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Abstract

With the emergence of objectbased image coding standards and the successful use of
adaptive image coding techniques for various applications, the combination of both fields
in objectbased adaptivity is only logical, as it promises not only better compression effi-
ciency, but also increased functionality.

In this work, we present various approaches of objectbased and adaptive image com-
pression using wavelets. After discussing the basic principles of the wavelet transform and
zerotree coding in general, we present recent propositions how to adapt these techniques to
arbitrarily shaped objects and compare different methods and implementations. We show
how objectbased adaptivity can be achieved and how well it performs compared to other
methods in an objectbased framework. Finally, we present an image coding framework
that uses objectbased adaptive wavelet transformation in order to increase compression
performance and functionality in a non-objectbased context.
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Chapter 1

Introduction

1.1 Digital Image Compression

With the advent of broadband networking infrastructure, the art of compressing data
seems to have lost most of its importance. However, with more demanding applications,
the amount of data to be transferred increased tremendously compared to the increase in
networking bandwidth. For example, a 2 hour video sequence in raw data with 24 frames
per second of size 512x512 in RGB with 8bpp per channel would use 7200 * 5122 x 24 x 24
bit = 129600 MB. Image databases, like the FBI database for fingerprints, containing
such a vast amount of data that storage without compression would be impossible, are
another example for the need of good compression techniques.

For image and video applications, data compression is more important than ever and
has to be adapted to new forms of use. Desired improvements are not only higher com-
pression results, but an increase in functionality at the same time.

1.1.1 Lossless Versus Lossy Data Compression

We distinguish two basic types of data compression: lossless and lossy. In lossless com-
pression the original data can be restored exactly from the compressed bitstream, whereas
with lossy compression, the restoration is not exact. The use of either of the two types
depends on the field of application. For medical or financial application, for example,
loss of data is not acceptable. In the case of medical image processing, the accuracy of
a region in a tomographical image may be vital for a patient’s fate. On the other hand
there is a large field of applications where loss of data is acceptable. Video conferencing,
for example, does not depend on the exact restoration of the original data but can easily
trade absolute accuracy in data restoration for low delay and fast throughput.

Lossy compression makes use of lossless compression. In lossy compression, the data
is transformed to a “perspective” more favorable for compression. It is the transformed
data that is then quantized. And it is the quantized data that is compressed losslessly in
the last step. Summing up, the principal parts of a lossy compression are in most cases

e Transformation

A transformation of the signal decorelates the signal and compacts its energy.
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e Quantization

In this step virtually all of the data loss occurs. The quantization step simplifies
the signal in order to make it better suited for lossless compression

e Coding

In this step a lossless compression scheme is applied to the quantized bitstream.

Lossy compression produces superior results, because quantization lowers the amount
of information in the signal. The crux of successful compression hereby is to leave the
essential information in the bitstream in a compact form. This step is aided by the
transform which redistributes the energy of the original signal.

A tricky question is, what part of the information is important and what criteria
should be applied to measure importance. Successful transformation schemes in the area
of audiovisual signal processing take the human sensory system into account. For example,
the ubiquitous MPEG1-Audio-Layer-III audio compression standard makes use of masking
effects in human acoustic perception. The wavelet transform (WT), which is our main
topic of interest here, used for image compression, takes into account the fact that most
natural images consist of low frequential components to a major part. The WT takes a
“multiresolution viewpoint” of image data which corresponds to the the way images are
perceived by the human visual system. Furthermore, it provides a perspective of the data
that is self-similar to a high degree and it is thus predestined for efficient compression, as
we will see.

1.2 Motivation for Adaptive Objectbased Image Com-
pression

There are different areas where objectbased compression may prove to be of advantage.
We are mainly concerned with the following motivations.

Motivation 1 One obvious application is in objectbased environments like MPEG-4.
In such a framework, it makes sense to deal with objects directly, rather than using an
indirect approach like a bounding-box technique to compress and store the objects. The
overhead introduced by the increased functionality can be balanced by using adaptivity
for increased compression efficiency.

Motivation 2 On the other hand, adaptive objectbased encoding of images can lead to
better compression results in contexts that are not innately objectbased. The idea here is
to segment an image into objects of different characteristics and then adaptively encode
each object separately, thus increasing compression performance.

We will propose approaches for both of these areas of application and compare them
to other approaches which do not use adaptive objectbased techniques.
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1.3 Outline

In chapter 2 we deal with wavelet methods in general. We will present the classical, pyra-
midal wavelet transformation and then go on to the wavelet packet transformation (WPT).
Adaptivity is an important feature of WPT that we will also introduce in this chapter,
followed by a set of test results comparing the pyramidal decompositions to WPT-based
schemes. In chapter 3 we will discuss how object shapes can be efficiently represented and
stored for image coding. The shape adaptive wavelet packet transformation (SA-WPT)
is discussed in chapter 4. We will develop SA-WPT from the one-dimensional case to
the two-dimensional case, and discuss various issues that apply to either case, especially
border extensions for different types of filters as well as subsampling techniques. Results
related to Motivation 1 will also be presented in this chapter. In chapter 5 we introduce
the concept of zerotree coding (ZTC) and present a couple of approaches that use it. We
will then present an extension for objectbased use of ZTC, and discuss the different pos-
sible parameters and their impact on coding efficiency. Chapter 6 deals with Motivation
2, the framework we developed for this purpose and the related results. Finally, chapter
7 contains the conclusion.

Test results will be given where applicable and related to the current topic. Note,
however, that some of the test results in the earlier chapters may have been produced
using methods from later chapters. Especially for zerotree-coding, which is presented in
full detail only as late as chapter 5, this is the case.

1.4 Notation And Measures Used

1.4.1 Notation

For easy reading, we use different fonts to denote various structures, where ambiguities
are eliminated by the context.

e Two-dimensional arrays (i, j) are denoted with a single character I in bold font.

e The structure consisting of a two-dimensional array O(i,j) and a bitmask M (i, j)
of the same dimension will also be denoted with a single character O.

e Reconstructed signals are denoted with a hat, e.g. I,0.

e Sets are denoted in calligraphic font, e.g. H.
We will refer to an equation by citing its number in brackets, e.g. (2.4).

1.4.2 Measures

As a measure for the quality of a reconstructed image we use peak signal to noise ratio
(PSNR).
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This measure is based on the mean square error

|I—i|| B 1 n—1m-—1

wse(f) = = LN N5y - 16.4) (1.1)

where I is the original image with width n and height m and I is the reconstructed image.
For an object of arbitrary shape, we define the MSE as

nse(0,0) = L2220 = 2 57 (0(i,5) - 061.9)” (12)

(i,j)eM
where p is the number of pixels in the object and M is the bitmask defining the object
shape. We define PSNR as

2552

PSNR(LI) = 20log;g ———
(I,I) 810 MSE(T, T)

(1.3)

1.5 Remark on testruns

Most of the testresults were produced using the Ganesh+-+-wavelet-packet codec that
was developed at the University of Salzburg. All the testimages are 512 x 512 pixels
portable grey-map (pgm) images at 8 bpp. Where not stated otherwise, the testruns
use level 5 wavelet decompositions. We use the biorthogonal 7,9 filter for our standard
testruns, which is also the default filter for JPEG-2000, but we will also investigate the
performance of other filters for selected test images, especially biorthogonal 3,9, which
is the default filter for Visual Texture Coding module (VTC) of MPEG-4. Where not
stated otherwise, global even-odd subsampling (see sec. 4.3.2) and zerotree-coding (see
chapter 5) are used, and for objectbased testruns, the cost for encoding the bitmask for
each object is excluded from the results. The standard method for objectbased testruns
using more than one object is MPT (see sec. 6.3.1.2). For example, a testrun marked
as “Objectbased:NORM?” is produced using objectbased adaptivity with costfunction /-
Norm, SA-WPT with filter biorthogonal 7,9 and global:even-odd subsampling followed
by ZTC using SMAWZ (with MPT in the case of more than one object) .
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Chapter 2

Image Transformation with Wavelet
Methods

2.1 Introduction

Image and video coding with wavelet methods have been paid much attention in the
scientific community in recent years. Since the finalization of the JPEG2000 standard [1, 2]
at the latest, wavelet methods are now well established in image compression. The MPEG-
4 standard [3] makes use of the wavelet transform in its visual texture coding (VTC)
module [4]. Especially for low bitrates, wavelet methods outperform longer established
techniques like the discrete cosine transform (DCT) [5, 6].

Wavelet methods for image and video coding, maybe even more than other methods,
comprise a large field of research, ranging from the actual transform itself via closely
related topics like zerotree coding to highly specialized applications like medical image
coding. The wavelet transform itself is not a single algorithm, but a whole set of differ-
ent approaches, ranging from the classical pyramidal Mallat decomposition to adaptive
transformations, like the wavelet packet transform (WPT) using best basis algorithms,
each with its area of application. The WPT, for example, has been successfully adopted
for the compression of oscillatory signals like digital fingerprints [7].

This chapter gives a basic introduction to wavelet methods in general and presents the
Mallat and WP decompositions in more detail. The methods of chapter 4 use these prin-
ciples for developing actual algorithms for the shape adaptive wavelet transform, which
is a generalization of the rectangular wavelet transform. In this framework, the introduc-
tion will only provide the most essential foundations. For more thorough introductions
to the topic that also cover the underlying mathematical principles in much more detail
see [8, 9, 10, 11, 12, 13].

2.2 The Wavelet Transform (WT)

Although digital image compression deals with discrete signals, the continuous approach
is the pool of ideas where a lot of the concepts for discrete transformations come from.



14 CHAPTER 2. IMAGE TRANSFORMATION WITH WAVELET METHODS

We will develop the basics of the continuous wavelet transform (CWT) and then show
the transition to the discrete wavelet transform (DWT).

2.2.1 Definitions

Let Lo(R) denote the space of all square integrable functions f

/oo |f(2)|*dz < o0 (2.1)
The inner product of functions f, g in Ly(R) is defined as
= [ s 2.2)
The norm in Ly(R) is defined as
I£1l2 = (£, )2 (2.3)
The Kronecker symbol is defined on Z x Z as
=0 ) 74 2

A biorthogonal basis in Ly(R) is a basis {f;} for which a dual basis {g;} exists such that

(fisgj) = 6i- (2.5)

An orthogonal basis is a biorthogonal basis that is its own dual.

2.2.2 Continuous Wavelet Transform (CWT)

Let f be a function in the function space of square integrable functions, f € Ly(R). The
CWT is essentially a unitary map (up to a factor Cy [13]) on Ly(R) — Lo(R).
A unitary transform 7 preserves dot products

(TS, Tg)=(f9) (2.6)
In consequence, the norm of a function is preserved
1T fll2 = [l fll2- (2.7)

Intuitively, a unitary transformation just alters the perspective in which a function is
observed. The advantage for image coding is that for images certain unitary transforms
provide a perspective that compacts the energy in a small portion of coefficients.

The idea of the CWT is to describe any f € Ly(R) as the combination of different
basis functions g {1} are all dilated and translated versions of one function ¢ with
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compact support, often called the mother wavelet. a is the dilatation parameter and b is
the translation parameter.
The only requirements we formulate for 1 so far are that

/ b(t)dt =0 (2.8)

and that ¢ has mean zero. 1, is formed from v by

z—>b

Yap () = Jal729h(

. 2.
—) (2.9)
Note that if v has unit length, then also all 1,; have unit length:

[l =1 = |[¥asll2, a,b € R (2.10)

We can write f*(a,b) as follows

fH(a,b) = (f,Ya) (2.11)
= / f(@)Yap(z)dz (2.12)

= Jal ™ [ fp(*S

—)dz. (2.13)

For the CWT, a and b are varied continuously over R to obtain a representation of f(x)
in the wavelet domain. The important fact in our brief discussion of the CW'T is that it
constitutes a (unitary) mapping of f(z) — f*(a,b).

Of course, transforming a one-variable function into a two-variable function is not
useful for compression. In fact, the CW'T itself is not suited for compression at all, but is
very useful in the area of signal analysis. The wavelet transform becomes interesting for
image compression in its discrete form, which uses the idea of the CWT, but works in a
rather different way, as will be seen.

2.2.3 Discrete Wavelet Transform (DWT)

For processing digital images the discrete wavelet decomposition is of interest. In the
DWT, the dilatation and translation parameters are limited to discrete values. Further,
by setting dilation to 27 (binary partitions) and translation to %, the original signal is
partitioned into subbands of different frequency ranges (note that this is only one of many
possible discretization of the CWT). ¢;;(x) is thus defined as

bie(z) = 2700 (2 — k), 4,k € Z. (2.14)

As 1) stays the same, we can state that for the DWT the CW'T is evaluated at the dyadic
positions b = k/j* and binary dilations ¢ = 277 [9]. Analogous, the wavelet coefficients
c;, are produced by

cl = (f, Vix)-
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Thus, every wavelet v constructs a wavelet series for a given function f € Ly(R),

flz) = Z ki () (2.15)

j,k=—00
As this is true for every f € Lo(R), {jx, Vj, k € Z} span Ly(R). Now consider leaving j
fixed and only varying k over Z. We will denote the space that is spanned by {t;, Vk € Z}
with j € Z fixed as W;. It is obvious that by forming the direct sum of all W}, Vj € Z
we again obtain Ly(R). Thus, every function f € Ls(R) can be decomposed uniquely as:

flz)=---+g1(z)+ g(z) +gi(x) +--- (2.16)
where g; € W;,Vj € Z. W;, j € Z form a partitioning of Ly(R)
L,(R) = Pw;. (2.17)
J

As g; lives in W;, there must be a wavelet series representation for g; in W; (which is
spanned by ;). Consider that by taking all subspaces Wy, for k < j, we get a series of
nested subspaces V;

V; = P Wi (2.18)

k<j

This introduces the concept of multiresolution analysis (MRA).

2.2.4 Multiresolution Analysis (MRA)

We can deduce the following properties for this series of subspaces Vj, j € Z [9, 13]:
(1) V;C Vi, Vj€Z

2) Ujez Vi = Lo(R)

(3) Mjez Vi =0

4) Vin=V;0oW;, VjeZ

5) f(t)eV; = f(2t) € Vip, Vj€Z

We now introduce a so-called scaling function ¢ € Vi, which generates the V; series of
subspaces. For this purpose, take

Gk (t) = 226(2t — k) (2.19)

with ¢or being an orthonormal basis for V; and ¢y being an orthonormal basis for V;.
From V, C V; follows that also ¢ € V. Thus, as ¢ is a basis of V;,

ot) = Y h(k)pu(D) (2.20)
C2 N h(k)v26(2t — k) (2.21)
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for some coefficients h(k). As ¢1x is an orthonormal basis of V;

h(k) = (¢, ¢)  and (2.22)
Z|h(l€)|2 =1 (normality). (2.23)

Further, we can represent ¢, as a sum of translated versions of ¢, multiplied by
coefficients h(k)

(2.19)

bok ot — k) (2.24)

2N bkt — k). (2:25)

Now that we have defined the scaling function ¢, we construct a suited wavelet 1 to
span the wavelet spaces W complementary to V. We generate 1 from ¢y, in a way similar
to (2.20)

Y(t) = g(k)pu(t) (2.26)
k
where the coefficients g(k) are derived from h(k)
g(k) = (=1)*h(=k +1). (2.27)
Analogous to (2.22), g(k) can be written as

g(/f) = <¢1k, ¢> (2-28)

As ¢qi is a basis of Vj, a function f € V| can be represented as:

f= chﬁb(m- (2.29)
k

Further, it is possible to write the following decomposition f
f=yt+0teV oW, (2.30)

(2.30) can be applied repeatedly to the resulting v and the original function f is still
perfectly recoverable:

f=r 4ottt eVa W ®--- W, (2.31)

where y7* is the approzimation signal and {67%,... 7'} are the detasl signals.
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Without loss of generality, we show the development of y~! and 6! [13].

o = Z(Cﬁ 1 [)O—1k

2.29
( = ) Z Cl —1k, ¢oz

(2.19) ch / $(271t — k)b(t — 1)dt
S::Q;lt—k %:C?Qs—lk / ¢(8)\/§¢(23 — (l — Zk))ds

\/Zi)_(is—(l—%))
B ch —1k ¢1l 2k) ¢>

(2.22)

= Zc?h(l — 2k)p_1
kl

=: Z 011c</5—1k
k
For —! the development is similar:

ot = Z<¢—1k; )ik

k

= Z o (P_1k, Gor)rp—1k

(2.14),(219) chw 1k/ W2 — k)o(t — 1)dt

si=2_tt—k Z A1k / $(s)V2¢(25 — (I — 2k))ds

V(25— (1~2k))

=P1(1-2k)

Z C?¢_1k<¢1(l72k): V)
Kl
(2:28) Z gl — 2k)_,

=: Z d]%ﬂb—lk
k

2.2.5 Filters

(2.32)
(2.33)
(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

So far, we have only dealt with functions in Ly(R), whereas with digital image processing
we usually work in the sequence space £5(R). However, there is a mapping from L, (R) to
£5(R) for this purpose [13]. For an orthonormal basis {e;(¢)} in Ly(R), a sequence {(c?)}
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of coefficients can be mapped to the function that is defined uniquely by {(c})}.
{(DYy = 1= dal) (2.46)
1
Further, as described above, we can map the sequence {(c})} to its decomposition {(c;), (d})}
()Y = {(ch), (db)} BP9 Zh (1 — 2k)2), Zg (1 — 2k)c%)} (2.47)

Convolution in £5(R) between a filter {f(j), j = [,...,L} and a sequence {z(k)}
producing an output signal y(k) is defined as

L

y(k) = (fra)(k) = 3 Fl@alk+i). (2.48)

1=l

(2.37) and (2.44) can be interpreted as convolutions (followed by subsampling) in the
digital domain. Thus, the above equations form the transition of the integral wavelet
transform to digital image processing. In this interpretation, {h(k)} serves as a lowpass
filter and {g(k)} serves as a highpass filter.

Also, a subsampling process is performed. If the original signal has N coefficients then
the approximation and detail signal of one decomposition together have N coefficients as
well. For applying the transformation to finite sequences, the input signal has to be
extended in a suitable way. We will enlarge on these points when we discuss the shape
adaptive wavelet transformation in chapter 4.

2.3 2D Pyramidal Wavelet Transform

The wavelet transform is separable, i.e. for applying it in i
higher dimensions, the wavelet transform can be used in each
dimension separately. For transforming digital images, the row
vectors can be transformed first (without loss of generality) fol-
lowed by a transformation applied to the column vectors of the
resulting coefficients. The result is a level one wavelet decompo-
sition consisting of four subbands — one approximation subband
and three detail subbands.

For the pyramidal wavelet transformation, only the approx-
imation subband is decomposed further. Thus, the pyramidal Figure 2.1: Pyrami-
transform is unique in that it creates the same structure for ev- dal wavelet decompo-
ery image for a certain level of decomposition (fig. 2.1). sition, level 5

The advantage is that for most natural images, a large por-
tion of the energy is contained in the approximation subbands. By decomposing the
approximation subband further, the energy can be concentrated into fewer coefficients,
a process which is called energy compaction. As will be seen, this representation is well
suited for various methods of entropy coding. Each subband corresponds to coefficients
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of a certain scale and orientation. From property (4) above follows that the structures
in the subband is similar across the scales. This self-similarity is exploited for zerotree
coding, which will be discussed in chapter 5.

For some images, especially images containing oscillatory patterns, the pyramidal
wavelet decomposition fails to concentrate the energy in just a few coefficients. Instead,
the energy is spread over the detail subbands. In such cases it makes sense to also de-
compose the detail subbands further, leading us to the wavelet packet transform (WPT).

2.4 Wayvelet Packet Transform (WPT)

The mathematical foundations developed above can of course g
be extended to WPT. The discussion here will be limited to a
subband and signal processing point of view. The mathematical m.
details can be found in [10]. T e

The wavelet packet transform is a generalization of the pyra-
midal wavelet decomposition, where the approximation subband
is not the only subband to be decomposed further (fig. 2.2). .
Thus, for a specific level of maximum decomposition depth, there mE .
are many possible WP-structures — the WPT is an overcomplete
library of bases. Each structure represents its own wavelet ba- Figure 2.2: A possible
sis and therefore a specific frequency subband decomposition. WPT structure, level 5
These decompositions can be adapted to the properties of the
image to be transformed and to take high frequential components into account. Thus, the
WPT has been successfully used for compressing images with oscillatory patterns, like
the famous testimage “Barbara” [14, 15, 16| or fingerprint images [7].

A tree representation is well suited to describe a single decomposition. The “decompo-
sition tree” is a quadtree whose nodes represent the binary decisions whether the subband
associated with this node is decomposed further or not. Note that it makes sense to
distinguish the tree representing the decomposition structure from the actual coefficients.
In our implementation the coefficients are stored separately from the decomposition in-
formation. We will generically call the structure holding the coefficients “coefficient tree”
(although the actual implementation does not necessarily have to be a tree). When we
discuss zerotree coding for WPT, we will introduce another tree, the “similarity tree”,
which orders the subbands in the decomposition tree for zerotree coding.

2.5 Adaptive Transformation

As the bases of the WPT are overcomplete, a way has to be found to choose the best
suited basis for each image. The best basis algorithm (BBA) is the approach used in our
testruns. It optimizes additive information cost functions to achieve this purpose. From a
rate-distortion point of view there are superior methods [17], yet the BBA in conjunction
with additive costfunction has low computation complexity.
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2.5.1 Best Basis Algorithm (BBA)

In the BBA [10], a full wavelet packet decomposition for the target level is generated. The
BBA uses costfunctions to decide where the decomposition structure should be modified.
Various costfunctions can potentially be used — we limit our testruns to additive costfunc-
tions. Additive costfunction have the advantage that for a set of subbands S4,...,S, and

a costfunction f
n

PN ICHES((GED) (2.49)
i=1 i=1
holds.

The following additive costfunctions are used in our tests

e Logarithm of Energy (LogE)

COStLogE(S) = Z 10g* (t) ‘t:S(u,v)2 (250)

(u,v)ELw XL,

e /-Norm (Norml)
costyorm(S) = D |S(u,v)] (2.51)

(u,0)ELw X Ip,

e Entropy Information Cost (EIC)

COStch(S) = — Z 1 * log* (t) ‘t:S(u,v)2 (252)

(u,0)ETw XTI,

where S is a subband of width w and height hA with row-indices defined by Z,, and column-
indices defined by Z,,, and

log” (£) = { Bog(t) or £ 70 (2.53)

In the perspective of decomposition trees, the BBA does nothing else than working its
way upwards recursively in the decomposition tree, comparing additive cost information
for each subband in its undecomposed state with the four subbands resulting from de-
composing and pruning the tree wherever the cost for decomposition is higher than for
leaving the subband undecomposed. In that way, the BBA always produces an optimal
basis with regard to the used measure.

2.6 Results

As the WP decomposition is known to work well with oscillatory patterns, we chose a
set of testimages containing textures with particular high frequency components. This
is taken to the extreme for the artificially generated texture of fig. 2.3.a, where high
frequency patterns only run in one direction. Other test images are comprised of Brodatz
textures [18] and images of textile fabric. In the following, we explore the performance of
the BBA using different additive costfunctions, namely LogE, Norm and EIC.
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2.6.1 Costfunctions

Fig. 2.6.a shows that for the artificial texture, the pyramidal wavelet transform is out-
performed by the WP-transform over the whole bitbudget considered, regardless of the
used costfunction. However, as each costfunction represents a different measure, the de-
composition structure varies for each of the costfunctions (fig. 2.5). For the fabric image
poly _linen.pgm and the Brodatz texture D105.pgm, which both show traits in their fre-
quential patterns similar to the artificial test image, the pyramidal wavelet transform is
also outperformed for all costfunctions (fig. 2.6.b, 2.7.a).

For textures that do not contain oscillatory patterns to such an extent, the perfor-
mance of the WP-decomposition is not that superior. As can be seen in fig. 2.7.b, the
WP-decomposition using the LogE-costfunction is even outperformed by the pyramidal
decomposition for the lowest bitrate considered.

Comparing the performance of the various costfunctions, we observe that, as each of
the costfunction addresses a different measure, there is not just one single costfunction that
guarantees to always produce the best decomposition with regard to PSNR~performance.

o

S

(a) Norm (b) EIC (c) LogE

Figure 2.5: Decomposition structures for fig. 2.3.a

2.6.2 Filters

Fig. 2.9 shows results comparing different filters. The 12-tap orthogonal symlet filter is
known to be well suited for compressing high frequential patterns. Further we test the 6-
tap orthogonal filter by Coifman, and another filter from the family of biorthogonal filters,
biorthogonal 3,9, which is the standard filter for MPEG-4 VTC. Note that as biorthogonal
filters have less restrictive requirements as regards orthogonality, the BBA in this case
should rather be termed Near Best Basis Algorithm (nBBA).

Biorthogonal 3,9 does not produce competitive results for our oscillatory test images
and is outperformed by the other filters as can be well seen in fig. 2.9.a. The results for
all of the other filters range very closely together, with symlet 12 often gaining on higher
compression ratios, and biorthogonal 7,9 performing better for lower compression ratios.
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The performance of the costfunction does not vary by the used filter, i.e. the same
costfunctions that are best for an image for one filter also achieve the best results for
other tested filters. However, as the used filters influence the cost for decomposition, the
wavelet packet structures produced for different filters by the same costfunction also differ
to a certain degree. Fig. 2.8 shows this for the four different filters applied to test-image
D105.pgm using ¢-Norm as costfunction.

A o o i . HH 1 [ | A A
M F B e I e e e e e HH [ [P ] e e
HH L] ] N
[ A
= e

(a) Coifman 6 (b) Symlet 12 (c) Biorthogonal 3,9 (d) Biorthogonal 7,9

Figure 2.8: Decomposition structures for fig. 2.4.a and different filters using costfunction
¢-Norm

2.6.3 Comparison to JPEG-2000

Fig. 2.10 shows results comparing the performance of WPT using the Ganesh++-codec
to JASPER, which is a reference implementation of the codec specified in the JPEG-2000
Part-1 standard (ISO/IEC 15444-1). We used the standard biorthogonal 7,9 filter for
both codecs to achieve better comparability. In the result-plots, only the most successful
costfunction is shown for WPT in Ganesh++.

As can be seen, JPEG-2000 is outperformed over the whole bitrange. This is mainly
due to the oscillatory characteristics in frequency space of the tested images, to which
JPEG-2000 is unable to adapt. However, JASPER does outperform the pyramidal trans-
form of Ganesh++.
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Chapter 3

Object Shape Representation

3.1 Introduction

The emergence of the objectbased video coding standard MPEG-4 is only one example
that uses the advantages of objectbased coding (OBC). Especially, with the object-based
wavelet transformation [19, 20] it is possible to get an efficient representation of objects in
the frequency domain (see chapter 4). The gains in functionality with OBC are manifold.
Region of interest (ROI) [21] coding makes it possible to differentiate between important
and unimportant objects, for example, foreground and background objects. Further,
objectbased codecs [22, 23, 24| exist that are tailored to optimize coding performance for
objects.

However, in order for objects to be transformed in an efficient way, a good represen-
tation for object shapes has to be available. This chapter deals with the question how
to represent arbitrarily shaped image objects in an efficient way. A good and efficient
representation is crucial for compression efficiency and functionality in an objectbased
environment. For an overview of the topic see [25].

Many different methods for object shape coding exist. As with coding of data in
general, we distinguish between lossless and [ossy shape coding. With lossy shape coding,
perfect reconstruction of the original shape is not possible, but the representation is more
compact. We will only discuss some lossless representations of object shapes, with a bias
towards bitmap-based methods.

We use the following definition for the shape S of an object

1 if position (z,y) is part of the object
0 else.

S(x,y)z{

3.2 Contour-based Representation

In contour-based representation, the contours of the object are used to represent the
object shape. Intuitively, a contour is nothing else than a digital line around the object.
For each pixel in a digital line, there is only a limited number of possible directions in
which the line can continue. We distinguish between 4-connectivity and 8-connectivity.
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e 4-connectivity allows the line to continue in only four directions: N, E, S, W.

e 8-connectivity allows the line to continue in eight directions: N, NE, E, SE, S,
SW, W, NW.

Formally, a contour can be defined by its mask as follows [25]. Let N(z,y) define the
neighborhood for position (z,y) with

A, v) | (ju—z|+v—y|) =1} for 4-connectivity
N(z,y) = { {(u,v) | maz(|u — z|,[v —y|) =1} for 8-connectivity. (3-2)

The contour mask C(z,y) is then defined as

1 if S(z,y) =1 and I(u,v) € N(z,y) with S(u,v) =0

0 else. (3.3)

C(z,y) ={

3.2.1 Freeman-chains

Freeman introduced a method for contour coding in [26] that is still in widespread use.
A transition from one pixel to the next on a digital line is called a link. In the case of
4-connectivity, a link can be represented by 2 bit, in the case of 8-connectivity it can be
represented by 3 bit. A contour chain can be encoded by the sequence of the links that
constitute it as follows.

(1) Select an arbitrary starting point that belongs to the contour mask and encode its
coordinates

(2) For each point p

e If p is the initially selected point, then stop.

e Else, represent the consecutive point s on the line by a link from p to s and
repeat (2) for s.

The above algorithm only works for closed contours. Open contours require minor modi-
fications.

This basic approach has been enhanced over time with several improvements. Free-
man himself proposed differential coding of these chains in [27] for efficient subsequent
entropy coding, other approaches include probability models or assumptions about the
characteristics of the contour (see [25]).

3.2.2 Polygonal Representation

A contour may also be represented by coding all its vertices and connecting them with
straight lines. In the worst case, if there are no straight lines, all the positions in the
contour line have to be encoded explicitly. This scheme is more useful for lossy coding
where the contour is approximated by its key vertices.
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3.3 Quadtree Representation

Quadtree structures can be used to represent object shapes.
Usually macroblocks of a power of two are used and a quadtree is
built on each of these macroblocks. In a quadtree, each node that
is not a leaf node has four children. The root of the tree represents
the macroblock as a whole. The four children C;, i =0,...,3 of
a node N each represent a quarter of the area that N represents.
In order to get a quadtree representation of an object shape, the
following algorithm is applied recursively to a node NV, starting
at the root:

e If the area represented by N is contained in the object
shape as a whole, mark it as “nside”

e Ifthe area represented by NV lies outside the object shape
as a whole, mark it as “outside”

e If only part of the are represented by N lies inside the
object shape, then split N into four child-nodes C;, i =
0,...,3 and apply the algorithm to each of them.

The nodes marked as “nside” give a unique representation
of the object shape, as illustrated in fig. 3.1. There are many
algorithms for efficient coding of quadtrees. The method as such
is lossless, if the above algorithm is applied until pixel granular-
ity is reached. By introducing a different break condition, like
reaching a certain depth in the tree, the method can be made
lossy.

3.4 Bitmap-based Representations

(a) Original
shape

(b)  Quadtree
representation

Figure 3.1: Quadtrees

3.4.1 Context-based Arithmetic Encoding (CAE)

In [28], Langdon and Rissanen first proposed a method to en-
code binary images using a state machine and arithmetic coding.
We will discuss this approach and some enhancements that were
proposed later without going into details of arithmetic coding.
See e.g. [29] for an introduction to arithmetic coding.

In CAE a template is given that defines which pixels are
counted to the neighborhood of a position. Fig. 3.2 shows 7-

X[ ]
x[x[]

L] ] x
x[x[]

X
X
X

Figure 3.2: Templates
for CAE

pixel and 10-pixel templates defined in the original proposal. The object shape is scanned
line by line, and the neighborhood is defined for each pixel. The values of the positions
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in the neighborhood are used to determine the state of the finite state machine. A prob-
ability distribution is associated with each such state and is used to drive an arithmetic
encoder. The coding can be done adaptively, i.e. the probability distributions are updated
with each pass. Although the idea is simple, the approach is very efficient and has been
adopted for the JBIG standard.

In [30] a scalable variation of the algorithm is presented. A multiresolution decompo-
sition of an object shape S is created by defining layers {Lo, ..., Ly} on S, where Lg is
equal to S and the other layers are defined as

Li1(i,) = Li(26,25) vV Li(2i + 1,25) V

Ly(26,25 + 1)V Li(2i + 1,25 + 1). (3-4)

L,, is called the base layer and the other layers are called enhancement layers. The
enhancement layers are encoded using a template that contains positions of previous
layers.

3.4.2 One-Two-Four (OTF)

OTF [31] in its basic idea is similar to the scalable version — wsiaei: — arngsiasin
of the previously presented method. However, the downscaling
process is done differently and is fitted to the shape adaptive

wavelet transform. OTF uses a blockbased preprocessing with }

respect to the original shape, and stores information whether
all positions in a block are inside the mask, all positions in a
block are outside the mask or whether a block is a border block Next Higher Layer k

containing both masked and non-masked positions.
The object shape is decomposed with the same wavelet-filter Figure 3.3: Layers in
that is used for SA-DW'T on the actual object into m + 1 layers OTF
{Ly, ..., Ly}, where again L corresponds to the object shape in
full resolution and L,, is called the base layer. In each layer, only border blocks need to
be encoded. The base layer is encoded on its own, using a non-adaptive CAE scheme.
Each of the following layers are encoded using the respective underlying layer. As
shown in fig. 3.3 an intermediate layer is used for encoding. The intermediate layer L;, /o
between L; and L;,; is created by applying the wavelet transform only in horizontal
direction to L.
The coding of L; is thus done in two steps.

T9| T8

(1) Encode L/, based on L;

| ™ T6 | &)

TO0

(2) Encode L; based on Ly, To| T3] T2 7 |y
lower spatial layer half higher spatial layer

Fig. 3.4 shows the template for the first step. The templates

for the second step are created by transposing the templates Figure 3.4: OTF templates
of the first step. The context numbers for 7Ty and 77 are

given by
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Spy, = 2Ty + 25T3 + 25T + 2'T5 + 2°T5 + 2°T, + 2" 13 + T
Sr, = 2TTy 4 25T + 2T + 24T + 23T + 2%T, + 2' Ty + T

The scalability of this method provides spatial layers that correspond to the object shapes
needed for the subsequent passes of the shape adaptive wavelet transform.
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Chapter 4

Shape Adaptive Wavelet Packet
Transform

4.1 Advantages

There are several propositions on how to perform the transformation of arbitrarily shaped
objects. Since the wavelet transformation of rectangular regions has been very well re-
searched, the use of padding techniques would seem rewarding. By finding the bound-
ing box of an object and padding values into the region that is not contained in the
object-mask, the problem of arbitrary shapes is reduced to a rectangular transformation.
However, because in this approach more pixels than contained in the original object have
to be coded, it is not efficient. For better efficiency a way has to be found to deal with
arbitrary shapes directly and to transform them without producing overhead pixels.

Egger et. al. [32] proposed to adapt a scheme similar to the shape-adaptive discrete
cosine transformation (SA-DCT) to Wavelets. The idea is to flush all pixels to the left
and upper corner for horizontal and vertical transformation respectively, and then perform
the transformation. Because of the localization attribute of the wavelet transformation,
coefficients then have to be redistributed to their previous positions. This approach
produces the same amount of coefficients as in the original object. However, when the
transformation is applied in the second direction, by flushing the coefficients the phases
are mangled and high energy is induced, affecting the quality of the wavelet transform.

The shape-adaptive DWT (SA-DWT) proposed by Li [20] does not have this draw-
back. SA-DWT also produces the exact required amount of coefficients, but at the same
time preserves coefficient positions. It has been adopted for the MPEG-4 Visual Texture
Coding (VTC) module for coding of still textures. Below, we will give an overview of
the principle mechanism of the SA-DWT, and how it deals with problems that arise from
using arbitrarily shaped objects. We then propose a method to incorporate the SA-DWT
into a wavelet-packet based framework.
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4.2 1-D SA-DWT

When dealing with objects of arbitrary shapes, not all the image-segments for the horizon-
tal and vertical transformation are of even length. Odd-length segments have to receive
special treatment, depending on the used filters.

4.2.1 Borderextension

To ensure perfect reconstruction, the positions outside the boundaries of the segment have
to be filled with values related to the boundary regions. If these regions were only padded
with zeros then the transform would produce more coefficients than contained in the
original signal. This detrimental effect is known as expansiveness. If, however, the signal
is extended by taking the known boundary values and reusing them for extension in a way
that reflects the properties of the used filters, it is possible to produce a non-expansive
transformation.

The available strategies for borderextension depend on the used filter. We will discuss
two strategies in this section, periodic and symmetric extension (Fig. 4.1). For short
length signals, the border extension has to be applied repeatedly.

4.2.1.1 Periodic Extension

This type of extension works with all filters. However, if the segments are long and the
difference between start and end regions is big, artificial high-frequency components which
affect the coding efficiency are produced. Periodic extension is easy to implement:

¢p(i) = s(i mod n) (4.1)

where s is the original interval, i is the requested index and n is the length of the signal.

4.2.1.2 Symmetric Extension

Symmetric Extension can only be used with Periodic Extension
biorthogonal filters. For a detailed account of
this, refer to section 4.2.3. MPEG-4 defines 3

Types of symmetrlc l.)ord.er extension .(Flg. 4.1). e oba o
In the following, possible implementations of sym- =~ ' o
metric border extension are presented. s(j), j = TypeB  .dob [abed.xyz] yx..
0,...,n — 1 refers to the original segment, n is TypeC | .-c-b-a|abcd..xyz| -z-yx.

the number of values in the original segment and
17 denotes the requested index for values outside

the index-set of s, i.e. 1 ¢ {0,...,n —1}. Figure 4.1: Periodic and symmetric
border extension

Type A
s(n—1— (i mod n)) if (t mod 2) =1

s(i mod n) else (42)

csa(i) = {
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where
| i/n] ife>=0
= o o
Type B
conli) = { s(n—1—((sgn(i) x (t — 1) *xn — 1) mod n) + sgn(i) * (—1)) if (¢t mod 2) =1
5B s((1 —sgn(i) * (t — 1) xn — 1) mod n + sgn(i) * (—1)) else w3
where
t:{H(i—l)/(n—l)H if i >=0
[[E=(n=1)+1)/(n=1)] | else
e 1 ifx>0
sgn(z) = 0 ifz=0
-1 itz <0

Type C Type-C border extension can be deduced from Type A by negation.

4.2.2 1-D Transformation

The transformation varies for each filter-type used, namely for orthogonal, oddsized
biorthogonal and evensized biorthogonal filters.

4.2.2.1 Orthogonal Filters
Let m be an even number and
{h(),i=10,...,m— 1},
{9(i),i=0,...,m —1}
be the lowpass and highpass analysis filter, respectively. Further, let
{s(i),i=0...,n—1}

define the values of the input segment with length n.
The lowpass and highpass synthesis filters f(), e(i) can be derived from h(i), g(i) as
follows.

F@) =h(m—1—4), i=0,...,m—1 (4.4)
e(i)=g(m—-1-14),i=0,....,m—1 (4.5)

The following equations are used for analysis for producing lowpass and highpass
coefficients, respectively.

T(i) =7 s(i+j—m/2+ 1)g(m —1—j) (4.6)
S(i) =31 s(i+j —m/2+1)h(m —1 - j) (4.7)
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In the following synthesis process, T*(i) and S*(i) refer to the upsampled signals (see
sec. 4.2.2.4) and r(7) is the reconstructed signal.

u(i) = Y1y T*(i — m/2 4 5) f(m — 1 — ) (4.8)
o(i) = S 5 — mf2 + em — 1 j) (19)
(i) = u(i) + v(7) (4.10)

For orthogonal filters, the only possible choice of border extension is periodic (see sec.
4.2.3). In order to use orthogonal filters for transforming oddlength signals, [20] proposed
to split oddlength signals into n—1 and 1 samples. The n—1 samples can be filtered using
periodic extension (4.1). (4.6) and (4.7) are used for analysis, (4.8) and (4.9) for synthesis.
The remaining one sample is scaled by /2 and put into the lowpass subband. Scaling by
V/2 is the same as extending the one sample repeatedly and applying the lowpass-filter,
i.e. multiplying by factor 25;01 g(7), which is v/2 for orthogonal filters.

4.2.2.2 Oddsized Biorthogonal Filters

Let
{h(3),i=0,...,mp — 1}, mp mod 2 =1

be the lowpass analysis filter and
{9(i),i=0,...,my— 1}, my mod 2 =1

be the highpass analysis filter. Further, let

(5(i),i=0...,n—1}

define the values of the input segment.
We can derive the lowpass and highpass synthesis filters, f(i) and e(i), from the
respective analysis filters:

fli) =
e()

The following equations are used for analysis, where (4.13) produces lowpass and (4.14)
produces highpass coefficients.

(=1)*g(), i=0,...,my—1 (4.11)
= (=1)'h(3), i =0,...,my —1 (4.12)

T(i) =7 " s(i+j — (ma = 1)/2)h(my — 1 = j) (4.13)
S(i) = 7% (i +j — (my —1)/2)g(mg — 1 j) (4.14)
For synthesis, the following Equations are used. (4.15) is used for lowpass and (4.16)

is used for highpass. T*(i) and S*(7) refer to the upsampled signals (see sec. 4.2.2.4). r(7)
is the reconstructed signal.
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u(i) = 7% T (i = (mg = 1)/2+ §) f(mg = 1 = j) (4.15)
v(@) = Y 5*( (mn —1)/2+ j)e(mp — 1 = j) (4.16)
= u(i) + (i) (4.17)

If n = 1, the analysis and the synthesis process both work in the same way as if an
input signal with values of all s(0) had been received. For analysis (4.13) is applied for
lowpass coefficients and the result is written into the lowpass subband (regardless of the
subsampling strategy).

If n > 1, s(i) is extended using Type B (4.3) extension. The analysis process produces
n lowpass by applying (4.13) and n highpass coefficients by applying (4.14) to the input
signal. Both vectors of coefficients are downsampled by two (see sec. 4.2.2.4), producing
a total of n coefficients.

The synthesis process receives a total of n coefficients. Depending on the previously
used downsampling strategy, the lowpass and highpass coefficients are upsampled in dif-
ferent ways. However, the upsampled signals always add up to 2n coefficients.

Both, the lowpass and the highpass signal, are extended using Type B (4.3) extension.
By applying (4.15) to the upsampled lowpass coefficients and (4.16) to the upsampled
highpass coefficients, the original signal is restored.

4.2.2.3 Evensized Biorthogonal Filters

Let
{s(i),i=0...,n—1}

again denote the values of the inputs signal. Let
{h(3),i=0,...,mp—1}, my mod 2 =0
be the lowpass analysis filter and
{9(¢),i=0,...,mg—1}, mymod 2 =0

be the highpass analysis filter.

The lowpass filters for analysis and synthesis are both symmetric, whereas the highpass
filters for analysis and synthesis are both antisymmetric. The analysis and synthesis
filterpairs have the following relationship.

fli) =
e(i)

The equations for analysis and synthesis are the same as for oddsized biorthogonal
filters (4.13, (4.14) for analysis and (4.15), (4.16) for synthesis). However, for evensized

biorthogonal filters, symmetric borderextensions are applied in a different way: for anal-
ysis Type A (4.2) is used, for synthesis Type C is used. (Intuitively this makes sense, as

(- )’Jr1 (1), i=0,...,my—1 (4.18)
= (=1)'h(@), i =0,...,my — 1 (4.19)
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these borderextensions reflect the symmetric/antisymmetric properties of the used filter-
pairs).

For n = 1 the same procedure as for oddsized biorthogonal filters is applied. s(0)
is extended repeatedly and then the lowpass wavelet filter is used to produce a signal
coefficient, which is put into the lowpass subband (regardless of subsampling strategy).

For n > 1 and n even, the analysis step produces 2n, coefficients.

For n > 1 and n odd, n+1 coefficients are produced for highpass and lowpass subband.
However, as the antisymmetric Type C extension is used with an antisymmetric filter in
the highpass analysis step, the last and the first coefficient in the highpass subband are
always zero. Thus the number of coefficients is reduced to 2n, with n + 1 coefficients for
the lowpass subband and n — 1 coefficients for the highpass subband (Fig. 4.7.b on page
41 illustrates this).

4.2.2.4 1-D Subsampling

The wavelet packet analysis described above produces 2n coefficients for a signal of length
n. As only n coefficients are needed for perfect reconstruction, downsampling is performed.
Subsampling can be done at even or odd position with the signal being indexed starting
from zero. Following [20], we call subsampling at even positions "even subsampling" and
subsampling add odd positions "odd subsampling".

The following equations describe the downsampling process. D(i) is the downsampled
signal and s = 0, if subsampling is even and s = 1, if subsampling is odd. S(i) is the
lowpass or highpass filtered original signal.

D() = (2i+5), i=0,...,n—1 (4.20)

Because odd-sized biorthogonal filters introduce a phaseshift during the analysis step,
different subsampling strategies have to be used for lowpass and highpass subbands, i.e.
if the lowpass subband is subsampled at even positions, the highpass subband has to be
subsampled at odd positions and vice versa. We denote the subsampling strategy for this
kind of filters as "even-odd subsampling" and "odd-even subsampling", where the first
part refers to the strategy used for the lowpass subband and the second part refers to the
strategy for the highpass subband. For other filter types, the same subsampling strategy
is applied for both subbands. We will denote these strategies as "even-even subsampling"
and "odd-odd subsampling".

For an even-length signal the downsampled signal contains n/2 coefficients in the low-
pass part and n/2 coefficients in the highpass part, regardless of filter and subsampling
strategy used. For an odd-length signal, the number of coefficients in the lowpass and
highpass part respectively depend on the used subsampling strategy and the type of the
used filter. For orthogonal and evensized biorthogonal filters, n/2 + 1 coefficients are put
into the lowpass subband and n/2 coefficients are put into the highpass subband, regard-
less of subsampling strategy. For oddsized biorthogonal filters and even-odd subsampling,
the lowpass subband contains n/2+1 coefficients and the highpass subband contains n/2.
For oddsized biorthogonal filters used with odd:even subsampling, the lowpass subband
contains n/2 coefficients and the highpass subband contains n/2 + 1 coefficients.
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4.2.2.5 Remark on Implementation

For implementing the transformation described above, it is not necessary to produce n
lowpass and n highpass coefficients. The subsampling can be done on the fly, by applying
(4.13) and (4.14) for lowpass and highpass filtering respectively only for the subsampling
positions in the input segment. The same holds for the synthesis process. Upsampling
can be done implicitly by applying (4.15) and (4.16) to the subsampled vectors and write
the results in correct order.

4.2.3 Filters and Border Extensions

As implied above, not all types of borderextensions can be used for all types of filters or
all length of input segments. This section aims at explaining this fact in an intuitive way,
i.e. without demanding to be formally precise.

For perfect reconstruction it is necessary that
the same borderextension that was used for trans-

formation is also applicable for the result coef-
ficients. —= ..Xd&,aBXxd&apy..

Erample: Take a segment A of length 4: (a, % 777777 w 777777
b, ¢, d). We now repeatedly extend A periodi-
cally, and call this segment of infinite length B.
When a wavelet transformation is performed on
B using periodic extension, the sequence of re-
sult coefficients we expect is also a segment of 4
coefficients («, 3,7,0) extended periodically to
infinity.

Figure 4.2: Periodic extension with odd
length segments

Furthermore, periodic extension cannot be used for transforming segments of odd
length. This is because the upsampling cannot be done properly in this case. Fig. 4.2 il-
lustrates that either the periodicity constraint is broken (right hand side) or the constraint
that coefficients and zeros have to occur alternately (left hand side) is broken.

With symmetric extension it is possible to

filter uneven length segments. This is shown in 7 7.7 7,
fig. 4.3 for Type-B symmetric extension. The =777~
signal can be extended without breaking the
symmetry constraint or the constraint that coef-
ficients and zeros have to occur alternately. The
same is true for the type A and type C exten-
sions that are used in conjunction with evenlength biorthogonal filters. Neither constraint
is broken, because the border extension is suited for the filter properties. In the following
different filter types and possible border extensions are discussed.

Figure 4.3: Symmetric extension with
odd length segments (Type B)
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4.2.3.1 Orthogonal Filters

Orthogonal filters are always even length. Fig. 4.4 shows the lowpass and highpass
filter for analysis. For orthogonal filters, only periodic extension is possible. Fig. 4.5.b
shows that for periodic extension of the original signal the result sequence has the same
periodic properties.

In Fig. 4.5.b it is shown that the same is not true —
for symmetric extension. Without loss of generality, (alB[c|p] Lowpassanayss
we show the case for Type B extension, but the
same is true for Type A. The result sequence should [plclefa] Lowpassmness

have the same symmetric properties as the original
segment, i.e. the coefficient denoted as € should be
the same as . However, as the filter coefficients are
not symmetric themselves, the coefficients that contribute to € are not the same as +.

Figure 4.4: Orthogonal filter

A a -->dabc B a ->babc
— B ->ab,cd — B ->ab,cd
— X ->b,cda — X ->b,cdc
— d ->c,dab — d ->c,dcb
fF———1 a -->dabc fF———1¢ ->d,cbal=bcdc w
— ..X0,aBxoap..
(a) Periodic extension (b) Symmetric extension

Figure 4.5: Border extensions and orthogonal filters

4.2.3.2 Biorthogonal Filters

For oddsized biorthogonal filters, peri-

odic and symmetric extension is possible. a5 o [c[e]a[ale]c]  Lowpaemayss

Fig. 4.6.a shows the schema of biorthogo- BERER Highyess arysis
. . Lowpasssynthesis —

nal lowpass and highpass analysis filters.

In Fig. 4.7.a the analysis step is shown for (a) Oddsized (b) Evensized

the lowpass filter on an even length seg-  biorthogonal filter biorthogonal filter

ments. Note that the resulting coefficients

have the same symmetric properties as the Figure 4.6: Biorthogonal filters

original signal. This is possible because
the filter likewise is symmetric.

For evensized biorthogonal filters the principle is slightly different. Fig. 4.6.b shows
the lowpass and highpass analysis filters in this case. For an input signal of odd length n,
n + 1 lowpass coefficients and n + 1 highpass coefficients are produced. In Fig. 4.7.b it is
shown that of the highpass coefficients the first and the last are always zero (leaving only
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n — 1 coefficients of interest). Furthermore, it is shown that the sequence of coefficients
produced, does have the necessary symmetric properties for perfect reconstruction.

- a -->b,ab — O -->Db,a4ab=0
A B ->ab,c P a -—>aabc
— X ->bcd — B ->abcd
- d -->c¢,dd — X -->b,cde
A X ->d,cb — d ->cdee
5 5 P O ->deed=0
XB.oaBxoxpa F——— ¢ ->eedc= -3
— —B-a0,aBx00-0-x
(a) Oddsized filters (b) Evensized filters

Figure 4.7: Border extensions and biorthogonal filters

4.3 2-D SA-DWT

4.3.1 2-D Transformation

The wavelet transform in 2-D is separable, i.e. it is possible to apply 1-D horizontal
and 1-D vertical wavelet transform sequentially and produce the same result as a 2-D
transform.

For arbitrary shapes, some modifications have to be made:

(1) for each line/row in a direction

e while (more segments in line)

— find continuous segment of values
— apply 1-D transformation to segment

e end while
end for

(2) in the second direction, start with (1) applying the transformation to the coefficients
of the previous run

As the 1-D transformation produces just as many coefficients as contained in the
original segment, it is obvious that the above procedure produces exactly the same amount
of coefficients as there are pixels in the original object.
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4.3.2 2-D Downsampling

As the wavelet transform is separable, Original
the downsampling process is straightfor-

rd in 2-D. H r 1-D signal n S 1
N oweven a8 & PIBRAl oW line2: 0 1 2[3456|78
has a global context, two more modes for

subsampling can be used in the 2-D case.
We refer to them as local and global (cf.
[20]) mode . Local subsampling is done
without taking the global position of the
segment into account.

For global subsampling the local sub- 0 12 78 -0 1] 7 8
sampling strategy depends on the start of 01 2|3 7 8 01 2[84[8l6|7 8
the signal relative to the left and upper  local even local odd
border (for horizontal and vertical trans-
formation, respectively) of the bounding T, PP 01 7 g

box of the 2-D object. In this case, sub- = pm—g— : S :
sampling is always done at even or odd off- ot 2flafld7e % AL L2
sets, respectively, from the border. From a

local perspective, this may result in local Figure 4.8: Subsampling modes and strate-
even or local odd subsampling. As shown gjeg

in fig. 4.8, all combinations of subsampling

mode and strategies are possible. Posi-

tions with dark grey backgrounds represent the values that are dropped in subsampling.
Depending on the used subsampling technique, the objects in different subbands differ in
appearance (Fig. 4.9).

global even global odd

4.3.3 Remark on Implementation

The computational complexity of the objectbased transform is the same as for the non-
objectbased approach, apart from the overhead for finding continuous segments for 1D-
transformation. The memory requirements exceed the requirements of the non-object-
based wavelet transform, due to the necessary handling of object shapes.

Compared to the non-objectbased approach the size of the resulting bitstream is only
affected by the need of inclusion of the object shape. As shown in chapter 3 there are
efficient methods to encode object shapes. Progressive approaches like OTF are especially
well suited, as they encode exactly the resolutions, i.e. downscaled versions, of the object
shape needed for reconstruction.

During decomposition the choice can be made whether to generate the downscaled
versions of the full resolution bitmask in advance and keep them in memory or whether
to downscale on the fly during the decomposition of each subband, which means less
memory requirements. For the reconstruction process, if the shape was encoded using
a non-progressive method, the shapes have to be downscaled in advance and kept in
memory, as the result of an upscaling process is not unique. If a progressive method was
used, the object shapes can be decoded from the bitstream when needed.
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(a) Original object

(b) Local Even-Odd - Horizontal (c) Local Even-Odd - Level 1

(d) Global Even-Odd - Horizon- (e) Global Even-Odd - Level 1
tal

Figure 4.9: 2-D downsampling
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4.3.4 Choice of Subsampling Mode and Subsampling Strategy

I

Figure 4.10: High energy patterns in
local subsampling, ratio 90

Merging of two distinct segments occurs fre-
quently in SA-DWT as the decomposition level
progresses. However, the merging does not af-
fect PSNR-performance in a high degree and is
usually neglectible. The more important question
is, how to arrange coefficients to prevent an ar-
tificial phase shift between subsequent lines and
columns respectively. The choice of a certain com-
bination of subsampling mode and strategy affects
the resulting coefficients. If the resulting coeffi-
cients are to be encoded with a zerotree-scheme,
it makes more sense to have as many coefficients
in the lower subbands as possible. This can be
achieved by using local mode, with even subsam-
pling for the lowpass subband and odd subsam-
pling for highpass subbands. The effect is that
the number of coefficients in the lowpass subband

is always equal (in the case of an even segment) or higher (in the case of an odd segment)
than the number of coefficients in the highpass subband.

On the other hand, local subsampling has the disad-
vantage of mangling phases to a certain degree. Con-
stellations exist, where this affects coding quality to a
high degree. Take a pair of subsequent horizontal seg-
ments with start indices 41,47, and lengths [;,l. As-
sume that |i; — iy] < max(ly,lz). If iy mod 2 = 1 and
79 mod 2 = 0, the phases of the two lines are not com-
patible, high energy patterns are artificially introduced
and PSNR quality is severely affected (see fig. 4.10 for a
reconstructed image). In order to preserve images qual-
ity and favor a gain in PSNR, the global approach is
to be preferred in such a case, because all pairs of lines
are of the same phase here. Note that for oddlength
segments there is more than one possibility where to
put the smaller of the two result segments, as shown
in fig. 4.11. For optimal PSNR performance, the posi-
tions have to be chosen so that the transformation in
the other direction has coefficients of the same phase in
each of its segments. Whether globally even-odd or odd-
even subsampling (referring to the strategy of lowpass
and highpass subband) produces better results, depends
much on the shape used. Having more coefficients in the

Original

Lowpass Highpass

Original

of123fa 01[23]4

Lowpass Highpass

Figure 4.11: Positioning for
oddlength segments

lowpass subband is of advantage. This issue will be discussed in more detail in chapter 5,

where we will also present relevant results.



4.4. SA-WAVELET PACKET TRANSFORM (SA-WPT) 45

4.4 SA-Wavelet Packet Transform (SA-WPT)
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(a) Logarithm of Energy (b) Full Decomposition

Figure 4.12: Subband masks for wavelet packet decomposition

The extensions to SA-DW'T necessary to perform a wavelet packet transformation are
not limited to the transformation as such, but also have a considerable impact on other
areas of the coding process. Especially for zerotree coding, an altered paradigm has to be
used. We will discuss the relevant alterations in section 5.5.

After determining the decomposition structure for a given object, e.g. by using the best
basis algorithm (see sec. 2.4) the actual transformation process can be used as presented
in section 4.3. However, attention has to be paid to the different shapes in the various
subbands of the decomposition. The general wavelet packet decomposition can contain a
larger number of subbands at various scales than the pyramidal wavelet decomposition,
and due to the chosen downsampling strategies, each subband usually contains a different
bitmask (see fig. 4.12).

4.5 Results

We limit our testruns to biorthogonal filters for the objectbased transform, where a direct
objectbased transformation is possible. We still vary the used filters to investigate how
the choice of filter affects performance. Also, we are interested in the coding performance
for different shapes and, of course, for different textures. The parameter space thus tends
to get fairly large and we will only present the most important results.
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In the following, we compare the objectbased approach using SA-WPT to a bounding
box strategy to transform the object. In the latter, first the bounding box is found, then
the transformation is performed. For both approaches, compression ratio and PSNR are
measured only for pixels actually contained in the object.

4.5.1 Costfunctions

The comparison of different costfunction is mainly done implicitly in the other test cate-
gories. We will only discuss the results for fig. 4.13.a, artSkel. As can be seen in fig. 4.13.b,
the objectbased approach outperforms the bounding box approach over the whole bitrange
considered.

It is interesting to observe that the best results for the non-objectbased image artificial
(fig. 2.3.a) and the bounding box approach are produced using the ¢-Norm costfunction,
whereas in the objectbased case, the best results are achieved using the LogE-costfunction.
The decomposition structure produced by LogE and ¢/-Norm in the objectbased approach
is the same that is produced by LogE for artificial.

artSkel
36
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Objectbased:Biorthogonal_7,9s:EIC ---x---
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BBox:Biorthogonal_7,9s:NORM
32 BBox:Biorthogonal_7,9s:EIC --®-- |
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BBox:Biorthogonal_7,9s:LOGE ---&---
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(a) artSkel (b) Results for fig. 4.13.a

Figure 4.13: Shapes: Costfunctions

4.5.2 Shapes

We compare four different shapes shown in fig. 4.14 and fig. 4.15. The shapes feature
rising levels of complexity — whereas cross does not have any rough edges and is only a
little more complex than a simple rectangle, skel features a lot of uneven edges as well as
smaller regions only partly or not at all connected to the rest of the shape. We compare
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(a) linenCross (b) linenPig

Figure 4.14: Shapes: Test Images I

(a) linenFrog (b) linenSkel

Figure 4.15: Shapes: Test Images II
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linenCross linenPig
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(a) Results for fig. 4.14.a (b) Results for fig. 4.14.b
Figure 4.16: Results for fig. 4.14
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Figure 4.17: Results for fig. 4.15
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the performance of the SA-WPT for these shapes with the test-images shown in fig. 4.14,
which all use the poly linen-texture.

Obviously, it is not possible to compare the PSNR-results for the different shapes di-
rectly as they are all of different sizes. But, as can be seen in fig. 4.16 and fig. 4.17, the
distance between the objectbased approach and the bounding box approach is consider-
able, regardless of the shape. It has to be taken into account, of course, that the cost for
coding the bitmask or the WPT-structure were not included in order to illustrate how the
gain through adaptive objectbased approach can compensate the introduced overhead,
even exceed it. As regards the performance of costfunctions in the objectbased approach,
it can be seen that the same costfunction, in this case the /-Norm, produces the best
results for all the shapes.

The better performance of the objectbased approach as opposed to the bounding box
approach has a variety of reasons. Obviously, the objectbased approach only codes pixels
that are actually contained in the object and does not waste precious bits on pixels outside
the object shape. Further, in the approach using bounding boxes, the border regions of
positions in the object and positions outside the object containing padded values introduce
artificial changes in the frequential patterns and thus is problematic not only for coding
efficiency but also affects the performance of the BBA. Fig. 4.20 shows the difference
in visual quality of reconstructed versions of D51Skel (fig. 4.19.a) for the approaches,
obtained at compression ratio 80.

4.5.3 Filters and Textures

The gains in compression efficiency are not that high for all textures. The results for
fig. 4.18.a, for example, are not as striking as other results. Fig. 4.18.b shows that in this
case the bounding box approach produces more competitive results, although the general
level of PSNR is very low.

As regards the used filters, we only compare the standard filter of JPEG-2000, biorthog-
onal 7,9, to the standard filter of MPEG-4 VTC, biorthogonal 3,9. As shown in fig. 4.18.b
and fig. 4.19.b, biorthogonal 7,9 outperforms biorthogonal 3,9 over the whole bitrange
considered. This is the case for most of the tested object textures, which all exhibit
strong oscillatory patterns.
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Figure 4.18: Comparison of filters for fig. 4.18.a

D51Skel
28 T T T T T T
\ Objectbased:Biorthogonal_3,9s:NORM —+—
Objectbased:Biorthogonal_7,9s:NORM ---x---
BBox:Biorthogonal_3,9s:NORM ------
BBox:Biorthogonal_3,9s:DWT &
\ BBox:Biorthogonal_7,9s:NORM --m-
26 X BBox:Biorthogonal_7,9s:DWT ---&-- -

24

PSNR
7 /
; J/

22

20 *\f’_’*\\ .

18

10 20 30 40 50 60 70 80 90
Compression Ratio

(a) D51Skel (b) Results

Figure 4.19: Comparison of filters for fig. 4.19.a



4.5. RESULTS

51

(¢) WPT ¢-Norm, Objectbased, biorthogonal (d) WPT ¢-Norm, Objectbased, biorthogonal

)
3,9 7,9

Figure 4.20: Comparison of reconstructed images for fig. 4.19.a, ratio 80



52 CHAPTER 4. SHAPE ADAPTIVE WAVELET PACKET TRANSFORM




CHAPTER 5. ZEROTREE CODING (ZTC) 93

Chapter 5

Zerotree Coding (ZTC)

5.1 Introduction

Zerotree coding uses the hierarchical and self-similar structure of the wavelet decom-
position to increase coding efficiency for image wavelet coefficients. The advantage of
this technique is that not only does it produce competitive results, but it is also low in
computational complexity.

The concept was first proposed by Shapiro in [33]|. Since the original paper, zerotree
coding has received a lot of attention in the scientific community and now exists in several
variations. In the following we will discuss some basic concepts and then present some
of these variations. First, we will discuss techniques of zerotree coding for the classical
wavelet decomposition that form the basis for the approach we use in our testruns. We
will then go on to present approaches that adapt the zerotree-paradigm to wavelet packets.
Concludingly, we will present an approach to combine wavelet packet zerotree coding with
the functionality for arbitrary shapes.

A wavelet coefficient c is called insignificant with regard to a threshold 7', if |¢| < T
For a motivation that coefficients of greater magnitude are indeed more important than
coefficients of smaller magnitude see 5.3. The crux of successful image coding is to encode
the positions of significant coefficients efficiently. One way to do this is by so-called
significance maps. Significance maps represent the binary decision for each coefficient
whether it is significant (with respect to a threshold T) or not. However, especially for
low-bitrate coding, the portion of the entire bitbudget needed to encode the significance
map is considerable. This is where zerotree coding tries to achieve better compression.

5.2 Embedded Zerotree Wavelet Algorithm (EZW)

5.2.1 Significance Map Coding

The basic idea of EZW and zerotree coding as such, is to make use of the hierarchical
structure of the wavelet decomposition and introduces zerotrees to achieve better com-
pression of significance maps. Subbands at higher levels, which usually contain more of
the total energy of the image in fewer coefficients, are related to subbands at lower levels
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in a way that can be expressed by a parent-child relationship. EZW is based on the
assumption that if a coefficients in the parent subband is insignificant, then all the coeffi-
cients of the same orientation and in the same spatial location in the child subbands are
insignificant as well. A coefficient c is part of a zerotree Z (with respect to a threshold 7'),
if it is insignificant (with respect to T), and all its children are insignificant (with respect
to T') as well. If such a coefficient does not have an insignificant parent, it is called a
zerotree root.
Shapiro proposes to use 4 symbols for encoding significance maps with zerotrees:

e zerotree root (ZTR)

e isolated zero (IZ)

e positive significant (PS)
e negative significant (NS)

With the hierarchical pyramidal structure of the wavelet de-
composition, a zerotree root at a high decomposition level, can
express insignificance for a large set of child coefficients in lower
levels with only one symbol (see Fig. 5.1). For example, in a
five level wavelet decomposition, a zerotree root in the approxi-
mation subband, i.e. in the highest level of decomposition, can
denote 3 2?21 49 = 4029 insignificant coefficients. Of course, the
approximation subband is a special case, as each of its coefficients
has three times four child coefficients. Other subbands (exclud-
ing the lowest level of decomposition) have four child coefficient

per parent. Figure 5.1: Par-
An isolated zero is an insignificant coefficients that has sig- ent/child relationship
nificant child coefficients. Positive significant and negative sig- between wavelet

nificant denote significant coefficient greater than zero and less coefficients
than zero respectively.

5.2.2 Successive Approximation Quantization (SAQ)

SAQ uses a logarithmic sequence of thresholds of powers of two, and encodes the sig-
nificance map following the above described procedure for each of these thresholds. In
principle, this is related to bitplane coding.

The initial threshold T} is chosen that

lci| < Ty, V coefficients ¢;. (5.1)
Further thresholds 7;,, are calculated by
Tin1 = T/2. (5-2)

The actual encoding is done in a dominant and a subordinate pass, both with an
associated list of coefficients. The dominant list contains coefficients that have not yet
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been found to be significant. During the dominate pass, each coefficient in this list is
compared to the current threshold 7;. If a coefficient ¢; is found to be insignificant, it is
encoded as ZTR or IZ. Otherwise, its sign is encoded using PS or NS and |¢;| is appended
to the subordinate list.

Thus, the subordinate list contains the magnitude of coefficients that have been found
to be significant before. In the following subordinate pass, these coefficients are refined
by the encoding of one further bit per coefficient.

Encoding is stopped, when a target criteria is met. This could be a distortion criteria or
a certain bitrate being met. This can happen at an arbitrary point in time. The bitstream
produced is still embedded, i.e. it contains lower rates in the same order and form that
would have been created had the lower rate been the target rate in the beginning.

The resulting bitstream is finally processed by an adaptive arithmetic encoder. The
encoder adapts the alphabet to the output of each pass. For a subordinate pass an
alphabet containing 2 symbols is used. For a dominate pass with no zerotree root symbol
an alphabet with 3 symbols is used and for a dominate pass with zerotree root symbol an
alphabet containing the full 4 symbols is used.

5.3 Set Partitioning in Hierarchical Trees (SPIHT)

Said and Pearlman give an alternative explanation of the principles of operation of EZW in
[34], along with a proposition for an enhanced implementation as regards coding efficiency.
They name

e partial ordering by magnitude with a set partitioning sorting algorithm
e ordered bit plane transmission
e exploitation of self-similarity across different scales of a wavelet transform

as the principles of EZW.

Further, they explain why coefficients should be ordered by magnitude for transmis-
sion. We will present this explanation here in a compressed version. The MSE measure-
ment (see (1.1)) is invariant to the unitary wavelet transformation, i.e.

—

(C(i,5) — C(i,4)) (5.3)

j=0

n—Ln

1

n? 4
1

MSE(I, 1) = MSE(C, C) =

Il
[e=]
<
Il

where n? is the number of pixels in the original image I. Transmitting coefficient C(i, 7)
with the exact value of C(i,j) lowers the MSE by |C(7,5)|/n? Thus, the higher the
magnitude of a coefficient, the more is its impact on the MSE. So for fast gain in PSNR,
the largest coefficients should be transmitted first. Analogous to (5.3), we can state that
the most significant bits should be transmitted first for achieving the fastest reduction
of distortion even for low bitrates. (Note that this reasoning is relative to MSE as a
measure. One could argue that MSE is not the best measure to use as regards reduction
of distortion.)
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5.3.1 Set Partitioning And Wavelets

Said and Pearlman propose not to transmit the
ordering of coefficients explicitly, but to use a set
partitioning sorting algorithm which is known to
encoder and decoder alike, to transmit the order- [~ H}a -
ing implicitly. The set of coefficients {c; ;} is parti- W) "
tioned according to significance relative to a series
of thresholds {7T,, = 2"}. A subset P, contains
coefficients ¢; ; with T;, < |¢; ;| < T4, i-e. all co-
efficient that are significant for the first time for
threshold 7;,. Obviously,

(a) O(c4,;) and D(c;,5)

PnN P = 0; Vn, m. (5.4) bledp= L(c:un

a0 .
Further, if the largest threshold 7,, = max, ({7,}) oo
is chosen to be ‘

O(c_ij)

T = 27 with m = [log, (max({|ci;[}))],  (5.5)

(b) Partitioning for D(c; ;)

then also m significant
U P = {cis} (5.6)
n—0 o) Mo
the initial set of coefficients. 00 - ;‘."H}f;f?{:H}ff)
In order to achieve this partitioning, the signifi- OO s 22
cance test is performed on each subset. If a subset is H}$H}* ,
found to contain significant coefficients, it is further e
divided.
nax < 2" — P, is insignificant (5.7) gicg)n}i)gcr;ﬁomng for L{eas)
1,j€Pn
max > 2" — P, needs to be divided (5.8)
€ij €Pn Figure 5.2: Set partitioning and

The hierarchical self-similar structure of the wavelet wavelet coefficients

transformation is used for the division in (5.8). The

same basic principle that underlies EZW is used for

the set partitioning algorithm. We will outline the method without discussing the actual
algorithm in detail (for a thorough description see [34]).

Let H be the set of coefficients of the approximation subband, let O(c; ;) be the set of
direct offsprings of coefficient ¢; ; and let D(c; ;) be the set of descendants of coefficient
Cij, i.e. all direct and indirect children of ¢;; (see Fig. 5.2.a). Further let L(c;;) =
D(c;;)\O(ci;). The initial partition is formed by {c;;} and D(c;;) with ¢;; € H. The
partitioning rules for each threshold 7, are as follows:

1) If D(c; ;) is significant with respect to 7), then it is partitioned into L(c;;) and
J J
Ck,l € O(Ci,j) (Flg 52b)
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(2) If L(c;;) is significant with respect to 7}, then L(c; ;) is partitioned into four sets
D(cky) with cpyy € O(cij) (Fig. 5.2.c). For these sets, apply (1).

These rules are subsequently applied for each threshold. Like in EZW, for coefficients
that have been found to be significant previously, only refinement bits are transmitted.

5.4 Zerotree Wavelet Entropy (ZTE) and Multiscale
ZTE (MZTE) Codecs

MZTE is part of the visual texture coding tool (VIC) of the MPEG-4 standard. It is
based on ZTE, which in turn is based on EZW, and enhances the former with multiscale

functionality. We will give a very brief overview of both techniques. For a more detailed
discussion of ZTE and MZTE see [4].

5.4.1 Zerotree Wavelet Entropy Codec (ZTE)

Sodagar et al. [4] name four major areas where ZTE differs from EZW:
e explicit quantization
e coefficient scanning, tree growing, and coding are done bit-plane by bit-plane
e coefficient scanning can be done subband by subband or depth-first
e different alphabet of symbols

ZTE summarizes the coefficient of a single tree of wavelet coefficients (i.e. a coefficient
in the approximation subband with all its descendants in the subbands of finer scale) in
so-called wavelet-blocks. A wavelet block thus contains all coefficients of all orientations
and scales corresponding to a specific spatial location. Obviously, a wavelet decomposi-
tion contains just as many wavelet blocks as there are coefficients in the approximation
subband.

The approximation subband is encoded separately from the other subbands using a
differential pulse code modulation (DPCM) technique. For scanning the coefficients in
the detail subbands, ZTE gives the choice of tree-depth-first, i.e. each wavelet block is
completely scanned before the next, and band-by-band, which corresponds to the method
used in EZW in which each subband is completely scanned before the next, going from
coarse to fine scale, i.e. from low to high frequency. Explicit quantization can be performed
before or after the scanning process or done adaptively during the scanning process.

Z'TE use four symbols for entropy coding:

e zerotree root (ZTR)
e valued zerotree root (VZTR)

e value (VAL)
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e isolated zero (IZ)

A valued zerotree root is a significant coefficient whose set of descendants only contains
insignificant coefficients. An isolated zero is an insignificant coefficient whose set of de-
scendants contains at least one significant coefficient. Note that, other than EZW, ZTE
only uses one symbol VAL for a significant coefficients that are not valued zerotree roots,
regardless of its sign. The sign of a valued coefficient is encoded during the subsequent
arithmetic encoding step.

5.4.2 Multiscale Zerotree Wavelet Entropy Codec (MZTE)

MZTE enhances ZTE with scalability while preserving the spatial localization properties
of wavelet blocks. For this purpose, it uses a sequence of quantizers (Q;, i = 1...,n),
with ), being the coarsest quantizer.

Let C be the initial set of coefficients. Further let O; be the output of quantizer @);
and let C; be the coefficients that are produced by reconstructing O;. We define Qg as
C.

Oj.1 is produced by applying Q; + 1 to the residual of O; — 1 and O;.

Zerotree coding is done for each O; with 7 > 1, resulting in a sequence S;, i = 1,...,n,
which is finally arithmetically encoded. MZTE makes use of the dependencies between
O; and O;, 4 for zerotree and arithmetic coding. Zerotree symbols used in O; determine
the range of possibilities in O;;1 (see Fig. 5.3).

Oi Oi+l Oi Oi+1

(a) Not coded (X) or ZTR in O; (b) IZ, VZTR or VAL in O;

Figure 5.3: Dependencies between different layers in MZTE

5.5 Extending Zerotrees to Wavelet Packets

The extension of zerotrees to wavelet packets is not a trivial task. Some of the con-
straints that are given in the pyramidal decomposition are missing in a wavelet packet
decomposition. The hypothesis that the magnitude of coefficients decays with frequency
is to be questioned [33|. Furthermore, a more sophisticated definition of the parent-child
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relationship between subbands has to be used, as the relationship is not as clear as in the
pyramidal case. With wavelet packets it is possible that a child subband is at a coarser
scale than its parent, i.e. a coefficient in the child subband has multiple possible parents,
resulting in a parenting conflict |35|.

Xiong et al. |[15] propose to avoid this parenting conflict in the first place by considering
it in the selection of the best basis and merging children that have parents at a coarser
scale. However, this approach severely limits the flexibility of the best basis algorithm to
adapt to a given signal.

5.5.1 Compatible Zerotrees

Rajpoot et al. [35] propose a zerotree structure called compatible zerotree to resolve
the parenting conflict. For the initial creation of a compatible zerotree, the parent-child
relationship is defined between whole subbands (unlike the spatial orientation trees of
[34], where the relationship is defined between single coefficients, see 5.3). Accordingly, a
node in a compatible zerotree refers to a whole subband. After the initial tree has been
created, its nodes are reordered to resolve parenting conflicts.

The prerequisite for the use of compatible zerotrees is that the approximation subband
is at the coarsest scale. The initial three trees are created from the three children of the
approximation subband, by applying the following rules recursively (|35, 36]|) :

(1) If a node P is followed by four nodes C;, i =0,...3 at the same scale, P is set the
parent of all four of them

(2) If four nodes P;,, i =0, ...3 are followed by four subbands C;, i = 0,...3, then P,
is set the parent of C; for i =0,...,3

(3) If a node P at a coarser scale is followed by only one node C at a finer scale, then
P is set the parent of C

Note that rule 3. represents the pyramidal case. Each of the three resulting trees
represents subbands of a different orientation, i.e. horizontal, vertical and diagonal. The
parental conflict, however, is still there. Coefficients in different nodes may still have
multiple candidates as parents. Only the final reordering step solves the conflict by
moving nodes of coarser scale up in the tree, adhering to the following rule:

(4) If a node P is at a finer scale than four of its children C;, i = 0,...3, then the
parent-child relationship between P and Cj,7 = 0,...,3 is dissolved and the child
nodes C; of coarser scale are moved up in the tree

For moving a set of coefficients C;,7 = 0, ..., 3 toward the root of the tree, an ancestor
with the nearest (but not finer) scale and nearest orientation is scanned for. The resulting
compatible zerotree has parent-child relationships defined in a way that no child has a
parent at finer scale.

Rajpoot et al. also rephrase the zerotree hypothesis for wavelet packets: “If a wavelet
coefficient of a node from the compatible zerotree is insignificant, it is more likely that the
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wavelet packet coefficients at the same similar spatial locations in all the descendent nodes
of the same compatible zerotree will be insignificant as well.” Obviously, this hypothesis
is not as strict as the original zerotree hypothesis (|33]), but as shown in [35], it still
succeeds in creating a topdown hierarchy of wavelet packet subbands that can be used for
prediction.

5.5.2 Significance Map Based Adaptive Wavelet Zerotree Codec
(SMAW?Z)

Our own tests are based on SMAWZ [24]. SMAWZ uses a zerotree like structure called
stmilarity trees. The similarity tree resembles the compatible zerotree in that is defines a
parent-child relationship between whole subbands. However, the parental conflict is not
resolved by moving coarse scale subbands up the tree. If a node C' has multiple possible
parents P;, i =0,...3, only P, (i.e. the subband of lowest frequency range) is chosen as
parent, while the others are marked as childless. Note that, other than with compatible
zerotrees, no restriction as to the scale of the approximation subband needs to be taken
into account.

By following a set of rules, a hierarchical representations of the subbands in the de-
composition tree is produced. Even though the resulting similarity tree only connects leaf
subbands of the decomposition tree (see sec. 2.4), the rules also use nodes that are not
leaves in intermediate stages. It is important to point out that even though the whole
structure of the decomposition tree is used, there is never the need to access the data
contained in the coefficient tree. The algorithm for creating similarity trees is purely
structural.

The initial relationship is defined by the approximation subband of first level decompo-
sition with the root of the coefficient tree, i.e. the original image as a whole. Kutil defines
two types of similarity trees: “across” and “separated”. The rules for each differ slightly
and whereas “across” produces a similarity tree with a single root, “separated” features
multiple roots. We will only outline the basic rules for “across” here. For a more detailed
description see [24]. The rules are worked through in order. Ouly if a rule with a lower
number fails, the next higher number is tested for applicability. Each rule consists of two
parts. The first part describes the situation in the decomposition tree. The second part
defines how to resolve a parent-child relationship in the similarity tree. As the structure
of the decomposition tree is never changed, the second part of each rule always refers to
changes of relationships in the similarity tree.

(1) Let N be a non-leaf node with parent P and children C;, i =0,...,3. Further let
D; # N, i=1,...,3 be the other children of P, i.e. “neighboring” nodes to V.

A parent-child relationship between N and P in the similarity tree is resolved by
setting NV the parent of Cy and D; the parent of C; fori=1,...,3

(2) Let N be a leaf node with parent P. Let D; # N, i = 1,...,3 be the other children
of P.

A parent-child relationship between N and P in the similarity tree is resolved by
setting N the parent of D; for i =0,...,3
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(3) Let N and M be non-leaf nodes of same scale with children C; and D;, respectively,
with s =0,...,3.

A parent-child relationship between N and M in the similarity tree is resolved by
setting C; the parent of D; for i =0,...,3

(4) Let N be a leaf node and M be a a non-leaf node of the same scale as N with
children D;, 1 =0,...,3.

A parent-child relationship between N and M in the similarity tree is resolved by
setting N the parent of D;, 1 =0,...,3.

(5) Let N be a non-leaf node with children C;, i = 0,...,3. Further, let M be a leaf
node of the same scale as N.

A parent-child relationship between N and M in the similarity tree is resolved by
setting Cy the parent of M. (This corresponds to the case mentioned above, in
which there are multiple possible parents for a single node).

The resulting similarity tree, which connects the leaf subbands of the decomposition
tree, is used to encode the actual wavelet coefficients with a significance map based ap-
proach and finally arithmetic coding. We chose the SMAWZ codec for our test runs,
because it produces competitive results while at the same time providing rich functional-

ity.

5.6 Extending zerotrees to Arbitrary Shapes

5.6.1 Extensions for Bitmasks

Let Sp, Si be subbands, where S; is one scale finer than Sy, [Sy| = 4 and |S;| = 16. Let By
be the bitmask of an arbitrary shape in S;. Let By be the bitmask of the same arbitrary
shape in S that is constructed according to the chosen downscaling strategy and mode
(e.g. local-even, Fig. 5.4.a).

Further let P; : 1 =0,...,3,F; € Sy be the coefficients contained in Sy and C; ; : 1 =
0,...,3, j=0,...,3 be coefficients contained in S; with parent(C; ;) = P;. Assume that
P; significant V P; € B, and Cj ; significant V C; ; € B;.

In Fig. 5.4.b the zerotree relationship is shown for Py and P,. Both, P, and P, are
contained in By. Even though not all child-coefficients at a finer scale are contained in
B no problem occurs for zerotree coding. However, in Fig. 5.4.c a case is shown where
special treatment is necessary. Neither P; or P3 are contained in By, but for ¢ = 1,3 the
following equation holds

3C;; : parent(C;;) = P;, Ci; € By, C;; significant. (5.9)

This is a situation that cannot be deduced by the decoder, if the parent coefficients that
are not contained in the bitmask are not encoded at all. A possible solution is to encode
the parent coefficients with a special symbol in this case, denoting a position not contained
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S1 SO

B —

Downscale
(e.g. local even)

(a) Downscale (c) Problem

Figure 5.4: Bitmasks and zerotrees

in the bitmask but with significant child-coefficients. However, this approach lowers the
efficiency of entropy coding.

With regard to PSNR performance, an approach is preferable that allows the decoder
to deduce the positions in such a case without the need for additional symbols. This
requires some preprocessing and thus has an impact on coding time. In our test setup,
which is aimed at gains in coding efficiency and not at gains in coding time, we chose
the following approach that is performed by encoder and decoder alike prior to the actual
encoding process:

e Positions of coefficients with children fulfilling (5.9) are marked recursively. This is
done by applying the following recursively, starting in the approximation subband.

For a coefficient P;:

— If P is not a leaf node, process all its children Cj ; first.

— If the marking process returned true for any of the children, return true oth-
erwise return false. Further, if P; is not contained in the bitmask associated
with its subband, mark P;

— If P; is a leaf node, return true if P; is significant, false otherwise.

e In the encoding process these marks are used to determine the children of which
positions have to be processed even though the positions themselves are not con-
tained in the bitmask. Note that no information regarding the marked coefficients
is encoded at all.

e In the decoding process the marks are used to determine positions that have signifi-
cant children, but are not contained in the bitmask (and thus not in the bitstream)
themselves.

e In both, encoding and decoding the marks are not needed for the actual transfor-
mation.
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5.6.2 Impact on Downscaling Strategy on Efficiency of ZTC

According to the zerotree hypothesis [33|, the magnitude and with it the importance of
wavelet coefficients is indirectly proportional to the frequency, i.e. coefficients in subbands
of low frequency are important with a higher probability than coefficients in subbands of
high frequency. So a higher amount of coefficients in the lowpass subbands has a good
chance of producing a gain in zerotree coding (cf. [20]).

With the choice of subsampling mode and strategy the number of coefficients in low-
pass and highpass portions of a decomposition can be influenced to a certain degree (see
sec. 4.3.2). Using local subsampling mode in conjunction with even-odd subsampling
strategy guarantees that the number of coefficient in the lowpass subband are equal or
(one) more than in the highpass subband for one step of 1D-decomposition.

While this is an intriguing approach on a theoretical level, in practice local subsampling
does have a problem with artificial high frequency components as described in sec. 4.3.2.
In our testruns, a gain for zerotree processing through local subsampling could only be
achieved for a limited set of shapes, where lines as well as columns had a pairwise offset
of 27,7 € N.

5.6.3 Results

linenFrog linenSkel
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Figure 5.5: Comparison of subsampling modes and strategies

For a more general class of shapes, global subsampling always outperforms local sub-
sampling. As can be seen in fig. 5.5, for the global subsampling mode, both subsampling
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strategies, even-odd and odd-even, perform about equally well. It is interesting to observe
that in the case of linenFrog, odd-even performs slightly better for the lower compression
ratios, whereas even-odd performs better for higher compression ratios. A possible expla-
nation for this phenomenon is that a favor for zerotree coding is achieved in the higher
compression ratios, because the majority of the few significant coefficients happen to be
positioned in the lowpass subbands with even-odd. In turn, for lower compression ratios,
more significant coefficients are located in the lowpass subbands with odd-even.

In the case of local subsampling, even-odd outperforms odd-even in all testruns. This
is due to the fact that in local subsampling mode using subsampling strategy even-odd,
there are never less coefficients in the lowpass subband than there are in the highpass
subband and this circumstance favours zerotree coding (cf. sec. 4.3.4).
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Chapter 6

Adaptive Objectbased Image
Compression

6.1 Introduction

Taking the superior performance of the adaptive WPT for oscillatory patterns, trans-
ferring objectbased adaptive coding to a non-objectbased framework seems a rewarding
approach. The basic idea is segmenting an image into objects on distinction of frequen-
tial patterns and then transforming each object on its own. Thus, the wavelet bases are
adapted to each object separately instead of the image as a whole.

In the following, we describe the test setup that implements this idea. The starting
point will be a simplified preliminary test setup which will serve to illustrate the object-
based adaptive approach. We will then present several improvements and alterations,
the results for which we will discuss concertedly in sec. 6.4 to draw direct comparisons
between the approaches.

We will not deal with the segmentation, but assume an image to be already segmented
into objects of different frequential patterns. In fact, we construct test images fitting
the above requirements to test whether the adaptive objectbased approach is able to
produce better compression results and whether segmentation on the criteria of frequential
properties would make sense in the first place. The used testimages are constructed
from the previously tested textures for which the adaptive WP-decomposition produced
superior results compared to the pyramidal decomposition.

A schematic comparison between global, i.e. non-objectbased, adaptivity, which we
will call “global optimization”, and objectbased adaptivity, which we will call “local op-
timization”, is shown in figures 6.1.a and 6.1.b. In the former case, the costfunction is
used on the image as a whole, which leads to a single decomposition. The transform
coefficients are then encoded and written to the target bitstream. Opposed to this, local
optimization does not work on the image as a whole, but optimizes the information cost
for each object individually. It is not even necessary to use the same costfunction for all
objects. Thus, a decomposition structure is produced for each object in the image. A
challenging question is how to distribute the target bitbudget between the objects. The
choice of distribution has considerable impact on the coding performance, as we will see.
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Based on the allocated bitbudgets, individual bitstreams are produced for the objects,
which then have to be merged in some way, producing the final bitstream. There is a
range of possibilities how to perform the merging operation, ranging from simple concate-
nation to more sophisticated methods for producing an embedded bitstream or including
ROI coding.

6.2 Simplified setup

Obviously, the parameter space is vast, due to the different possibilities, even in the basic
steps of the approach. Fig. 6.1.c shows a simplified test setup that we use to restrain the
parameter space in an initial test environment (cf. [37]). There are only two objects in
the image, of same size and rectangular shape. Transformation is done using the same
costfunction for both of the objects and the bitbudget is distributed proportionally to the
size of each object, i.e. as both objects have the same size, they are both granted the same
bitbudget. We refer to this method as area allocation. The resulting bitstream contains
both object-bitstreams sequentially, i.e. the merging operation is merely concatenation.

6.2.1 Results

The adaptive approach using the simple method of area allocation for the distribution of
the bitbudget produces satisfactory results for images with objects of similar energy levels
and high frequential components in different (ideally orthogonal) directions. Fig. 6.2.a
shows a testimage produced from the artificial texture used previously. For this image, for
most of the bitrates, a decomposition is produced by the objectbased BBA that outper-
forms the globally adaptive BBA as shown in fig. 6.3.a. Only for very low bitrates, both
methods are tied. It is also noteworthy that the pyramidal decomposition is outperformed
by the adaptive approaches for the whole bitrange considered.

This is also the case for the testimage shown in fig. 6.2.b. D49XD105 has similar fre-
quential features as artXart90. However, the results for the globally and locally adaptive
method are much closer here and the objectbased methods are outperformed for very low
bitrates as shown in fig. 6.3.b. This is due to the different levels of energy in the two parts
of the image — area allocation is suboptimal in this case.

However, the results of the tests with rectangular objects are promising enough to move
on to arbitrary shapes. We will not use area allocation for the testruns with arbitrary
shapes anymore, but present superior methods of bitbudget allocation.

6.3 Improvements

6.3.1 Bitbudget allocation

As far as PSNR performance is concerned, a good distribution of the available bitbudget
should take the rate-distortion characteristics of each object into account and perform
a “cost-benefit analysis”. For some objects it is possible to concentrate the energy in
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just a few transform coefficients, i.e. the object is well suited for compression. Each of
these coefficients adds greatly to the quality of the object when transmitted, but further
coefficients do not raise the PSNR in a considerable degree anymore. For other objects,
the set of coefficients that carry the bulk of the energy is much bigger, and only after a
lot of these coefficients have been transmitted the same gain in PSNR is achieved as in
the previous case. Therefore, a good method of bitbudget allocation will pay attention to
what part an object actually needs of the entire bitbudget and how much is better spent
on other objects.

As “area allocation” clearly is not able to address the need of balancing the bitbudget
based on the level of energy of each object, we introduce other methods that are more
suited for this task. On the one hand, we will investigate the suitability of costfunctions
for bitbudget allocation and on the other hand, we will present an approach that takes
the decomposition and coefficient trees of all objects in order to build a unified similarity
tree that implicitly optimizes bitbudget allocation.

6.3.1.1 Bitbudget costfunctions (BBCF)

The use of costfunctions for bitbudget allocation is fairly straightforward — basically the
bitbudget is assigned to each object proportionally to the value a certain costfunction
produces for this particular object.

Let O;, + = 0,...,n — 1 denote the image objects with their associated object
shapes S;, + = 0,...,n — 1. By applying a costfunction to each object O;, cost-values
¢, 1=20,...,n—1 are produced. Depending on the measure that should be addressed,
different costfunctions can be used. We will test the following costfunctions for bitbudget
allocation:

e Variance

COStVariance(Oi) = Z (Oz(]: k) - ,U,(OZ))2P(OZ(_], k)) (61)
(j7k)esi

e Energy

COStEnergy(Oi) = Z log*(oz(]a k)Q) (62)
(j,k)ESq;

e Entropy

COStEntropy(Oi) = - Z P(OZ(]a k)) log;(P(Oz(]a k))) (63)
(j7k)esi
log™(t) is defined as
s | log(t) fort#0

log*(t) = { 0 else, (6.4)

w1(0;) is defined as

woy= 3y b (6.5)
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and P(O;(j,k)) is defined as

|04
where H(O;(j,k)) is the histogram-function of O; evaluated at position (j, k) and |O;] is
the size of O, i.e. the number of positions contained in S;.

Let B be the total bitbudget for coding the entire image. B is split into bitbudgets
bi, 1=0,...,n—1 to be assigned to the objects proportional to their respective costs

P(O(j. k) = (6.6)

n—1
3=0

In our testruns for BBCF, like in the simplified setup, the bitstreams are just concate-
nated, i.e. the final bitstream is not an embedded bitstream.

6.3.1.2 Multipackettree (MPT)

Let O;, 1 = 0,...,n—1 again denote the image objects with their associated object shapes
S;, 1=0,...,n— 1. Further, let D; be the wavelet packet decomposition structure that
is obtained by applying a BBA to O;. As discussed previously, trees are a common way
of representing decomposition structures. We will thus also refer to D; as “decomposition
tree”. In parallel to each structural tree D;, a “coefficient tree” exists for each object
(see sec. 2.4).

For the MPT-approach, a similarity tree V; is created for each object O; from D;,
t =0,...,n — 1, using the algorithm discussed in section 5.5.2. The similarity trees are
grouped to form a “unified similarity tree” U with multiple roots,

n—1
v=JWw (6.8)
=0

As discussed in sec. 5.5.2, SMAWZ is able to deal with multiple roots in the case
of separated similarity trees (see 5.5.2). Hence, it can be used for coding the unified
similarity tree as well. The only difference is that the coefficients are located in different
coefficient trees as well. The ordering of the coefficients is done for all objects together.
Thus, MPT implicitly produces a rate-distortion oriented allocation of the bitbudget to
the various objects, while still maintaining an embedded bitstream.

6.3.2 Common Structure Coding (CSC)

The intersection of the decomposition trees of the various objects in an image is never
empty. Especially objects whose characteristics in frequency space do not differ in a high
degree have considerable overlap in their decompositions. The idea of CSC is to make use
of this fact and to code as much of the objects together as possible in a first step. The
individual differences of the objects from the common structure are coded as “refinements”
in a second step. Fig. 6.4 illustrates the analysis process, which is divided into three major
steps.
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(1) The best basis algorithm is applied to each of the objects Og,...,0p,_1 in an im-
age I, producing decomposition structures Dy, ..., D, ;. The intersection C' of
Dy, ..., D, ; is defined by the decomposition structure that contains all subbands
that are part of each D;, 1 =0,...,n— 1.

(2) The original image is decomposed to the common structure C, producing a set of
coefficients TY.

(3) Working on the common set of coefficients T{, each object O, is decomposed from
decomposition structure C' to decomposition structure D;, producing Tgi.

The union of the object shapes used in Tgi does not always cover the whole area of
I, depending on the used subsampling mode and strategy. In order to remedy this,
the object shapes in Tg”;', are enlarged! to cover the whole of I.

Finally, the object coefficients ng are written to the resulting bitstream, along

with the object structures Dy,..., D,_;. It is not necessary to write the common
structure C to the final bitstream, as the decoder can calculate the intersection from
Dy,...,D,_4.

The synthesis process is illustrated in fig. 6.5 and contains the following steps.

(1) Each object O;, @ = 0,...,n — 1 is reconstructed up to the common structure C,
using the enlarged object shape, producing a set of coefficients Tgi.

(2) Creating the union |J} 7y TG yields T.

(3) The reconstructed image I is produced by reconstructing T¢.

6.4 Results

For bitbudget costfunctions, as with the additive costfunctions used in BBA, there is
no causal link between the measure the BBCF addresses and actual PSNR performance.
Thus, as can be seen in fig. 6.11 and fig. 6.12, there is not just one costfunction that always
guarantees to distribute the bitbudget in an optimal way as regards PSNR performance,
but the performance depends on the features of the testimages and how well they can be
described using a certain measure.

For most of the tested images, MPT is about tied with the best-performing bit-budget
costfunction (see fig. 6.11.a, 6.11.b, 6.12.a). But not only does MPT avoid the evalua-
tion of a costfunction, for some images it even outperforms the most successful BBCF-
approach, as can be seen in fig. 6.12.b.

As regards the CSC-approach, as expected and shown in fig. 6.13 and fig. 6.14, the
method that enlarges the object-shapes in the common structure to fill the respective

In the case of two objects this can be easily done by inverting one of the bitmasks in all subbands.
Thus, in our testresults this method is labelled Invert, as compared to Nolnvert.
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subbands completely (Invert) performs better than the approach in which the coefficients
are just left out (NoInvert). However, CSC does not give any gain in PSNR-performance.
On the contrary, the PSNR values are generally lower than without CSC. This may be
due to the (necessary) enlarging of the object-shapes in the transform domain. But even
though this problem could be solved by arranging the coefficients during the subsampling
process, the possible gain in coding performance would hardly be worth the considerable
overhead that is necessary to find the common structure.

In fig. 6.15 and fig. 6.16 we compare the performance of MPT to the approach us-
ing Ganesh+-+ with global optimization and to JPEG-2000. As expected, for all of the
tested images, Ganesh++ using pyramidal decomposition and JPEG-2000 are both out-
performed by the adaptive methods. However, the difference between the globally adap-
tive and approach and the objectbased adaptive approach are quite insubstantial for most
of the images (see fig. 6.15.a, 6.16.a).

[l Ry

| I iﬂm'

(a) Artificial test image (b) Distribution of coefficients for (a)

Figure 6.6: Distribution of coefficients in global optimization

A possible explanation is the fact that for these images the globally adaptive approach,
due to the local preservation property of the wavelet transform, implicitly performs a seg-
mentation in image space based on characteristics in frequency space. For our testimages,
which are constructed from objects which exhibit these different characteristics, the coef-
ficients for each object are almost disjointly divided into different frequency bands. This
can best be illustrated by applying the algorithm to the artificial testimage shown in
fig. 6.6.a, whose parts have high frequential patterns in orthogonal directions. Fig. 6.6.b
shows the coefficient distribution over the subbands for the pyramidal decomposition.

2The pyramidal decomposition obviously does not achieve high energy compaction, but is well suited
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Figure 6.7: Decomposition structures for fig. 6.10.b

As can be seen, the two objects are completely separated into different areas, and it is
obvious that a segmentation based on frequency characteristics prior to transformation
will not yield much of an improvement.

However, global adaptivity does not outperform objectbased adaptivity for all testim-
ages. In fig. 6.15.b, for example, the global approach is outperformed by more than 1db
for most compression ratios. The global optimization in this case is not able to compact
the energy as much as the objectbased approach. (The same is true for fig. 6.16, though to
a lesser extent.) Looking at the decomposition structure of poly linen X D50 in fig. 6.7,
we can observe that the local optimization produced a much more complex decomposition
for the foreground object than is contained in the most successful decomposition structure
in global optimization.

‘ ‘ Classical Wavelet ‘ WPT Global Opt. ‘ SA-WPT Objectbased ‘
Steps 1. Decompose O(N) | 1. Full Packet Tree 1. For each object:
O(NlogN) (a) Full Packet Tree
2. Best Basis (b) Best Basis
2. ZTC 3. SMAWZ 3. SMAWZ
Complexity | low medium high
Area most natural images | textures with high only useful in

frequency components in | special cases
a singular direction
where the pyramidal de-
composition fails to
concentrate the energy considerable overhead
in a few coefficients

Figure 6.8: Applicability of adaptivity in non-objectbased frameworks

Concludingly, we can state that even though there are some special cases where the

to illustrate the point.
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gain in PSNR-performance achieved by introducing objectbased adaptivity is substantial,
the little (or no) gain that is produced in most cases will usually not justify the additional
overhead. Fig. 6.8 sums up the applicability of adaptivity in non-objectbased frameworks,
comparing non-adaptive, pyramidal wavelet transformation, WPT with global adaptivity
and SA-WPT with objectbased adaptivity, i.e. Motivation 2 (in the sense of sec. 1.2).
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Chapter 7

Conclusion

The goal of this thesis was to investigate the usefulness of two motivations for objectbased
adaptive image compression, i.e. Motivation 1 and Motivation 2 that we formulated in
the introduction, for efficient image coding and increased functionality.

We presented the necessary foundations for this purpose and gradually developed a
framework for our testruns. In our initial testresults the ability of the WPT in conjunction
with BBAs to outperform the pyramidal wavelet transformation was shown. For a certain
class of images, exhibiting strong oscillatory patterns, the WPT outperforms non-adaptive
approaches, including JASPER, a reference implementation of the JPEG-2000 standard.

In the context of Motivation 1, it was shown that the objectbased adaptive approach
using SA-WPT does not only provide an exact representation of the object and better
functionality, but also increases PSNR-performance. By adapting the wavelet basis to
the exact object, we have shown that not only the overhead for coding object shape
and wavelet packet structure can be regained, but the non-adaptive approaches can be
outperformed in compression efficiency. For the coding of object shapes, a method was
shown that is especially well suited to work with the SA-WPT as it uses the same basic
principles to represent the object shapes. This method produces a scalable bitstream
containing exactly the object shapes needed by the SA-WPT.

It was shown that from the perspective of PSNR-performance, Motivation 2, i.e. ar-
tificially introducing objects in a non-objectbased environment, is not that as successful
as Motivation 1. Even though gains in PSNR can be produced, they are generally too
small to justify the overhead that is necessary for objectbased adaptivity. Global, i.e.
non-objectbased, adaptivity has lower computational complexity and implicitly performs
an object segmentation. Thus, it is preferable in most situations. For the other cases in
which the computational overhead is of little or no importance, satisfactory results can be
produced using the proposed improvements. For further improvement in the area, future
work should address the issue of bitbudget allocation between the image objects.

In all of our discussion, our focus was rather on the feasibility of the used methods
than on performance issues like execution time or memory requirements. In the areas
where competitive results (with regard to PSNR) have been produced, future work should
provide this focus and find methods to lower computational demand and execution time.
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