrict the discussion to the
perspective of enhancing the keyspace for the parameterized wavelet �lters.

To enhance encryption security, we extend the concepts of non-stationary and in-
homogeneous variation in parameters to wavelet packets. Using a pseudo-random
number generator, for each subband we create one parameter value for horizontal de-
composition and one value for vertical decomposition. For a full level l wavelet packet
decomposition this leads to∑l

i=1 2 ⋅4(i−1) parameters involved, e.g., 682 parameters for
level 5. In the pyramidal case there are only 2l parameters, i.e., 10 parameters for level
5. Evidently, the advantage of using wavelet packets is a massive increase in keyspace
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size. �e drawback of using wavelet packets is an increase in computational complex-
ity: Each additional parameter comes at the cost of a wavelet decomposition of a detail
subband.
�e balance between security and complexity can be regulated by choosing more or

less complex wavelet packet decompositions.�ere are several ways to select a wavelet
packet decomposition. Each has di�erent implications for compression performance,
complexity and security, which are brie�y discussed in the following.

6.2.1 Pyramidal Wavelet Decomposition

�e pyramidal wavelet decomposition is low in computational demands and yields
good compression results for natural images. As discussed above, when parameter-
ized �lters are used for lightweight transparent encryption, the level of security is sig-
ni�cantly lower than for wavelet packet decompositions.

6.2.2 Full Wavelet Packet Decomposition

In the full wavelet packet decomposition recursive decomposition is applied to each
subband. If the full wavelet packet decomposition is used, the size of the keyspace
is maximized. At the same time, the decomposition and reconstruction of this ap-
proach are computationally demanding:�e order of complexity for a level l full wave-
let packet decomposition of an image of size N2 is O(∑l

i=1 22(i−1) N2

22(i−1) ) compared to
O(∑l

i=1
N2

22(i−1) ) for the pyramidal decomposition. A drawback with using the full WP-
decomposition is that compression performance drops for most images.

6.2.3 Best Basis

�e best basis algorithm (Wickerhauser, 1994) applies an additive costfunction to �nd
an optimal wavelet packet decomposition structure for a target image. Because for
this purpose �rst a full wavelet packet decomposition has to be created which is then
successively pruned, this method has the highest complexity of all. �e advantage of
this method lies in the wavelet packet structured being tailored to the source image,
which leads to increased compression performance. �e size of keyspace depends on
the source images used. �is fact makes using the best basis an interesting option
for databases of images that typically show oscillatory patterns, such as �ngerprints
or textures. For such images, the wavelet decomposition structures found with the
best basis algorithm typically di�er markedly from the pyramidal decomposition and
compression performance is increased.
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6.2.4 Randomized WP Decomposition Structure

For natural images the marginal gains in compression performance do not justify the
high computational demands of the best basis algorithm. To control the level of com-
plexity in our scheme, we use randomized wavelet packet structures. �e algorithm
for creating randomized wavelet packet structures is discussed in Part iii. It allows to
set requirements and limits for the complexity of the resulting wavelet packet struc-
ture. Furthermore, it allows to tune the properties of the randomized structures to
work well with natural images (at the expense of a smaller number of wavelet sub-
bands compared to a full decomposition). �e set of parameters includes maximum
global decomposition depth of all subbands, minimum and maximum decomposition
depth of the approximation subband, as well as parameters in�uencing the probability
of decomposition for a subband, based on its decomposition depth. It can been shown
that the average compression quality for randomized wavelet packet structures with
appropriate parameters is only a little lower than the performance of the pyramidal
decomposition. �is topic is also thoroughly discussed in Part iii.

For all wavelet packet decompositions it should be noted that for expounded quanti-
zation step size signalling, the information overhead increases signi�cantly.�erefore
it is necessary to use derived signalling of quantization step sizes when complex wave-
let packet decomposition with many subbands are used at low bitrates. As discussed
above, this makes a reduction in the positive part of the parameter range necessary.

6.3 security evaluation

Attacks that try to search the parameter space become more di�cult due to the in-
creased number of parameters and the improved method of discretization. In the
following simulated attacks we aim at assessing the contribution that is made to se-
curity by these two improvements, so we assume the packet decomposition structure
is known to the attacker. Keeping the wavelet packet structure secret can be used to
further increase security.

Figures 6.4 to 6.7 illustrate the gain in security that can be achieved by using ran-
domized wavelet �lters in combination with wavelet packets. For Figure 6.4, the image
“Barbara” was encoded with the pyramidal wavelet transform and uniform discretiza-
tion was used for the randomized wavelet �lters at each decomposition level. Figure
6.5 illustrates the increase in security that can be achieved with the introduction of
randomized wavelet packets. Figure 6.6 and Figure 6.7 show the performance for ran-
domized wavelet packet structures in combination with non-uniform discretization
for “Barbara” and “Lena”, respectively. �e random structures were generated with a
maximum global decomposition depth of �ve, a �xed decomposition level for the ap-
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Figure 6.4: Attack on “Barbara” (1 bpp, uniform bins, pyramidal decomposition)
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Figure 6.5: Attack on “Barbara” (1 bpp, uniform bins, randomized WP decomposition)
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Figure 6.6: Attack on “Barbara” (1 bpp, square bins, randomized WP decomposition)
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Figure 6.7: Attack on “Lena” (1 bpp, square bins, randomized WP decomposition)
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proximation subband of �ve, and decomposition probabilities that produce wavelet
packet structures of medium complexity. For the pyramidal decomposition in com-
bination with uniform discretization some results of the search attack are very near
the full quality that should only be obtainable with the correct key (Fig. 6.4). Wave-
let packets lead to some improvement (Fig. 6.5). In the case of wavelet packets with
non-uniform discretization, the quality degradation is most e�cient, and quality for
attacked images ranges in a band from about 10 to 23 and 25 dB for “Barbara” (Fig. 6.6)
and “Lena” (Fig. 6.7), respectively. For transparent encryption this ensures discernibil-
ity, while maintaining a clear degradation of visual quality compared to the original
image. Figure 6.8 gives visual examples for both images (attack run #20739).

6.4 conclusion

�e proposed approach has the advantage of providing a handle for adjusting the bal-
ance between complexity and security. If the pyramidal decomposition is used, a min-
imum level of security can be achieved at a very low additional computational com-
plexity. We will present a very successful attack on this variant in the next chapter. By
adjusting the complexity of the used (randomized) wavelet packet structures, security
can be increased at the cost of a rise in complexity. Note that also the computational
demands of attacks that try to calculate parameter values by symbolic computation,
as will be described in Chapter 7, are signi�cantly increased , because the term to be
analyzed (minimized or maximized) becomes increasingly more complex.

A drawback of this approach is that there is a signi�cant amount of variation in the
quality of images obtained with wrong keys.
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(a) “Lena”, original image (b) Pyramidal decomposition,
uniform discretization (22 dB)

(c) WP decomposition, non-uni-
form discretization (18.8 dB)

(d) “Barbara”, original image (e) Pyramidal decomposition,
uniform discretization (23.3 dB)

(f) WP decomposition, non-uni-
form discretization (18 dB)

Figure 6.8: Visual examples of attacks, 1 bpp



7A SYMBOLIC TRANSFORM ATTACK ON FILTER
PARAMETERIZATION

In this chapter (cf. Engel et al., 2006), we present a family of attacks on the light-
weight encryption schemes for visual data that have been discussed in the previous
chapters. All of the attacks construct a symbolic representation of the inverse wavelet
transform. We show that this representation can be used in ciphertext-only attacks,
known-plaintext attacks and in attacks in which some information on the plaintext
is available. We investigate the success and feasibility of each of these attacks, and
conclude that the presented type of attacks poses a principal problem for lightweight
encryption schemes that rely on the parameterization of a (linear) transform.

7.1 introduction

Some recent propositions for lightweight encryption, like the ones we discussed in the
previous chapters, make use of parameterized wavelet transforms to provide security.
�e family of attacks we discuss here relies on a symbolic representation of the inverse
wavelet transform that is constructed for each pixel of the reconstructed image. De-
pending on the information available to the attacker, this representation can be used
in a variety of attacks. We discuss these attacks in the context of parameterized wave-
let li�ing, as this seems to be the most promising parameterization technique from
an encryption point of view, but the principle is applicable to any security scheme
that uses wavelet parameterization, or a parameterization of any (linear) transform,
to provide lightweight security. In this respect, our main goal here is to discuss the
basic feasibility of the symbolic inverse wavelet transform for attacks – sophisticated
implementations of the attacks against individual parameterization schemes are not
our focus here.

In Chapter 5, we used the biorthogonal li�ing parameterization presented by Zhong
et al. (2001) with jpeg2000. �e attacks we present in this chapter are a threat for the
previously presented scheme. Some protection from the symbolic attack can be gained
for the scheme by the increase in keyspace size, that we introduced in Chapter 6 by
a combination of parameterized wavelet �lters with the randomized wavelet packet
decompositions, at the cost of higher computational complexity in the transform step.

91
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Most of the attacks discussed here can still theoretically be applied to any of these
extensions, but will increase in computational demands and decrease in precision.

7.2 principle of the symbolic attack

As we have discussed in some detail, security schemes that rely on wavelet parameter-
izations use the degrees of freedom that the wavelet transform provides to produce
�lters that are suitable for both, providing security and achieving good image com-
pression. �ereby the fact that the wavelet transform is a linear transformation poses
a threat for security. Linear transforms are in principle not well suited for keeping in-
formation secret. Note that the symbolic attack does not presume a linear transform.
It would also work with non-linear transforms that continuously depend on a �nite
number of parameters. However, with a linear transform it is more likely that the
symbolic expressions can be contracted and therefore evaluated faster than when the
complete transform has to be performed.

Note that an attacker does not have to obtain the exact parameter value, an approxi-
mation is su�cient to yield an image with little distortion. How close the attack value
has to be to the encoding value depends on the used parameterization and the used
discretization.
�e attacks discussed here are based on the symbolical computation of the inverse

wavelet transform. Let I be a grayscale image of size n × n pixels, with luminance val-
ues represented as a vector with elements Ii , i = 0, . . . , n2−1, where Ii is the luminance
value of the pixel at position (i mod n, ⌊ i

n ⌋). Assume I is decomposed with a parame-
terized wavelet transformation that depends on m parameters α j, j = 0, . . . , m−1.�e
inverse transformation with the correct set of parameters will reconstruct the original
image I (assuming, for sake of simplicity, a reversible transform and lossless coding).

An attacker, who does not know the values of α j, can build a symbolic expression
for each pixel value in the reconstructed image containing the necessary operations
for the inverse transformation. �e resulting term will depend on the values of some
of the transform coe�cients Ci , i = 0, . . . , n2−1, all of which are known to the attacker.
�e only unknowns are formed by the parameters of the wavelet transformation, α j.
By performing a full symbolic inverse wavelet transformation, the attacker can con-
struct a complete symbolic description of the operations necessary to reconstruct I.
We illustrate this procedure with an example.

For the parameterization of the CDF 9/7 wavelet, the terms of the symbolic attack
become relatively complex. For illustration we therefore construct a parameterized
version of the simple Haar wavelet. �e li�ing steps for the forward transform with
the Haar wavelet can be written as follows (Daubechies and Sweldens, 1998):
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s(0)l = x2l (7.1)
d(0)l = x2l+1 (7.2)
dl = d(0)l − s(0)l (7.3)

sl = s(0)l + 1
2
dl (7.4)

with the inverse transform written as:

s(0)l = sl −
1
2
dl (7.5)

d(0)l = dl + s(0)l (7.6)
x2l+1 = d(0)l (7.7)
x2l = s(0)l . (7.8)

To construct a simple parameterized version of the Haar wavelet, we change the for-
ward prediction step to

dl = d(0)l − αs(0)l . (7.9)

Accordingly, the forward update step is given by:

sl = 1
2
((1 + α)s(0)l + dl) . (7.10)

�e prediction and update steps of the inverse transform are given by:

s(0)l = 1
1 + α

(2sl − dl) (7.11)

d(0)l = dl + αs(0)l . (7.12)

For α = 1, the original Haar wavelet is obtained. We denote a horizontal transforma-
tion that is followed by vertical transformation by two letters. For example, ds refers
to the subband that contains the lowpass transform coe�cients for horizontal decom-
position and the highpass subbands of the subsequent vertical decomposition.

Imagine that this parameterization is used in a lightweight encryption scheme for
an image I of size n2. For this purpose, αe , the parameter value used for encryption, is
chosen randomly from the range of admissible values. �is range would �rst have to
be determined, based on compression performance. (Of course, the Haar �lter is not
well suited for image compression, and such a parameterization even less.) For our
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example we assume α ∈ [0.5, 3]. A�er transformation with αe , reconstruction with a
wrong αd , the parameter value used for decryption, will yield a distorted image. An
example for the Haar parameterization is given in Fig. 7.1(a), for αe = 1.1 and αd = 1.5.

For the proposed attack, the attacker symbolically computes the inverse wavelet
transform. Let S be an n × n matrix to hold the symbolic expressions. Initially each
entry Si , j of this matrix is �lled with the representation of the corresponding trans-
form coe�cient Ci , j. �en the operations for each step of the wavelet reconstruction
that pertain to a certain position (i , j) are recorded symbolically in Si , j. A�er the full
inverse wavelet transformation the complete reconstruction of the whole image is de-
scribed symbolically by S. Each entry Si , j represents the necessary operations to re-
construct the pixel value at position (i , j).

As an example, consider an image of size 4×4 pixels, for which an attacker wants to
construct S2,2, the symbolic representation of the pixel at position (2, 2). We assume
that a one-level wavelet analysis was done in-place. We denote the vertical and horizon-
tal wavelet transformations by operators Fv and Fh, respectively.�e following matrix
shows which subband coe�cients the entries in the symbolic matrix correspond to
for the one-level wavelet transformation:

C = FvFhS =
⎛
⎜⎜⎜
⎝

ss0,0 sd0,0 ss0,1 sd0,1
ds0,0 dd0,0 ds0,1 dd0,1
ss1,0 sd1,0 ss1,1 sd1,1
ds1,0 dd1,0 ds1,1 dd1,1

⎞
⎟⎟⎟
⎠

. (7.13)

Initially FvFhS2,2 contains the representation of the last coe�cient in the LL-subband
C2,2, or ss1,1 in the notation used above. A�er the �rst vertical analysis transform, FhS2,2

contains the operations necessary to obtain ss(0)1,1 :

ss(0)1,1 = 1
1 + α

(2 ⋅ ss1,1 − ds1,1), (7.14)

which translates to
FhS2,2 =

1
1 + α

(2 ⋅ C2,2 − C3,2). (7.15)

�e reversal of the splitting step makes FhS2,2 contain s2,1. �e symbolic synthesis
step of the horizontal decomposition yields s(0)2,1 :

s(0)2,1 = 1
1 + α

(2 ⋅ s2,1 − d2,1), (7.16)

where d2,1 has been constructed in position FhS2,3 in the same way as FhS2,2, and is
given by

FhS2,3 = 1
1 + α

(2 ⋅ sd1,1 − dd1,1) (7.17)

= 1
1 + α

(2 ⋅ C2,3 − C3,3). (7.18)
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(a) Haar parameterization, αe = 1.1, αd = 1.5 (b) CDF 9/7 param., αe = −2.5, αd = −6

Figure 7.1: Reconstructions with wrong parameters

Putting it all together, we obtain the �nal S2,2:

S2,2 =
1

(1 + α)2 (2 ⋅ (2 ⋅ C2,2 − C3,2) − (2 ⋅ C2,3 − C3,3)) . (7.19)

Assume that like the image, the matrix is represented as a one-dimensional vector
that contains the concatenated lines of the matrix. Let the elements of this vector be
denoted by Si with i = 0, . . . , n2−1. For example, for n = 32, the Haar parameterization
and a level one horizontal and vertical transformation, the entry S24, is then given by:

S24 =
2( α(2C12−C29)

1+α + C28) − α(2C524−C540)
1+α − C540

1 + α
(7.20)

If a 32 × 32 version of the Lena image has been transformed with αe = 1.4, then by
inserting this parameter along with the transform coe�cient values into the equation
above, S24 takes the value of I24 = 129, the correct pixel value in this position.

As the transform coe�cients are known to the attacker, the parameters of the wave-
let parameterization are the only unknown part of the symbolic expressions. If no
information on the reconstructed image is available, trying to derive the correct set-
tings of the parameters corresponds to a ciphertext-only attack. A situation in which
the reconstructed image is fully or partly available corresponds to a full or partial
known-plaintext attack.
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7.3 attack scenarios

7.3.1 Ciphertext-Only

One possible attack on security schemes that are based on parameterized wavelet �l-
ters is the use of a function correlated to image quality. By applying such a measure to
the symbolic equations, a single term with the �lter parameters as the only unknowns
can be obtained. �eir values can then be determined by minimizing (or maximiz-
ing, depending on the used measure) this term, e.g., by analyzing the �rst derivative
or by employing numerical methods. If there is more than one solution, the possible
solutions can be tested very quickly for their usability.

No function exists that can accurately determine if a given image is a natural image.
However, as natural images tend to exhibit a certain amount of smoothness, possible
indicator functions for image quality could be (inverse) measures of smoothness. A
�rst approach is to use the sum of absolute di�erence between neighboring pixels
and minimize this term. For this purpose the symbolic inverse wavelet transform S is
computed for the desired wavelet transformation, as described above. �en the pixel
di�erence p is given by

p =
n2
−2
∑
i=0

∣Si − Si+1∣. (7.21)

�e utility of the absolute di�erence of neighboring pixel values, as a �rst candidate
for such a function, depends very much on the distortion introduced by the used pa-
rameterization. If high frequency noise is introduced for wrong parameter settings,
then the pixel di�erence should yield a good indicator for image quality. For the Haar
parameterization, the introduced distortions are indeed situated in the higher frequen-
cies. As an example we transform a version of Lena of size 32 × 32 pixels with αe = 1.1
at a nearly lossless bitrate. Minimizing the symbolic representation of the pixel di�er-
ence p, we obtain a value of αd = 1.17. A reconstruction with this parameter value
yields a PSNR of 40dB.

In the case of biorthogonal li�ing parameterization the distortions introduced for
wrong parameter settings are of a di�erent kind, as illustrated in Figure 7.1(b). Rather
than introducing noise, wrong parameter values produce more of a blurring and
smoothing e�ect (which is one of the reasons why this particular parameterization
is well suited for transparent encryption). �us, the pixel di�erence attack fails for
this parameterization.
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�e sample variance as an inverse measure of smoothness is another candidate for
an image quality indicator. For a symbolic inverse wavelet transform S, the sample
variance s2 is given by:

s2 = 1
n2 − 1

n2
−1
∑
i=0

(Si −m)2, (7.22)

where m is the mean pixel value

m = 1
n2

n2
−1
∑
i=0

Si . (7.23)

For the Haar parameterization, the success of this attack is mediocre. For example,
we take a transformation with αe = 1.1 for a 32 × 32 pixel version of Lena at nearly
lossless coding. �e symbolic representation of the variance is computed and by min-
imizing this term we obtain a value of αd = 1.27. While a reconstruction with this
parameter value still yields a PSNR of 32.2 dB for nearly lossless coding, the result is
relatively far from the expected target. �e reconstruction result is illustrated in Fig-
ure 7.2(a). For the parameterization techniques used in Pommer and Uhl (2003), the
sample variance as an inverse measure of smoothness yields more successful attacks.

For the biorthogonal li�ing parameterization, variance does not provide a strong
indicator for image quality either. Again, this is due to the nature of the parameteriza-
tion: rather than introducing high frequency artifacts for wrong keys, the parameteri-
zation exhibits a reduction of energy in the highpass subbands. As we have discussed
in Chapter 5, the correlation is too weak to substantially decrease search complexity for
the full quality image. However, even if the correct parameter cannot be determined
precisely, a minimization of the variance can lead the attacker in the right direction.
As an example, we transformed an 8×8 pixel test image with a one level wavelet trans-
formation with α = −1.6 and then computed the symbolic equations. A minimization
of the variance of the equations for α ∈ [−6,−1.2] yields the solution α = −1.48.

As a possible counter-measure for the ciphertext-only attack, the use of di�erent
parameters on di�erent resolutions and decomposition directions, i.e., non-stationary
and inhomogeneous variation, can be employed (see Chapter 5). For security schemes
relying on the biorthogonal li�ing parameterization, this increases the number of keys
to 2l where l is the wavelet decomposition depth. Finding the sequence of parameters
from a single equation is not possible, and the attack can only serve to limit the range
of possible parameters.

For a single parameter, a problem for this attack is that there is no function that
is correlated to image quality for all parameterization techniques. However, the fact
that so far no suitable predictor for image quality could be found that works for all
parameterizations, does not rule out the existence of a measure that can achieve a
general correlation to image quality, which would make this attack a more serious
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(a) Haar ciphertext-only attack, αe = 1.1, αd = 1.27 (b) Average luminance value, CDF 9/7 αe = −1.6,
αd = −1.55

Figure 7.2: Reconstruction examples for symbolic attacks

threat. In any case, this kind of attack can be used to provide a starting point in a
brute-force search and possibly narrow down the range of parameters to be tested.

7.3.2 Full/Partial Known-Plaintext

�e previous version of a symbolic attack is a ciphertext-only attack, and depends on
the existence of a predictor function for image quality. Other versions of the attack
do not depend on the existence of such a function. �ey assume that (parts of) the
plaintext, or at least some information on the plaintext is available, which is a realistic
assumption with lightweight encryption in general, and with transparent encryption
in particular.

Full Known-Plaintext

If the full reconstructed plaintext image is available to the attacker, then the attacker
can easily determine the used wavelet parameters by solving the equations for the
pixels of the reconstructed image. A situation in which the full plaintext is available is
rather unlikely, but a scenario could be conceived in which the attacker has obtained
the ciphertext of a set of images (all encrypted with the same αe) and has received



7.3 attack scenarios 99

the full plaintext of a single image from this set in full resolution and quality as an
incentive for buying the whole set.

In the case of the biorthogonal li�ing parameterization, the set of equations pro-
vides the attacker with ample information to deduce the correct value of α. If inho-
mogeneous and non-stationary variation as discussed above was used for transforma-
tion, instead of one parameter α, the attacker has to derive a sequence of parameters
α0, . . . , α2l−1, where l is the wavelet decomposition depth. Even in this case, for im-
ages of su�cient size, the attacker will have enough information to derive the correct
sequence. �e same is true for parameterizations that depend on more than one pa-
rameter.

Note that if the full plaintext image is available, other attacks become feasible as
well. In many of the parameterizations, the PSNR for di�erent admissible parameter
values is a monotonous function that reaches its peak for the correct parameter value.
All the attacker needs to do is to approach the correct reconstruction parameters by
iteratively reconstructing the ciphertext coe�cients and comparing the PSNR of the
resulting image to the PSNR of the available plaintext image.

Partial Plaintext Information

In many cases it is not necessary for the attacker to have access to the full plaintext.
Symbolic attacks can be conceived that utilize only minimal information about the
plaintext image.�is assumption is realistic, as many of the proposed schemes support
transparent or su�cient encryption. For su�cient encryption, the scheme tolerates
image reconstructions with the wrong parameters which yield a discernible version
of the original visual data.�e only assertion of the scheme is that these reconstructed
versions do not exceed a certain quality threshold. For transparent encryption (Macq
and Quisquater, 1995), the scheme does not only tolerate image reconstructions of
reduced quality, but uses them as a preview image. Such a preview can be of advantage
in “try-and-buy”-scenarios, where they serve as an incentive to acquire the correct key
to obtain the full quality version of the visual data. In both cases, a potential attacker
can make use of the information provided by the reconstructions obtained with wrong
parameters.

plaintext pixel samples For this attack, the attacker is assumed to have ob-
tained individual pixel samples from the reconstructed image. �is can for example
be achieved by access to a preview image: the attacker selects homogeneous regions
or edges that are likely to have the same luminance values in the full reconstructed im-
age. Equating these values with the symbolic representation of the appropriate pixel
position, the attacker can construct a linear system of equations, with the parameters
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of the wavelet transform as the only unknowns. In the pixel sample attack, the actual
or approximate value Ii is known for a number of symbolic terms Si .

In the case of the Haar parameterization, a single correct pixel value is su�cient
to determine the value of α used for encoding. Also for the biorthogonal li�ing pa-
rameterization, a single correct pixel is su�cient to produce the correct value of α.
As an example, we used a 64 × 64 pixel version of the Lena image. �is image was
transformed in JPEG2000 at a nearly lossless bitrate of 5 bpp using one level of wave-
let decomposition, with the biorthogonal li�ing parameterization, α = −1.6. Solving
the symbolic equation for, e.g. I26 with the correct luminance value yields 7 solutions,
6 of which lie in the complex space. �e remaining solution is the correct parameter
α = −1.6.

With inhomogeneous and non-stationary variation and for higher-dimensional pa-
rameterizations, more pixel values are needed for an accurate attack, at least as many
as the number of �lters involved in the parameterization. Depending on the amount
and accuracy of information regarding plaintext pixels, the attacker can obtain a more
or less accurate solution for the used wavelet parameters.

average luminance value For this attack, the attacker obtains the average
luminance value of the reconstructed plaintext image. A good approximation can usu-
ally be obtain if a preview image is available. From the symbolic plaintext equations,
a symbolic representation of the average luminance value is constructed, i.e.,

L = 1
n2

n2
−1
∑
i=0

Si . (7.24)

�en the attacker equates this expression with the obtained value of the average lu-
minance of the reconstructed plaintext image to obtain the parameter value of the
transformation. �e accuracy of the derived parameter values depends the accuracy
of the obtained average luminance value.

As an example we tested this attack with the 64×64 pixel version of the Lena image,
using the biorthogonal li�ing parameterization with nearly lossless settings and α =
−1.6. �e reconstructed image has a PSNR of 50.2 dB. �e mean pixel value of the
reconstructed image before quantization to an integer value is 99.0217. If an attacker
obtains the average luminance value of 100 from a preview image, α = −1.55099 can
be derived. �is leads to a reconstructed image quality of 42.2dB. (Note that the fact
that this attack works shows that the used parameterization does not strictly conform
to the construction theorem, because if it did, the average luminance value would
be preserved even for wrong reconstruction �lters.) An example for a reconstructed
images for this case is given in Figure 7.2(b).

As the average luminance value only produces a single equation, it cannot be used
for parameterizations that use more than one parameter. Inhomogeneous and non-
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stationary variation therefore make the attack unusable. However, if the average lu-
minance value is available for higher-dimensional parameterization, it can be used in
conjunction with the other attacks to reduce their complexity.

7.3.3 Computational Complexity

In this work we focus on proving that attacks that construct a symbolic inverse trans-
form are successful against encryption schemes that employ wavelet parameteriza-
tions to provide lightweight security. To prove this point, the use of a symbolic com-
putation without any optimization at all, i.e., each step of the li�ing is computed in-
dividually over and over again, is su�cient. We use a straightforward symbolic repre-
sentation of the inverse wavelet transform. An adapted version of jj2000 computes
the equations of the inverse parameterized wavelet transform and provides output
that can be read into Mathematica®, where the equations for the reconstructed pixels
are stored in a matrix. Each entry of the matrix corresponds to a pixel in the image
and holds the symbolic expression for the reconstruction of this pixel from the trans-
formed image, i.e., the ciphertext.

For an e�cient attack, the li�ing steps themselves should be represented symboli-
cally and processing should be optimized. �at being said, it should be noted that the
construction of the symbolic matrix will remain a computationally demanding task,
as for each li�ing step the symbolic representations have to be handled. However, for
speci�c parameterization, image size and decomposition depth, this matrix has to be
computed only once.
�e attacks themselves vary in computational demands. For testing we used Mathe-

matica® 5.0 on an AMD Athlon® CPU at 1.66 GHz and 2 GB of RAM. All the timing re-
sults pertain to the biorthogonal li�ing parameterization with one level of wavelet de-
composition. �e pixel sample attack is the least demanding and could be performed
in 2.7 seconds. �e average luminance value attack for a 64 × 64 pixel image took ap-
proximately 1875 seconds. �e ciphertext only attack with variance as (weak) image
quality indicator is the most demanding attack. We used the NMinimize function in
Mathematica to minimize the variance of the symbolic matrix for α ∈ [−6,−1.2], the
negative range of the admissible parameter values that we determined in Chapter 5,
for an 8 × 8 pixel test image. Even for such a small image, the calculation time for the
correct parameter value is 390 seconds. However, these long calculation times even for
small images should not deter from the basic applicability of symbolic computation
attacks, as they mainly result from the simple implementation that lacks optimization.
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7.4 conclusion

�e goal of this work is the investigation of a novel kind of attacks on encryption
schemes that use parameterized wavelet transforms to provide lightweight security.
We have shown for small images that these attacks are feasible and principally present
a threat to such security schemes. A ciphertext-only attack that uses an image quality
indicator could potentially be very successful, however, no proper function exists so
far that can produce a good indicator for image quality in all investigated parameter-
izations by only working on the symbolic representations of the reconstructed pixels.
A full plaintext attack is very successful on any parameterization scheme as it provides
ample information to deduce the parameters used for transformation. It turns out that
a much lower fraction of the plaintext or limited information on the plaintext also
yields expedient attacks. �e success of these depends on the one hand on the com-
plexity and number of parameters of the wavelet parameterization and on the other
hand on the accuracy of the available plaintext information. Inhomogeneous and non-
stationary variation of the wavelet parameters increase the number of parameters and
therefore make the attack more di�cult.

Although we have presented some timing results to assess computational demands
of these attacks, with the simple implementation and missing optimization in our tests,
the presented timing values are not very expressive.�ere is a lot of room for optimiza-
tion and it is to be expected that these attacks can be scaled to perform well for larger
images. �is is the subject of further research.

On a principal note, the attacks presented here show a general problem of light-
weight encryption schemes that rely on linear transforms for providing security. Even
if these schemes only claim to provide lightweight security, attacks of the style pre-
sented here are a potential threat and should be taken into account.
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8KEY-DEPENDENT ISOTROPIC WAVELET PACKETS

In the following chapters, we propose and analyze lightweight encryption schemes for
jpeg2000 based on the wavelet packet transform.�ese schemes signi�cantly reduce
the amount of data to be encrypted compared to full encryption and other partial or
selective encryption schemes, at the cost of increased computational complexity in
the compression pipeline.
�e present chapter is concerned with the isotropic wavelet packet transform. Chap-

ter 9 deals with the anisotropic wavelet packet transform. �e compression perfor-
mance and security of all the proposed approaches are discussed in Chapter 10 and
Chapter 11, respectively.
�e proposed schemes, like the schemes based on parameterized wavelet �lters pre-

sented in the last part, apply encryption integrated with compression. Like the previ-
ously discussed schemes, the proposed schemes use a secret transform domain for
providing security. Other than in the previous schemes, the family of schemes we
will discuss in the following does not use an arbitrary wavelet transformation, but
rather creates the secret frequency domain by randomized subband decompositions,
so-called wavelet packets. An advantage over the previous schemes is that the ran-
domized subband decompositions do not form a linear connection between the used
parameters and the transform coe�cients and are therefore not vulnerable to the sym-
bolic transform attack presented in Chapter 7.

8.1 wavelet packets in jpeg2000

�e wavelet packet transform (Wickerhauser, 1994) generalizes the pyramidal (or Mal-
lat) wavelet transform. In the wavelet packet transform, apart from the approximation
subband also the detail subband can be decomposed; an example is shown in Figure
8.1. �is results in a larger space of possible decomposition structures (of which the
pyramidal decomposition structure is a single element). For a speci�c level of maxi-
mum decomposition depth, there are many possible WP-structures – the WPT is an
overcomplete library of bases. Each structure represents its own wavelet basis and there-
fore a speci�c subband decomposition. �ese decompositions can be adapted to the
properties of the image to be transformed into account, for example by using the best

105
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(a) Pyramidal wavelet decomposition (b) Wavelet packet decomposition

Figure 8.1: Example decomposition structures

basis algorithm (Wickerhauser, 1994) or by creating decompositions that are more op-
timal from a rate-distortion point of view (Ramchandran and Vetterli, 1993; Rajpoot
et al., 2001). Schell and Uhl (2002a,b, 2003) present alternative methods for �nding
suitable wavelet packet decompositions. �e wavelet packet transform has been suc-
cessfully used for compressing natural images with oscillatory patterns (Marpe et al.,
1998; Xiong et al., 1998; Meyer et al., 2000), �ngerprint images (Hopper, 1994) and
Brodatz and fabric textures with oscillatory patterns (Engel and Uhl, 2002, 2003).

A tree representation is well suited to describe a single decomposition. �e decom-
position tree is a quadtree whose nodes represent the binary decisions whether the
subband associated with this node is decomposed further or not. A possible way to
represent the decomposition tree is as a sequence of bits, each of which stands for a
decomposition decision.

In coding schemes that are based on the zerotree hypothesis, the addition of wavelet
packets demands signi�cant considerations. �ese range from the principal question,
whether the zerotree hypothesis still holds in the wavelet packet case to the rede�ni-
tion of the parent-child relationship between coe�cients in �ne scale detail subbands
and coe�cients of coarser scale in detail or approximation subbands. For a detailed
discussion of these issues along with a possible solution see Kutil (2002).
�e addition of wavelet packets to jpeg2000 is more straightforward, because

jpeg2000 does not rely on the zerotree hypothesis for e�cient coding. jpeg2000,
Part 2, allows arbitrary decomposition structures. In order to maximize keyspace size
for the proposed encryption scheme, we implemented full support for arbitrary iso-
tropic wavelet decomposition structures in jpeg2000, based on the jj2000 reference
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implementation.In the more recent versions, Kakadu is also able to provide this func-
tionality.

Part 2 of the jpeg2000 standard (ISO/IEC 15444-2, 2004) de�nes new possible ori-
entations for each subband. Apart from LL, LH, HL and HH, in Part 2 there are also LX,
XL, HX, XH.�e two letters refer to horizontal and vertical �ltering (and decimation).
Depending on its position, the letter X denotes no further processing in horizontal or
vertical direction. Applying �ltering and decimation in only a single direction leads
to anisotropic wavelet packets. For the time being we will restrict our discussion to
isotropic wavelet packets, where horizontal and vertical �ltering are both applied to
a subband, if the subband is decomposed. Key-dependent anisotropic wavelet packet
structures are discussed in Chapter 9.
�e notion of resolutions in jpeg2000 remains unchanged in Part 2, and is only

determined by the all low-pass decomposition branch. However, whereas in part 1 of
the jpeg2000 standard, this branch can only contain LL-subband, in Part 2, LX or
XL are possible: “Since spatial resolutions are not produced with highpass processing
and no two spatial resolutions can be the same, there are three possible orientations
for each resolution: LL, LX, or HX” (ISO/IEC 15444-2, 2004, p. 92).

8.2 related work

We have already mentioned proposals related to key-dependent transforms in Chap-
ter 1. Key-dependent wavelet packets for the use of lightweight encryption were �rst
proposed by Pommer and Uhl (2002, 2003).

Other areas where key-dependent wavelet packet decompositions have been used
are watermarking und image hashing. As in the case of key-dependent wavelet �l-
ters, the main motivation for introducing key-dependent wavelet packets is increas-
ing the security of existing schemes. Dietl and Uhl (2003, 2004) and Brachtl et al.
(2004) use key-dependent wavelet packet decompositions for increasing the security
of watermarking schemes. Laimer and Uhl (2007) use our version of jj2000 with iso-
tropic wavelet packets for a secure image authentication scheme. �ey generate key-
dependent wavelet packet decomposition structures for transformation of the source
data and create the hash in the secret transform domain.

8.3 selective encryption with randomized wavelet packets

Pommer and Uhl (2002, 2003) propose the use of wavelet packets for providing con-
�dentiality in a zerotree-based wavelet framework. �ey propose an algorithm for
the randomized generation of wavelet packet structures. �e idea of the encryption
method is to use a key-dependent, i.e., randomly generated subband structure for en-
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coding of the source data. �e descriptor of the subband structure is then kept se-
cret. Ideally, without the subband structure no reconstruction is possible. If this is the
case depends on the used codec. Pommer and Uhl (2003) evaluate their scheme in a
zerotree-based wavelet codec.

We transfer the idea and the central algorithm to jpeg2000 and evaluate its utility
in settings that require full con�dentiality, but also settings where transparent encryp-
tion is preferable..�e entirely di�erent nature of jpeg2000 as compared to the codec
used by Pommer and Uhl (2003) leads to a novel situation, especially for potential at-
tacks. In the following, the compression performance of randomized wavelet packets
in jpeg2000 is assessed, and the parameters used for the generation of randomized
wavelet packets are adapted accordingly. Furthermore, with a slight modi�cation to
the original algorithm, transparent encryption can be supported naturally. In contrast
to the codec used by Pommer and Uhl (2003), jpeg2000 is not based on zerotrees. Fur-
thermore the independent coding of codeblocks in jpeg2000 leads to a lot of meta
information in the bitstream, from which information on the wavelet packet subband
structure could be leaked. �e impact this has on possible attacks marks a key di�er-
ence to the previous work.

8.4 randomized generation of isotropic wavelet packet struc-
tures

Wavelet packet decomposition structures can be represented as a sequence of binary
decomposition decisions. A naive approach for generating randomized wavelet packet
structures could just assign a decomposition probability of 0.5 to each subband. How-
ever, if during generation of randomized wavelet packet decompositions, the probabil-
ity for decomposition is the same at each decision, i.e., for each subband, then shallow
wavelet decompositions are more probable than deep ones. �is bias potentially re-
stricts the keyspace in the context of the proposed encryption scheme.

In terms of security the best way to determine a basis for encoding is to give the
same probability to each wavelet packet basis, i.e., to uniformly select from the set of
all basis. If each basis is equally likely to be chosen a potential attacker can gain no
advantage from knowing the distribution of the bases used for encoding.

A possible problem with the uniform distribution could be that not all bases are
well suited to be used for compression. �erefore some of the basis may lead to infe-
rior compression performance.�e uniform distribution however is good in terms of
comparison, as for security, the uniform distribution forms an upper bound, e.g., for
the distance between two randomly chosen decomposition structure.
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�e second distribution which we investigate aims at discarding the bases which
are not suitable for compression. Of course the remaining bases should still form a
large keyspace.

8.4.1 Uniform Distribution

A maximum degree of security could be achieved by using a uniform probability distri-
bution to choose from the set of possible bases (that have a maximum decomposition
depth of g). In the isotropic case a uniform distribution for selecting a basis can easily
be achieved: At each node in the decomposition tree a decision is made if this node
should be further decomposed. Let l be the level of decomposition for the node.�en
the probability p(l) for decomposition for this node is given by

p(l) = 1 − 1
Qg−l

(8.1)

where g is the maximum overall decomposition depth and Q j is the number of possi-
ble bases with a decomposition depth up to j. Q j can easily be determined, e.g., using
the recursive formula proposed by Xu and Do (2003):

Q j = Q4
j−1 + 1 (8.2)

where Q0 = 1. One possible basis comes from the case where the node is not further
decomposed. If the node is further decomposed then the number of possible bases is
given by the combination of possible decompositions in the subtree for each subband.

8.4.2 Compression-oriented Distribution

In order to limit the selection process to bases that produce acceptable compression
results, three parameters are introduced: the maximum global decomposition depth
for all subbands (g), the maximum (m) and minimum (n) decomposition depth for
the approximation subband.

In order to make it possible to in�uence the selection process, two parameters are
introduced that allow to favor the selection of deeper or more shallow decomposi-
tions: the base value (bv) and the change factor (cf). �ey can be used to in�uence the
probability of decomposition at a single decision point, based on a base probability
and a factor that grows or shrinks with the current decomposition depth: �e base
value bv determines the basic probability with which a subband is decomposed. �e
change factor cf alters this probability based on the decomposition depth of the sub-
band: for each level of decomposition, the change factor is added to the base value. If
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f u n c t i o n d e c o m p o s i t i o n d e c i s i o n :
i f ( subband = a p p r o x i m a t i o n s u b b a n d ) t h e n

i f ( c u r r d e p t h < m i n a p p r o x d e p t h ) t h e n
decompose

e l s e i f ( c u r r d e p t h > m a x a p p r o x d e p t h ) t h e n
do not decompose

e l s e
i n n e r d e c o m p o s i t i o n d e c i s i o n

e l s e ( not a p p r o x i m a t i o n subband )
i f ( c u r r d e p t h > overa l l maximum ) t h e n

do not decompose
e l s e

i n n e r d e c o m p o s i t i o n d e c i s i o n

f u n c t i o n i n n e r d e c o m p o s i t i o n d e c i s i o n :
x = PRNG ( [ 0 , 2 [ )
w e i g h t = b a s e v a l u e +

c u r r d e p t h * c h a n g e f a c t o r
i f ( x / w e i g h t >= 1 ) t h e n

decompose �
Listing 8.1: Random Generation of Wavelet Packets

cf is positive, then the higher the level of the subband, the higher is the chance for it to
be decomposed. If cf is negative, the chance for decomposition decreases with higher
decomposition levels. In this way, the generation process can be tuned to favor deeper
or more shallow decompositions. Generally, it is advisable to tune these parameters
to produce a balanced distribution.

Another parameter is the seed s for the pseudo-random number generator (PRNG).
�e algorithm by Pommer and Uhl (2003) is given in Listing 8.1.

To achieve transparent encryption, we introduce an additional parameter p that can
be used to optionally specify the number of higher pyramidal resolution levels. If p is
set to a value greater than zero, the pyramidal wavelet decomposition is used for resolu-
tion levels R0 through Rp and wavelet packets are used for the higher resolution levels,
starting from Rp+1. With resolution-layer progressions in the �nal bitstream, standard
jpeg2000 codecs can be used to obtain resolutions R0 to Rp. Note that if higher pyra-
midal resolution levels are used, n should be set to a su�ciently large value, ideally
to the same as m, in order to avoid wavelet packet decompositions which are very
similar to the pyramidal decomposition. Note that a decoder compliant to jpeg2000,
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g Maximum global decomposition depth of all subbands
n Minimum decomposition depth of the approximation subband
m Maximum decomposition depth of the approximation subband

p Level of transparency

bv Base value of decomposition probability
cf Change factor of decomposition probability

s Seed for pseudo-random number generator

Table 8.1: Parameters for generating randomized isotropic WP Bases

part 1 is su�cient to decode the preview image. All possible parameters for generating
randomized wavelet packet structures are given in Table 8.1.

Keeping the decomposition structure secret can be achieved in two ways: either
the decomposition tree itself is used as the key and not included in the bitstream,
or header information containing the used wavelet packet decomposition structure
is encrypted with a traditional cipher. If a PRNG is used for generating the wavelet
packet structure, the relevant information consists only of the seed and the parameters
which are discussed below, otherwise the information consists of the complete wavelet
packet structure. In either way, the amount of information that has to be encrypted is
very small.

8.5 complexity

Wavelet packets bring an increase in complexity as compared to the pyramidal wavelet
decomposition, as can be seen in Table 8.2, which has been taken from Pommer and
Uhl (2003). �e order of complexity for a level l full wavelet packet decomposition
of an image of size N2 isO(∑l

i=1 22(i−1) N2

22(i−1) ) compared toO(∑l
i=1

N2

22(i−1) ) for the pyra-
midal decomposition, with the randomized wavelet packet decompositions ranging
in-between. For encryption the generation of the randomized wavelet packet subband
structure also has to be taken into account (although compared to the computational
demands of the encoding pipeline the complexity introduced by random generation
will usually be negligible).
�e enhanced complexity has to be taken into account for potential application sce-

narios. �e e�ort for encryption is dramatically reduced compared to full encryption
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and other partial or selective encryption schemes, but the wavelet packet transform
introduces computational demands in the compression pipeline.

image size (length of one side) N

1 line O(N)

1 image (=total) O(N2)

level i decomposition, 1 line O(N
2i )

level i decomposition, total O(N
2i ⋅

N
2i ) = O(N2

22i )

pyramidal wavelet
decomposition, level l O(∑l

i=1
N2

22(i−1) )

full wavelet packet
decomposition, level l O(∑l

i=1 22(i−1) N2

22(i−1) )

intermediate scenario, level l O(∑l
i=1 2i−1 N2

22(i−1) )

Table 8.2: Order of complexity of wavelet packet transform

8.6 conclusion

We have shown that wavelet packets can help to reduce computational demands for
lightweight encryption. �e reduction of complexity for encryption comes at the cost
of a rise in complexity in the compression pipeline. �e actual applicability of the pre-
sented approach depends on the scenario in which it is to be used. In the next chapters
we discuss how anisotropic wavelet packets can be used to enhance the keyspace size
for key-dependent wavelet packet structures. In Chapter 11 we will evaluate the secu-
rity for both approaches.
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In this chapter (cf. Engel and Uhl, 2006b, 2007a; Kutil and Engel, 2008), we investigate
how the anisotropic wavelet packet transform can enhance the lightweight encryption
technique for jpeg2000 that was proposed in the last chapter. �e main motivation
to introduce anisotropic wavelet packets in the encryption scheme is a signi�cant in-
crease in keyspace size, due to the fact that the anisotropic transform has more degrees
of freedom. We will discuss this point in the next chapter, when we turn to the security
evaluation.

In the next chapter, we will show that with the right parameters, complexity and
compression performance can be tuned to yield results that are competitive with, and
in some cases even outperform, randomized compression-oriented selection of iso-
tropic wavelet packets. In order to determine the trade-o� between compression per-
formance and keyspace size in the next chapter, we will again compare the approach
to a method that selects bases from the whole set of anisotropic wavelet packet bases
following a pseudo-random uniform distribution. A large part of the present chapter
will be concerned with how to construct such a uniform distribution, which is not as
trivial as it is in the isotropic case.

9.1 anisotropic wavelet packets

�e anisotropic wavelet packet transform is a generalization of the isotropic case:
whereas in the latter, horizontal and vertical wavelet decomposition are always applied
in pairs for each subband to be decomposed, this restriction is li�ed for anisotropic
wavelet packets. An example for an anisotropic decomposition is shown in Figure 9.1.

Anisotropic wavelet packets have been proposed for the compression of image (Ku-
til, 2003a; Xu and Do, 2003) and video (Kutil, 2003b) data. �e main motivation to
introduce anisotropic wavelet packets for lightweight encryption is a substantial in-
crease in keyspace size: the space of possible bases is not only spanned by the decision
of decomposing or not (as is the case for the isotropic transform), but also by the di-
rection of each decomposition (cf. Engel and Uhl, 2006b). �e principal algorithm
for encryption stays the same as in the isotropic case: During compression a random
specimen of the set of admissible bases is selected for transformation and kept secret.

113



114 key-dependent anisotropic wavelet packets

Figure 9.1: Example anisotropic wavelet packet decomposition

�e description of the used basis can be used as a separate secret key or encrypted with
a traditional cipher and inserted into the bitstream. Only a minimal amount of data
needs to be encrypted. jpeg2000, Part 2, allows anisotropic wavelet packets. In our
empirical tests we use a modi�ed version of jj2000 with full support for anisotropic
wavelet packets.

Even more than in the case of isotropic wavelet packets, there are some anisotropic
wavelet packet decomposition that are ill-suited for energy compaction. To eliminate
these bases, which do not produce good compression results, we again introduce pa-
rameters that can be used to constrain the possible anisotropic decompositions. �is
reduces the size of the available keyspace, so the goal here is to strike a good balance
between satisfactory compression performance and keyspace size.

9.2 randomized generation of anisotropic wavelet packets

In the anisotropic case the construction of a uniform distribution is a lot more sophis-
ticated than in the isotropic case. In order to construct a method for uniform selection,
we �rst need to determine the number of anisotropic wavelet packets for a certain de-
composition depth. In the following we only show this number for joint maximum
decomposition depths for horizontal and vertical decomposition. More details can be
found in Kutil and Engel (2008).
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U(l)

U2(l − 1)

R(l)

(a) Unrestricted processing

R(l)

RA(l) = 1

RB(l)

RC(l)

RD(l)
(b) Restricted processing

Figure 9.2: Case selection for uniform distribution of randomized AWP bases for joint maxi-
mum horizontal and vertical decomposition depth

9.2.1 Total Number of Anisotropic Bases

For determining the number of anisotropic wavelet packet bases, the fact has to be
taken into account that a horizontal decomposition (r) followed by two vertical de-
compositions (c), or a vertical decomposition followed by two horizontal decomposi-
tions, lead to an equivalent result (“isotropic decomposition”), which must be counted
only once. �is is illustrated by Figure 9.3, which shows all possible anisotropic de-
compositions up to level 2: �e decompositions in the �rst column in line 2 and 4 are
equivalent, as they both lead to an isotropic decomposition.

Xu and Do (2003) suggest a way to determine the number of possible anisotropic
bases for separate maximum decomposition depth in horizontal and vertical direc-
tion. For randomized anisotropic wavelet packets, a joint maximum decomposition
depth for both directions is preferable. �e method by Xu and Do can be adapted for
this case. We determine A(l), the number of bases of joint horizontal and vertical de-
composition level up to l , recursively. �e root node may not be decomposed, or it
may be decomposed either horizontally or vertically, forming two subtrees of A( j− 1)
possible decompositions in each case, leading to 1 + 2A2(l − 1) possible bases.

As mentioned above, there are some decompositions paths that result in the same
basis: a horizontal decomposition (r) followed by two vertical decompositions (c) on
the resulting subtrees is equivalent to the case in which the vertical decomposition is
done �rst followed by two horizontal decompositions, as illustrated in Fig. 9.4. �ere
are 2A4(l − 2) isotropic decompositions that are counted twice in this formula.�ere-
fore, half their number, A4(l − 2), is subtracted, leading to the formula:

A(l) = 1 + 2 ⋅ A2(l − 1) − A4(l − 2) (9.1)
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Figure 9.3: All anisotropic wavelet packet decompositions up to level 2
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where A(0) = 1, A(1) = 3, and A(l) = 0 for l < 0.

Aj−2 Aj−2 Aj−2 Aj−2 Aj−2 Aj−2Aj−2 Aj−2

Aj

r c

c c r r

Aj−1

Figure 9.4: Number of equivalent AWP bases

In preparation for de�ning a uniform distribution later, we use a di�erent approach
to determine the number of bases: �e decomposition decisions are split into mutu-
ally exclusive cases (Figure 9.2), then the number of anisotropic bases is determined
recursively by the number of bases contained in the subtree for each case. To account
for the fact that there is more than one way to construct an isotropic decomposition,
two modes of decomposition are distinguished: unrestricted and restricted. Without
loss of generality, we de�ne the admissible decompositions for a subband without re-
striction as horizontal decomposition with further unrestricted processing (U), or fur-
ther processing with restriction for horizontal decomposition (R). Case (R) leads to
the restricted case in which horizontal decomposition is forbidden for at least one of
the resulting subbands, leading to four possible decompositions (RA through RD). Let
U(l) be the number of bases up to level l in the unrestricted case and R(l) be the num-
ber of bases up to level l in the restricted case, with the number of possible subcases
RA(l), RB(l), RC(l), and RD(l). �e possible decompositions in unrestricted and re-
stricted mode are illustrated by Figure 9.2. We recursively determine the number of
bases for each possible decomposition in the following way:

U(l) = { R(0) for l = 0
U2(l − 1) + R(l) else (9.2)

R(l) = RA(l) + RB(l) + RC(l) + RD(l) (9.3)
RA(l) = 1 (9.4)
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RB(l) = { 0 for l = 0
R2(l − 1) else (9.5)

RC(l) = RD(l) = { 0 for l = 0 ∨ l = 1
U2(l − 2) ⋅ R(l − 1) else. (9.6)

�is formula is more �exible than Equation 9.1 and it forms the foundation for the uni-
form distribution as well as for determining the number of bases in the compression-
oriented approach in Chapter 11.

9.2.2 Uniform Distribution

Using a uniform random distribution over the whole set of bases is one way to choose
a basis. In this procedure, every decomposition structure up to a maximum decompo-
sition level is equally likely to be chosen for the transformation step. From the perspec-
tive of security, a uniform distribution is a good choice, as it does not give a potential
attacker any prior knowledge.

We use the case distinction which we introduced above to construct a uniform dis-
tribution for the selection of a random basis: the probability for any case to be chosen
is the ratio of the number of bases contained in the case to the total number of bases
(U(l) for unrestricted processing, R(l) for restricted processing).

9.2.3 Compression-oriented Distribution

�e parameters for compression-oriented selection of anisotropic wavelet packet bases
are given in Table 9.1. Note that these parameters di�er from the isotropic case in order
to re�ect the properties of the anisotropic wavelet packet transform. For our experi-
ments we also investigate explicit minimum and maximum decomposition depth of
the detail subbands (parameters d and e). In the isotropic case we did not specify a
minimum decomposition depth.
�e �rst four parameters, n, m, e , d, determine the maximum and minimum de-

composition depths for the approximation subband and the detail subbands. �ey
in�uence both, compression performance and keyspace size. Note that the number of
decompositions is given here as single decompositions in any direction, whereas for
the isotropic wavelet packet transform the number of decompositions usually denotes
pairs of horizontal and vertical decompositions. �erefore, a decomposition depth of
2k in the anisotropic case is comparable to a decomposition depth of k in the isotropic
case.

Constraining the absolute degree of anisotropy for the approximation and detail
subbands by setting q and r, respectively, may be necessary to prevent subbands from
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n Minimum decomposition depth of the approximation subband
m Maximum decomposition depth of the approximation subband
e Minimum decomposition depth of the detail subbands
d Maximum decomposition depth of the detail subbands

q Maximum absolute degree of anisotropy for approximation subband
r Maximum absolute degree of anisotropy for detail subbands

p Level of transparency

bv Base value of decomposition probability
cf Change factor of decomposition probability

s Seed for pseudo-random number generator

Table 9.1: Parameters for generating randomized AWP bases

being decomposed excessively in a single direction, as, especially in the case of the ap-
proximation subband, this would lead to inferior energy compaction in the frequency
domain for the other direction. For the degree of anisotropy Υ of a subband we use
the following de�nition:

Υ(h, v) = v − h (9.7)

where h and v are the decomposition depths in horizontal and vertical direction, re-
spectively. Note that q and r pertain to the absolute degree of anisotropy, i.e., ∣Υ(h, v)∣.
Also note that in previous work (Engel and Uhl, 2007a) we used a di�erent measure
for the degree anisotropy, re�ecting the “squareness”, i.e., the degree of isotropy rather
than the degree of anisotropy. �e “squareness” S(h, v) (with h and v as previously
de�ned) of a subband as an inverse measure of anisotropy is de�ned as:

S(h, v) = 1
2∣h−v∣

(9.8)

�e de�nition Υ of the degree of anisotropy that we use here is also used in Kutil and
Engel (2008), where many further examinations are given, e.g., the expected degree
of anisotropy for di�erent distributions.

If at any node during the randomized generation of a anisotropic wavelet packet
basis, decomposition of the subband at this node in the randomly chosen direction
would result in the degree of anisotropy exceeding the maximum degree of anisotropy,
the direction of the decomposition is changed.�e degree of anisotropy for the approx-
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imation and detail subbands in�uence both, compression performance and keyspace
size.
�is is not the case for the following three parameters, which only determine the

probability distribution of the randomly generated bases. �ey behave the same way
as in the isotropic case: �e seed s initializes the pseudo-random number generator.
�e base value bv set the basic probability of decomposition and the change factor cf
alters this base probability depending on the current decomposition level.

Transparent encryption can be accommodated in the proposed scheme by introduc-
ing a parameter p that re�ects the number of resolutions that can be decoded without
knowledge of the anisotropic decomposition structure. For this purpose, 2r decompo-
sitions, alternating between horizontal and vertical direction, are applied recursively
to the LL-Subband, where r is the total number of resolutions. Of the 2r detail sub-
bands generated in this way, only the �rst 2r−2p are subject to further decomposition.
�e resulting LL-subband, and the corresponding detail subbands for the resolutions
R0 to Rp−1 are the same as that produced by the pyramidal wavelet transform. Any
decoder compliant to jpeg2000, part 1 can be used to decode the �rst p resolutions.

9.3 complexity

�e complexity of the anisotropic wavelet packet transform is the same as for the
isotropic wavelet packet transform. As the number of anisotropic wavelet packets is
higher than the number of isotropic wavelet packets by an order of magnitude, for the
application of encryption, the overall number of decompositions necessary to obtain
a large keyspace of possible bases will be signi�cantly lower in the anisotropic case
compared to the isotropic case. �erefore, in the context of the lightweight encryp-
tion scenario proposed here, the complexity of anisotropic wavelet packets is below
that of isotropic wavelet packets (for obtaining the same keyspace size).

9.4 conclusion

�e proposed scheme increases keyspace size as compared to the approach suggested
in the previous chapter, which only uses isotropic wavelet bases. As will be shown in
Chapter 10, the compression-oriented selection method for randomized anisotropic
wavelet packets also produces better compression results than the isotropic wavelet
packet transform.

As the anisotropic wavelet transform and the isotropic wavelet transform are of
the same computational complexity, no processing overhead is introduced. In other
words, compared to isotropic wavelet packets, the same keyspace size can be achieved
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with anisotropic wavelet packets at a signi�cantly lower cost of computational com-
plexity.

As a side product of our evaluation, we have given an approach to generate uni-
formly distributed anisotropic wavelet packet decompositions. �is could be useful
for the investigation of their compression performance for di�erent classes of images.
A thorough discussion of methods for the anisotropic wavelet packets, not only related
to security, can be found in Kutil and Engel (2008).





10COMPRESSION PERFORMANCE

For the proposed encryption schemes to be applicable in practical scenario, the com-
pression performance with wavelet packets in jpeg2000 has to be comparable to the
results obtained with the pyramidal decomposition. In this chapter we start our inves-
tigation of compression performance by comparing the compression performance of
our implementation to D. Taubman’s Kakadu codec. For this purpose we use the well-
known WSQ decomposition structure. We then turn to the compression performance
of randomly selected wavelet packet bases. We take a small number of test images to
motivate parameter settings for the compression-oriented selection of both, isotropic
and anisotropic wavelet packets. We compare the achieved compression results to the
pyramidal decomposition and to the compression results obtained by the uniform
selection method.

In the second part of this chapter, we report results for a larger set of test images.
For this set of images we compare the compression-performance at di�erent rates of
the pyramidal decomposition, isotropic and anisotropic wavelet packets, each with
compression-integrated and uniform distribution for basis selection.

10.1 comparison to kakadu

As wavelet packets have successfully been used to compress �ngerprint data, in order
to test our implementation of wavelet packets in jj2000, we use the four databases
of the Fingerprint Veri�cation Contest 2004 (which we will use again in Part iv of
this thesis) and compressed them with the WSQ wavelet packet decomposition struc-
ture (Bradley et al., 1993). We compare the compression results with the Kakadu codec
(v. 6.0).1 �e results are shown in Figures 10.1 to 10.4 as the average compression results
for each database of �ngerprint images (each database contains 800 images, examples
are shown in Figure 13.1 on page 176). It can be seen that both, the extended jj2000
codec and the Kakadu codec, achieve similar compression results. (It can also be seen,

1�e following commandline parameter was used to provide the WSQ structure in Kakadu for the
comparison: Cdecomp="B(B:B:B),B(BBBBB:BBBBB:-),B(B:B:B),B(-:-:-),B(-:-:-)".

123
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Figure 10.1: Comparison of compression performance of �ngerprint images (DB1) between
jj2000 (with wavelet packets) and Kakadu
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Figure 10.3: Comparison of compression performance of �ngerprint images (DB3) between
jj2000 (with wavelet packets) and Kakadu
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(a) Lena (b) Barbara (c) D105

Figure 10.5: Test images

that in jpeg2000 the WSQ decomposition structure does not result in superior com-
pression performance.)

We will return to the topic of �ngerprint images in the last part of the thesis. For
now, we only used �ngerprint images to compare two di�erent implementations.

10.2 parameters for compression-oriented selection

In this section we motivate reasonable parameter settings for the compression-orient-
ed selection. We use three test images, which are shown in Figure 10.5. Apart from
the standard images Lena and Barbara, we also tested D105 from the suite of Brodatz
textures, to have a specimen of oscillatory patterns. �e proposed settings will be ver-
i�ed in a larger test containing 100 images at the end of this chapter. It has to be noted
that the optimal parameters will among other factors, of course strongly depend on
the image size. We use 8 bpp grayscale images of size 512 × 512 pixels.

10.2.1 Isotropic Wavelet Packets

In the following, we assess test runs which leave one parameter �xed and vary the
other parameters through their respective ranges (leading to a total of 68796 test runs
per image for g up to 7 and 28665 test runs for g up to 5). If not noted otherwise,
the compression rate is 0.25 bpp. �e average, minimum and maximum peak-signal-
to-noise-ratio (PSNR) for each value of the �xed parameter are plotted. Of the �ve
parameters that in�uence compression performance, three also a�ect the number of
possible decomposition trees, namely g, m, and n. We will discuss the impact of these
parameters in more detail.
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In the comparison of compression quality of the wavelet packet decomposition and
the pyramidal wavelet decomposition it is noteworthy that there are wavelet packet de-
composition structures that produce better results than the pyramidal structure. As
can be seen in Figures 10.6(a) and 10.6(b), this e�ect is stronger for the image Bar-
bara, because it contains more oscillatory patterns that favor energy compaction with
wavelet packets. On average, the wavelet packet decompositions are outperformed by
the pyramidal decomposition. At the end of this section, we will present parameter
settings that minimize the di�erence in compression performance.
�e other two parameters, bv and cf, if not set to extreme values, only a�ect the

probability distribution over the possible decompositions, but not the number of po-
tential decompositions. Figure 10.8 illustrates this for Lena: the compression results
of di�erent quality are spread over all values of bv and cf. Pommer and Uhl (2003) sug-
gest to set bv to 1 and cf to 0. While this is sensible from an image compression point
of view, it also means a bias in selection, as deeper decompositions are less probable
than shallow decompositions. Because the two parameters do not have much impact
on compression quality, we propose to set them to values that, based on the maximum
decomposition depth, strike a good balance between decomposition depth, i.e., key-
space quality (as discussed in Section 11.2), and compression performance. Keyspace
quality and security implications will be discussed in Chapter 11.
�e parameter specifying the maximum global decomposition level, g, has a major

e�ect on both compression performance and the number of potential decomposition
trees. As can be seen in Figure 10.6(a), for high overall levels of decomposition, com-
pression performance quickly degenerates. For the size of images used, this is mainly
due to the fact that there is an increase in header information for complex wavelet
packet decompositions, while no further gain in energy compaction is achieved. We
therefore limit our observations to a maximum decomposition depth of 5, which is a
reasonable value considering the size of our test images.

Figure 10.7 shows that the minimum decomposition depth of the approximation
subband, n, if set too low, has a signi�cant impact on compression performance. Set-
tings of one or two levels produce compression results that are not competitive and
should be avoided. Discarding these smaller settings only marginally a�ects the num-
ber of possible wavelet packet decompositions. With regard to maximum decomposi-
tion depth of the approximation subband, m, our results show that there is no reason
to restrict this parameter. Considering keyspace size as well as compression perfor-
mance, we propose to set m to the same value as g.

Taking the above observations and the size of the used test-images into account, we
can suggest settings that remove non-competitive compression results for the used test
images in the isotropic case: g = 5, n = 3, and m = 5.



128 compression performance

 12

 16

 20

 24

 28

 32

 36

 1  2  3  4  5  6  7

P
S

N
R

# Decompositions

Pyramidal Decomposition, PSNR
Wavelet Packet, PSNR Average
Wavelet Packet, PSNR Minimum
Wavelet Packet, PSNR Maximum

(a) Maximum level of overall decomposition depth (Lena)

 22

 24

 26

 28

 30

 1  2  3  4  5

P
S

N
R

# Decompositions

Pyramidal Decomposition, PSNR
Wavelet Packet, PSNR Average
Wavelet Packet, PSNR Minimum
Wavelet Packet, PSNR Maximum

(b) Maximum level of overall decomposition depth (Barbara)

Figure 10.6: Compression performance of randomized wavelet packet decompositions by max-
imum global decomposition depth
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10.2.2 Anisotropic Wavelet Packets

As for the isotropic case in the previous section, we start o� by motivating a choice of
parameters for a speci�c and constrained set of the three standard test image shown in
Figure 10.5.�en we verify these results for a large set of test images and also compare
them to the compression results obtained by the uniform distribution. Again it has to
be stressed that the perfect choice of parameters will depend on a number of factors,
like image size and, to some degree, frequency properties of the image content.

In order to motivate sensible parameter settings that favor good compression results
we again show the impact of the respective parameters on the compression quality for
the test images.�e plots shown for illustration are for the image Lena, 512×512 pixels
at a compression ratio of 0.25 bpp, and present the minimum, average, and maximum
PSNR of the randomly generated decompositions.

Figure 10.9(a) shows the compression performance by minimum decomposition
depth of the approximation subband. As can be seen, setting n is important, as only
a su�cient number of decompositions ensures competitive compression results. For
the image size used in our tests, setting the maximum decomposition depth m to 12
produced favorable compression results.

For most natural images, the situation for the detail subbands is di�erent, as illus-
trated by Figure 10.9(b). A minimum decomposition depth does not improve com-
pression results in this case. If the decomposition depth of the detail subbands is set
too high, however, signi�cant overhead is introduced by the large number of subbands
that leads to a deterioration of compression performance, so the maximum decompo-
sition depth of the detail subbands, d, should be con�ned. On the other hand, d must
not be set much lower than m, as this a�ects security for the lower resolutions. In our
tests, d = 8 produced acceptable results, but, as shown by the results for a larger test
set below, this is a conservative setting, and a higher value also produces acceptable
compression results.

Figure 10.10 illustrates the impact of di�erent settings of the maximum degree of
anisotropy for the approximation subband and the detail subbands. �e other param-
eters are set to n = 6, m = 12, e = 0, d = 8. It can be seen in Figure 10.10(a)2 that a low
degree of anisotropy, i.e., a high similarity to the isotropic decomposition, increases
minimum and average compression performance. We therefore propose to set q to
1 (which is the minimum). For the detail subbands, it can be seen in that the situ-
ation is di�erent: the maximum degree of anisotropy (r) cannot improve minimum
compression results.�is is illustrated by Figure 10.10(b):�e curves for average, min-
imum and maximum are nearly parallel to the abscissa. �is means that the inferior

2Note that the degree of anisotropy is here given as the “squareness” of a subband, as de�ned in Equa-
tion (9.8) on page 119.
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compression results are evenly distributed over all settings for the maximum degree
of anisotropy of the detail subbands. �is situation obviously yields an advantage in
terms of keyspace size.

Figure 10.11 compares the parameter settings by plotting on the ordinate the per-
centage of samples for which the compression quality lies below the PSNR value of the
abscissa. It can be seen that setting the restricting the maximum degree of anisotropy
for the approximation subband puts the �nishing touch on compression performance.

10.2.3 Comparison of Isotropic and Anisotropic Compression-oriented Selection

Tables 10.1, 10.2, and 10.3 show the compression performance for the three test im-
ages. It compares the compression-oriented approaches for anisotropic and isotropic
wavelet packets with the parameters suggested above at di�erent rates. For each image
at each rate and each wavelet packet types 1000 basis were selected. �e parameters
for randomized selection are the same ones we also use in the larger empirical study
with 100 images, and are given in Table 10.4. Note that we diverge a little from the
parameters given in the last sections for the anisotropic case and use a maximum de-
composition depth of 10 for the anisotropic wavelet packet decomposition for both,
approximation subband and detail subbands, as this corresponds to the maximum
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decomposition depth of 5 pairs we use in the isotropic case. Also note that with base
value and change factor set to the same value for both isotropic and anisotropic wave-
let packets, the randomized isotropic decompositions are expected to be deeper than
the anisotropic wavelet packets (in the case of anisotropic generation change factor is
taken into account twice as o�en than in the case of isotropic generation). �e ratio-
nale for making the anisotropic decompositions less deep than the isotropic decom-
positions is that in the context of encryption, the keyspace generated by anisotropic
wavelet packets is much larger for the same decomposition depth, due to the addi-
tional dimension that is introduced by the decomposition direction (horizontal or
vertical). In the following chapter, when we perform the security evaluation for the
proposed encryption scheme, we will analyze this situation in a lot more detail.
�e result tables list the average, minimum, maximum and variance of the 1000

tests for two quality measures: PSNR and ESS. For comparison the compression results
obtained with the pyramidal decomposition at wavelet decomposition level 5 and 6 are
also given.

It can be seen that for the three test images the average compression results of the
wavelet packets selected by the compression oriented approach are competitive with
the pyramidal decomposition, especially in the anisotropic case. Due to the settings
of base value and change factor discussed above, the performance of the anisotropic
wavelet packet decomposition is nearer to the pyramidal decomposition because an-
isotropic wavelet packets generally require smaller decomposition depths for the same
keyspace size. �e isotropic wavelet packet require deeper decompositions which in-
troduce a higher overhead and therefore result in slightly lower compression perfor-
mance. What also can be observed is that for the two images with more high frequency
content, Barbara and D105, wavelet packet decomposition exist that outperform the
pyramidal decomposition.�is is especially noticeable at lower bitrates. D105 has high
frequency components in vertical and horizontal direction, therefore here the isotro-
pic wavelet packet transform outperforms the anisotropic wavelet packet transform.
(Of course the isotropic wavelet packet bases form a subset of the anisotropic and
could also be selected by the algorithm for anisotropic selection, but with 1000 se-
lected bases, selecting the relatively few purely isotropic bases from the large set of
anisotropic bases is not probable.)�e low variance shows that the selected bases pro-
duce reliable results, and the minimum shows that even the worst basis of the 1000
randomly generated bases still yields a compression performance that will be accept-
able in most application scenarios.

As regards the edge similarity score, it can be observed that no major di�erences
in terms of preserving edge information exist between the pyramidal, anisotropic and
isotropic setup. In summary, although some loss of compression performance occurs,
the overall results are encouraging for the three test images.
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Rate WP Type Measure Average Minimum Maximum Variance
0.125 pyramidal PSNR 29.44 29.44 29.44 0.0000
0.125 pyramidal ESS 0.76 0.76 0.76 0.0000

0.125 isotropic PSNR 27.40 26.38 28.90 0.1687
0.125 isotropic ESS 0.67 0.60 0.75 0.0005

0.125 anisotropic PSNR 28.91 28.17 29.43 0.0466
0.125 anisotropic ESS 0.74 0.68 0.78 0.0002

0.25 pyramidal PSNR 32.26 32.26 32.26 0.0000
0.25 pyramidal ESS 0.85 0.85 0.85 0.0000

0.25 isotropic PSNR 30.64 29.82 31.69 0.1227
0.25 isotropic ESS 0.81 0.78 0.84 0.0001

0.25 anisotropic PSNR 31.76 30.88 32.28 0.0492
0.25 anisotropic ESS 0.84 0.81 0.87 0.0001

0.5 pyramidal PSNR 35.16 35.16 35.16 0.0000
0.5 pyramidal ESS 0.92 0.92 0.92 0.0000

0.5 isotropic PSNR 33.81 33.10 34.89 0.0912
0.5 isotropic ESS 0.90 0.88 0.92 0.0000

0.5 anisotropic PSNR 34.64 34.01 35.15 0.0389
0.5 anisotropic ESS 0.91 0.89 0.93 0.0000

1 pyramidal PSNR 38.06 38.06 38.06 0.0000
1 pyramidal ESS 0.94 0.94 0.94 0.0000

1 isotropic PSNR 36.89 36.34 37.86 0.0596
1 isotropic ESS 0.94 0.93 0.95 0.0000

1 anisotropic PSNR 37.64 36.87 38.03 0.0291
1 anisotropic ESS 0.95 0.93 0.96 0.0000

2 pyramidal PSNR 42.90 42.90 42.90 0.0000
2 pyramidal ESS 0.97 0.97 0.97 0.0000

2 isotropic PSNR 41.14 40.25 42.31 0.1315
2 isotropic ESS 0.96 0.95 0.97 0.0000

2 anisotropic PSNR 42.20 41.41 42.87 0.0713
2 anisotropic ESS 0.97 0.96 0.98 0.0000

Table 10.1: Compression performance of isotropic and anisotropic wavelet packets for test im-
age Lena
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Rate WP Type Measure Average Minimum Maximum Variance
0.125 pyramidal PSNR 25.20 25.20 25.20 0.0000
0.125 pyramidal ESS 0.68 0.68 0.68 0.0000

0.125 isotropic PSNR 24.36 23.68 25.27 0.0811
0.125 isotropic ESS 0.62 0.58 0.67 0.0005

0.125 anisotropic PSNR 25.25 24.34 25.90 0.0857
0.125 anisotropic ESS 0.67 0.64 0.71 0.0001

0.25 pyramidal PSNR 28.35 28.35 28.35 0.0000
0.25 pyramidal ESS 0.78 0.78 0.78 0.0000

0.25 isotropic PSNR 27.31 26.60 28.13 0.0549
0.25 isotropic ESS 0.73 0.70 0.78 0.0002

0.25 anisotropic PSNR 28.04 26.62 28.72 0.1345
0.25 anisotropic ESS 0.77 0.73 0.80 0.0002

0.5 pyramidal PSNR 32.12 32.12 32.12 0.0000
0.5 pyramidal ESS 0.87 0.87 0.87 0.0000

0.5 isotropic PSNR 30.95 30.15 31.96 0.0870
0.5 isotropic ESS 0.84 0.82 0.87 0.0001

0.5 anisotropic PSNR 31.77 30.29 32.65 0.1279
0.5 anisotropic ESS 0.86 0.82 0.88 0.0001

1 pyramidal PSNR 37.10 37.10 37.10 0.0000
1 pyramidal ESS 0.94 0.94 0.94 0.0000

1 isotropic PSNR 35.66 34.69 36.88 0.1507
1 isotropic ESS 0.93 0.91 0.94 0.0000

1 anisotropic PSNR 36.67 35.13 37.46 0.1277
1 anisotropic ESS 0.94 0.92 0.95 0.0000

2 pyramidal PSNR 43.14 43.14 43.14 0.0000
2 pyramidal ESS 0.98 0.98 0.98 0.0000

2 isotropic PSNR 41.76 40.65 43.01 0.1130
2 isotropic ESS 0.97 0.96 0.98 0.0000

2 anisotropic PSNR 42.61 41.60 43.27 0.0626
2 anisotropic ESS 0.97 0.96 0.98 0.0000

Table 10.2: Compression performance of isotropic and anisotropic wavelet packets for test im-
age Barbara
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Rate WP Type Measure Average Minimum Maximum Variance
0.125 pyramidal PSNR 15.05 15.05 15.05 0.0000
0.125 pyramidal ESS 0.63 0.63 0.63 0.0000

0.125 isotropic PSNR 16.49 14.51 18.38 0.9882
0.125 isotropic ESS 0.62 0.57 0.66 0.0002

0.125 anisotropic PSNR 16.08 14.41 18.80 1.0669
0.125 anisotropic ESS 0.62 0.58 0.67 0.0003

0.25 pyramidal PSNR 17.72 17.72 17.72 0.0000
0.25 pyramidal ESS 0.66 0.66 0.66 0.0000

0.25 isotropic PSNR 19.64 16.49 21.30 1.7483
0.25 isotropic ESS 0.70 0.64 0.76 0.0007

0.25 anisotropic PSNR 18.44 15.64 21.53 1.9267
0.25 anisotropic ESS 0.68 0.62 0.76 0.0008

0.5 pyramidal PSNR 21.43 21.43 21.43 0.0000
0.5 pyramidal ESS 0.77 0.77 0.77 0.0000

0.5 isotropic PSNR 22.83 20.93 23.51 0.4397
0.5 isotropic ESS 0.81 0.75 0.84 0.0005

0.5 anisotropic PSNR 21.57 18.28 23.76 1.7710
0.5 anisotropic ESS 0.78 0.69 0.85 0.0012

1 pyramidal PSNR 25.20 25.20 25.20 0.0000
1 pyramidal ESS 0.87 0.87 0.87 0.0000

1 isotropic PSNR 25.95 24.76 26.54 0.1880
1 isotropic ESS 0.89 0.87 0.91 0.0000

1 anisotropic PSNR 25.24 22.82 26.74 0.9071
1 anisotropic ESS 0.88 0.83 0.91 0.0002

2 pyramidal PSNR 30.82 30.82 30.82 0.0000
2 pyramidal ESS 0.93 0.93 0.93 0.0000

2 isotropic PSNR 30.68 29.82 31.51 0.1011
2 isotropic ESS 0.94 0.93 0.95 0.0000

2 anisotropic PSNR 30.67 28.81 31.91 0.4453
2 anisotropic ESS 0.94 0.92 0.96 0.0000

Table 10.3: Compression performance of isotropic and anisotropic wavelet packets for test im-
age D105
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10.3 empirical evaluation of compression performance

A�er having established parameter ranges for the compression-oriented distribution
for both isotropic and anisotropic wavelet packets, we verify the compression perfor-
mance of the compression-oriented selection method in a larger empirical study in
this section. For this purpose we use a set of 100 grayscale images of 512×512 pixels,
taken with four di�erent camera models (and in di�erent locations: Bangkok, Dubai,
Oman, Toulouse, Toronto and Texas). Some examples are shown in Figure 10.12.

We use 5 di�erent bitrates: 0.125, 0.25, 0.5, 1 and 2 bpp. For each of the test images
we performed the following jpeg2000 compression tests at each of these bitrates.

▸ Pyramidal (1 basis, level 5)

▸ Randomized isotropic wavelet packets with uniform distribution (100 bases)

▸ Randomized isotropic wavelet packets with compression-oriented distribution
(100 bases)

▸ Randomized anisotropic wavelet packets with uniform distribution (100 bases)

▸ Randomized isotropic wavelet packets with compression-oriented distribution
(100 bases)

�e exact parameters are given in Table 10.4. Note that we follow the convention
to give the decomposition depth of the isotropic wavelet packet transform in pairs of
(horizontal and vertical) decompositions, whereas in the anisotropic case each (hori-
zontal or vertical) decomposition step is counted separately. To ensure comparability
the same seeds (and therefore the same decomposition structures) were chosen for
each image at each of the �ve di�erent rates.
�e results of our empirical study are summarized for the 5 categories and all bi-

trates in Figure 10.13 on page 142. �e exact results are given in tabular form in Tables
10.5 and 10.6 (starting on page 143). �ese tables list the average PSNR, LSS and ESS
and the number of samples for each category and bitrate.

It can be seen that regarding the comparison between pyramidal, isotropic and an-
isotropic setup, the results obtained for the three test images are largely con�rmed.
Due to the fact that anisotropic wavelet packets require fewer decompositions for the
same keyspace size, the compression performance achieved in the anisotropic setup
is superior to the isotropic setup. For the set of natural test images the pyramidal de-
composition remains the setup with the best compression performance.

As regards the di�erence between uniform and compression-oriented selection, it
can be seen that the compression performance of the latter is above the compression
performance of the former. �e di�erence is more evident for the anisotropic case,
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(a) (b)

(c) (d)

(e) (f)

Figure 10.12: Examples from the set of test images
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Parameter Name Isotropic Anisotropic

Unif. Comp. Unif. Comp.

Max. global decomposition depth (g) 5 pairs 5 pairs 10 10

Max. approx. decomposition depth (m) 5 pairs 5 pairs 10 10

Min. approx. decomposition depth (n) 5 pairs 5 pairs 10 10

Max. detail. decomposition depth (d) 5 pairs 5 pairs 10 10

Min. detail. decomposition depth (e) 0 0 0 0

Max. degree of anisotropy approx. sbb. (q) n/a n/a n/a 1

Max. degree of anisotropy detail sbb.s (r) n/a n/a n/a ∞

Base value (bv) n/a 0.25 n/a 0.25

Change factor (cf ) n/a 0.1 n/a 0.1

Table 10.4: Parameters used for the empirical study

for which a predominant decomposition of the approximation subband in a single
direction, which leads to inferior energy compaction for natural images, is possible.
Restricting the maximum degree of anisotropy for the approximation subband in the
compression-oriented selection leads to compression performance that, for real world
applications, is competitive with the pyramidal decomposition.
�e bases that give the maximum compression quality could of course also be se-

lected by the uniform distribution. However, it can be seen, that in the total set of bases
there are many that yield inferior compression results. In terms of compression per-
formance it is therefore important to limit the number of admissible bases. Only the
compression-oriented approach ensures good compression results. In the following
chapter we will evaluate if it also yields acceptable security.
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Rate Sel. Method WP Type Avg. PSNR Avg. LSS Avg. ESS Samples

0.125 pyramidal pyramidal 30.89 0.50 0.74 200

0.125 compression anisotropic 30.33 0.47 0.73 10000
0.125 compression isotropic 28.91 0.37 0.66 10000

0.125 compression ∑ 29.62 0.42 0.70 20000

0.125 uniform anisotropic 26.76 0.18 0.55 10000
0.125 uniform isotropic 28.18 0.30 0.63 10000

0.125 uniform ∑ 27.47 0.24 0.59 20000

0.25 pyramidal pyramidal 34.06 0.73 0.84 200

0.25 compression anisotropic 33.35 0.70 0.83 10000
0.25 compression isotropic 32.16 0.64 0.80 10000

0.25 compression ∑ 32.76 0.67 0.81 20000

0.25 uniform anisotropic 30.14 0.49 0.73 10000
0.25 uniform isotropic 31.55 0.60 0.78 10000

0.25 uniform ∑ 30.85 0.54 0.76 20000

0.5 pyramidal pyramidal 38.07 0.91 0.91 200

0.5 compression anisotropic 37.16 0.90 0.90 10000
0.5 compression isotropic 35.92 0.87 0.89 10000

0.5 compression ∑ 36.54 0.88 0.90 20000

0.5 uniform anisotropic 33.67 0.78 0.85 10000
0.5 uniform isotropic 35.16 0.85 0.88 10000

0.5 uniform ∑ 34.41 0.82 0.87 20000

Table 10.5: Empirical results: compression performance (100 images) i
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Rate Sel. Method WP Type Avg. PSNR Avg. LSS Avg. ESS Samples

1 pyramidal pyramidal 43.14 0.99 0.96 200

1 compression anisotropic 42.05 0.98 0.95 10000
1 compression isotropic 40.66 0.98 0.95 10000

1 compression ∑ 41.36 0.98 0.95 20000

1 uniform anisotropic 37.98 0.95 0.93 10000
1 uniform isotropic 39.64 0.97 0.94 10000

1 uniform ∑ 38.81 0.96 0.93 20000

2 pyramidal pyramidal 48.26 1.00 0.98 200

2 compression anisotropic 47.66 1.00 0.98 10000
2 compression isotropic 46.63 1.00 0.98 10000

2 compression ∑ 47.15 1.00 0.98 20000

2 uniform anisotropic 43.86 1.00 0.97 10000
2 uniform isotropic 45.61 1.00 0.97 10000

2 uniform ∑ 44.73 1.00 0.97 20000

∑ ∑ ∑ 36.38 0.75 0.85 201000

Table 10.6: Empirical results: compression performance (100 images) ii
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In this chapter we turn to evaluate the security of the encryption schemes that rely
on key-dependent wavelet packet subband structures, both isotropic and anisotropic.
We investigate the applicability of these approaches in two scenarios: for providing full
con�dentiality and for providing transparent encryption (as de�ned in Chapter 1).
�e usability of the proposed approaches depends on a couple of factors:

▸ Compression performance: the loss in compression performance introduced by
the secret transform domain should be minimal. We have shown in the last
chapter that the performance is acceptable. In this chapter we will discuss if the
entailing restriction in keyspace size is acceptable in terms of security.

▸ Keyspace size: even when taking the compression-oriented parameters into ac-
count, the remaining keyspace, i.e., the number of possible bases, should be
large enough to make a full search infeasible. In the last chapters we have al-
ready laid the groundwork for determining the number of possible bases. In
this chapter, we will investigate the number of bases in more detail.

▸ Keyspace quality: by this we mean how well distinguished the basis in the key-
space are with regard to reconstruction results. We need to show that the bases
are su�ciently di�erent that an attacker cannot use a similar basis like the one
used for encoding to obtain the original image (or a version that is of almost the
same quality). We will perform this investigation in three steps, using a distance
metric between decomposition structures:

▸ First, we will investigate the actual degree of quality reduction in terms
of PSNR that is achieved by the di�erent wavelet packet types and the dif-
ferent selection methods if a random wavelet packet structure is used for
reconstruction.

▸ Second, we will investigate what distances are achieved by the di�erent
distributions.

▸ �ird, we will investigate if the distance metric between the decomposi-
tion structure used for encoding and the decomposition structure used for

145
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reconstructing is a reliable predictor for the quality of the reconstructed
image.

▸ Codec-speci�c Attacks: at the end of this chapter, we will investigate if there is
a way to deduce any visual information or information on the wavelet packet
decomposition from the meta-information in the jpeg2000 codestream.

Note that only the last point, codec-speci�c attacks, is solely related to jpeg2000.
�e size of the keyspace only depends on the number of possible bases and not on
the used codec. Also the keyspace quality is largely independent of the used codec.
Compression performance will vary by codec, although it can safely be assumed that
the principal results will stay the same for di�erent codecs.

11.1 keyspace size

11.1.1 Number of Isotropic Wavelet Packet Bases

Uniform Distribution:

�e total number of isotropic bases up to decomposition level n is equivalent to the
number of quadtrees up to decomposition level n and is easily determined. We have
already given one way in Chapter 8 (Equation (8.2) on page 109). Another way is pro-
posed by Pommer and Uhl (2003). �ey denote the number of possible wavelet de-
compositions reaching up to level n + 1 as f (n), which is given as

f (n) =
4
∑
i=0

( 4
i ) ⋅ ( f (n − 1))i (11.1)

where f (0) = 1. Note that other than Equation (8.2), this formula does not count the
case where the root is not decomposed (i.e., the original image).

Compression-oriented Distribution:

In order to determine the number of bases in the compression-oriented distribution,
we need to take the additional parameters into account. In the following, we accom-
modate the parameters into the recursive Equation (8.2).

Most importantly, we want to re�ect the minimum decomposition depth of the
approximation subband. �e maximum global decomposition depth will usually be
the same for approximation and detail subbands and the minimum decomposition
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depth for the detail subbands will be 0 in practical scenarios. To re�ect the minimum
decomposition of the approximation subband depth n we de�ne N as

N(l) = { 0 for l < n
1 for l ≥ n (11.2)

wherel l de�nes the current decomposition depth.
We rede�ne the number of isotropic wavelet packets Q (and we switch to a func-

tional notation here, rather than using subscripts) as Q(l , a) where l again is the cur-
rent decomposition depth and a de�nes if the current subband is in the approximation
tree (a = 1) or in the detail tree (a = 0).

Q(0, ⋅) = 1 (11.3)
Q(l , 0) = Q(l − 1, 0)4 + 1 for l > 0 (11.4)
Q(l , 1) = Q(l − 1, 1) ⋅ Q(l − 1, 0)3 + N(l) for l > 0 (11.5)

(11.6)

Table 11.1 lists the number of bases for di�erent maximum decomposition depths
and for the the minimum decomposition depth of the approximation subband set to,
as suggested in the last chapter, the global maximum decomposition depth, i.e. n = g.
It can be seen that setting a minimum level of decomposition for the approximation
subband, which is important to eliminate uncompetitive compression results, does not
have a signi�cant e�ect on the number of bases (we lose a bit more than half of the
possible bases). Generally, the impact of the compression-oriented parameters is low.
�is is di�erent for the anisotropic case where the compression-oriented parameters
result in a much larger cut in the keyspace, as we will discuss below.

It can also be seen that an exhaustive search for the wavelet decomposition struc-
ture is not feasible for su�ciently deep wavelet packet decompositions. For a maxi-
mum decomposition depth g, there are f (g − 1) possible decompositions. For g = 5,
2260 possible decompositions exist, and even with the parameter n set (which removes
some decompositions), the complexity of an exhaustive search is higher than a brute-
force attack against a 256-bit-key AES cipher. For g = 6, the number of possible wave-
let decompositions is 21045. �e attacker is therefore le� with the option of trying to
(partially) reconstruct the image from the unencrypted data.

11.1.2 Number of Anisotropic Wavelet Packet Bases

Uniform Distribution

We have already given the total number of anisotropic wavelet packet bases in Equa-
tions (9.2) – (9.6) on page 117. Table 11.2 compares the number of anisotropic wavelet
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g Compression-Oriented Uniform (= all bases)

3 ≈215 ≈216

4 ≈264 ≈265

5 ≈2260 ≈2261

6 ≈21045 ≈21046

7 ≈24184 ≈24185

Table 11.1: Number of isotropic bases for compression-oriented vs. uniform distribution

g Isotropic Anisotropic
(max. depth g) (max. depth 2g)

3 ≈105 ≈216 ≈1023 ≈278

4 ≈1019 ≈265 ≈1095 ≈2315

5 ≈1078 ≈2261 ≈10380 ≈21263

7 ≈101260 ≈24185 ≈106088 ≈220225

Table 11.2: Comparison of number of anisotropic and isotropic wavelet packet bases

packet bases with 2g horizontal or vertical decompositions to the number of isotropic
wavelet bases with g pairs of horizontal and vertical decomposition. It can be seen
that the increase in keyspace size introduced by the use of anisotropic wavelet packets
is substantial. �is increase in keyspace size comes at no computational cost, as the
computational complexity of the anisotropic wavelet packet transform is the same as
the complexity of the isotropic wavelet packet transform. Formulated in another way,
we can say that for the same size in keyspace randomized anisotropic wavelet packets
need less complexity than isotropic wavelet packets. In the perspective of lightweight
encryption anisotropic wavelet packets lower computational demands signi�cantly.

It has to be noted that the numbers given here do not re�ect the reduction by the
parameter settings that control compression performance.�is issue is covered in the
following section.

Compression-oriented Distribution

�e number of bases in the compression-oriented approach can be determined exactly.
Before we do that, we give an approximation in form of a lower bound. �e approxi-
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mation leads to a formula that is far simpler than the formula determining the exact
number of bases.

To obtain a lower bound for the suggested maximum decomposition depth of 12 for
the approximation subband and 8 for the detail subbands, we only regard the number
of bases induced by the decomposition of the detail subbands, as the restrictions that
have most impact on the keyspace size pertain to the approximation subband (due
to the proposed settings for minimum decomposition depth n and maximum degree
of anisotropy q for the approximation subband). In correspondence to the suggested
parameter settings, we assume that no minimum decomposition depth (e) or maxi-
mum degree of anisotropy (r) is set for the detail subbands (i.e., e = 0, r = ∞), and
that the maximum decomposition depth for the approximation subband (m) is greater
or equal the maximum decomposition depth for the details subbands (d). We then
assume the root to be decomposed either horizontally or vertically (re�ected by the
factor 2 in the formula below). �e approximation subband generated by this initial
decomposition is decomposed up to the depth of d in alternating directions, starting
with the inverse direction of the root subband. �e resulting approximation subband
does not exceed the maximum degree of anisotropy q = 1 (because the number of
horizontal and vertical decomposition di�er at most by 1). �e decomposition leads
to d detail subbands. We assume that each of these detail subbands is either not de-
composed or further decomposed an arbitrary amount of times up to level d, with the
�rst decomposition being in the inverse direction of the neighboring approximation
subband to avoid isotropic decompositions. For the detail subband at level i this cor-
responds to at least 1 + (Ai − 1)/2 possibilities (where Ai , as de�ned in Equation (9.1)
is the number of anisotropic bases up to decomposition level i). �e combination of
the possibilities in the subtree of each of the d detail subbands gives a lower bound
for the number of possible bases that can be obtained with e = 0, r = 0, m ≥ d, and
arbitrary settings for q and n:

2 ⋅
d−1
∏
i=0

(1 + Ai − 1
2

) ≤ Pd . (11.7)

For d = 8, the keyspace size is greater than 2302, and thus above the full search com-
plexity of AES with a 256-bit key.

To determine the exact size of bases available with the compression-oriented con-
straints in force, we need a little more work. We use the de�nition of the degree of
anisotropy Υ given in Equation (9.7) on page 119. Furthermore, to re�ect the mini-
mum decomposition depth n we rede�ne N as

N(l , a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for a = 0
0 for a = 1 ∧ l < n
1 for a = 1 ∧ l ≥ n

(11.8)
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where a, like in the isotropic case, de�nes if the current subband is in the approxima-
tion tree (a = 1) or in the detail tree (a = 0). We now adapt Equations (9.2) – (9.6) to
take the compression parameters into account as follows:

U(l , h, v , a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for h + v + 1 > d
R(0, h, v , a) for l = 0
R(l , h, v , a) for a = 1 ∧

Υ(h + 1, v) > q
U(l − 1, h + 1, v , a)⋅
U(l − 1, h + 1, v , 0)+
R(l , h, v , a) else

(11.9)

R(l , h, v , a) = RA(l) + RB(l) + RC(l) + RD(l) (11.10)
RA(l , h, v , a) = N(l , a) (11.11)

RB(l , h, v , a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for l = 0
0 for h + v + 1 > d
0 for a = 1 ∧

Υ(h, v + 1) > q
R(l − 1, h, v + 1, a)⋅
R(l − 1, h, v + 1, 0) else

(11.12)

RC(l , h, v , a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for l = 0 ∨ l = 1
0 for h + v + 1 > d
0 for a = 1 ∧

Υ(h, v + 1) > q
U(l − 2, h + 1, v + 1, a)⋅
U(l − 2, h + 1, v + 1, 0)⋅
R(l − 1, h, v + 1, 0) else

(11.13)

RD(l , h, v , a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for l = 0 ∨ l = 1
0 for h + v + 2 > d
0 for a = 1 ∧

Υ(h, v + 1) > q
R(l − 1, h, v + 1, a)⋅
U2(l − 2, h + 1, v + 1, a) else.

(11.14)

�is set of formulas re�ects the minimum decomposition depth n of the approxi-
mation subband by checking against N . �e maximum degree of anisotropy for each
subband is handled by comparing Υ to the parameter q. �e maximum degree of
anisotropy of the detail subbands is not set for the suggested parameters, but it could
easily be included in a similar way. �e maximum decomposition of the detail sub-
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Compression-Oriented Uniform

m n d q #Bases #Bases
6 0 6 0.5 ≈275 ≈278

12 6 12 0.5 ≈25048 ≈25055

12 0 8 0.5 ≈2364 ≈25055

12 6 8 0 ≈2371 ≈25055

12 6 8 0.5 ≈2364 ≈25055

Table 11.3: Number of bases for compression-oriented vs. uniform distribution

bands is handled by checking against e. Similarly the minimum decomposition depth
of the detail subbands d could be accommodated.

We can now give the exact impact on keyspace size of the compression-oriented
approach and compare it to the uniform distribution which uses all possible bases.
Table 11.3 lists the numbers for some parameter settings. �e last line represents the
suggested settings for the compression-oriented approach, which only include bases
that perform well for image compression.

It can be seen that the minimum decomposition depth of the approximation sub-
band has little in�uence on keyspace size. Specifying a minimum squareness factor
for the approximation subband does have a considerable impact on keyspace size.�e
biggest cut in the keyspace is due to setting the maximum decomposition depth d for
the detail subbands.�e bases with a complex decomposition of the higher frequency
subbands are not suitable for the compression of natural images. As the subbands of
high decomposition depth in the high frequency subbands are very numerous, a ma-
jority of bases is discarded by setting d to a low value.

From a practical point of view the keyspace size provided by the compression-oriented
approach with the suggested parameter settings is su�cient. A brute-force attack that
tries to �nd the correct basis has a complexity of 2363. Compared to complexity of a
brute-force attack on 256-bit AES, which is 2255, this keyspace size is more than su�-
cient for applications.

11.2 keyspace quality

It should be noted that a full brute-force attack may not be necessary. If a basis can
be found that is close enough to the basis that was used for transformation, there will
only be very little distortion in the reconstructed image. �eoretically, such a basis
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can be searched for incrementally, by trying to decode as much of the data as possible
in resolution-progressive mode and then vary the higher frequency subbands and re-
run the decoding. It has, however, been pointed out that the coding of the transform
coe�cients in jpeg2000 strongly relies on the associated subband structure (see be-
low, and cf. Engel and Uhl, 2006a). Especially for the high frequency subbands, where
there is a large number of possibilities it will be hard, if not impossible, to perform this
incremental search.

Nevertheless, the question should be addressed, how dissimilar two decomposition
structures need to be to ensure su�cient distortion for the wrong key. We perform a
replacement attack: Two randomly generated subband structures are produced, one
of which is used for encoding. �en the coe�cients of the encoding process are de-
coded with the second subband structure. �e distance of the trees is recorded along
with a quality comparison of two reconstructed images: one reconstructed with the
decomposition structure used for encoding and the other reconstructed with the sec-
ond subband structure. �is experimental setup aims at answering three questions:
(i) how similar or dissimilar are the subband structures produced by the di�erent se-
lection methods, (ii) do the pairs of di�erent subband structures result in signi�cant
quality distortion when one is used for encoding and the other is used for decoding,
and (iii) is the distance metric a good predictor for quality deterioration.

We measure the distance of two isotropic or anisotropic subband structures s1 and
s2 by comparing leaves common to both decomposition trees. First, all leaves of s1 and
s2 are assigned a score. We de�ne the score L(b) as

L(b) = 2m−r(b) (11.15)

where b is a subband, r(b) is the resolution level of b andm is the maximum resolution
level in any of the two trees. �e rationale for the weighting by resolution level is
that di�erences that occur on the lower resolution levels have a greater impact on
visual quality and therefore should be given a higher rating. �e total score Lt(s1, s2)
is computed as the sum of the scores of all individual subbands contained in s1 and
s2. �e score Lu for unique subbands in s1 and s2 is de�ned as the sum of the scores
of all subbands that are not contained in s1 and s2. �e distance between s1 and s2 is
de�ned as Lu/Lt . �is measure is relatively crude but should su�ce to give an idea of
the distances the two distributions achieve on average.
�e setup for our empirical study is as follows: we use the same 100 images that we

used in Section 10.3. For each wavelet packet type and each selection type and each
image we generate 100 pairs of bases consisting of Bc and B f . Bc is used for encoding.
We record the distance between the two bases, the PSNR obtained by decoding with
the correct basis Bc, and the PSNR obtained when reconstructing with the incorrect
basis B f . For basis selection and encoding, we use exactly the same parameters that
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we used in Section 10.3, as given in Table 10.4 on page 141. Again, we perform the test
at the same �ve rates: 0.125, 0.25, 0.5, 1, and 2 bpp. In the following we present three
plots for rates 2 and 0.125 bpp:

▸ �e �rst plot shows the ratio of PSNR that was achieved by reconstruction with
the incorrect basis B f to the PSNR achieved by reconstruction with the correct
basis Bc. �is answers the question to what extent the di�erent wavelet packet
and selection methods reduce the quality of an image obtained with a random
wavelet packet basis.

▸ �e second plot shows the relative number of samples by the distance between
Bc and B f . �is answers the questions how similar the subband structures are
that are produced by the di�erent wavelet packet and selection types.

▸ �e third plot shows how ratio of achieved PSNR and distance are related. �is
tries to answer the question whether the crude distance metric de�ned above
can serve as a predictor for image quality.

Figures 11.1 and 11.2 show the three result plots for a bitrate of 2 bpp in the isotropic
and anisotropic setup, respectively. Figures 11.3 and 11.4 show the results for 0.125 bpp.
For the rates between 0.125 the 2 bpp the results also range between the results of
the extreme rates. For these rates we present only the plots of the �rst type. Figure
11.5 shows the plots for the isotropic setup and Figure 11.6 shows the plots for the
anisotropic setup.

We start the discussion with rate 2 bpp. Here we have the situation that due to the
high rate, the jpeg2000 packets which are created for the higher resolution are full
of data. As the di�erences in the wavelet packets pertain to the higher resolutions, we
have very good results for rate 2 for both, the isotropic and the anisotropic case. Figure
11.1 shows the results for isotropic wavelet packets, Figure 11.2 shows the anisotropic
case. In the �rst line of each �gure, plots (a) and (b) show the ratio of samples that
achieve a certain ratio of the PSNR when decoded with B f (the bins are set to 1/100).
It can be seen that in the uniform selection method, two peaks exist in the isotropic
case. Also for the anisotropic case, a second peak exists, but is hardly noticeable at
this bitrate; for lower bitrates it becomes more pronounced. �e two peaks are due to
whether the dimensions of the approximation subband of B f corresponds to the di-
mensions of the approximation subband of Bc. If this is the case, then the result will re-
side in the peak closer to 1, if not in the peak closer to 0. For the compression-oriented
distribution we chose for the approximation subband to always be decomposed up to
the maximum decomposition depth, therefore there is only one peak. It can be seen
that overall, the reduction in visual quality achieved by the compression-oriented dis-
tribution is of course less than that achieved by the uniform distribution. However,
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in terms of security it is important to note that the maximum quality score achieved
by either distribution is 0.7 in the isotropic case. �is means that for the randomly
generated bases, the compression-oriented distribution provides the same security as
the uniform distribution. �e same can be said for anisotropic wavelet packets, even
though the quality goes up a little for the compression-oriented approach compared
to the uniform approach. When comparing the isotropic to the anisotropic setup it
can be seen that the latter achieves signi�cantly higher PSNR reduction.
�e high reduction in visual quality that can be achieved by the proposed encryp-

tion method at high rates is not present at lower rates. Figure 11.3 and 11.4 show the re-
sults for 0.125 bpp for the isotropic and anisotropic setup, respectively. In the �rst line
of each �gure, plot (a) again shows the uniform selection method and plot (b) shows
the compression-oriented selection method. It can be seen that at a lower rate the re-
duction in visual quality is far less than for a higher bitrate. It should be mentioned
that the same bases were used for each image at each rate. �erefore the achieved dis-
tance within the randomly generated pairs of bases is the same. �e di�erence to the
previous case is that with lower bitrates only the jpeg2000 packets of the lower reso-
lutions carry information. �e jpeg2000 packets of the higher resolutions are nearly
empty. �e di�erences of the wavelet packet bases in the higher resolutions therefore
have only marginal in�uence on the resulting visual quality. As the higher resolution
carry by far the most possibilities for di�erent decompositions, the encryption scheme
fails to provide high visual distortion at lower bitrates. For the compression-integrated
selection method in the isotropic setup, some bases achieve nearly the full quality, as
can be seen in �gure 11.3(b). For the anisotropic case the highest visual quality score
obtained is around 0.9, still far too high for practical application scenarios.

Figures 11.5 shows the reduction in visual quality for the isotropic case for the rates
0.25, 0.5 and 1 bpp. Figure 11.6 shows the same for the anisotropic case. It can be seen
that the higher the bitrate, the better the comparative reduction in quality. �e peaks
move toward the regions of lower PSNR ratio for higher bitrates for all wavelet packet
types and all selection methods. It can also be observed that the reduction in visual
quality achieved by the anisotropic wavelet packet transform is superior to the reduc-
tion achieved by the isotropic wavelet packet transform. In terms of compression level
we have to conclude that the proposed scheme needs a minimum bitrate to be e�ective.
�e required reduction in visual quality depends on the application.

Apart from the rate, we found that to some degree the frequency properties of the
images in�uences the reduction in quality. For very smooth images, like pictures with
a large portion of sky in it, the reduction in visual quality was far less than for textured
images. �is is not surprising as the textured images have signi�cantly more energy
in the highpass subbands than smooth images. �erefore a di�erence in the highpass
details subbands (where the highest number of decomposition possibilities exist) has
less impact on smooth images than on textured images. Of the 100 images, the im-
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age shown in Figure 10.12(a) (on page 140) exhibited comparatively little reduction in
visual quality for most test setups, whereas the image shown in Figure 10.12(b) was
among the images with the largest reduction in visual quality.

We now turn to the question of achieved distance, and to the second and third line
in Figures 11.1–11.4. Plots (c) and (d) of each �gure show the ratio of sample pairs by
the distance score they achieve (using the resolution-weighted tree-distance given in
Equation (11.15)). As the same bases were used for each image at each rate, plots (c)
and (d) are of course identical for the di�erent bitrates. When comparing the two selec-
tion methods, it can be seen that the distance achieved by the uniform distribution is
higher than the distance achieved by the compression-oriented distribution, for both
isotropic and anisotropic wavelet packets. �is is especially evident for uniform se-
lection in the anisotropic setup, where the largest number of bases exist. When com-
paring the di�erent wavelet packet types it is also not surprising that the distances
achieved by the anisotropic wavelet packet transform are a lot higher than the dis-
tances achieved by the isotropic wavelet packet transform.�is is of course due to the
higher number of anisotropic bases that exist for a given decomposition depth.
�e last question, if the resolution-weighted distance between the decompositions

used for encoding and decoding is a good predictor for the achieved PSNR reduction
is answered in Plots (e) and (f). What is immediately evident is the fact that the relation
between distance and PSNR di�ers for the uniform and the compression-oriented
selection. Within each selection method a weak connection exists between distance
and PSNR, but it is far from a conclusive correlation and exhibits a signi�cant number
of outlying bins. We can conclude that the crude distance measure can give an idea
of the visual quality to be expected, but is not a strong predictor. Note that this is in
contrast to the results we reported for only a couple of test images in Engel and Uhl
(2007a). Future work in this direction could include a better distance metric and a
detailed statistical analysis of the correlation between distance and visual quality.

In conclusion we can say that two key factors in�uence keyspace quality of isotropic
and anisotropic wavelet packets:

▸ bitrate: if the rate is very low, only the coe�cients of the lower resolutions will
be part of the generated bitstream and the visual reduction achieved by the pro-
posed scheme will be minimal, and

▸ frequency properties: if the source image material is very smooth, then the di�er-
ences in wavelet packet decompositions will not have a major impact on com-
pression quality.
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Figure 11.1: Evaluation of randomized isotropic wavelet packets at 2 bpp
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Figure 11.2: Evaluation of randomized anisotropic wavelet packets at 2 bpp
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Figure 11.3: Evaluation of randomized isotropic wavelet packets at 0.125 bpp
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Figure 11.4: Evaluation of randomized anisotropic wavelet packets at 0.125 bpp
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rate 0.25
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(c) Samples by PSNR ratio, uniform selection,
rate 0.5

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

R
at

io
 o

f 
S

am
p
le

s

PSNR Ratio 

(d) Samples by PSNR ratio, compression-
oriented selection, rate 0.5

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

R
at

io
 o

f 
S

am
p
le

s

PSNR Ratio 

(e) Samples by PSNR ratio, uniform selection,
rate 1
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Figure 11.5: Evaluation of isotropic wavelet packets at rates 0.25, 0.5, and 1 bpp
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(a) Samples by PSNR ratio, uniform selection,
rate 0.25
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(b) Samples by PSNR ratio, compression-
oriented selection, rate 0.25
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(c) Samples by PSNR ratio, uniform selection,
rate 0.5
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(d) Samples by PSNR ratio, compression-
oriented selection, rate 0.5
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(e) Samples by PSNR ratio, uniform selection,
rate 1
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(f) Samples by PSNR ratio, compression-
oriented selection, rate 1

Figure 11.6: Evaluation of anisotropic wavelet packets at rates 0.25, 0.5, and 1 bpp
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11.3 codec-specific attacks

In this section we discuss attacks that are not generally applicable. �ese attacks use
the speci�c format in which the transform coe�cients of the secret transform domain
are encoded, in our case jpeg2000, to obtain information on the visual data, the key or
the transform domain. We �rst discuss why in the context of jpeg2000 the proposed
scheme is unsuited for providing full con�dentiality.

11.3.1 Full Con�dentiality

�e packets of resolution R0 of any wavelet packet decomposition are the same as the
packets produced by a pyramidal decomposition of the same image. Without addi-
tional precautions, the �rst resolution is therefore accessible (in the case of anisotro-
pic packets R0 is only identical if the LL-subband is isotropic, but even if it is not, a
potential attacker only has to take a few guesses to decode the lowest resolution).
�e ease of accessibility can be weakened by additionally encrypting header infor-

mation. If the number of resolutions is not known, then the attacker also lacks knowl-
edge of the size of the approximation subband. However, due to the strong limitations
on the minimum and maximum number of resolutions, this measure does not su�-
ciently increase search complexity. In a similar way, additionally hiding the number
of quality layers makes the interpretation of the sequence of packets more di�cult for
the attacker, but fails to provide the level of security needed for full con�dentiality.
Because most of the energy is contained in the approximation subband (i.e., R0), an
attacker will be able to get a good idea of the visual data by forcing the data from the
packets with the highest payload into a pyramidal decomposition.

E�ectively, the presented scheme is not able to restrict access to the lower resolution
levels in a manner adequate for providing con�dentiality. �e solution of encrypting
the lower resolutions as such introduces additional computational overhead. Also, this
would present a di�erent protection scheme, and should take its bases rather from an
existing scheme that uses selective encryption. In such a scenario, it would of course
be an interesting experiment to try to add the security provided by secret wavelet
packets in the higher resolution levels to approaches that selectively encrypt the lower
resolutions, e.g., Norcen and Uhl (2003). As in the present work we are interested in
analyzing the security brought by wavelet packets on their own, we will conclude that
for full con�dentiality the scheme is not suitable and concentrate on the transparent
encryption scenario.
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11.3.2 Enforcement of Pyramidal Decomposition

In contrast to encryption for full con�dentiality, in a transparent encryption scheme
the accessibility of R0 is desired, full security is only required for the full quality ver-
sion. Because hiding the number of resolution levels and quality layers falls more into
the category of providing security through obscurity, but does not a�ect vulnerability
of the proposed scheme in principle, in the following we assume that apart from the
subband structure every detail about the packet stream is known to the attacker. In
particular this means that we assume the attacker to know the size of the image and
the number of resolution levels contained in the bitstream. �erefore the attacker is
assumed to also know the size of the approximation subband. We also assume that no
precinct partitioning is used.

Let p be the value of the parameter controlling the number of higher pyramidal
resolutions.�en the packets of resolutions R0 through Rp are the same as for the cor-
responding pyramidal decomposition and can be decoded by any jpeg2000 decoder
compliant to part 1 without quality loss. For resolution levels higher than Rp, the data
does not �t the pyramidal decomposition anymore, and decoding will eventually fail.
In order to obtain an image of higher quality than Rp, an attacker could try to read a
fraction of the coe�cient data of Rp+1 into the pyramidal structure and then attempt a
full resolution reconstruction. However, with the suggested parameters, the intersec-
tion of the randomly generated decomposition structures and the pyramidal structure
is far too small to obtain data that allows reconstruction at a substantial quality gain
(compared to Rp). �is is illustrated by Figure 11.7 for p = 1 and by Figure 11.8 for
p = 2.

11.3.3 Information in the Packet Header

In this section we turn to the question how much information on the decomposition
structure (and the wavelet coe�cients) is leaked by meta-information contained in
the jpeg2000 codestream.

Apart from the encrypted parameters, no explicit information on the anisotropic
wavelet packet structure is contained in the header data.

However, we need to investigate the situation for implicit information. �e inclu-
sion information, which is contained in the packet headers, is of course the point
where the decomposition structure is needed. �e crucial questions are if (i) the de-
composition structure is necessary to decode the inclusion information and if (ii) the
decomposition structure can even be inferred from the inclusion information. A pos-
itive answer in any case implies a security threat for the proposed scheme.
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(a) Decomposition structure,
p = 1

(b) Reconstruction at full reso-
lution

(c) Result of attack

Figure 11.7: Reconstruction example for p = 1

(a) Decomposition structure,
p = 2

(b) Reconstruction at resolu-
tion 2

(c) Result of attack

Figure 11.8: Reconstruction examples for p = 2
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If the inclusion information can be decoded correctly without the decomposition
structure, then also the wavelet coe�cients can be correctly decoded. If the wavelet
coe�cients are known, then also the decomposition structure is revealed, as it can
be easily determined from the coe�cients by simple statistical methods, as has been
shown by Pommer and Uhl (2003).

jpeg2000 employs so-called tag-trees (Taubman, 2000) to signal inclusion infor-
mation (see also Chapter 3): In a highly contextualized coding scheme, the contri-
butions of each code-block contained in a packet are linked to the subband structure.
�ereby the subband structure is used as context to interpret the output of the tagtrees.
If the subband decomposition structure is unknown, the attacker Mallory generally
cannot correctly interpret this output (we will discuss the exceptions to this below):
Mallory can only see the answer given to an inclusion question, but, lacking the de-
composition structure (and therefore information like the size of the array the code-
block refers to), does not know the right question. Mallory cannot assign codeblocks
to subbands. Furthermore, the fact that the inclusion information cannot be decoded
eliminates access to the raw coe�cient data, as an attacker cannot correctly associate
the contributions of a code-block to the correct coe�cients. Lacking the wavelet co-
e�cients, Mallory cannot use statistical analysis to infer the wavelet packet structure
from the coe�cients. In this respect the security of the secret frequency domain is
strongly dependent on the used codec: for other codecs the coe�cients may well be
available, see the discussion by Pommer and Uhl (2003).

If the packet headers were encoded with an arithmetic coder and no side infor-
mation existed, then the statement of the above paragraph would hold in any case.
However, the packet headers do not use all possible bitpatterns.�erefore, a sequence
of bits cannot be interpreted in any arbitrary way. Furthermore, there is side informa-
tion, namely that the possible interpretation has to �t the packet body data.�e crucial
question therefore is how many interpretations are there for a given packet header (in
the context of a wavelet packet scenario), given the size of the packet body data. As
discussed in Chapter 3, the packet header contains header information for each code-
block in each subband in the packet (provided that no precinct partitioning is used).
For each codeblock, �rst the inclusion information is contained. For included code-
blocks this is followed by the number of leading zero bitplanes, the number of coding
passes and the length of the codeblock contribution to the packet.�is is illustrated by
Figure 11.9. �e inclusion information for codeblocks that have never been included
before is coded in form of tag-tree output. For codeblocks that have been included
before, a 0 or a 1 is encoded to signal non-inclusion or inclusion. �e leading zero bit-
planes are coded as tag trees.�e number of coding passes are coded using �xed code
words and the length of the codeblock contributions are coded by a length indicator
that can be incremented by number k by coding k ones and then a zero.
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. . .

. . . . . .C0 C1 C2 Cn−1

II LZB CCPLNCP

C0 C1 C2 Cn−1

II LZB CCPLNCP

SB2SB1SB0

Empty?

Packet Header

Packet Body

Figure 11.9: jpeg2000 packet header for wavelet packets

Given a packet header, Mallory’s problem is to �nd all possible interpretations of
this header that assign values to all classes of header information that are consistent
with the packet body data without knowing the subband structure. As he does not
know the subband structure, he does not know where the codeblock headers for one
subband stop and the headers continue for the next subband.�erefore it will be hard
for Mallory to assign re�nement passes of later packets to the correct codeblocks. Mal-
lory could start by scanning for the �xed codewords to form a hypothesis. He could
look for runs of ones and interpret them as length indicators. He could try to assume
inclusion information for a hypothetical number of codeblocks per subband (which
will be di�cult as he knows neither number of subbands nor the number of tagtrees,
but he does have a lower and upper limit on the number of codeblocks in the packet).
�e extent of Mallory’s success will depend on a number of factors, like the number

of quality layers. For fewer quality layers, fewer choices exist and Mallory will have
a higher chance of deciphering the header. Furthermore, Mallory’s success will also
depend on whether he knows the packet boundaries (through SOP markers) and if
he additionally knows the end of packet header positions (through EPH markers).

In summary we can state that the structure in the packet header means that infor-
mation is leaked, which in some cases may lead Mallory to all coe�cient data and
therefore the decomposition structure and the full quality image.
�e security of the scheme can be restored, at the cost of additional computational

complexity. A di�erent wavelet packet structure can be used for writing the header.
Any decomposition structure can be used for encoding the packet headers. In this sce-
nario apart from the structure used for transformation another structure is written to
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the codestream, which is used for encoding the packet headers. A�er the codeblocks
have been decoded the structure used for transformation can be used to restore the
coe�cient.�is prevents Mallory from inferring (parts of) the correct wavelet packet
structure from the packet headers. However, the threat of Mallory being able to de-
code some or all coe�cients remains. In order to counteract this threat, the packet
headers need to be protected from access. �is can be done by conventional encryp-
tion (to retain bitstream compliance a format-compliant scheme can be used), or by
using the header protection scheme proposed in Chapter 3.

11.4 conclusion

�e compression-oriented approach for lightweight encryption with wavelet packets
discards a number of possible bases to produce good compression results with ran-
domly selected bases.�e achieved compression performance is better for anisotropic
wavelet packets than for isotropic wavelet packets, as they need a smaller number of
decompositions for the same set of bases.

By comparing compression performance to a method that randomly selects from all
possible bases, we have shown that pruning the set of all bases is necessary especially in
case anisotropic wavelet packets are used, as compression results vary immensely. If all
bases were used, the approach would not be suitable for application. In order to assess
the loss in keyspace size we formally determined the total number of bases and the
number of bases for the compression-oriented approach for isotropic and anisotropic
wavelet packets. A comparison shows that the number of bases that are suitable for
image compression is small compared to the total number of possible bases but is still
far above the complexity of a brute-force attack against 256-bit AES.

A quality assessment of the set of available bases showed that the expected distance
is higher for the uniform distribution. We have also shown that the expected distance
is higher in the anisotropic case.

As regards reduction in visual quality, we have show that the maximum visual qual-
ity retained was not signi�cantly increased by the compression-oriented distribution.
However, our results clearly showed that the lower the bitrate the lower the reduction
in visual quality. For very low bitrates, the scheme becomes ine�ective.

We have found the level of security to be too low for applications that demand full
con�dentiality. In terms of transparent encryption the scheme is successful, as it can
naturally be used to grant access to lower levels of resolution while keeping the higher
resolution levels secure.

We have also analyzed to what extent jpeg2000 meta-information can be used
to recover the decomposition structure and have identi�ed the packet headers as a
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potential source of leakage. As the packet headers have structure and leak information
that can potentially be used in an attack, they should be secured.

An advantage of the presented schemes is that the amount of data that needs to be
encrypted is extremely small and remains con�ned to the packet headers and the de-
scription of the wavelet packet decomposition structure. Furthermore, the schemes
are naturally format-compliant. �is is a signi�cant advantage of the presented ap-
proach compared to other suggestions. In the following �nal chapter of this part we
discuss possible application scenarios.
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As discussed in Chapter 1, scenarios for the employment of encryption in multimedia
environments can be divided into bitstream-oriented and compression-integrated en-
cryption, depending on where in the compression pipeline encryption takes place.
Furthermore we can divide application scenarios into on-line and o�-line scenarios,
distinguishing whether the data is given as plain image data (i.e., not compressed)
or in form of a bitstream resulting from prior compression. In this chapter we dis-
cuss possible application scenarios of the compression-integrated approach for trans-
parent encrpytion that is based on a key-dependent wavelet transform compared to
bitstream-oriented approaches.
�ere are many application scenarios for transparent encryption for which both,

bitstream-oriented and compression-integrated approaches can be used. An example
is TV broadcasting: a preview video is available for all users, but the full-quality ver-
sion remains exclusive to the paying subscribers. Also in image databases, the avail-
ability of a thumbnail is of advantage as an incentive for buying the full-quality version.
�e same is true for online video databases, of course.

For video surveillance it is sometimes desirable to show the video feed in order to
discourage the�. However, privacy should be protected. A possible solution is to only
show the poor quality as a deterrent. If an incident should occur then the full quality
version can be accessed by security personnel.
�e main di�erence between compression-integrated and bitstream-oriented ap-

proaches is the fact that bitstream-oriented approaches can be used for on-line and o�-
line scenarios, whereas compression-integrated approaches are mainly restricted to
on-line scenarios (because if compression has already been done, transcoding would
become necessary to apply the encryption in this case).�is makes bitstream-oriented
approaches more �exible in comparison. On the other hand, compression-integrated
encryption also o�ers some advantages: (a) only very little data has to be encrypted
even compared to selective encryption schemes (of course this comes at the cost of
increased complexity in the compression pipeline), (b) format-compliance comes nat-
urally and does not need to be taken care of explicitly (as it is the case for bitstream
oriented approaches), and (c) signal processing is to some extent possible in the en-

169
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crypted domain, which allows secure watermarking and intrinsic �ngerprinting, as
discussed below.

It should be noted for (c) that signal processing in the encrypted domain is also
possible for partial bitstream-oriented encryption to some extent, because only small
amounts of data are encrypted and even the encrypted data can be processed on a
packet or even CCP basis, e.g., enabling e�cient transcoding and cropping.�e advan-
tage of the compression-integrated approach is that the full transform coe�cients are
available for signal processing. In the case of jpeg2000, for example, key-dependent
wavelet packet subband structures allow direct access to the transform coe�cients and
with a codec compliant to jpeg2000, part 2, all features of JPSearch can be used. In
the context of key-dependent wavelet packet subband structures in jpeg2000, the fact
that a part II compliant decoder is needed to access the full quality version can be seen
as another advantage: Even if a key is compromised, the visual data is only accessible
with such a decoder (if no transcoding is performed of course), which might hinder
dispersion of the full quality version. A traitor-tracing scheme can be employed that
uses the unique wavelet packet structure to determine the source of pirated visual data.
�is works in the second and third scenario and is discussed below.

For both compression-oriented and bitstream-oriented approaches we can com-
bine symmetric transparent encryption with public key encryption to facilitate dis-
tribution and key-management. For the bitstream-oriented approach the visual data
is �rst encrypted symmetrically (using one of the schemes discussed previously).�en
the key of the symmetric encryption scheme is encrypted with a public-key scheme
and sent to the (paying) user. In the case of the compression-integrated approach, the
visual data is �rst encoded with a randomly selected basis. For a paying user, the de-
scription of this basis is then encrypted with the user’s public key and sent to the user.
�is basically amounts to a hybrid encryption scenario with combined symmetric and
asymmetric encryption:�e description of the basis used for encoding is the key to the
symmetric encryption scheme, key management and distribution is realized by clas-
sical public key encryption. Both kinds of approaches can be used for protection on
three di�erent levels: (a) individual protection for each image (or groups of images) re-
gardless of the associated user, (b) individual protection for each user (for all images
associated with the user) or (c) individual protection for each image and each user.
We use wavelet packets in the following discussion as a representative of compression-
integrated encryption, but it should be noted that the re�ections are valid for other
key-dependent transform domains as well.
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12.1 protection for each image

�is approach presents a pay-per-item implementation. Each image (e.g., in a data-
base) is encrypted with an individual key or decomposed with a unique wavelet packet
subband structure respectively. Any non-paying subscriber can get a preview image.

If we allow more than one image to share the same symmetric key (or the same
subband structure), then a channel-based subscription service can be implemented:
if, for example, all sports pictures share the same symmetric key, a person paying for
the sports key can access all of the pictures in this group.

For compression-integrated encryption, the unique frequency domain of each im-
age allows copy-tracing. For example, a crawler could be employed to search for im-
ages with a particular subband structure.�is can be done by matching the coe�cients
in the transform domain, or by reconstructing the image and matching in the spatial
domain. Even if transcoding is employed, there can be some traces of the subband
structure le�, as outlined in the following scenario.

12.2 protection for each user

In this scenario, a unique symmetric key (or subband structure) is assigned to each
user. In an image database with personal albums, for example, this key would be used
for each item the user uploads.

A nice feature of key-dependent transform domains in this context is that the trans-
form domain can be used to trace the user’s data if it gets redistributed. A crawler
could, for example, look for images coded in a particular user’s subband structure.
Even if transcoding was used, e.g., if the jpeg2000 image has been transformed to a
jpeg image, due to quantization there could be traces le� in the visual data that allow
the linking to the subband structure of a particular user. To make the tracing scheme
more reliable, a watermark can be embedded in the wavelet packet domain (Dietl and
Uhl, 2003).

Another feature provided by the use of user-dependent wavelet packet structures
are secure annotation watermarks. As these watermarks can be embedded in the wave-
let packet domain to enhance security, only a person knowing the subband structure
can extract the contained information (Dietl and Uhl, 2004). Any person lacking the
subband structure can only access the preview image, but not the annotations. As the
secret transform domain is already available, apart from embedding no additional
computational costs are introduced.
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12.3 protection for each user and each image

�is scenario is similar to the previous scenario, but a new symmetric key (or sub-
band structure) is created for each of the user’s images. �is is important if one or
some of the images get sold and access should not be given to the other images. �is
is especially interesting for personalized visual data, for example, personalized greet-
ing cards. Each personalized card is encrypted using a unique symmetric key, only the
user who ordered the card may access the full quality version. Another example are
blueprints, which an architect creates for a speci�c customer. �e customer can get a
preview image, but to access the blueprints in full detail, he has to obtain the symmet-
ric key. A di�erent key is used for the next set of blueprints from a di�erent order, even
if it is the same customer. Also in this scenario the possibilities of copy-tracing and
secure annotation watermarks come for free with the use of key-dependent transform
domains.

12.4 conclusion

Like bitstream-oriented partial / selective encryption schemes, the compression-inte-
grated approaches based on key-dependent transforms succeeds in reducing the com-
putational demand for encryption signi�cantly as compared to traditional transparent
encryption methods.

While a bitstream-based encryption technique is more �exible as it can be em-
ployed in both on-line and o�-line scenarios, the secret wavelet packet approach re-
quires a smaller amount of data to be encrypted (which has to be paid for with a higher
complexity in the compression pipeline) and does not have to obey any restrictions
imposed by the requirement for format compliance as required for bitstream packet
data encryption. �erefore, for speci�c application scenarios, e.g., such that require
public-key cryptography to be applied (where a minimal data amount subjected to
encryption is a must and bitstream compliance is harder to achieve), the compression
integrated wavelet packet technique is an interesting alternative to bitstream-based
transparent encryption.

To conclude this part, it should be noted again that the discussed schemes are spec-
imen of lightweight encryption. Full con�dentiality in the sense of cryptographic se-
curity cannot be provided. For this the only option is to use a traditional cipher on
the complete source data.
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13ANALYSIS OF BITPLANE-BASED LIGHTWEIGHT
FINGERPRINT ENCRYPTION

In the following two chapters (cf. Engel and Uhl, 2007b; Engel et al., 2008a) we analyze
security schemes that are based on bitplane extraction. �e context of our analysis is
provided by a speci�c scheme proposed for the encryption of �ngerprint images. We
will analyze the bitplane properties of the 3200 images in contained in the database of
the �ngerprint veri�cation contest 2004 (FVC2004).1 We will then present attacks on
the “image-based selective bitplane encryption protocol” (Moon et al., 2006).

13.1 introduction

�e increasing use of biometric systems raises the question of how to store and han-
dle biometric data in a secure way. In this respect, sample data, i.e., data acquired by
the sensor, is more sensitive than template data. Whereas template data contains a de-
scription of the biometric features that pertain only to the used system, sample data
can potentially be used on other systems as well. As generally the revocation of bio-
metric data is extremely problematic, a compromise of this data has severe security
implications.�erefore, the secure handling and storage of biometric sample data may
become imperative due to the security and privacy concerns of the users.

Usually, classical cryptographic techniques are suggested to be used for biometric
sample data Maltoni et al. (2003). A small number of speci�c techniques has been
developed for �ngerprint sample images. A Fourier-type transform-based private en-
cryption scheme for �ngerprints is proposed in Soutar et al. (1998). �e concept of
“cancelable biometrics” is proposed in Ratha et al. (2001), where the acquired biomet-
ric signal (i.e., the sample) is distorted with an intentional repeatable transform before
the extraction of the template. In case of a compromise, the transformation can sim-
ply be changed. A very similar approach are the so-called “biometric cryptosystems”
proposed in Uludag et al. (2004) and Ratha et al. (2001): A secret transformation is
applied to the biometrics templates to render them useless for intruders. Matching
can be performed in the encrypted domain.

1http://biometrics.cse.msu.edu/fvc04db/index.html
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(a) DB1 A (b) DB2 A (c) DB3 A (d) DB4 A

Figure 13.1: Example �ngerprint images from the FVC2004 database

Controlling the computational demand is important, especially in distributed sce-
narios with weak and low-power sensor devices. Classical encryption techniques can
be too demanding to be employed, therefore a careful but signi�cant reduction of
encryption complexity is required for this type of applications. �e limited computa-
tional resources in embedded processors are addressed in recent work by Moon et al.
(2006), where an approach involving selective encryption of �ngerprint images em-
ploying XOR on a bitplane basis is suggested. We will analyze this approach in detail
in the next chapter and demonstrate several shortcomings and a computationally e�-
cient attack.

Before we turn to the analysis of these speci�c approaches, we will investigate the
bitplane properties of �ngerprint images. Random properties have been attributed to
these bitplanes, e.g., by Droogenbroeck and Benedett (2002b) and Moon et al. (2006).

13.2 randomness of fingerprint bitplanes

�e four databases of the �ngerprint veri�cation contest 2004 (FVC2004)2 contain
samples from di�erent sensors. Databases 1 and 2 contain images of two di�erent op-
tical sensors (DB1, DB2), database 3 originates from a thermal sweeping sensor (DB3),
and database 4 consists of synthetically generated prints (DB4). Figure 13.1 displays an
example �ngerprint from each database (the frames for DB1 and DB2 are only drawn
to show the image dimensions, and are not an actual part of the �ngerprint images).

In order to �nd a measure for quantifying discernibility from noise in the bitplanes
of these images, there are a couple of possible approaches. A direct approach is to
perform an statistical analysis on the bitplanes. Another approach that is discussed in
Engel et al. (2008a) is to count the number of consecutive runs and how well the bit-

2http://biometrics.cse.msu.edu/fvc04db/index.html



13.3 correlation within the bitplanes of fingerprint images 177

0 1 2 3  4  5  6   7

bitplane

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
co

m
pr

es
si

on
 r

at
io

DB1_A
DB2_A
DB3_A
DB4_A
Lena
random

Figure 13.2: Compression performance of arithmetic coding by bitplane

planes can be compressed by an arithmetic coder. We will recount the latter approach
here.

From each set, 100 �ngers with 8 prints each are used, the plots show average com-
pression rates. For the sake of a comparison to a “classical” digital image we also
present the values of bitplanes of the Lena image. As a reference, we have also added
the results for an image which only contains random noise. �e image was generated
by using the Mersenne Twister PRNG (Matsumoto and Nishimura, 1998) to produce
a random byte for each pixel value.
�e idea for this test setup is that if the bitplane can be compressed well, it cannot

be very close to a random �eld. We use the arithmetic coder proposed by Mo�at et al.
(1998) in a mode where it accepts a sequence of bits without a speci�c background
model. Figure 13.2 shows the compression ratio of each bitplane for the �ngerprint
images in the four databases and, as a reference again, for Lena and the randomly gen-
erated image. It can be seen that the arithmetic coder is successful at compressing all
bitplanes of the images in DB1, including the LSB-plane. An interesting phenomenon
can be observed for the images in DB3: the thermal sensor yields images for which
the medium bitplanes exhibit more noise than the LSB-plane.�e compression ratios
for the LSB-planes of the images in DB2 and DB4 and also Lena are nearly as low as
the results for the randomly generated image. For these images the lower bitplanes are
closer to random than for the other images.

13.3 correlation within the bitplanes of fingerprint images

Another point apart from the randomness of the LSB-plane is the correlation of each
bitplane with the other bitplanes. To assess this correlation, we compute the sample
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Figure 13.3: Correlation of each bitplane with the other bitplanes

correlation of the bitplane under consideration with each other bitplane, and then
average the correlation values. �e results for each bitplane are shown in Figure 13.3.

For the images of DB1, which have a uniform background, the correlation is nat-
urally high. �e phenomenon of more noise in the medium bitplanes in the case of
DB3 can again be observed in the lower correlation of these bitplanes, especially for
the ��h bitplane. For DB2 a little correlation can be observed at lower bitplanes. �e
lower bitplanes of DB4 and Lena exhibit no correlation to the other bitplanes, just like
the randomly generated image.

13.4 conclusion

It should be noted that better sensors, due to inherent (thermal) noise, may produce
images with more random LSB-planes as compared to weaker sensors. Furthermore, if
post-processing is applied, it may in�uence the randomness of the LSB-plane in one
or the other direction. What our observations show is that the assumption that all
scanners always produce images for which the LSB-plane is (close to) a random �eld
that shows no correlation to the other bitplanes is not true and is, in fact, a dangerous
assumption with regard to security.



14AN ATTACK AGAINST IMAGE-BASED SELECTIVE
BITPLANE ENCRYPTION

In this chapter, we analyze a recently published lightweight encryption scheme for �n-
gerprint images and discuss several shortcomings. A low-cost attack on this scheme is
proposed, which allows access to the full plaintext for most given ciphertexts. We give
some recommendations for improvements of the encryption scheme, but conclude
that the analyzed scheme remains insecure.

14.1 image-based selective bitplane encryption

In recent work Moon et al. (2006), a lightweight �ngerprint image encryption tech-
nique has been proposed, which has been denoted as “image-based selective bitplane
encryption protocol”.�e approach, which is essentially a Vigenère cipher, constructs
a keystream from the least signi�cant bit (LSB) plane of the input image. �is key-
stream is XORed with the binary representation of the plaintext data and then en-
crypted with AES.�e aim of the approach is a reduction in computational complexity
to facilitate real-time processing on low-end processors.

Let I be the original 8 bpp �ngerprint image with a width of w pixels and a height
of h pixels. s denotes the size of the image in bits, s = h ⋅w ⋅8. Consider now the binary
representation of the image I being given as

I = {b0, b1,⋯, b6, b7, b8,⋯, bs−1}

where bm⋅8, 0 ≤ m ≤ h ⋅ w − 1 is the MSB of the binary representation of pixel m + 1,
whereas bm⋅8−1, 1 ≤ m ≤ h ⋅w is the LSB of pixel m. We extract a set of key bits

K0 = {k0,⋯, kh⋅w−1}

where the m-th keybit km of key K0 is constructed by taking the LSB of each pixel m,
i.e., km = bm⋅8−1, 1 ≤ m ≤ h ⋅w. Subsequently, to obtain the encrypted data ci , we apply
an exclusive-or operation (XOR) between I and K0:

ci = bi ⊕ ki , 0 ≤ i ≤ s − 1 .
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Since this operation only processes 1/8 of the binary representation of I, it is re-
peated for the remaining binary data of I 7 times using the identical key K0. Finally,
K0 is encrypted using AES and transmitted to the receiver together with the encrypted
data ci , 0 ≤ i ≤ s − 1.

Compared to a full (i.e., 100%) AES encryption, the approach reduces the AES en-
cryption e�ort to 12.5% and introduces only little additional overhead (XOR and ex-
traction of the binary image data – compare Table 3 in Moon et al. (2006)).

14.2 vulnerabilities

14.2.1 Key-length

Encryption with simple XOR is only secure if the keystream is truly random and of the
same length as the plaintext, i.e., if it is a one-time pad (e.g., Schneier (1996)). Both
conditions are violated for the proposed approach.�e key-length, which is an eighth
of the message length in the proposed approach, gives an attacker the possibility to
shi� the ciphertext by the size of the key and XOR it with itself.�is operation removes
the key and leaves the attacker with the plaintext XORed with a version of itself that
has been shi�ed by the key-length Schneier (1996). Figure 14.1 illustrates this for a
�ngerprint image. As can be seen, the image obtained by this operation yields a lot
more information of the original �ngerprint than the ciphertext.

(a) Original image (b) Ciphertext C (c) C ⊕ (C >> key length)

Figure 14.1: Illustration of shi�ing a ciphertext by key-length (part of DB4 1 8)



14.2 vulnerabilities 181

14.2.2 Randomness

Another problem lies with the assumption that for �ngerprint sensors the LSB-plane is
su�ciently random and not correlated with the other bitplanes. �e authors of Moon
et al. (2006) argue that the LSB-plane is “not correlated with other bitplanes if the
images are acquired by various sensors such as a digital camera, scanner and other
devices” and that the LSB plane “looks similar to a random number �eld”. We have
discussed both the randomness of the bitplanes and the correlation among the bit-
planes in the previous chapter. Figure 14.2 shows another counter-example for the
randomness of the LSB plane.�e image is from database DB1 and has been acquired
with an optical �ngerprint sensor. As can be seen, the LSB does not generally behave
like a random number �eld for all �ngerprint sensors. �e ciphertext – if the term is
indeed appropriate in this case – for this �ngerprint image is shown in Figure 14.2(c).

(a) Original image (b) LSB-plane (c) Ciphertext

Figure 14.2: Random LSB-plane: a counterexample (DB1 1 3)

14.2.3 Key XORed with Itself

Even if the LSB-plane produced by the used sensor is assumed to be su�ciently ran-
dom, the scheme is not secure. �e authors propose to XOR all bits of the plaintext
with the LSB-plane. �at means that the LSB-plane is XORed with itself at some posi-
tions. We show below that this is a fundamental problem. �is critical mistake in the
design of the encryption scheme could have easily been avoided, as we will discuss in
Section 14.5.

14.2.4 Data Expansion

�e ciphertext is 112.5% of the size of the plaintext. Since the transmission is intended
for weak network links, this property is highly undesired. Similar to the issue of XORing
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the key with itself, also data expansion could have been avoided, which will be dis-
cussed in Section 14.5 as well.

14.3 attack

We attack the scheme at its most vulnerable point: the key being XORed with itself. Let
C be the bits of the ciphertext that are obtained by encrypting I with key K0. During
encryption, each of the keybits (being the LSB of plaintext pixels) is XORed with an
element of K0. We subsume these elements as K1. Note that K1 ⊆ K0. We introduce the
operation ⊕̂with the meaning of m ⊕̂n as “the bit at position m gets encrypted by the
bit at position n”. We can conceive the operation as a “mapping” from K0 to K1, where

K1 = {ki ∈ K0 ∣ ∃k j ∈ K0 ∶ k j ⊕̂ ki}.

If one or more of the keybits in K0 are mapped to the same position, then K1 ⊂ K0,
i.e., the mapping reduces the number of key positions. As the ciphertext is known,
K0 can be reconstructed from K1, if the correct settings for the keybits in K1 can be
determined.

We can further investigate the mappings of the keybits in K1. All of the elements of
K1 are mapped to an element of K1.�is can easily be shown: let k j be an element of K1,
then also k j ∈ K0, because K1 ⊆ K0. If we now assume that k j is mapped to ki ∈ K0/K1,
i.e., k j⊕̂ki , then by the de�nition of K1 and because k j ∈ K0 and ki ∈ K0, it follows that
ki ∈ K1, which contradicts the assumption. �erefore the set K1 can be mapped to a
set K2 with K2 ⊆ K1.
�is process can be applied repeatedly. We can map the keybits in Ki to a set Ki+1,

Ki+1 ⊆ Ki :
Ki+1 = {ki ∈ Ki ∣ ∃k j ∈ Ki ∶ k j ⊕̂ ki}.

As long as one or more bits from Ki+1 are mapped to the same bits in Ki , Ki+1 is a
proper subset of Ki : Ki+1 ⊂ Ki , i.e., we reduce the number of referenced keybits. It can
easily be seen that a�er a number of iterations N no more reduction is possible:

∃N ≥ 0 ∶ Ki+1 = Ki for i ≥ N .

If the correct settings for the bits in KN are known, then KN−1 can be reconstructed. As
generally the correct settings of Ki+1 can be used to reconstruct Ki , the correct settings
of the bits in KN are su�cient to get the settings for all bits in the key.

It can be shown that for key-lengths of a power of 2, ∣KN ∣ = 1, i.e., the whole key
depends on the setting of a single bit. In this case, the plaintext can be easily recon-
structed by testing the two possible settings of this bit and then reconstructing the
key. A�er decryption, one setting will yield the original plaintext, the other setting
will yield the original plaintext with its pixels inverted.
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For images of other sizes, more positions will remain in the set KN . Generally, KN
will be too large for a brute force search. Note that if s is coprime to 8, then KN = K0,
i.e., no reduction is possible. However, the existing mappings of the bits in KN can be
used to further reduce the number of relevant keybits. �e elements of KN are either
mapped to themselves or to another element of KN . During the encryption process,
only a limited number of elements are actually mapped to themselves. For the rest of
the elements we can de�ne circular chains of keybits. For the keybits in each of these
sequences a mapping exists between each element and its successor, with the successor
of the last element being the �rst element. E.g., for a key of length 73, k30 is mapped to
k28 which is mapped to k12 which is mapped to k30 again. �e elements of KN which
are mapped onto themselves form a chain of length 1.�e number of chains that exist
in KN and their lengths depend on the length of the key.

If the correct setting for one bit in the chain is known, then the complete chain can
be reconstructed. So we can choose a single element from each chain as a representa-
tive. Each of these representative elements in�uences a multitude of bit positions in
the plaintext.
�e procedure of reducing the keybits is illustrated in Figure 14.3 for an input image

of 72 pixels. During encryption each element of K0 is XORed with an element of K0
(a). �e referenced elements are collected in K1 (b). For n = 72, no further reduction
is possible a�er this step, so N = 1. In the �nal step, chains of mappings are found in
K1 (c). �e number of representative bits for the 72-bit key is reduced to 5 bits.

As an example, we investigate �ngerprint images used by Moon et al. (2006): for two
di�erent sensors, they obtain images of 320× 440 and 248× 292, respectively. For the
�rst sensor this leads to a set KN=3 with 275 elements. �ese elements can be grouped
into 16 chains of varying length. During encryption, each chain in�uences between
4096 and 81920 bit positions in the plaintext. For the second sensor the reduced set
of keybits KN=2 has 2263 elements which can be organized into 175 chains. Each chain
in�uences between 256 and 3840 bits in the plaintext.

For a brute-force search, the number of chains is still too large. But we can formu-
late some conditions that should hold for the plaintext. Because the representative bits
in�uence so many positions in the image, the condition needs not be overly sophisti-
cated. For natural images, the sample variance can be used as a simple measure, for
�ngerprint images we introduce a more suitable measure below. A hypothesis for the
value of the representative bit of each chain is formed and iteratively tested. We start
by setting each representative bit to zero. �en the chains are reconstructed to form
the set KN . A hypothetical key is created by reconstructing KN−1 through K0 from KN .
K0 is used to reconstruct an image. In the next step one of the representative bits is
�ipped. Again, an image is reconstructed, and its sample variance is compared to the
previous run. If the sample variance has decreased, then the bit is le� at 1 otherwise it
is �ipped back to 0. �is process is repeated over the whole set of representative bits,
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Figure 14.3: Reduction of keybits for n = 72, N = 1

until the variance no longer changes. For images with a su�cient degree of smooth-
ness the result will be the original image (or an inverted version of it, depending on
the initial setting of the representative bits). �is iterative re�nement of a hypotheti-
cal key is similar to the method for cryptanalysis of substitution ciphers proposed by
Jakobsen (1995).
�is process is illustrated for a version of the DB2 3 3 �ngerprint image of size

248 × 292 in Figure 14.4. Each image represents a whole run over the 175 chain bits.
A�er run number 2 the variance does not change anymore and the image is found.
�e variance for testing the hypothesis does not only work for most natural images

but also for many of the tested �ngerprint images. However, some of the �ngerprint
images exhibit strong oscillatory patterns. An example image, which was captured
by a thermal sweeping sensor, is shown in Figure 14.5(a). In such cases, the minimum
variance fails as a condition for the correct plaintext image, as shown in Figure 14.5(b).
�erefore we use a more local measure that re�ects the properties of �ngerprint im-
ages in a better way: For each pixel in the image decrypted with the hypothetical key,
we measure the di�erence of this pixel to all pixels surrounding it. �e sum of these
di�erences should be minimized. We found that considering the eight immediately



14.4 evaluation 185

(a) Initial hypothesis (b) Run #1 (c) Run #2

Figure 14.4: Variance attack on DB2 3 3

surrounding pixels is su�cient. With the neighborhood measure we can decrypt both,
�ngerprint and natural images. Figure 14.5(c) shows the attack result for Figure 14.5(a).

14.4 evaluation

If the proposed attack is successful for a given ciphertext, the decrypted image will
generally be bitwise identical to the original image. �e attack does not depend on
the randomness of the LSB-plane: even for a truly random LSB-plane the encrypted
image can be easily decrypted without knowing the key. We veri�ed this by success-
fully attacking images for which the LSB was replaced by a pseudo-random number
�eld. Furthermore, the attack is not restricted to �ngerprint images, but also works
for natural images. �e attack can be adapted to work with any type of plaintext, if a
suitable measure can be found to be used in the iteration for this type of plaintext.
�ere are some key-lengths that produce a large number of short chains, each of

which only in�uences relatively few positions in the image. In these cases, the mea-
sures for the plaintext are too crude to produce a successful attack. To quantify the
success rate of the proposed attack, we investigate the ratio of the number of chains
to the number of bits in the key for image sizes ranging from 642 to 5122. Figure 14.6
shows the ratio of key-lengths on the ordinate that achieve a certain ratio of number
of chains to total key bits, given on the abscissa.

We found that the attack reliably produces the original plaintext for ratios that are
below approximately 0.02. It can be seen that for 95.5% of the key-lengths the ratio
lies below 0.01. 98.2% of the key-lengths lie below 0.02. �at means that for 98.2% of
the possible image sizes between 642 to 5122 the proposed attack will work reliably
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(a) Original image (b) Result of variance attack (c) Result of neighborhood at-
tack

Figure 14.5: Variance versus neighborhood attack (part of DB3 84 2)

for natural and �ngerprint images. For the rest, the reliability of the attack decreases
with the number of representative bits. �e time the attack needs increases with the
number of bits. A more sophisticated measure could help to improve reliability in the
range above 2%, at the expense of higher computational demands.

Note that the proposed attack cannot be transferred to Vigenère encryption in gen-
eral (i.e., encryption with keystreams shorter than the plaintext where the keystream
is not XORed with itself). Even for very short keys with a couple of hundred bits, for
which each of the bits in the key in�uences many bits in the image, the iterative at-
tack is unsuccessful. Figure 14.7 illustrates this for the Lena image: a 700-bit pseudo-
random one-time pad is used for encryption (a), neither variance (b) nor local neigh-
borhood (c) can retrieve the plaintext. A blocked version of the variance leads to
slightly better results (d). �e proposed attack fails, because it utilizes the fact that
the reduction of the key results in an irregular in�uence of the representative bits on
the bits in the image, which facilitates the use of very simple plaintext measures. For
general Vigenère encryption, a more suitable and possibly more complex measure has
to be used. Substitution ciphers with short keys have been shown to be easy to crack
Schneier (1996), especially for plaintexts with low entropy like natural language texts
and images.
�e computational demands of the attack depend on the size of the image and the

number of representative bits. Table 14.1 shows some timing results, which were ob-
tained with a Java implementation running on an AMD Athlon 1.6 GHz with 2 GB of
RAM. It can be seen that the costs for the attack are low. Using the sample variance for
an attack on DB3 84 2 was unsuccessful (marked by † in the table), all other attacks
produced the original plaintext image. Some of the images were cropped to a certain
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Figure 14.6: Ratio of samples by ratio of (representative bits)/(total keybits)

size (marked by ⋆) to re�ect di�erent key-lengths (and to remove the scanner back-
ground in some cases). �e last image represents a special case for which the keybits
can be reduced to a single representative bit. In this case, the attack is extremely fast
and no measure is needed.

14.5 improvements

14.5.1 Key XORed with Itself

In this respect, the scheme can be designed in a more secure way: only XOR the bit-
planes apart from the LSB-plane with the LSB-key, i.e., bitplanes 7 through 1, but leave
the LSB untouched.�e original scheme proposes to encrypt the LSB-plane with AES
anyway. �e encrypted version can be inserted into the ciphertext at the LSB posi-
tions. Apart from enhancing security by avoiding the key being XORed with itself, this
modi�cation brings another advantage: unlike in the original scheme, the LSB-plane
information is not transmitted twice, therefore also solving the data expansion prob-
lem.

14.5.2 Randomness

In order to produce a keystream that exhibits more properties of a random number
�eld, we suggest to extract the LSB-plane �rst (or any other bitplane), subject it to
AES encryption, and �nally use the resulting data as the keystream for the XOR op-
eration. Of course, AES ciphertext is not truly random, but at least it passes several
strong statistical tests for randomness (Hellekalek and Wegenkittl, 2003). �is proce-
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(a) Ciphertext (b) Variance (c) Neighborhood (d) Blocked Variance

Figure 14.7: Unsuccessful attacks for general Vigenère encryption

dure also invalidates the proposed attack. It has to be noted, however, that with this
approach, the encrypted LSB-plane has to be regarded as proper key material and has
to be transferred over a secure channel.

14.5.3 Key-length

�e length of the key remains restricted to 1/7 of the data size even if implementing
the improvements as suggested so far. �is is a major obstacle. A possible solution
would be to additionally introduce 6 di�erent permutations of the key data at the
cost of additional key material. It is doubtful (and of course depends on the type of
permutations applied) if such a scheme would still be more e�cient and equally secure
as compared to full encryption with a fast stream cipher (e.g., Rose and Hawkes (2003);
Ekdahl and Johansson (2003); Halevi et al. (2002)).

14.6 conclusion

We have analyzed a published encryption scheme for �ngerprint images. With the
computationally undemanding attack we presented, access to the full plaintext can
be obtained for most given ciphertexts. We have shown that although some improve-
ments to the original scheme are possible, it remains insecure.

Simplistic schemes used to secure �ngerprint image data may be a severe threat to
the security of the biometric data. It has to be pointed out that fundamental knowl-
edge in the cryptographic area has to be obeyed as well, when designing lightweight
encryption schemes.
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Image Size R. Bits Variance Neighborhood

DB1 1 3 640 × 480 8 13.4 s 7.5 s
DB4 1 8 233 × 384 8 4.4 s 4.8 s
DB3 84 2 300 × 480 32 † 14.8 s
DB3 84 2⋆ 205 × 251 527 † 96.9 s
DB2 3 3 328 × 364 210 67 s 107 s
DB2 3 3⋆ 248 × 292 175 52 s 54 s
DB2 3 3⋆ 187 × 279 1556 433.2 s 529.3 s

DB2 3 3⋆ 256 × 256 1 1.2 s

Table 14.1: Timing results
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We proposed, discussed, and evaluated a number of di�erent methods for encryption
of still visual data. Many of the proposed approaches present alternatives to full en-
cryption. It should be stated one more – �nal – time that all of the approaches trade
in security for something else. �erefore, in terms of security, the most secure option
remains full encryption. However, if functionality is desired rather than the highest
possible security, then the proposed approaches can be used to cover a large variety
of di�erent functionalities.

In the area of compression-integrated methods, we discussed two families of ap-
proaches that use secret transform domains: parameterized wavelet �lters and key-
dependent subband structures in the form of randomized wavelet packet decomposi-
tion structures. We presented an attack against encryption approaches that are based
on �lter parameterization. �is attack makes encryption methods that are based on a
linear transform in general only suitable for very lightweight encryption. In the con-
text of wavelet packets, the security is much higher. We have shown that the negative
e�ect of randomized wavelet packets on compression performance can be kept at a
minimum by introducing constraining parameters. We have also shown that because
the anisotropic wavelet packet transform provides a higher degree of freedom than the
isotropic wavelet packet transform, higher security can be achieved at a lower price (in
terms of loss in quality). We discussed possible attacks on the wavelet-packet-based
encryption schemes and have shown that con�gurations exist that leak information
on the decomposition structure through the jpeg2000 packet header.�e header pro-
tection scheme we proposed can be used to restore security for wavelet-packet-based
encryption methods. In the discussion of application scenarios for key-dependent
subband structures we have shown that because so little information needs to be en-
crypted, there are diverse scenarios in which the encryption method can be used.
�e second major focus of this thesis has been the analysis of existing schemes and

�xing discovered security �aws where possible. In the context of format-compliant
jpeg2000 encryption, we have been able to show that the encryption of jpeg2000
packet bodies alone, i.e., leaving the packet headers in plaintext, is not secure for appli-
cations that require full con�dentiality. We proposed a header protection scheme that
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solves this problem. We also discussed a method for transparent encryption based on
the header protection scheme.

In the last part of the thesis we turned to the security of �ngerprint images and
the analysis of existing schemes in this context. We �rst discussed properties of the
bitplanes of �ngerprint images and have shown that, contrary to some publications,
the lowest bitplanes do not generally exhibit random properties. We then presented
an attack against a previously published lightweight encryption scheme for �ngerprint
images. �e presented attack is independent of the properties of the bitplanes and
would work even if the least signi�cant bitplane were truly random. Although some
of the security �aws of the encryption scheme can be �xed, overall the approach has
been shown to be beyond repair.

In this thesis we covered di�erent �elds of the large area of media encryption. It is
natural that some open questions remain. In the context of header encryption, more
methods could and should be developed, possibly methods that are not based on per-
mutation. In compression-integrated encryption, di�erent parameterized transform
domains could be investigated and evaluated with regard to their compression perfor-
mance and security.�e attack presented against parameterized wavelet �lters should
be implemented e�ciently and tested empirically against a large number of images. In
the context of key-dependent wavelet packet subband structures, the extent of infor-
mation leakage that is present in the jpeg2000 headers should be investigated in more
detail and quanti�ed. An implementation of the attack could prove insightful. In the
context of the security of biometric data, further analysis of the statistical properties
of �ngerprint images could be conducted.

On a more general note, all of the topics covered provide much room for future re-
search. In the context of jpeg2000 encryption, �exible encryption schemes that can
be adapted to the needs of an application will become more important. From the prac-
tical point of view, the detailed investigation of application scenarios in which trans-
parent encryption is employed is still missing. Applications like digital libraries are
likely to pro�t from transparent encryption techniques. With the further dissemina-
tion of mobile devices with diverse display capabilities, format-compliant and scalable
encryption of visual content will increase in importance. jpeg2000 as a standard for
scalable still image coding is a promising starting point in this context, and security
techniques tailored to speci�c applications should be investigated.

Many of the techniques discussed here can be transferred and adapted to video en-
cryption.�ere has been a lot of research in the area of scalable video coding recently.
�erefore, a promising research area will be the development of reliable bitstream-
oriented approaches for the scalable extension of H.264/AVC, H.264/SVC (Schwarz
et al., 2006, 2007). Proposals for security techniques for H.264/SVC have recently be-
gun to appear more numerously, see, e.g., Magli et al. (2008).
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�e use of secret transform domains for video encryption should be assessed in
the context of wavelet-based scalable video coding. A good overview of scalable video
coding is given by Ohm (2005). A number of proposals and implementations exist,
for each of which security techniques need to be designed. For instance, André et al.
(2007) propose a video codec based on jpeg2000 that uses motion-compensated tem-
poral �ltering (MCTF) and report very competitive compression results. A less so-
phisticated approach for MCTF with jpeg2000 is described in Eder et al. (2007). A
wavelet-based codec for which the compression-integrated methods should also be
investigated is MC-EZBC (Hsiang and Woods, 2001).

Media encryption is a young and thriving topic with many possible directions for
future research, of which we have covered only a small selection. Many more research
directions will come up in the future. �ey will on the one hand entail the continued
investigations of specialized topics, while on the other hand they will have to look at
the bigger picture and research the integration and the interplay of di�erent areas of
security, e.g., encryption, watermarking, perceptual hashing, and �ngerprinting, in
practical systems and also take legal and social issues into account.
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