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Abstract

The photo response non-uniformity (PRNU) of a digital image sensor can be
useful to enhance a biometric systems security by ensuring the authenticity
and integrity of the images acquired with the biometric sensor, i.e. by
identifying the image source or detecting a possible tampering of the images
presented to the biometric system. Passive image forensic techniques have
shown to be suited for this tasks for digital consumer cameras.

Previous studies regarding the feasibility of this application using biometric
sensors have been conducted for iris and fingerprint sensors by studying
the differentiability of the sensors PRNU fingerprints. The results obtained
on the CASIA-Iris V4 database showed a high variation among the various
subsets of the database. The researchers assumed that this high variation
could either be caused by the highly correlated data or come from the usage
of different sensors for the acquisition of the subsets.

To investigate the latter issue a forensic investigation on the CASIA-Iris
V4 database has been performed in this thesis, where an existing forensic
technique has been applied and additionally several novel forensic tech-
niques have been proposed to detect the presence of images from multiple
sensors in the image data sets. Furthermore, the forensic techniques have
been applied on a test data set with a known number of sensors first to
evaluate their performance.

Since there is no specific documentation on the number of sensors used for
the acquisition, the investigation on the CASIA-Iris V4 database has been
conducted in a blind manner and without any a priori knowledge about the
sensors. In addition different PRNU enhancement approaches have been
applied for the investigation to reduce the contamination of the PRNU
fingerprints by the image content, which is an issue in this scenario due to
the strong correlation of the content among all images under investigation.
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Zusammenfassung

Die sogenannte ”Photo Response Non-Uniformity“(PRNU) eines digitalen
Bildsensors kann zur Erhöhung der Sicherheit in einem biometrischen
Systems beitragen, indem die Authentizität und Integrität der mit dem
Sensor aufgenommenen Daten sichergestellt werden. Dies kann unter an-
derem durch eine Identifizierung der Quelle oder durch die Erkennung von
möglichen Veränderungen des Inhaltes der Bilder, welche dem biometrischen
System präsentiert werden, geschehen. Bei der Verwendung von digitalen
Verbraucher-Kameras wurden hierfür bereits erfolgreich passive Methoden
aus der digitalen Bildforensik angewendet.

Machbarkeitsstudien über die Anwendung dieser passiven Methoden bei
biometrischen Sensoren wurden bereits mit Iris- und Fingerabdruck-Daten
durchgeführt, wobei die Unterscheidbarkeit der ”PRNU fingerprints“der
Sensoren untersucht wurde. Eine Studie, welche auf der CASIA-Iris V4

Datenbank durchgeführt wurde, ergab hierbei hohe Schwankungen in Hin-
sicht auf die Unterscheidbarkeit der einzelnen Datensets. Die Forscher
vermuteten die Herkunft dieser Schwankungen in der hohen Korrelation
der Bilder untereinander oder dass die Datensets mit Hilfe von mehreren
Sensoren aufgenommen worden sein könnten.

Um die letztere Vermutung zu analysieren wurde in dieser Masterarbeit
eine forensische Untersuchung der CASIA-Iris V4 Datenbank unter Zuhil-
fenahme eines bestehenden und neu entwickelter forensischer Verfahren
durchgeführt, um das Vorkommen von Bildern, die von unterschiedlichen
Sensoren aufgenommen wurden, in einem Datenset zu erkennen. Weit-
eres wurden die forensischen Verfahren zuvor an einem Test-Datenset, für
welches die Anzahl der Sensoren bekannt ist, angewendet, um ihr Leis-
tungsverhalten zu evaluieren.
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Da es keine genaue Dokumentation bezüglich der Anzahl der für jedes
Datenset verwendeten Sensoren gibt, wurde die forensische Untersuchung
der CASIA-Iris V4 Datenbank blind und ohne a-priori Wissen durchgeführt.
Hierbei wurden außerdem verschiedene Ansätze, die der Kontaminierung
der ”PRNU fingerprints“durch die Bildinhalte entgegenwirken welche in
diesem Szenario durch die hohe Korrelation der untersuchten Bilder ein
Problem darstellt, angewendet.
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1 Introduction

The imaging sensor is an essential component of every electronic device
capable of producing digital pictures. It consists of a large number of photo
sensitive detectors made of silicon, commonly called pixels. They have the
ability to convert photons into electrons by exploiting the photoelectric
effect [30, 34]. The charge accumulated in every pixel is first amplified and
afterwards converted into a digital signal, which is further processed and
then stored onto a storage device like a memory card.

Biometric systems are not new, for example they are deployed as authenti-
cation systems in industrial settings and high-security areas such as labora-
tories, banks and border control for several years, but their use is becoming
more and more widespread in everyday life as well, i.e. fingerprint recog-
nition in the case of smartphones [14] or Microsoft planning to introduce
system support for biometric authentication in Windows 10 [5]. Another
important application is the Indian UIDAI program “Aadhaar” 1 issuing a
unique identification number to each Indian resident and using different
biometric modalities to identify and distinguish the enrolled subjects.

The sensors used in biometric systems are often specialized devices and
are usually adapted to deliver the desired data for a special modality. For
many modalities, such as iris, fingerprint, face, gait and others, digital
images of the biometric trait are captured and the specific features are
then extracted from these images. The security of the whole system should
not be compromised by the data presented to the system, thus it has to
be assured that the data has been acquired with the proper sensor (sensor
authenticity) and additionally that the data has not been tampered or altered
(data integrity). Further details on the security of biometric systems are
given in section 1.3.

1https://uidai.gov.in
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1 Introduction

To ensure the authenticity of the biometric sensor, first the discriminative
power of the biometric sensors has to be evaluated, as it has been done
in [64] and [4] using digital image forensic techniques, which are further
explained later in section 1.1 and 1.2. The results from Höller et al. [64],
where the discriminative power of five iris sensors from the CASIA-Iris V4
database has been evaluated, vary highly: Some sensors showed satisfying
results while others did not and it opened the question what might have
caused this variability in the results.

This thesis aims at resolving the open questions from Höller et al. [64] and
explain the variability in the results by performing a forensic analysis of the
CASIA-Iris V4 database. This chapter gives a further introduction to Digital
Multimedia forensics, Digital Image Forensics and Security in Biometric
Systems. Chapter 2 explains the theoretical background of the forensic
techniques applied in this thesis and shows the definitions of important
concepts used for this work.

The motivation for this thesis is further discussed in chapter 3 and related
work from literature dealing with a similar scenario is presented in chapter
4. The techniques applied for the forensic analysis of the CASIA-Iris V4
database are proposed and explained in chapter 5, while the database itself
and its data sets are described in chapter 6 together with a test data set used
to evaluate the forensic techniques beforehand.

The experimental set-up and the results for the Test and CASIA-Iris V4 data
sets are shown in chapter 7 and 8. Finally, chapter 9 concludes the thesis
and an outlook on future work is given.

1.1 Digital Multimedia Forensics

Digital Multimedia describes various forms of how to represent any content
in a digital manner, thus different from traditional representation forms such
as printed material or hand-crafted objects. These forms include still images,
audio, video, text, animations or even combinations of any of those.

With the increasing diffusion of digital audio and visual contents in everyday
life, the investigation on multimedia objects is acquiring more and more
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1.2 Digital Image Forensics

interest within the framework of digital investigations, that considers all the
aspects including digital data and digital devices.

As the presence of digital content in our life is rising, also gathering in-
formations on multimedia content is becoming more important for law
enforcement authorities, protection of data privacy, security of computer
systems, digital rights management and others.

As outlined in [13], Multimedia Forensics aims at acquiring knowledge
on the history of audio-visual contents by evaluating the traces that are
left on the data by each processing step. Many algorithms have been pro-
posed that extract features from the audio-visual content and, based on
these features, try to infer some information about the acquisition device,
the editing/coding processing undergone by the digital content, possible
inconsistencies revealing tampering operations, etc.

In digital image and video forensics various techniques exist, like identifica-
tion of the source sensor of a image or video, or verification of the integrity
of the data (if it has been modified or not) without any prior knowledge
about the data. These tools work with intrinsic signatures added to the data
during the acquisition and in the subsequent processing. There also exist
forensic techniques for digital audio data like audio tampering detection, as
described in [11].

1.2 Digital Image Forensics

Digital image forensics covers the part of Digital Multimedia Forensics
dealing with still images and analyzing traces in still image data. Two major
tasks in this field are establishing an images origin and its integrity. An
images origin can be determined by the level of analysis and can either be
the device type (i.e. camera or scanner), the manufacturer, the model or
even a specific sensor among many models from the same manufacturer.
The verification of the integrity of an image analyses whether the image has
been geometrically transformed (e.g. cropped, rotated, turned, flipped etc.)
or if parts of the image have been tampered (e.g. deleted, copied, replaced,
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1 Introduction

(a)Original (b)Tampered (c)Mask

Figure 1.1: Tampered image (malawi.png) from the “Image Manipulation Dataset” with the
original image showing a person on a boat (a), the tampered image where the
person and the boat have been removed (b) and the tampering mask showing
the altered image areas in white (c).

altered). An example for such a image tampering taken from the “Image
Manipulation Dataset” [8] is given in Figure 1.1.

In contrast to digital watermarking as authenticity technique, as mentioned
in [23], digital image forensics does not require any active embedding step
at the time of creation or publication. Evidence is extracted merely from
structural analysis of image files and statistical analysis of the image data (i.
e. the two-dimensional array of pixel intensities).

An important tool used to perform this forensic task is the photo-response
non-uniformity (PRNU) of imaging sensors as described by [13, 19]. It can
be used for a variety of important digital forensic tasks, such as device
identification, device linking, recovery of processing history, and detection
of digital forgeries. The PRNU is an intrinsic property of all digital imaging
sensors due to slight variations among individual pixels in their ability to
convert photons to electrons. Consequently, every sensor casts a weak noise-
like pattern onto every image it takes. This pattern, which plays the role
of a “sensor fingerprint”, is essentially an unintentional stochastic spread-
spectrum watermark that survives processing, such as lossy compression
or filtering. This fingerprint can be estimated from images taken by the
camera and later detected in a given image to establish image origin and
integrity. There exist two types of imaging sensors commonly found in
digital cameras, camcorders, and scanners: charge-coupled device (CCD)
and complementary metal-oxide semiconductor (CMOS). Both consist of
a large number of photo detectors, also called pixels. Pixels are made of
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1.2 Digital Image Forensics

silicon and capture light by converting photons into electrons using the
photoelectric effect. The accumulated charge is transferred out of the sensor,
amplified, and then converted to a digital signal in an A/D converter and
further processed before the data is stored in an image format, such as
JPEG.

Even though the PRNU is stochastic in nature, it is a relatively stable com-
ponent of the sensor over its life span and is therefore a very useful forensic
quantity, responsible for a unique sensor fingerprint with the following
important properties [19]:

1. Dimensionality: The fingerprint is stochastic in nature and has a
large information content, which makes it unique to each sensor.

2. Universality: All imaging sensors exhibit PRNU.
3. Generality: The fingerprint is present in every picture indepen-

dently of the camera optics, camera settings, or scene content, with
the exception of completely dark images.

4. Stability: It is stable in time and under a wide range of environ-
mental conditions (temperature, humidity, etc.).

5. Robustness: It survives lossy compression, filtering, gamma cor-
rection, and many other typical processing procedures.

As mentioned before, the PRNU fingerprint can be used for various forensic
tasks [19]:

• By testing the presence of a specific fingerprint in the image, one can
achieve reliable device identification (e.g., prove that a certain camera
took a given image) or prove that two images were taken by the
same device (device linking). The presence of camera fingerprint in an
image is also indicative of the fact that the image under investigation
is natural and not a computer rendering.
• By establishing the absence of the fingerprint in individual image

regions, it is possible to discover replaced parts of the image (integrity
verification).
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• By detecting the strength or form of the fingerprint, it is possible to
reconstruct some of the processing history. For example, one can use
the fingerprint as a template to estimate geometrical processing, such
as scaling, cropping, or rotation. Non-geometrical operations will also
influence the strength of the fingerprint in the image and thus can
potentially be detected.
• The spectral and spatial characteristics of the fingerprint can be used

to identify the camera model or distinguish between a scan and a
digital camera image (the scan will exhibit spatial anisotropy).

1.3 Security in Biometric Systems

Biometrics-based authentication is becoming more and more popular as an
alternative to knowledge and possession based authentication techniques
like passwords, smart-cards, PINs etc. because it offers various advantages
over the latter: They can be lost or forgotten and are not reliant on the
presence of a human being. Biometric authentication is able to resolve these
issues, since biometric features are diverse among different human beings
and they can not be lost or forgotten, but they can eventually be stolen
or forged and compromised biometric templates cannot be revoked and
reissued. Therefore such biometrics-based authentication systems need to be
designed to resist attacks when employed in a security-critical environment.
Jain et al. [33] state that public acceptance of biometrics technology will
depend on the ability of system designers to demonstrate that these systems
are robust, have low error rates, and are tamper proof.

Ratha et al. [57] identified eight stages in a generic biometric system where
attacks may occur. These stages are shown in Figure 1.2, where the numbers
in the figure correspond to the items in the following list:

1. Presenting fake biometrics at the sensor: In this mode of attack, a
possible reproduction of the biometric feature is presented as input to
the system. Examples include a fake finger, a copy of a signature, or a
face mask.

2. Resubmitting previously stored digitized biometrics signals: In this
mode of attack, a recorded signal is replayed to the system, bypassing
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>Sensor Feature Extraction Matcher

Stored Template(s)

Decision

1 2 3 4 5

6

7

8

Figure 1.2: Attack vectors in a generic biometric system.

the sensor. Examples include the presentation of an old copy of a
fingerprint image or the presentation of a previously recorded audio
signal.

3. Overriding the feature extraction process: The feature extractor is at-
tacked using a Trojan horse, so that it produces feature sets preselected
by the intruder.

4. Tampering with the biometric feature representation: The features
extracted from the input signal are replaced with a different, fraudu-
lent feature set (assuming the representation method is known). Often
the two stages of feature extraction and matcher are inseparable and
this mode of attack is extremely difficult. However, if minutiae are
transmitted to a remote matcher (say, over the Internet) this threat is
very real. One could “snoop” on the TCP/IP (Transmission Control
Protocol/Internet Protocol) stack and alter certain packets.

5. Corrupting the matcher: The matcher is attacked and corrupted so
that it produces preselected match scores.

6. Tampering with stored templates: The database of stored templates
could be either local or remote. The data might be distributed over
several servers. Here the attacker could try to modify one or more
templates in the database, which could result either in authorizing a
fraudulent individual or denying service to the persons associated with
the corrupted template. A smart-card based authentication system,
where the template is stored in the smart-card and presented to the
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authentication system, is particularly vulnerable to this type of attack.
7. Attacking the channel between the stored templates and the matcher:

The stored templates are sent to the matcher through a communication
channel. The data travelling through this channel could be intercepted
and modified.

8. Overriding the final decision: If the final match decision can be over-
ridden by the hacker, then the authentication system has been disabled.
Even if the actual pattern recognition framework has excellent per-
formance characteristics, it has been rendered useless by the simple
exercise of overriding the match result.

Some biometric traits, such as fingerprints, irises, palm-prints, faces, etc.
are inevitably presented to the open public and can easily be collected by
the attacker, e.g. lifting fingerprints from a glass or taking a picture of the
face of desired subject with a telephoto lens where eventually also the iris
can be extracted [27, 41]. The goal in this scenario is to spoof the system at
sensor level (stage 1 in the previous list) by presenting a reproduction of
the biometric traits. If no further security procedures are established at this
level, like a liveness detection, the acquired image data could be presented
to the sensor or or could be inserted into the data transmission from sensor
to the feature extractor (stage 2 in the previous list).

Encryption and other classical authentication techniques like digital sig-
natures or data-hiding have been suggested to secure the previously men-
tioned transmission channel (stage 2) by verifying the senders (i.e. sensor
and feature extractor) authenticity, as well as the integrity of the entire
authentication mechanism. The proposed approaches can be divided into
active and passive-blind approaches.

Active methods consist of data hiding approaches [62, 66] and the digital
signature approaches [61, 63, 50, 49]. Höller et al. [64] describe the pros and
cons of these active methods as follows:

• Classical digital signatures work by adding additional data to verify
the original data, whereas watermarks become an integral part of the
sample data, and moreover, spatial locations of eventual tampering
can be identified [29].
• Fragile watermarks (as proposed for these tasks in e.g. [55, 35, 58])

cannot provide any form of robustness against channel errors and
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1.3 Security in Biometric Systems

unintentional signal processing “attacks” like compression, which is
the same as with classical digital signatures.
• Semi-fragile watermarks have been designed to differentiate between

allowed signal processing operations and malicious attacks and have
also been suggested for employment in biometric systems [37, 48, 15,
1].

Höller et al. [64] also mention that a general drawback of watermarks is the
representation of additional data which is inserted into the sample data,
where an impact on recognition accuracy may be expected. In fact, literature
reports on corresponding effects in case of iris recognition [28], speech
recognition [40], and fingerprint recognition [31].

Passive-blind approaches, in contrast to active methods, do not need any
prior information about the image. As stated in [56], passive-blind ap-
proaches are mostly based on the fact that forgeries can bring specific
detectable changes into the image (e.g., statistical changes). In high qual-
ity forgeries, these changes cannot be found by visual inspection. Höller
et al. [64] propose a suitable passive approach to secure the transmission
channel between the sensor and the feature extractor, making use of sensor
fingerprints based on a sensors PRNU [7]. Besides image integrity, this
technique can also provide authenticity by identifying the source sensor
uniquely and important properties as required in a biometric scenario have
been demonstrated: suitability to manage large datasets [26, 54], robustness
against common signal processing operations like compression and mali-
cious signal processing [59, 2], and finally methodology to reveal forged
PRNU fingerprints has been established [25].
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2 Theoretical Background

As described by [32], in theory, the amount of electrons (charge) outputted
by a pixel should depend solely on the intensity of the incident light. In
reality, however, there are many factors that introduce both systematic and
random deviations. These persistent fluctuations, which are independent
from scene to scene, can be exploited for forensic analysis of the images
acquired by a digital imaging sensor. Consequently, every sensor casts a
weak noise-like pattern onto every image it takes. This pattern, the photo-
response non-uniformity (PRNU), is essentially an unintentional stochastic
spread-spectrum watermark [20].

The PRNU of a imaging sensor emerged as an important component to
perform various forensic tasks such as device identification, device linking,
recovery of processing history and the detection of digital forgeries. This
chapter provides a specific explanation of how a PRNU noise estimate is
obtained, a sensor fingerprint is generated from multiple noise estimates
and the matching of sensor fingerprints against noise residuals or other
sensor fingerprints is performed.

Section 2.1 describes the sensor output model by Fridrich [19]. This model is
used to extract the PRNU noise residual of an image, as shown in section 2.2.
The concept of a PRNU fingerprint and the procedure of how to estimate
the fingerprint from different images of the same sensor is explained in
section 2.3 and section 2.4 explains the sensor fingerprint matching. Section
2.5 concludes this chapter by describing different post processing techniques
to reduce contaminations in the PRNU estimates.
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2 Theoretical Background

2.1 Sensor Output Model

As described by Fridrich [19], pixels are usually rectangular and have a
size of several microns across. The amount of electrons generated by the
incident light at each pixel depends on the physical dimensions of the pixels
photosensitive area. Every pixels physical dimension varies slightly due to
imperfections in the manufacturing process and furthermore, the inhomo-
geneity of silicon contributes to variations in the quantum efficiency among
pixels (the ability to convert photons to electrons). Essentially all types of
imaging sensors (CCD, CMOS, JFET, or CMOS-Foveon-X3) are built from
semiconductors, and their manufacturing techniques are similar. Therefore,
these sensors will likely exhibit fingerprints with similar properties.

According to Fridrich [19], the raw output of a sensor with w× h pixels can
be modeled as:

Y = I + I ◦ K + τD + C + Θ

with Y, I, K, D, C, Θ ∈ Rw×h; τ ∈ R
(2.1)

where Y is the sensor output, commonly denoted as image. I represents the
incoming light or rather the scene, I ◦ K the photo-response non-uniformity
PRNU, τD the dark current (with τ being a multiplicative-factor repre-
senting exposure settings, sensor temperature, etc.). The matrix C is a
light-independent offset and Θ some modeling noise, which is a collec-
tion of all other noise sources mostly random in nature and thus difficult
to use for forensic purposes (readout noise, shot noise or photonic noise,
quantization noise, etc.).. Since all pixels are independent [19] and all op-
erations element-wise, the matrix-elements yx,y ∈ Y are denoted as y ∈ Y
for simplicity reasons. The same applies to i ∈ I, k ∈ K, d ∈ D, c ∈ C and
θ ∈ Θ.

Equation 2.1 also shows that, besides the PRNU, the sensor output essen-
tially contains all systematic defects of the sensor, including stuck (pixels
that consistently produce a constant output independently of illumination)
and partially stuck pixels (pixels that add a constant offset to the incident
light) [17, 16, 43, 42]. It should be stressed that the defects represented
by matrices K, D, and c usually represent quite small deviations with the
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2.2 PRNU Noise Residual

exception of the pixel defects and that the three matrices can be estimated
from multiple images taken by the camera [20].

2.2 PRNU Noise Residual

The differences among pixels are captured with the matrix K in Equation
2.1 in the previous section, which has the same dimension as the sensor.
When the imaging sensor is illuminated with ideally uniform light intensity
I and other additional noise sources are non present, the sensor captures a
signal I + IK. This signal, I + IK, represents the scene I overlaid with the
noise pattern IK, which is usually referred to as the PRNU.

To extract the noise pattern from an image, a denoising filter F has to be
applied to the sensor output Y. The denoised output F(Y) is then subtracted
from the sensor output Y [19] to obtain the PRNU noise residual W, also
known as sensor pattern noise (SPN) in literature. The extraction can be
seen in Equation 2.2.

W = Y− F(Y)
= IK + τD + C + I − F(Y) + Θ

= IK + τD + C + Ξ
(2.2)

The variable Ξ stands for the sum of the modeling noise and the remnant
of the content I − F(Y) present due to the inability of the denoising filter
to separate content from noise. The term I − F(Y) is especially large in
textured regions and around edges and leads to a less accurate estimation
of the PRNU.

The denoising function F filters out the sensor pattern noise. In this work the
denoising filter as described in Appendix A of [52] has been used, because it
is producing good results in filtering out the PRNU. The filter is constructed
in the wavelet domain, where the high-frequency wavelet coefficients of
the noisy image are modeled as an additive mixture of a locally stationary
i.i.d. (independent and identically distributed) signal with zero mean (the
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noise-free image) and a stationary white Gaussian noise N(0, σ2
0 ) (the noise

component). For further details please refer to Appendix A of [52].

The matrix K is responsible for a major part of what is commonly denoted
as the camera fingerprint, as it can be seen Equation 2.2. Its energy depends
on the intensity of the incident light, therefore the PRNU term IK is only
weakly present in dark images respectively dark image regions. Saturated
images or image regions, where the pixel value is at its maximum, do not
contain any traces of the PRNU or other noise signals.

Furthermore the energy of the PRNU noise residual strongly varies among
camera models, but in general it is a quite weak signal [20, 64] which
resembles white noise with an attenuated high-frequency band.

(a)Magnified portion of a sky image (b)Extracted PRNU

Figure 2.1: Patch with size of 128x128 pixels extracted from the upper left corner of a sky
image acquired with a Casio EX-Z150 camera and the extracted PRNU noise
residual.

Figure 2.1 shows a magnified portion of a sky image with uniform lighting
from a Casio EX-Z150 in the Dresden Image Database [23] and the extracted
PRNU noise residual. The brighter pixels generate more electrons, while the
darker ones have a lower response.
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2.3 PRNU Fingerprint

2.3 PRNU Fingerprint

Using only one image for estimating a sensors PRNU is usually not suffi-
cient, because that specific image may contain various kinds of disturbances
such as the shot noise (random variations in the number of photons reach-
ing the pixel caused by quantum properties of light), the readout noise
(random noise introduced during the sensor readout), high frequency image
content (edges or textured regions), and also unknown noise sources [20].
To suppress these undesirable random noise components, multiple images
from the same sensor are averaged to isolate the systematic components of
all images. The averaged noise is denoted as PRNU fingerprint or reference
pattern noise (RPN) in literature.

Fridich [32] states that, for example, the fingerprint can be estimated ex-
perimentally by taking many images of a uniformly illuminated surface.
The best images for estimating the fingerprint are those with high lumi-
nance (but not saturated) and small σ2 (images with a smooth content).
If the camera under investigation is available to the analyst, unsaturated
out-of-focus images of bright cloudy sky would be the best. In practice,
good estimates of the fingerprint may be obtained from as few as 50 natural
images depending on the camera. If sky images are used instead of natural
images, only approximately one half of them would suffice to obtain an
estimate with a comparable accuracy.

To obtain a high quality estimate for the PRNU of a sensor, a series of N
images i has to be taken for the estimation, where Ii denotes the i-th image
and i = 1...N. For each image Ii, the noise residual estimate W i

I has to be
extracted as explained in Equation 2.2 in the previous section. The PRNU
fingerprint K̂ of a sensor is then estimated using a maximum likelihood
estimator as shown in Equation 2.3.

K̂ =

N
∑

i=1
W i

I Ii

N
∑

i=1
(Ii)2

(2.3)

After the estimation of the PRNU fingerprint several post-processing tech-
niques can be to remove non-unique artifacts (NUA), since they are not
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2 Theoretical Background

unique and occur among images from various sensors and hence can lower
the differentiability among different sensors. Some examples for NUA and
a more detailed explanation are given in section 2.5.

2.4 Fingerprint Matching

To be able to determine whether an image has been acquired with a specific
sensor or not, the presence of the sensors PRNU fingerprint can be evaluated
in the image under investigation. A method to do so for images that have
not been geometrically transformed is the normalized cross correlation
(NCC), which is defined in Equation 2.4.

NCC(A, B) =

W
∑

w=1

H
∑

h=1
(A(w, h)− A)(B(w, h)− B))√

(
W
∑

w=1

H
∑

h=1
(A(w, h)− A)2)(

W
∑

w=1

H
∑

h=1
(B(w, h)− B)2)

(2.4)

A and B are two matrices of the same size w× h and X is the average or
mean of the matrix X with size W × H:

X =
1

WH

W

∑
w=1

H

∑
h=1

X(w, h) (2.5)

The normalized cross correlation (NCC) is used to detect the presence of a
PRNU fingerprint K̂ in an Image I with

ρ[I,K̂] = NCC(WI , IK̂) (2.6)

where ρ indicates the correlation between the noise residual WI of the image
I and the PRNU fingerprint K̂ weighted by the image content of I.
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2.4 Fingerprint Matching

On the other hand, the NCC is also used to measure the similarity of two
sensor fingerprints K̂I and K̂J from two sensors Si and Sj, as shown in
Equation 2.7.

ρ[K̂I ,K̂J ]
= NCC(K̂I , K̂J) (2.7)

To measure the the discriminative performance of two distinct sensors Si
and Sj, the correlation score ρ, as described in Equation 2.6, is calculated
between every image from a sensor Si and the PRNU fingerprint K̂i of
the sensor Si, where only images are used that have not been part of the
PRNU fingerprint estimation to obtain the matching scores. Additionally
the correlation ρ between all images from the other sensors Sj, where i 6= j ,
and the PRNU fingerprint K̂i of the sensor Si is also calculated to obtain the
non-matching scores.

Once the matching and non-matching scores have been calculated, the
equal error rate (EER) is calculated to evaluate the discriminability between
different sensors. It relies on 2 different types of errors, the false match rate
(FMR) and the false-non-match rate (FNMR) and it determines the value
where FMR and FNMR are equal, i.e., where FMR = FMNR. Let I be an
image captured with sensor SI , J is an image captured with sensor SJ and
K̂ is the PRNU fingerprint estimate for the sensor SI , where SI 6= SJ .

A false match (FM) is given, if

ρ[J,K̂] ≥ min(ρ[I,K̂]) (2.8)

Equation 2.8 implies that the PRNU fingerprint of sensor SI is more likely
present in the image J although it has been acquired with the sensor SJ and
the NCC score ρ[J,K̂] is higher than the minimal matching NCC score ρ[I,K̂].
This leads to an identification error because no NCC score threshold can
be found to exclude the NCC score of image J from the matches without
also excluding the NCC score of image I. The more images J from sensor SJ
have a higher correlation score with the PRNU fingerprint K̂I than images I
taken with sensor SI , the higher the FMR becomes.

This brings us to the other error type, the false non match (FNM), which is
given if

ρ[I,K̂] ≤ max(ρ[J,K̂]) (2.9)
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Equation 2.9 implies that the PRNU fingerprint of sensor SI is less likely
present in the image I although it has been acquired with the same sensor
SI and the NCC score ρ[I,K̂] is lower than the maximal non-matching NCC
scoreρ[J,K̂]. This leads to an identification error because no NCC score
threshold can be found to exclude the NCC score of image I from the
non-matches without also excluding the NCC score of image J. The more
images I from sensor SI have a lower correlation score with the PRNU
fingerprint K̂I than images J taken with sensor SJ , the higher the FNMR
becomes. The EER rate describes the point where the FMR and FNMR are
equal and can therefore be used to measure the discriminability between
two different sensors, where a lower EER implies better discrimination
performance.

The EER is calculated by comparing different sensors pairwise. To estimate
the real variability of all the correlation scores ρ, the interval of confidence
at α% is estimated, because only a finite set of values was used to calculate
the EER. To do so, the calculation of EER and threshold was repeated 1000
times on the respective set of m matching and n non-matching ρ values, by
drawing m correlation values from the matching-data set and n correlation
values from the non-matching data set, making use of sampling with re-
placement. As a result, we obtained 1000 EERs and the range containing α%
of these values is the interval of confidence. This range excludes the 100−α

2 %
lowest and 100−α

2 % highest measures, hence the most extreme values.

2.5 PRNU post-processing

The PRNU respectively the PRNU fingerprint may be subject of undesired
contaminations that may cause a decrease of the discriminative power
between different sensors. These artifacts are caused by two sources: non-
unique artifacts (NUA) and the interference of image content. NUA are
usually spatially dependent similarities shared among sensors of the same
manufacturer or model, but can also be caused by specific steps during
the in-camera processing that are usually performed on every camera, e.g.
JPEG compression or color filter array (CFA) interpolation. On the other
hand, high frequency components of the image content can interfere with
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the PRNU because it consists of high-frequency components itself, hence it
is rather difficult to separate these two properties.

To deal with both of these artifacts, various enhancement methods are
proposed in the literature. Some methods aim at removing the NUA while
others aim at the separation of the PRNU from the image content or try to
suppress the contamination by the image content.

NUA may lead to false accusations because of an increased similarity
between the noise pattern of an image and the PRNU fingerprint of a
different device with similar characteristics [22]. NUA with regular grid
structure, such as JPEG compression and CFA artifacts, can be suppressed
by applying a zero mean operation to each row and each column of the
estimated reference noise pattern (PRNU fingerprint) [7]. Arbitrary periodic
structures in noise estimates can be attenuated by Wiener filtering in the
frequency domain. If periodic artifacts are not removed properly, cross-
correlation peaks may not only result from the alignment of the estimated
noise of an image and the corresponding reference noise pattern, but also
from non-unique artifacts shifted by multiples of a full spatial period length
[22].

Gloe et al. [22] report a number of model-specific artifacts that may cause
problems with sensor noise estimates from images in the Dresden Image
Database [23]. These artifacts are of non-trivial nature and concern models
of well-known camera manufacturers, namely Nikon, Fujifilm and Casio,
respectively and consist of diagonal artifacts, exposure time dependent
post processing artifacts and focal length dependent distortion correction
artefacts observable for various camera models.

Goljan et al. [24] report non-linear artifacts due to correction of radial lens
distortion. Although a relatively simple polynomial model was proposed to
suppress these artifacts, it is also acknowledged that it generally remains
an open question how more and more advanced in-camera processing
procedures affect the reliability of PRNU-based camera identification.

Li [44] points out that the SPN of an image can be contaminated by the
image content. High frequency image content such as edges and textures can
be recognized in the SPN and therefore attenuate the quality of the PRNU:
The larger the magnitude of a component in the PRNU, the more likely
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it is contaminated by the image content. Therefore Li proposed various
attenuation models and evaluated their effect in [44]. To enhance an SPN,
first a discrete wavelet transformation (DWT) is performed, followed by
a low-pass filtering in the DWT. Then the PRNU is extracted using the
denoising filter from Appendix A of [52] and finally the enhancement
model is applied to the unenhanced PRNU in the DWT domain. Li reported
that the models 3, 4, and 5 delivered the best results. The equation for the
attenuation model 3 is given in Equation 2.10.

ne(i, j) =


1− e−n(i,j), if 0 ≤ n(i, j) ≤ α

(1− e−α) · eα−n(i,j), if n(i, j) > α

−1 + en(i,j), if − α ≤ n(i, j) < 0
(−1 + e−α) · eα+n(i,j), if n(i, j) < −α

(2.10)

Caldelli et al. [6] picked up this idea and proposed an improved attenuation
model, which is given by Equation 2.11. In both attenuation functions (Li
model 3 and Caldelli) n(i, j) is the initial coefficient in the DWT domain,
ne(i, j) is the enhanced coefficient and α is the threshold at which the content
is separated from the PRNU components.

ne(i, j) =


0, if n(i, j) < −α

−cos(n(i,j)π
2α ), if − α ≤ n(i, j) ≤ 0

cos(n(i,j)π
2α ), if 0 < n(i, j) ≤ α

0, if n(i, j) > α

(2.11)

The enhancement effects on the PRNU of both functions is illustrated in
Figure 2.2, where the contrast has been enhanced for better visibility.

Kang et al. [36] proposed a source camera identification scheme based on
an eight-neighbor context-adaptive PRNU predictor to enhance the receiver
operating characteristic (ROC) performance of camera source identification
(CSI). The PRNU predictor is able to further suppress the contaminations
from image content and leads to a more accurate PRNU estimation because
of its adaptability of different image edge regions. The proposed method
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(a)Original (b)Unenhanced (c)Li Model 3 (d)Caldelli

Figure 2.2: Examples of different enhancement approaches suppressing image content
contaminations in the PRNU.

needs at least 100 original images to create a camera fingerprint; the ad-
vantage of the proposed method decreases when the camera fingerprint is
created with less original images.

In [9], Cooper proposed a simplified filtering strategy which at its base
level may be realized using a combination of adaptive and median filtering
applied in the spatial domain. The proposed filtering method is interlinked
with a further two stage enhancement strategy where only pixels in the im-
age having high probabilities of significant PRNU bias are retained. The pro-
posed base adaptive spatial filter coupled with a median filter significantly
out performs the commonly applied wavelet denoising filtering method and
is further improved by the proposed two stage data optimization process.
The system described produces higher discriminability between matching
and non-matching PRNU data, leading to an improvement in robustness to
image data sets that have been made under more challenging conditions
(such as increased levels of compression).
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3 Iris-Sensor Authentication using
Photo-Response Non-Uniformity

Integrity and authenticity are important issues in biometrics security and
digital image forensics have shown that the these issues can be evidenced
by a specific sensor fingerprint. This chapter shows the results of previously
conducted studies that evaluated the application of PRNU fingerprints as
an authentication method for biometric systems. The results of the previous
studies form the basis for the motivation of this thesis, which is explained
at the end of this chapter.

3.1 Iris-Sensor Authentication using Camera
PRNU Fingerprints

Previous feasibility studies by Höller et al. [64] have been conducted on the
CASIA-Iris V4 database. The differentiability of the sensors in the CASIA Iris
V4 database using sensor fingerprints has been tested with the conclusion,
that the EERs and respective thresholds vary highly. Some sensors showed
satisfying results while others showed EERs of over 20%, as it can be seen
in Table 3.1.

The question raised, that if the PRNU fingerprint is going to be applied as
an authentication measure for iris databases, several open questions need to
be answered. Firstly, it is not clear if the poor EER values for some sensor
combinations come from the image’s special content with low variance
between the images, or from the properties of the sensors. In the latter case,
the PRNU would not be suited for sample data authentication. However,
this case was determined as implausible since for some sensors the EERs
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Data set Interval Lamp Twins Distance

Thousand 20.68 11.74 1.68 1.13

Distance 21.21 7.42 0.37

Twins 18.89 14.39

Lamp 22.42

Table 3.1: EERs showing the pairwise discriminability of all possible sensor combinations
in the CASIA Iris V4 database.

Data set Sensor

Casia-Iris-Interval CASIA close-up iris camera
Casia-Iris-Lamp OKI IRISPASS-h
Casia-Iris-Twins OKI IRISPASS-h
Casia-Iris-Distance CASIA long-range iris camera
Casia-Iris-Thousand Irisking IKEMB-100

Table 3.2: CASIA Iris-V4 subsets with respective sensors

were very low. In the first case the results would bear some implications for
future sensor construction and/or sensor use in establishing an iris database.
It was assumed that this high variation could be caused by correlated data
used to generate the sensors PRNU fingerprint. On the other hand Höller
et al. [64] suspected that multiple sensors may have been used for the
acquisition of the CASIA Iris-V4 sub sets, wich are listed in Table 3.2 with
the corresponding sensors used for the image acquisition.

3.2 Generation of Iris-Sensor PRNU Fingerprints
From Uncorrelated Data

As mentioned in the previous section, Höller et al. [64] came to the conclusion
that low variance between images used to generate the PRNU fingerprint
of the imaging sensors might result in a poor fingerprint. To clarify this
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question, uncorrelated data has to be used to generate the PRNU fingerprints
for the specific sensors. Since the data sets do not contain such data, it had
to be additionally acquired with the same sensors as used for the CASIA-Iris
V4 database [39]. Exemplary images from the Lamp and Thousand data set
showing the correlated image content are can be seen in Figure 3.1.

(a) (b) (c) (d)

Figure 3.1: Four exemplary images taken from the Lamp (a,b) and Thousand (c,d) data sets
showing the high image content correlation in the CASIA-Iris V4 database.

To obtain high-quality PRNU fingerprints, images with uncorrelated content
and high saturation are needed. Generating the desired data with the
biometric sensors is not trivial, since these sensors are not like cameras
in a common way. The configuration options are often limited either by
the sensor itself or by the software used to acquire the data. Usually these
sensors are optimized to only take specific types of images and have a
built-in quality assessment, which ensures that the acquired image satisfies
defined constraints. To capture the uncorrelated data different materials, like
paper sheets and plastic foil, were used to obtain uncorrelated out-of-focus
images with high luminance. An examples for the acquired uncorrelated
data for the CASIA long-range iris camera sensor is given in Figure 3.2 and
additional information on the acquisition process for the different sensors
can be found in [39].

As determined by Fridrich [19], the best images for estimating the fingerprint
are those with high luminance (but not saturated) and small σ2 (images
with a smooth content). If the camera under investigation is available to the
analyst, unsaturated out-of-focus images of bright cloudy sky would be the
best.

The sensors used for the acquisition of uncorrelated images in [39] are:
CASIA long-range iris camera, OKI IRISPASS-h, Irisguard AD100 and Irisguard
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(a)Image from Distance (b)Uncorrelated Data

Figure 3.2: Image taken from the Distance data set (a) and uncorrelated data acquired with
the CASIA long-range iris camera (b).

H100 IRT. The acquired uncorrelated images have been used to generate
a PRNU fingerprint for each of the previously mentioned sensors and
two different device identification (DI) experiments have been conducted
(similar to the DI experiment in [64]): the first one using correlated images
(iris images from the various data sets) and the second one using the
uncorrelated images to generate the PRNU fingerprints for the iris sensors
that were available for the additional acquisition mentioned before.

The two DI experiments have been conducted for the following sensors:
CASIA close-up iris camera, OKI IRISPASS-h (1), OKI IRISPASS-h (2), CASIA
long-range iris camera, Irisking IKEMB-100, and Irisguard H100 IRT. Addition-
ally, the two DI experiments have been divided into two separate groups: the
first group contains only sensors also present in the CASIA-Iris V4 database
and is subsequently denoted as “CASIA-Iris V4 Experiment”, while the
second group contains the other sensors not present in the “CASIA Iris
V4 experiment”, namely the OKI IRISPASS-h (1) and Irisguard H100 IRT.
The latter group subsequently denoted as “2013 Iris Data Sets Experiment”.
The association between the sensors and data sets for the two groups of
experiments is illustrated in Table 3.3.

The detailed set up for the experiments can be found in the paper [39],
while the results are presented in the following section.
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Data set Sensor

Casia-Iris-Interval CASIA close-up iris camera
Casia-Iris-Lamp OKI IRISPASS-h (1)
Casia-Iris-Twins OKI IRISPASS-h (2)
Casia-Iris-Distance CASIA long-range iris camera
Casia-Iris-Thousand Irisking IKEMB-100

(a)CASIA-Iris V4 Experiment

Data set Sensor

Irispass-2013 OKI IRISPASS-h (1)
H100-2013 Irisguard H100 IRT

(b)2013 Iris Data Sets Experiment

Table 3.3: Association of the various data sets with the corresponding sensors for the
CASIA-Iris V4 Experiment (3.3a) and the 2013 Iris Data Sets Experiment (3.3b).

3.3 Device Identification Results

The following section shows the results from [39] for the “CASIA-Iris V4

Experiment” in the subsection 3.3.1 and thereafter, the “2013 Iris Data Sets
Experiment” in the subsection 3.3.2. Both subsections show the results using
the correlated data to generate the PRNU fingerprints first, and the results
with PRNU fingerprints generated from uncorrelated data afterwards.

3.3.1 CASIA-Iris V4 Experiment

Table 3.4 shows the first iteration of the CASIA Iris V4 experiment, where
the images used to calculate the PRNU fingerprint for each sensor are taken
from the data set of the given sensor, which contains correlated data. In
comparison to the experiment from Höller et al. [64] the results are not
exactly the same, but since the variations are small they are still comparable.
It can be seen that for some sensor combinations, like Twins↔ Distance or
Twins↔ Thousand the results in respect to the differentiability of the two
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Data set Interval Lamp Twins Distance

Thousand 24.67 14.67 4.33 5.33
Distance 17.67 11.33 1.33
Twins 17.67 15.33
Lamp 25.33

(a)EERs

Table 3.4: Equal error rates (a) for all possible sensor combinations of the CASIA-Iris V4

subsets with PRNU fingerprints generated from correlated data.

Data set Interval Lamp Twins Distance

Thousand 24.67 23.67 4.33 49.17
Distance 52.33 58.17 46.00
Twins 17.67 24.83
Lamp 30.83

(a)EERs

Table 3.5: Equal error rates (a) for all possible sensor combinations of the CASIA-Iris V4

subsets with PRNU fingerprints generated from uncorrelated data.

sensors look very promising, while other combinations do not show such
satisfactory results , e.g. Interval↔ Thousand or Interval↔ Lamp.

On the other hand, Table 3.5 shows the second iteration of the CASIA Iris V4

experiment, where the additionally acquired uncorrelated images have been
used to calculate the PRNU fingerprint for the sensors OKI IRISPASS-h (1)
and CASIA long-range iris camera. For all other sensors, the PRNU fingerprint
was calculated as before from images of the respective data set.

For a better comparison between the two previous iterations, Table 3.6 shows
the the absolute difference for the EER values between the first experiment
iteration and the second. The values were calculated by subtracting the EER
result of a specific sensor pair (Si, Sj) , i 6= j, from the first iteration from
the EER value of same sensor pair (Si, Sj) of the second iteration. Therefore
positive values indicate that the EER has increased and negative values that
it has decreased.
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Data set Interval Lamp Twins Distance

Thousand 0.00 +9.00 0.00 +43.84
Distance +34.66 +46.84 +44.67
Twins 0.00 +9.50
Lamp +5.50

Table 3.6: Absolute differences of the obtained EER values between PRNU fingerprints
generated from correlated (from Table 3.4) and uncorrelated data (from Table 3.5).
Positive values indicate that the EER for the specific sensor pair has increased
with the usage of uncorrelated data for the PRNU fingerprints, while negative
values that the EER has decreased.

The results show that the generation of the PRNU fingerprints from the
uncorrelated data has brought a general increase in the EER between all
the different sensor combinations. The increase varies a lot between the
different sensors. The sensor pairs having “0.00” as result used the same
fingerprints as in the first iteration.

For the CASIA long-range iris camera respectively the Distance data set there
has been an increase of up to almost 50%. Looking at the correlation scores
from this sensor using the PRNU fingerprint estimated by the uncorrelated
data, it can be seen that they are very low. This indicates that the images
used to generate the fingerprint and the images in the Distance data set
have been acquired with a different sensor. Another explanation for this
behavior is that the two generated PRNU fingerprints do not correlate at
all, which could also indicate that the images might be from two distinct
sensors. Taking a closer look at the images from the Distance data set and
the additionally acquired uncorrelated data shows that both contain pixel
defects, but the positions of these defects do not match as illustrated in
Figure 3.3. Furthermore the pixel defects from an arbitrary image in the
Distance data set (acquired in 2009) cannot be found in any image with
uncorrelated content (acquired in 2013), which excludes ageing effects since
pixel defects do not recover over time. All these hints lead to the assumption,
that the sensor used to acquire the uncorrelated data was not the same as
the one used to acquire the Distance data set and therefore explains the very
high EERs.
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(a)CASIA long-range iris camera (b)Distance data set

Figure 3.3: Patch with size of 128x128 pixels extracted from the upper left corner of:
(a) image from uncorrelated data acquired with CASIA long-range iris camera;
(b) image from the Distance data set. The position of the pixel defects (marked
with a circle) is varying between both images.

The EER for all comparisons including the OKI IRISPASS-h (1) sensors data
used for the Lamp data sets PRNU fingerprint showed an increase of about
9-10%. Because the EER is already relatively high for the Lamp data set (see
Table 3.4), Höller et al. [64] assumed that the data set could have possibly
been acquired with different sensors from the same model, which could
be further endorsed by the increase of the EER. On the other hand the
uncorrelated data acquired with this sensor could have been insufficient to
improve the quality of the sensors PRNU fingerprint. Using the fingerprint
generated from the uncorrelated data, where it is verified that the exact
same sensor has been used to acquire all the images, it could be investigated
if the Lamp data set was acquired with different sensors.

3.3.2 2013 Iris Data Sets Experiment

The results of the 2013 Iris Data Sets Experiment in Table 3.7 show that using
correlated data to calculate the PRNU fingerprints already leads to a EER
of 0% for the two data sets under investigation. Using uncorrelated data
to generate the PRNU fingerprints for both sensors does neither improve
nor reduce the discriminability of the two sensors, since the EER does not
change. Therefore the general increase in the CASIA-Iris V4 Experiment in
3.3.1 is not confirmed, which leads to the assumption that the increase of
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Data set pair Irispass-2013, H100-2013

EER corellated data 0.00

EER uncorellated data 0.00

CI corellated data (0.00-0.00)
CI uncorellated data (0.00-0.00)
EER absolute difference 0.00

Table 3.7: EERs, CI and absolute EER difference for the 2013 Iris Data Sets Experiment
performed with the OKI IRISPASS-h (1) and emphIrisguard H100 IRT sensors. The
Irispass-2013 has been acquired with the OKI IRISPASS-h (1) and the H100-2013
data set with the Irisguard H100 IRT sensor.

the EER in the CASIA-Iris V4 Experiment might come from the usage of
different sensors during the acquisition of the images in the data sets and
that the fingerprints generated from uncorrelated data could further reveal
this by showing increasing EER results. To verify this assumption further
investigation on the CASIA Iris V4 data set is needed.

3.4 Summary

The results from [39] showed that using uncorrelated data to generate
the PRNU fingerprint does not improve the discriminability between the
various sensors of the CASIA-Iris V4 database. Hence other factors must
be causing the high variations in the results and the acquisition and usage
of uncorrelated data for the PRNU fingerprint generation was not helpful
in addressing the issue of the varying discriminative power. The use of
uncorrelated data yielded to an increase of the EER for the respective
sensors, varying from a negligible increase of 0-1% to an increase of up
to 50%. Because it is not verified whether each data set has been acquired
using only a single sensor or multiple instances, it is difficult to interpret
the results, but hints have been found that the multiple sensors could have
been used. It is possible that the usage of uncorrelated data does not bring
any benefit in this case because the estimated fingerprints have already been
accurate enough.
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3 Iris-Sensor Authentication using Photo-Response Non-Uniformity

Further investigation on the CASIA-Iris V4 database is needed, to be able to
explain the variations in the discriminability results for the various sensors.
Because of the hints found in [64] and [39] suggesting that multiple sensors
of the same model might have been used for the acquisition of the datasets
and the fact that the documentation of the CASIA-Iris V4 database does not
contain any information on the number of sensors, but only the model used
for each data set. Because for some sensors the acquisition of uncorrelated
data has been very challenging and less effective, as further described in
[39], other techniques have to be investigated to be able to deal with the
correlated content of the images in this context.

The motivation of this thesis is to use forensic investigation techniques to
detect the presence of images from multiple sensors in the data sets, or to
confirm that all the images in each data set have been acquired using a
single sensor. In addition, in the case that images from multiple sensors are
detected, regrouping of images coming from the same sensor and hence
establishing a ground truth for the CASIA-Iris V4 database is intended in
this work. To address the issue with the highly correlated image content in
the data sets, the application of PRNU enhancing techniques described in
section 2.5 are included in this work and the impact is evaluated.
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4 Related Work for Classification
of Images from Unknown Source

The forensic investigation in this work is dealing with a data set, where no
information on the number of source devices used to acquire the images
is known and can therefore be seen as a blind classification of the image
source in an open set scenario.

Related work regarding this scenario proposes various clustering methods,
which are summarized in the following sections. Further details can be
found in the corresponding papers.

4.1 Unsupervised Classification of Digital Images
Using Enhanced Sensor Pattern Noise

In his work Li [45] proposes an unsupervised image classifier, which is
capable of clustering images taken by an unknown number of unknown
digital cameras into a number of classes, each corresponding to one camera.
The classifier training algorithm, which is used to perform this task, is given
as follows:
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4 Related Work for Classification of Images from Unknown Source

• Step 0. Initialization:
Prepare the dataset, specify the sizes of image blocks and the
training set.
• Step 1. Extract and enhance the fingerprint of each block cropped

from the images
• Step 2. Establish the M×M similarity matrix ρ for the training set
• Step 3. Execute the classifier trainer based on the similarity matrix

ρ. For each fingerprint

– 3.1. Assign a unique random class label
– 3.2. Calculate a reference similarity
– 3.3. Establish a membership committee
– 3.4. Update the class label iteratively until the stop criteria are

met

• Step 4. Classify the rest of the dataset using the trained classifier

In the Initialization Step (Step 0) two sets of images, S1 and S2, are created. The
set S1 contains all the images under investigation, where horizontal images
are left intact and vertical images are rotated by 90 degrees in clockwise
direction. S2 is then created by rotating each image in S1 by 180 degrees.
Furthermore in this step different parameters for the PRNU extraction and
the size of the training set are defined.

Step 1 extracts the sensor pattern noise (SPN) from the center of each image
in S1 and S2 according to Fridrich [19] with the size defined in Step 0.
The extracted SPN is then enhanced according to equation 4.1 proposed in
[44], where n(i, j) is the initial coefficient in the DWT domain, ne(i, j) is the
enhanced coefficient and α is the threshold at which n is attenuated.

ne(i, j) =

e−0.5 n2(i,j)
α2 , if 0 ≤ n(i, j)

−e−0.5 n2(i,j)
α2 , otherwise

(4.1)

In Step 2 a training set with M images and a corresponding M×M similarity
matrix ρ is established, with ρ(i, j) indicating the similarity between the
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4.1 Unsupervised Classification of Digital Images Using Enhanced Sensor Pattern Noise

SPNs i and j. The similarity between any two enhanced SPNs i and j is
calculated using

ρ(i, j) =
(ni − ni) ∗ (nj − nj)

‖ni − ni‖ ∗
∥∥nj − nj

∥∥ , i, j ∈ [1, M] (4.2)

To calculate the similarity between two SPNs i and j, four combinations
resulting from the two data sets S1 and S2 have to be taken into account. The
maximum of the four combinations is then selected as the ρi, j and ρj, i.

During the classifier training in Step 3 each SPN is treated as a random
variable and an optimal class label dk is assigned in an iterative manner
until the stop criteria are met. For each SPN i (i.e., each row of the similarity
matrix ρ), a simple k-Means clustering method is used to cluster the M− 1
similarity values between i and the rest of the training set into two groups
(one as intra-class and the other inter-class) and the average of the centroids
of the two clusters is taken as a reference similarity, ri. To determine the
class label for each SPN i, a membership committee Ci is established with c
SPN members from the training set that are most similar to i. The trainer
updates the label of each SPN iteratively based on the cost (similarity) of
SPN i in respect to the members of the membership committee Ci. This
optimization problem is solved using a Markov random fields approach.
When no changes of class labels occur after x iterations, the stop criterion is
met.

Step 4 uses the centroids of the image classes determined by the classifier
trained in Step 3 to cluster the remaining images not present in the training
set. To classify an image i, its similarity to each centroid is calculated and the
class label is assigned according to the centroid closest to the image i. During
the image clustering process, the centroids of the classifier can either be fixed
throughout the entire process or updated when new images are assigned
the corresponding classes. The update is performed by recalculating the
average SPN when a new image is assigned to a class. Another option is
that if the similarity between a SPN and the most dissimilar centroid is less
than a threshold set by the user, a new class with the SPN as the founding
member can be created and allowed to attract new members just like the
classes identified by the trainer.
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4 Related Work for Classification of Images from Unknown Source

To demonstrate the performance of the proposed classification system, it
has been tested on a dataset consisting of 1200 photos of 1536× 2048 pixels
taken by six cameras, each responsible for 200. The proposed classifier has
been able to perform at the quality level as accurate as 1.222% error rate
without the user providing any additional information about the dataset.

4.2 Fast Image Clustering of Unknown Source
Images

In their paper Caldelli et al. [6] propose a new technique which aims at
blindly clustering a given set of N digital images. The technique is based on
the technique by Li [45], presented in the previous Section 4.1, and improves
it both in terms of error probability and of computational efficiency. The
system is able, in an unsupervised and fast manner, to group images without
any initial information about their membership. The sensor pattern noise
(SPN) is extracted for each image as reference and the following classification
is performed by means of a hierarchical clustering procedure. Hierarchical
clustering generates a hierarchy of clusters which may be represented
by a tree-like two-dimensional structure known as dendrogram, which
illustrates the fusions (agglomerative clustering or bottom-up) or divisions
(divisive clustering or top-down) made at each stage of analysis: The root
of the dendrogram is a single cluster containing all the elements, and the
leaves correspond to the individual elements. The proposed agglomerative
hierarchical clustering procedure over a set of N elements produces a
series of partitions of the elements P0, . . . , PN−1, where the first partition P0
consists of N single object clusters, while the last partition PN−1 consists of
a single group containing all the N elements. The procedure merges pairs
of clusters at each step until all clusters have been merged into a single one
that contains all the elements.

The SPN for each image is extracted according to the procedure proposed
by Fridrich [19] and, similar to the approach of Li [45] from the previous
Section 4.1, the SPN is enhanced after the extraction. The enhancing function
gives larger weighting factors to the weak components of the SPN in the
DWT domain, and smaller weighting factors to large components, and it is
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4.2 Fast Image Clustering of Unknown Source Images

described in equation 4.3, where n(i, j) is the initial coefficient in the DWT
domain, ne(i, j) is the enhanced coefficient and α is the threshold at which
n is attenuated.

ne(i, j) =


0, if n(i, j) < −α

−cos(n(i,j)π
2α ), if − α ≤ n(i, j) ≤ 0

cos(n(i,j)π
2α ), if 0 < n(i, j) ≤ α

0, if n(i, j) > α

(4.3)

Hierarchical clustering does not require a pre-specified number of clusters.
However, a partition of disjoint clusters just as in flat clustering is desired:
In this case, the hierarchy needs to be cut at some point. The criterion
based on the silhouette coefficient has been used to determine the cutting
point. The use of the silhouette coefficient combines both the measures
of cohesion (similarity inside clusters) and separation (similarity among
disjoint clusters). For each SPN ni, the coefficient si is simply calculated as
shown in equation 4.4. The cohesion, ai, is the average correlation of ni to
all other SPNs in the same cluster, while the separation, bi, is the correlation
of ni to all other SPNs in each of the other clusters, taking the average over
all clusters.

si = bi − ai (4.4)

This calculation is performed at each loop of the algorithm and for each
SPN. At iteration q a global measure of the silhouette coefficient SCq is
calculated, as shown in equation 4.5, by averaging the coefficients related
to each SPN that belongs to a certain cluster and taking the average value
with respect to all the current K-clusters, which range from N to 1.

SCq =
1
N

N

∑
i=1

si (4.5)

The minimum coefficient SCq is found over the N − 1 iterations, resulting
in q∗ being the last iteration that has to be executed. The partition of the
images Pq is saved for each iteration, hence the optimal clustering Pq∗ can be
selected for the iteration q∗. The pseudo-code for the hierarchical clustering
algorithm is given as follows:
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1. Initialization: K ⇐ N, calculate similarity matrix H ∈ RN×N

2. Loop over q⇐ 1 to N − 1

a) Search for the pair of clusters 〈U, V〉 that have the largest
similarity

b) Delete the rows and columns of H referred to the clusters
〈U, V〉

c) Update H by calculating the new similarity values between
the new cluster Z ⇐ 〈U, V〉 and the remaining clusters

d) K ⇐ K− 1
e) Calculate the silhouette coefficient SCq
f) Save the current partition Pq

3. Calculate the minimum value of the silhouette coefficients: q∗ ⇐
minq(SCq)

4. Get the optimal partition by selecting the one relative to the itera-
tion q∗, which is the partition Pq∗

At the end of the clustering procedure, the number of clusters M is obtained,
that is supposed to be exactly the real number of devices which generated
the given N images of the training set. For each of the obtained M clusters,
a reference SPN is calculated (as the centroid of the cluster) simply by
averaging all the SPNs belonging to that cluster. The centroids of the clusters
provided by the mentioned procedure are then used as the trained classifier
to group the images belonging to the test set. The final classification of the
images consists of comparing the similarity of the current image (taken from
the data set under investigation) to each of the centroids, and then the image
is assigned to the cluster whose centroid exhibits the largest similarity.

The experimental results obtained on a dataset, containing 1200 images at
different resolutions (from 3MP to 12MP) taken by six cameras in different
periods of time, confirm that the proposed hierarchical clustering technique
permits both to reduce computational complexity and to improve the true
positive rate (TPR) for image grouping, because it works with with larger
PRNU patch sizes as compared to the method [45] presented in Section 4.1
and with a feasible computational time. It also showed satisfactory results
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4.3 Blind image clustering based on the Normalized Cuts criterion for camera identification

for non-uniform datasets, where each cluster contains a different number
of images, demonstrating the adaptability of the method to a real world
scenario.

4.3 Blind image clustering based on the
Normalized Cuts criterion for camera
identification

Amerini et al. [3] propose a methodology based on Normalized Cuts (NC)
criterion and evaluate it in comparison with other state-of-the-art tech-
niques, such as Multi-Class Spectral Clustering (MCSC) and Hierarchical
Agglomerative Clustering (HAC).

Spectral clustering techniques make use of the spectrum (eigenvalues) of the
similarity matrix of the data to perform a dimensionality reduction before
the clustering is performed with the lower dimensional features. Multi-
Class Spectral Clustering techniques incorporate these properties, but also
have some drawbacks: Due to the random initialization the performance
of the clustering may vary and a criterion for selecting the best number
of K clusters is needed. To overcome these inconveniences, Amerini et al.
[3] proposed another spectral clustering method, named Normalized Cuts
method, which does not require any knowledge of the number of expected
clusters and does not present any randomness in performance. The proposed
method fits the problem of blind image clustering well because it does not
require a priori knowledge of the amount of classes in which the dataset
has to be divided, it solely needs a stop threshold.

Given a graph G = (V, E), the edges E connecting each pair of nodes/images
V are weighted by means of a chosen similarity function w(i, j), with i and
j being two nodes of the graph. The graph G is partitioned into two disjoint
graphs A and B (A∪ B = V, A∩ B = ∅) by simply removing edges connect-
ing the two parts. The total weight of the removed edges in this partitioning
step gives a computation of the degree of dissimilarity between these two
disjoint partitions and is called the cut. Its value can be determined as shown
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in equation 4.6.
cut(A, B) = ∑

u∈A,v∈B
w(u, v) (4.6)

The optimal bipartition of a graph is obtained by means of the minimization
of the cut value. The authors proposed the normalized cut (Ncut), defined in
equation 4.7, as dissimilarity measure between two disjoint graphs A and
B.

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(A, B)
assoc(B, V)

(4.7)

The association measure assoc(A, V), representing the total connections
from nodes in A to all nodes in the graph (V), is defined as:

assoc(A, V) = ∑
u∈A,t∈V

w(u, t) (4.8)

The minimization of the normalized cut is NP-complete, therefore the authors
propose a discrete approximation to solve this problem as follows, where
the graph G = (V, E) is to be partitioned into two sets A and B.

Let x be an indicator vector of dimension N = |V|, where xi = 1 if the node
i belongs to A and −1 if it does not belong to A and W is the similarity
matrix. Let d(i) = ∑

j∈V
w(i, j) be the total connection from node i to all other

nodes and D an N × N matrix with d on its diagonal. On the basis of these
assumptions the problem of minimizing the normalized cut can be rewritten
as:

min
x

Ncut(x) = min
y

yT(D−W)y
yTDy

where y = (1 + x)− b(1− x) and b =

∑
xi>0

di

∑
xi<0

di

(4.9)

If y is relaxed to take on real values, equation 4.9 can be minimized by
solving the generalized eigenvalue system in equation 4.10.

(D−W)y = λDy (4.10)

Summarizing, the partitioning method can be described as follows:
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1. Given a set of images, set up a weighted graph G = (V, E), com-
pute the weight on each edge which measures the similarity be-
tween the SPNs of two images.

2. Solve equation 4.10 for eigenvectors with the smallest eigenvalues.
3. Use the eigenvector with the second smallest eigenvalue to bipar-

tition the graph by finding the splitting point such that Ncut is
minimized.

4. Decide if the current partition should be subdivided recursively by
checking the stability of the cut.

The decision in the last step (step 4), wether the current cluster should be
further subdivided or not, is taken by comparing the Ncut value to a pre-
specified threshold. For this purpose an aggregation coefficient (AC), which is
computed for each cluster, has been defined (see equation 4.13). The cluster
is then further subdivided if the AC value is lower then the pre-defined
threshold Th.

AC(k) =
1

Nk
∑
i,j

w(i, j) (4.11)

The aggregation coefficient (AC) simply calculates the mean value over all
weights among nodes Nk of a cluster. The pre-calculated threshold Th has
been experimentally determined considering five diverse sets of images
whose acquisition cameras were known to the authors, where a threshold
value of Th = 0.037 has been obtained.

According to the authors the proposed technique has been able to outper-
form other state-of-the-art techniques, as the technique described in Section
4.2, in terms of accuracy and computational effort.
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4.4 Silhouette Coefficient Based Approach on
Cell-Phone Classification for Unknown Source
Images

Luan et al. [51] propose a silhouette coefficient based algorithm for source
cell-phone classification, similar to the approach of Caldelli et al. [6] pre-
sented in Section 4.2.

A graph based approach is chosen by the authors, which changes the source
cell-phones identification into a graph partition issue where the sensor
pattern noise SPN of N images are considered as nodes V and the edges
E represent the similarity between two SPNs in a graph G = (V, E). The
edges E are weighted according to the similarity value between the SPNs of
two images. The weight for each edge ωi,j in the similarity matrix W with
N × N for two SPNs ri and rj is defined as:

ωi,j =

{
0, if corr(ri, rj) < 0
corr(ri, rj), otherwise

(4.12)

The normalized cross correlation (NCC) corr(ri, rj) of the two SPNs ri and
rj, used as similarity measure, is defined as:

corr(ri, rj) =
(ri − ri) ∗ (rj − rj)

‖ri − ri‖ ∗
∥∥rj − rj

∥∥ (4.13)

The authors use the multi-class spectral clustering algorithm of Amerini et
al. [3] to calculate the eigenvalues and eigenvectors of the affinity matrix W
to obtain a N × L indication matrix X. The membership of each node in the
L subsets vj is defined by:

Xi,j =

{
1, if Vi ∈ vj

0, otherwise
(4.14)

The clustering algorithm follows an iterative approach where the partition
number L and partition PL are recorded for each iteration, and the optimal
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partition of the graph P∗L is selected by calculating the silhouette coefficient
SCL according to the approach of Caldelli et al. [6] as described in Section
4.2.

The experiments performed with the proposed approach have been con-
ducted using images from 5 different cell-phones with average accuracies
between 77% and 100%.

4.5 Blind Camera Fingerprinting and Image
Clustering

Bloy [21] proposes a Blind Camera Fingerprinting and Image Clustering
(BCFAIC) technique, which performs an agglomerative clustering to con-
struct PRNU fingerprints from a mixed set of images, enabling identification
of each images source camera without any prior knowledge of the source.
This technique does not rely on a known training set, test set or ground
truth. It solely depends on a pre-calculated threshold function.

The author applied the PRNU extraction approach of Fridrich [19] to see
if a fingerprint for a given camera could be developed from a large set of
uncontrolled and unknown images, some of which come from the given
camera and some of which do not. The goal is, given a large database
of images, which contains 50 or more shots from a number of cameras,
to group together at least 50 images from each camera so that a PRNU
fingerprint can be developed.

The clustering algorithm makes use of a threshold function t, which is
estimated making use of the inter sensor distances. The inter sensor distances
are determined by generating n-image PRNU fingerprints from images of
a given sensor and calculating the correlation with single images from a
different camera, for n = 1 . . . 50. From these correlation results for each n,
the standard deviation is calculated and three times the standard deviation
is added to the maximum observed inter sensor correlation value for each n.
Finally, a quadratic curve is fitted to the resulting values for each n, which
is increasing as a function of n and results in a very conservative threshold
function t, which is given in equation 4.15. The author determined the
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function t using images from four different Canon PowerShot A530 consumer
cameras.

t = −0.00002438n2 + 0.0002889n + 0.009 (4.15)

Using the previously calculated threshold function t an automatic clustering
algorithm to separate a mixed set of images into subsets of images that are
acquired with the same camera performs the following steps:

1. Randomly select pairs of images until a pair is found whose noise
correlation exceeds t(1); average the PRNU of this pair to form a
fingerprint.

2. Perform the first pass: for each remaining image, correlate the
PRNU with the fingerprint. When the correlation value exceeds
t(# of images in fingerprint cluster), average (cluster) it into the
fingerprint. When n = 50 images have been averaged into the
fingerprint or all images have been tried, stop and go to Step 3.

3. Perform the second pass: loop over all the unclustered images a
second time, correlating with the current fingerprint and adding
those that exceed the threshold. (Do not average more than 50

images into the fingerprint but allow more than 50 to be associated
with the fingerprint.)

4. Repeat Step 1. Give up when Step 1 has tried 1000 pairs without
success.

The result of this algorithm is a list of partitions, containing a PRNU
fingerprint and associated images that are matching to it. Every partition is
representing a different sensor. If an image did not match with any of the
fingerprints in the list, it is labeled as unassociated image. Images that have
been associated with the wrong sensor respectively cluster are labeled as
mismatched, which applies when a partition contains only a few images
from a certain sensor while the majority of the images belong to another
sensor. Clearly such mismatched images can only be categorized if the
association of each image to a specific sensor is known and not in a “blind”
scenario.
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Four identical instances of a typical consumer camera were tested, and only
the default JPEG output was used in order to make the task more difficult.
In order to increase the difficulty further, a highly textured set of outdoor
imagery was collected for testing in hopes that the texture would reduce the
effectiveness of the denoising filter. The goal was to use automatic clustering
to generate a fingerprint by associating at least 50 images from each of the
four cameras out of a combined set of images that included not only the
four cameras in question but several other makes and models as well.

The clustering technique proposed by the author performs almost perfectly
on a 200 image indoor test set in that no image is included in an incor-
rect fingerprint and almost all images from the same camera are grouped
together. Also performing a more challenging test with highly textured
outdoor imagery no images were mistakenly associated with the wrong
fingerprint.

This algorithm has been reimplemented in this work because of the promis-
ing results on the open set scenario without any need of a priori knowledge
about the number of distinct cameras respectively sensors and any other
constraints.
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5 Novel Forensic Techniques for
Unknown Source Sensor
Detection

This chapter proposes various novel forensic techniques which can be used
to detect the presence of images from multiple sensors in a data set without
any a priori knowledge on number of the sensors. All of the following
techniques are based on the sensors PRNU, which is extracted from the
images under investigation. There are no special requirements to the data set
under investigation, except that the images must have been acquired with a
digital camera and hence contain a PRNU signal. If the images are computer
generated renderings, this signal would not be present in the images. Since
the PRNU extraction works with grayscale images, color images need to be
converted into grayscale images first.

The novel forensic techniques consist of the four proposed techniques in
[38]:

• K-Means Clustering (KM)
• PCA K-Means Clustering (PCAKM)
• Sliding Window Fingerprinting (SWFP)
• Device Identification On Dataset Partitions (DIODP)

A detailed description of each technique is given in the following sections
5.1 to 5.4.
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5.1 K-Means Clustering

The second technique, the K-Means Clustering (KM), uses the k-means++
algorithm by Arthur and Vassilvitskii [65] as implemented in Matlab.

The idea behind K-Means Clustering is to partition the data into k distinct
clusters, where it finds a partition of the data in which objects within
each cluster are as close as possible to each other, and as far from objects
in other clusters as possible. The distance measure decides how close or
rather how far two objects are. Each cluster in the partition is defined by its
member objects and by its centroid, or center. The centroid for each cluster
is the point to which the sum of distances from all objects in that cluster is
minimized. The minimization of the overall sum of distances is performed
by a two-phase iterative algorithm.

The two phases of the iterative algorithm are:

1. Batch updates: Each iteration reassigns all objects at once to their
nearest cluster centroid, followed by a recalculation of the cluster
centroids. This phase mostly does not converge to a local minimum.
A local minimum would be the partition of the data, where moving
any object to another cluster would increase the total sum of distances.
Hence this phase is only approximating a solution in a fast manner
and acts as a starting point for the second phase.

2. Online updates: Each iteration, which passes through all the objects,
reassigns individual objects to other clusters if they reduce the over-
all sum of distances. After each reassignment, a recalculation of the
cluster centroids is performed like in the first phase. In contrast to
the first phase, this phase is able to converge to a local minimum,
although there might be other solutions with a lower total sum of dis-
tances. Finding this global minimum is usually done by using several
replicates and choosing random starting points for each replicate.

The result of this algorithm is a set of clusters that are as compact and
well-separated as possible. In this work the PRNU noise residuals of the
images in the investigated data set are defined as the n objects to cluster,
while the clusters k represent the different sensors. Since the number of
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sensors is unknown, the clustering is repeated with a varying value for the
number of clusters k.

In order to qualitatively evaluate the outcome of the clustering the Mean
Silhouette Value (MSV) by Rousseeuw [60] has been chosen. The silhouette
value for each point is a measure of how similar that point is to points in its
own cluster, when compared to points in other clusters. The result for k = 1
has been determined by calculating the pairwise NCC between all point
combinations i and j, where i 6= j, and then calculating the mean correlation
over all points. For all k >= 2 the Mean Silhouette Value for the i-th point,
Si, is defined as

MSV =
1
N

N

∑
n=1

bi − ai

max(ai, bi)
(5.1)

where N is the number of noise residuals, ai is the average distance from
the i-th point to the other points in the same cluster as i, and bi is the
minimum average distance from the i-th point to points in a different
cluster, minimized over clusters. The silhouette value ranges from −1 to +1.
A high silhouette value indicates that i is well-matched to its own cluster,
and poorly-matched to neighboring clusters. If most points have a high
silhouette value, then the clustering solution is appropriate. If many points
have a low or negative silhouette value, then the clustering solution may
have either too many or too few clusters.

5.2 PCA K-Means Clustering

The PCA K-Means Clustering (PCAKM) uses the same clustering algorithm
as previously mentioned in 5.1, the only difference is that in this technique
the clustering objects n consist of principal components generated by a
Principal Component Analysis (PCA) [18] on the PRNU noise residual of
each image.

The PCA is a powerful tool to identify patterns in high dimensional data
and therefore it helps for analyzing such data. It is a statistical procedure
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that performs an orthogonal transformation on a set of possibly correlated
observed variables, which results in a new set of variables that are orthogo-
nal to each other, so that redundant information is excluded. These newly
generated variables are called principal components and their number is less
or equal to the number of original variables and each principal component
is a linear combination of the original variables. The principal components
resulting from the transformation have a key characteristic: The first prin-
cipal component covers the largest variance in the original data and each
following component also covers the largest possible variance under the
constraint that it is orthogonal to all the previous components. Therefore,
the principal components as a whole form an orthogonal basis for the space
of the data. Because of this special characteristic the variance in the original
data can be represented by a smaller number of principal components,
without losing much information.

The PCA is used in this technique to reduce the dimensionality of the
PRNU noise residual (which can be seen as a high dimensional variable) by
representing it with its first 5 principal components. This reduction has a
huge impact on the performance of the K-Means clustering, because both
memory usage and computational effort are reduced drastically, since the
objects to cluster have a significantly lower dimension.

5.3 Sliding Window Fingerprinting

The Sliding Window Fingerprinting (SWFP) technique consists of a so called
“sliding window” with an arbitrary but fixed size n that moves over a data
set image by image. This novel forensic technique uses an iterative algorithm
which performs the following steps:

50



5.3 Sliding Window Fingerprinting

1. Start at image with index i = 0.
2. Gather images inside the sliding window with size n, hence the

images with index i . . . i + n.
3. Extract the PRNU noise residual for each image.
4. Compute a PRNU fingerprint using the images inside the window.
5. Increment the index i by 1.
6. Repeat step 2 until all the images have been used to calculate a

PRNU fingerprint.

Moving the window over the whole data set yields a list of PRNU finger-
prints, which have been computed using sequential overlapping windows.
For a data set containing m images, m− n PRNU fingerprints are generated.
After generating the fingerprints, the similarity of a PRNU fingerprint FPi
from the iteration i with all other fingerprints FPj where i 6= j is com-
puted by calculating the NCC score of each fingerprint pair. This leads
to a similarity matrix with size (m− n)× (m− n) containing all the NCC
scores.

The idea behind this method is to find “jumps” in the resulting similarity
values between the PRNU fingerprints, which are referred to as transitions
in the data. If all images in the data set have been acquired using a single
sensor, the NCC scores should all be quite similar and there should be
no recognizable transitions in the data. On the other hand, if images from
multiple sensors are present in the database and these images occur in short
sequences, the correlation between PRNU fingerprints generated with data
from a single sensor and data from an other sensor (or even mixed data
from both sensors) should decrease and therefore a transition between both
sensors should be recognizable.

Figure 5.1 shows the output of this method on exemplary data, which in
the first case contains images from a single sensor and in the second case
images from two distinct sensors. The plot shows three different curves, that
are representing the NCC correlation scores of three different fingerprint
iterations with all other fingerprints. The gaps in the curves have been
introduced because the correlated PRNU fingerprints contain common
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Figure 5.1: Sample Output for the SWFP technique; (a) shows the output for images from
one sensor, while (b) shows the output for images from two sensors. Subfigure
(b) shows a well recognizable transition at iteration 500: The NCC scores increase
for the PRNU fingerprint with iteration 1, while they drop for iteration 1000.
This transition shows the alteration from the first sensor to the second sensor in
the sample data.

images used for their generation, which yields to a much higher NCC score
in depending on the number of common images. Hence, the plotted results
show solely NCC scores of PRNU fingerprints that have been generated
using distinct images. The dashed (red) line shows the NCC scores for
the fingerprint with iteration 1, the solid (green) line for iteration 500 and
the dotted (blue) line for iteration 1000. For the case of a single sensor, no
clear transitions can be recognized as described before. For the two sensor
example, on the other hand, the output shows clear transitions for the
various PRNU fingerprint iterations.

This technique has the disadvantage that it is not able to detect single images
from other sensors, but is limited to sequences of images where the number
(of images) is preferably larger as n (size of the sliding window). To bypass
this limitation, this technique has been applied using various window sizes.
Again this is only possible to a certain extent since using too few images to
generate the PRNU fingerprint lead to a weak estimate according to Fridich
[19].
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5.4 Device Identification on Dataset Partitions

A device identification experiment, as performed by Höller et al. in [64],
identifies whether different data sets have been acquired using different
cameras. This is done by assuming that each data set has been acquired with
a different sensor and calculating the intra- and inter-sensor similarities
for each data set combination. The resulting similarity scores are used to
calculate the EER, which is low when the two data sets under investigation
are acquired with different sensors and high when they are acquired with
the same sensor.

In this work it is investigated whether a single data set contains images
from one or more sensors, hence a method to apply the device identification
approach to a set of images of unknown source has to be found. The Device
Identification on Dataset Partitions (DIODP) solves this issue by dividing
the data set into n disjoint partitions with the same size and assumes that
each partition has been acquired with a different sensor.

The first step for the device identification is to calculate a PRNU fingerprint
for each of the n partitions. The images inside each partition are randomly
shuffled, so that the PRNU fingerprint is not just computed from the first
images in the partition. We use half of the images (up to a maximum of
50) to calculate the PRNU fingerprint and the remaining images in the
partition to calculate the NCC scores (inter- and intra-partition scores).
From these scores the pairwise EER for two partitions Pi and Pj, where
i 6= j, is calculated as illustrated in Figure 5.2. If the resulting EER score is
low (e.g. 0%), the extracted PRNU and respectively the PRNU fingerprint
is different for both partitions, hence they must have been acquired with
different sensors. On the other hand, if the resulting EER score is high
(e.g. 50%), the extracted PRNU is very similar for both partitions and their
images have likely been acquired with the same sensor.

To determine if images from different sensors are present in the data set,
the distribution of the EER scores is analyzed. If it contains mostly or solely
high EER values (above 40%), the data set is likely to contain images from
a single sensor. Occurrences of very low EER values (below 10%) indicate
that the data set might contain data from multiple sensors, because the
assumption that all partitions are acquired with different sensors holds for
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Figure 5.2: Calculation of the EER score of two disjoint partitions i and j.

at least some of the partitions. The more such low EER values show up,
the more likely the dataset is containing images from multiple sensors. The
resulting EER scores have been pooled into several bins in the output plot
for better visibility. Six bins with the following limits have been defined for
the EER scores: below 10%, between 10% and 19%, between 20% and 29%,
between 30% and 39%, between 40% and 49% and above 50%.

An example of the distribution for different partition sizes in the case
of a single sensor and two sensors is given in Figure 5.3. As mentioned
before, the single sensor case contains mostly EER scores above 40% for
this example, while the two sensor case shows a significant amount of low
EER scores below 10% for most partition sizes. This technique is capable of
pointing out whether a single sensor or multiple sensors have been used
to acquire a data set, but it is difficult to estimate the exact number of
sensors from the results. To overcome the problem with varying sequences
of images from multiple sensors, the technique has been applied using
different partition sizes. If any of the EER score distributions for the varying
partition sizes shows a significant number of very low EER scores, the data
set is suspected to contain images from multiple sensors.
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Figure 5.3: Sample Output for the DIODP technique; (a) shows the output for one sensor,
while (b) shows the output for two sensors. Both EER score distributions are
clearly distinguishable, where (a) shows mostly very high EER scores and (b)
shows a significant amount of very low EER scores.
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6 Data Sets

In this work a forensic investigation on the CASIA-Iris V4 Database 1 has
been conducted. The assumption, that all images in each sub set have been
acquired with a distinct single sensor unit, is derived from the documen-
tation of the database, but it is not explicitly noted that only one sensor
instance of the same model has been used to acquire the images for the
various subsets. Because of different hints on the possible presence of im-
ages from multiple sensors in the sub sets, as described in Chapter 3, this
work addresses this question by applying the forensic techniques presented
in Chapter 5. Additionally, to be able to evaluate the implementations and
algorithms of the forensic techniques under controlled conditions, a test
data set with images from known sensors has been generated.

A description of all data sets and their respective sub sets is given in the
following sections.

6.1 CASIA Iris-V4

The CASIA-Iris V4 Database contains a total of 54601 iris images from more
than 1800 genuine and 1000 virtual subjects. All iris images are 8 bit grey-
level JPEG files, collected under near infrared illumination. For this work
we used images from five different sub sets, which are shown in Table 6.1.
The sixth sub set of the CASIA-Iris V4 Database, CASIA-Iris-Syn, has been
discarded because it contains automatically synthesized iris images, which
have not been acquired using a digital image sensor and do not contain a
genuine PRNU signal.

1CASIA Iris Image Database, http://biometrics.idealtest.org/
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6 Data Sets

Subset name Short name Sensor Resolution

CASIA-Iris-Interval intv CASIA close-up iris camera 320× 280
CASIA-Iris-Lamp lamp OKI IRISPASS-h 640× 480
CASIA-Iris-Twins twin OKI IRISPASS-h 640× 480
CASIA-Iris-Distance dist CASIA long-range iris camera 2352× 1728
CASIA-Iris-Thousand thou Irisking IKEMB-100 640× 480

Table 6.1: Subsets of the CASIA-Iris V4 database used in this work.

(a) (b) (c) (d) (e)

Figure 6.1: Sample images of the CASIA-Iris V4 database: (a) intv, (b) lamp, (c) thou, (d) dist
and (e) twin.

For the CASIA Iris V4 data sets it is not clear, whether the single data
sets have been acquired with a single sensor or if multiple instances of the
same sensor model have been used. The documentation does not explicitly
denote the number of sensors, but only the sensors manufacturer and model.
Furthermore the same sensor model was used for the acquisition of two
different data sets (OKI IRISPASS-h sensor for lamp and twin), which also
confirms the assumption of the use of multiple sensors.

6.2 Test Data Set

The sensors used to generate the Test data set are an OKI IRISPASS-h and
an Irisguard H100 IRT iris sensor. The images have been acquired under
controlled conditions during a Short Term Scientific Mission (COST-STSM-
IC1106-12803) funded by the COST Action IC1106

2 “Integrating Biometrics
and Forensics for the Digital Age” at the NLPR-CASIA in Beijing (CN) in

2http://www.cost.eu/COST_Actions/ict/Actions/IC1106
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6.2 Test Data Set

2013 in collaboration with the local researchers, hence it is known that all
images inside a sub set have been acquired using a single sensor. The 1000
images used for the following data sets have reliably been acquired with the
two mentioned sensors, 500 with each one. All images are 8 bit grey-level
JPEG files which have been acquired under near infrared illumination.

(a) (b)

Figure 6.2: Sample images from the OKI IRISPASS-h (a) Irisguard H100 IRT (b) iris sensors.

Two sub sets have been generated using those images for the evaluation of
the forensic techniques, each containing images from both sensors and with
a total of 1000 images per sub set. In the test-sequential data set the first 500
images come from the OKI IRISPASS-h and the latter 500 from the Irisguard
H100 IRT sensor, as shown in Figure 6.3.

OKI H100

Figure 6.3: Structure of the test-sequential data set: the first 500 images are from the OKI
IRISPASS-h (OKI), while the latter 500 are from the Irisguard H100 IRT (H100)
sensor.

Figure 6.4 shows the test-mixed data set containing alternating images from
the Irisguard H100 IRT and the OKI IRISPASS-h sensor in blocks of 100
images.

H100 OKI H100 OKI H100 OKI H100 OKI H100 OKI

Figure 6.4: Structure of the test-mixed data set: 10 alternating blocks of 100 images from the
Irisguard H100 IRT (H100) and OKI IRISPASS-h (OKI) sensors.
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The purpose of this work is to investigate the presence of images from
multiple sensors inside each subset of the CASIA-Iris V4 Database, which
has been described in Chapter 6. This is achieved by applying the forensic
techniques from Chapter 5 on the subsets of the CASIA-Iris V4 Database.
The following set-up describes mutual parameters for all the applied forensic
techniques, which have been used for all the following experiments.

All the forensic investigation techniques used in this work are based on
the sensors PRNU. The extraction of the PRNU and the PRNU fingerprint
generation have been performed according to Section 2.2 and 2.3. Hence, for
an estimation of each sensors PRNU fingerprint, the algorithm described
by Fridrich [32] was used to extract the PRNU using the wavelet-based
denoising filter from Appendix A in [52], where color images have been
converted into grayscale images before the extraction. For the proposed
techniques used for the forensic investigation the PRNU noise residual of
every image is extracted from 4 patches located in the corners with a size
of 128× 128 pixels each, resulting in a total noise residual size of 256× 256
pixels. This is done because the image size is varying between the data sets
and because the corners mostly are less textured and contain less correlated
content than the center of the images. The PRNU noise residuals have been
normalized in respect to the L2-norm because its embedding strength is
varying between different sensors [64].

Since the images in the CASIA Iris-V4 database have not been geometrically
transformed, the normalized cross correlation (NCC) has been used for
similarity measures of two PRNU noise residuals or PRNU fingerprints
respectively according to Section 2.4.

In addition, two different PRNU enhancement approaches are applied in
this work and their impact is evaluated. Both aim to filter out scene details
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by the following idea: Scene details contribute to the very strong signal
components in the wavelet domain, so the stronger a signal component in
the wavelet domain, the more it should be attenuated. The enhancement of
the PRNU is performed in the discrete wavelet transform (DWT) domain,
where an enhancement function is applied to the coefficients. Two different
enhancement functions are used to filter out the contaminations related
to the image content: EnhLi3 that corresponds to the Model 3 from [47]
and EnhCald that is proposed in [6]. Since the parameters for α proposed
in the respective papers were quite different and yielded to unsatisfactory
results, the threshold has been set to α = 2. This value has been determined
by analyzing the distribution of intra- and inter-sensor NCC scores of the
sensors in the Test data set in Section 6.2. After the application of the
enhancement function, the resulting coefficients are transformed back into
the spatial domain by performing an inverse DWT (IDWT).

The PRNU extraction algorithm of [32] has been reimplemented by Höller et
al. in [64], whose code has been used as a basis for this work. The code has
been supplemented with the possibility of using different techniques to en-
hance the PRNU and to be able to make use of multi-core machines, several
parts have been refactored to be executed in parallel. The BFAIC technique
by Bloy [21] and the other forensic techniques have been implemented by
the author of this work. As additional post processing step a zero mean
operation has been applied to each extracted PRNU noise residual.

In the following Section 7.1 the parameter set-up for the experiments con-
ducted with the various forensic techniques are described in detail.

7.1 Set-up for Forensic Techniques

This section describes the set-up and parameters specific for each forensic
technique proposed in Chapter 5, while the set-up common for all tech-
niques is described in the previous section.

Because the scenario of Bloys [21] and this work have a strong similarity and
the results have been very promising, the Blind Camera Fingerprinting and
Image Clustering (BCFAIC) has been reimplemented for the investigation
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of the CASIA-Iris V4 Database. Two different threshold functions tBLOY and
tSTSM have been used for the experiments, where tBLOY corresponds to the
threshold function proposed in [21]. The threshold function tSTSM has been
calculated using images from the OKI IRISPASS-h (1) and Irisguard H100
IRT sensors by following the same methodology described by Bloy and by
performing the PNRU extraction according to Chapter 2. The parameters
for both threshold functions are given in the equations in 7.1.

tBloy = −0.00002438n2 + 0.0002889n + 0.009

tSTSM = 0.0000007826n2 − 0.000006373n + 0.0210
(7.1)

Since the number of sensors is unknown for each CASIA-Iris V4 sub set and
the K-Means Clustering (KM) needs a parameter k representing the number
of clusters, the experiments have been conducted for k = 1 . . . 5 with the
assumption that not more than 5 sensors have been used for a single sub
set. This limitation is not mandatory and can be extended if necessary, but
increases the computational effort. The normalized cross-correlation (NCC)
was chosen as distance metric and the K-Means clustering was repeated five
times for each k to avoid local minima.

As in the case of the K-Means Clustering (KM), the experiments for the
PCA K-Means Clustering (PCAKM) have been conducted for k = 1 . . . 5 and
the first n = 5 principal components have been chosen to form the feature
vector for each PRNU noise residual. Furthermore the Squared Euclidian
distance has been chosen as the distance metric. In contrast to all other
forensic techniques, the PRNU for this technique has been extracted from
a 256× 256 patch in the center of each image under investigation, because
it delivered slightly better results than the extraction used for the other
techniques during testing.

The Sliding Window Fingerprinting (SWFP) has been performed with
a window size of n = 50, after testing several window sizes for n ∈
{5, 10, 20, 50, 100, 150}. This is a good trade-off between the quality of the
PRNU fingerprint and the ability to detect shorter sequences of images,
since using too few images to generate the PRNU fingerprint lead to a
weak estimate according to Fridich [19]. If one is able to generate a high

63



7 Experiments

quality PRNU fingerprint using fewer images, for example by more sophis-
ticated post processing or denoising approaches, a window size n as small
as possible would be preferable.

For the Device Identification on Dataset Partitions (DIODP) all experiments
have been conducted with the partition sizes n ∈ {10, 25, 50, 100, 200, 500},
where the results for the first two partition sizes 10 and 25 have to be
treated with care because of the few amount of images for each partition.
The same constraints regarding a weak PRNU estimate hold as previously
explained for the SWFP. The interval of confidence for the EER scores has
been estimated, as described in section 2.4, at α = 95%, hence the 2.5%
lowest and 2.5% highest NCC scores have been excluded.
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This chapter containing the results of the forensic investigation experiments
is divided into two sections, covering the results obtained by applying the
forensic techniques to the Test data set described in Section 8.1 and the
CASIA-Iris V4 Database described in Section 8.2.

For each data set, the techniques have been applied using no PRNU enhance-
ment (NoEnh) and the two PRNU enhancement techniques described in
Chapter 7 (EnhLi3 and EnhCald). The forensic techniques have been applied
in the following order:

• Blind Camera Fingerprinting and Image Clustering (BCFAIC)
• K-Means Clustering (KM)
• PCA K-Means Clustering (PCAKM)
• Sliding Window Fingerprinting (SWFP)
• Device Identification On Dataset Partitions (DIODP)

The outcome of the experiments, where each listed forensic technique has
been applied to the specific data sets, is presented in the following sections
and subsections.

8.1 Test Set

This section covers the results for the Test data set, with its subsets test-
sequential (TS) and test-mixed (TM). Additionally, the results without the use
of PRNU enhancement techniques (NoEnh) are compared to the results with
the EnhLi3 and EnhCald enhancements applied. These experiments have also
been taken as an evaluation basis on how well each forensic technique is
able to detect images from multiple sensors in the data sets and to check if
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the implemented algorithms are working as intended. The expected results
should indicate that the data sets, test-sequential (TS) and test-mixed, both
contain images from two respectively multiple sensors.

8.1.1 BCFAIC

NoEnh EnhLi3 EnhCald
BCFAIC tBloy TS TM TS TM TS TM

images 1000 1000 1000 1000 1000 1000
total partitions 2 2 2 3 2 3
partitions > 100 2 2 2 2 2 2
partitions < 10 0 0 0 1 0 1
unassociated images 0 0 0 0 0 0
mismatched images 22 19 26 30 2 5

NoEnh EnhLi3 EnhCald
BCFAIC tSTSM TS TM TS TM TS TM

images 1000 1000 1000 1000 1000 1000
total partitions 3 4 5 5 14 12
partitions > 100 2 2 2 2 2 2
partitions < 10 1 2 3 3 11 9
unassociated images 0 0 0 0 0 0
mismatched images 0 0 0 0 0 0

Table 8.1: Clustering Results of the BCFAIC technique applied on the test-sequential (TS)
and test-mixed (TM) data sets using the threshold functions tBloy (top) and tSTSM
(bottom). In addition, the PRNU enhancement techniques EnhLi3 and EnhCald
have been applied beside the case without PRNU enhancement applied (NoEnh).

First of all the BCFAIC technique known from literature has been applied
to evaluate its performance in this scenario with a priori knowledge of
correspondence of images and sensors. Looking at the results in Table 8.1
using the tBloy threshold function on top and tSTSM at the bottom, we realize
that the algorithm produces generally good with some undesirable side
effects.

The results of both threshold functions do not contain unassociated images,
which is a positive aspect. Having a closer look at the results using the tBloy
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threshold function, 2 partitions are generated in almost all cases, except for
the TM data set when EnhLi3 and EnhCald have been applied 3 partitions
are generated by the clustering. However in these cases only 1 additional
partition is generated, which contains only a few images from the same
sensor. The main issue, which emerges from the usage of the tBloy threshold
function, is that all combinations of PRNU enhancement and data set
yield mismatched images. The number of mismatched images accounts for
approximately 0.2% for the case where no PRNU enhancement is applied
(NoEnh), 0.26 - 0.30% for EnhLi3 and 0.02 - 0.05% for EnhCald in respect to the
total amount of images, hence EnhCald was able to significantly diminish the
value of mismatched images without compromising the clustering results.

On the other hand, the tSTSM threshold function, shows a slightly higher
amount of total partitions (between 3 and 5) for NoEnh and EnhLi3 when
compared to tBloy and a considerably higher amount (10 to 12) for the
EnhCald enhancement. Even though the number of total clusters increased, 2
large clusters have been generated throughout all cases. Hence mostly small
clusterst with less than 10 images are responsible for the increase, especially
for EnhCald. The main advantage over the tBloy threshold function is that
there are no mismatched images, which was bought at the price of a higher
amount of clusters, but since the additional clusters are very small in size,
they could be categorized as some kind of “noise”.

8.1.2 KM

Table 8.2 shows the results of the KM technique for the number of clusters
k = 1 . . . 5. As it can be clearly seen the technique performs as expected
and shows the highest MSV for the correct number of clusters in all cases.
Furthermore the MSV for the correct number of sensors, which is 2, is
also significantly higher than for the incorrect numbers of clusters 1, 3, 4
and 5. The largest MSV difference between the correct k and the others
is obtained without applying a PRNU enhancement (NoEnh). Applying
a PRNU enhancement, either EnhLi3 or EnhCald, results in a lower MSV
difference between correct and incorrect values for k although the value
for the correct k remains always significantly higher than for the incorrect
ones.
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KM NoEnh EnhLi3 EnhCald
k TS TM TS TM TS TM

1 0.0230 0.0235 0.0214 0.0219 0.0139 0.0143
2 0.0384 0.0388 0.0351 0.0353 0.0234 0.0237
3 0.0161 0.0257 0.0152 0.0230 0.0129 0.0126
4 0.0030 0.0037 0.0042 0.0041 0.0127 0.0022
5 0.0043 0.0035 0.0049 0.0040 0.0051 0.0028

Table 8.2: Mean silhouette value (MSV) for K-Means clustering (KM) performed on the test-
sequential (TS) and test-mixed (TM) data sets using different PRNU enhancement
techniques (NoEnh, EnhLi3 and EnhCald). The highest MSV for each data set and
PRNU enhancement is highlighted in bold.

8.1.3 PCAKM

PCAKM NoEnh EnhLi3 EnhCald
k TS TM TS TM TS TM

1 0.0112 0.0111 0.0221 0.0257 0.0173 0.0176
2 0.0381 0.0370 0.0662 0.0656 0.0392 0.0416
3 0.0271 0.0269 0.0344 0.0312 0.0416 0.0417
4 0.0150 0.0245 0.0224 0.0191 0.0172 0.0168
5 0.0140 0.0134 0.0195 0.0175 0.0171 0.0163

Table 8.3: Mean silhouette value (MSV) for PCA K-Means clustering (PCAKM) performed
on the test-sequential (TS) and test-mixed (TM) data sets using different PRNU
enhancement techniques (NoEnh, EnhLi3 and EnhCald). The highest MSV for each
data set and PRNU enhancement is highlighted in bold.

The results of the PCAKM technique, shown in Table 8.3, behave similar to
the KM results for NoEnh and EnhLi3 where k = 2 yields the highest MSV
value as expected. However the MSV values for incorrect k values tend to
be higher in comparison with the KM results and EnhLi3 also shows much
higher MSV values for the correct k. The EnhCald enhancement induces the
highest MSV value for k = 3, which is incorrect for the two data sets TS and
TM, but the MSVs for k = 2 are very close to the highest scores. Therefore
no reliable assumption on the exact number of sensors can be established in
this case for EnhCald and it can only be observed that multiple sensors have
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been used, but not how many.

8.1.4 SWFP

Figure 8.1 shows the results of the SWFP technique with a window size of 50.
We can see three different curves that are representing the NCC correlation
scores of three different fingerprint iterations with all other fingerprints,
which have been generated according to Section 5.3. The dashed (red) line
shows the NCC scores for the fingerprint with iteration 1, the solid (green)
line for iteration 475 and the dotted (blue) line for iteration 950.
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Figure 8.1: Results of the SWFP experiment on the test-sequential (TS) and test-mixed (TM)
data sets using different PRNU enhancement techniques (NoEnh, EnhLi3 and
EnhCald). The different curves represent the NCC scores of a specific PRNU
fingerprint iteration with all other iterations. The transitions indicated a change
of the image source sensor in the TS (a, c, e) and the TM data set (b, d, f).
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The NCC scores for all three emphasized iterations (1, 475 and 950) show
a collective transition at the fingerprint iterations 451 until 500 in the test-
sequential (TS) data set. For this data set, according to the data set specifica-
tion in Section 6.2, these are the iterations where the alteration of the image
source sensors happens. Until iteration 451 all fingerprints contain solely
images from the first sensor (images 1 to 500). From iteration 452 until 500,
the fingerprints are composed by images from both sensors (images 452
to 500 from the first sensor, images 501 to 549 from the second one) and
from iteration 501 on the fingerprints are composed of solely images from
the second sensor (images 501 to 1000). Hence the transitions in all three
emphasized iterations can be observed like expected from the specification
of the data set.

Applying the SWFP technique to the test-mixed (TM) data set, one would
expect from the data set specification in Section 6.2 that the first transition in
the data should occur at iteration 51 and that the transitions should repeat
every 100 iterations, since the images in the data set are always alternating
in blocks of 100 images from each sensor. This can exactly be observed in the
subfigures (a), (c) and (e) of Figure 8.1, where the dashed (red) line shows
the NCC scores for the fingerprint with iteration 1, the solid (green) line
for iteration 475 and the dotted (blue) line for iteration 950. The previously
described transitions can be observed for all three emphasized iterations (1,
475 and 950).

For both data sets, TS and TM, the two PRNU enhancement techniques
EnhLi3 and EnhCald lead to lower NCC scores in general. Both techniques
tend to show transitions in the data where no transitions would be expected,
e.g. around iteration 200 and 375 for EnhCald in Subfigure (e) of Figure 8.1,
or diminish the effect of the transitions compared to NoEnh, as it can be
seen in Subfigure (f) of Figure 8.1. These effects are visible for the EnhLi3
technique and even more pronounced for the EnhCald technique.

8.1.5 DIODP

The last technique applied to the Test data set is the Device Identification
on Dataset Partitions (DIODP), which has been performed using different
partition sizes n ∈ {10, 25, 50, 100, 200, 500}. As described in Section 5.4 for
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this technique the distribution of EER scores is analyzed to determine the
presence of images from various sensors in the data set under investigation.
Figure 8.2 shows the EER scores distribution, both for the test-sequential TS
and the test-mixed TM data sets with (EnhLi3, EnhCald) and without (NoEnh)
PRNU enhancement techniques applied.
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Figure 8.2: Results of the DIODP experiment with different partition sizes (ps) on the test-
sequential (TS) and test-mixed (TM) data sets using different PRNU enhancement
techniques (NoEnh, EnhLi3 and EnhCald) showing the distribution of EER scores.
A significant amount of very low EER scores can be observed for both data sets,
which indicates the presence of images from multiple sensors.

All cases show a high amount of very low EER scores. This is the expected
result for this technique, since both data sets, TS and TM, contain images
from multiple sensors. Having a look at the different partition sizes, it
can be seen that the larger partition sizes lead to unreliable results when
images from more than one sensor are put together into a single partition.
This becomes clearly visible for the TM data set, where images from both
sensors are alternated in blocks of 100 images. Therefore the results from
all partition sizes need to be taken into consideration. The PRNU enhancing
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techniques have only had a very small impact on the scores distributions, as
it can be seen in Figure 8.2.

8.2 CASIA Iris-V4 Database

In the following section the proposed forensic techniques are applied to the
CASIA-Iris V4 data set in order to detect if multiple sensors have been used
to acquire the data sets under investigation, which are:

• CASIA-Iris-Interval: intv
• CASIA-Iris-Lamp: lamp
• CASIA-Iris-Twins: twin
• CASIA-Iris-Distance: dist
• CASIA-Iris-Thousand: thou

All the experiments have been conducted both with the use of PRNU
enhancement techniques EnhLi3 and EnhCald and without (NoEnh). The
results should clarify the open question whether each data set has been
acquired using a single or multiple sensors for each data set.

8.2.1 BCFAIC

The Blind Camera Fingerprinting and Image Clustering (BCFAIC) has
been the first technique applied to the CASIA-Iris V4 database to see how
it performs in a real world scenario. Mismatched images could not be
identified in this scenario, because no documented ground truth on the
source sensor of every image exists. This technique creates clusters of
associated images (images with a high NCC score) and partitions the data
set. The resulting partitions should reflect the number of distinct sensors
used in the data set. Unassociated images have a very low NCC score among
each other, so that they are classified as being all from different sensors
because they could not be clustered properly.

The results in Table 8.4 shows a generally high number of clusters for
the intv and lamp data sets and a relatively low number for the twin, dist
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8.2 CASIA Iris-V4 Database

BCFAIC NoEnh tBloy tSTSM
intv lamp twin dist thou intv lamp twin dist thou

# IMG 1307 6855 1095 1566 2000 1307 6855 1095 1566 2000
# P 10 16 3 1 2 143 216 20 1 6
P > 100 4 5 1 1 1 2 11 1 1 1
P < 10 3 4 1 0 1 18 159 18 0 4
UI 0 0 0 0 0 0 0 0 0 0

BCFAIC EnhLi3 tBloy tSTSM
intv lamp twin dist thou intv lamp twin dist thou

# IMG 1307 6855 1095 1566 2000 1307 6855 1095 1566 2000
# P 11 15 3 1 2 186 266 24 1 14
P > 100 4 5 1 1 1 1 12 1 1 2
P < 10 3 5 1 0 0 168 129 19 0 12
UI 0 0 0 0 0 0 0 0 0 0

BCFAIC EnhCald tBloy tSTSM
intv lamp twin dist thou intv lamp twin dist thou

# IMG 1307 6855 1095 1566 2000 1307 6855 1095 1566 2000
# P 17 20 6 1 4 6 2867 307 1 193
P > 100 4 7 1 1 2 1 0 3 1 3
P < 10 5 4 3 0 1 4 260 254 0 188
UI 0 0 0 0 0 928 0 0 0 0

Table 8.4: Clustering Results of the BCFAIC technique applied on the CASIA-Iris V4 data
sets using the threshold functions tBloy (left) and tSTSM (right) and the EnhLi3
(middle) and EnhCald (bottom) enhancements applied beside the case without
PRNU enhancement NoEnh (top). The tables show the number of images (# IMG),
total number of partitions (# P), large partitions (P > 100), small partitions (P
< 10) and images that could not be associated to any partition (UI).

and thou data sets. The EnhCald produces the highest amounts of clusters
among all enhancement techniques, especially when combined with the
tSTSM threshold function, which even leads to 928 out of 1307 unassociated
images for the intv data set. Since these results do not look realistic at all,
the results of EnhCald are discarded for the further analysis of the BCFAIC
results.

The tSTSM function produces a much higher number of clusters for all data
sets and all PRNU enhancement techniques compared to the tBloy function,
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except for the dist data set, which results in 1 cluster for all cases. Therefore
it is safe to say that dist has been acquired with a single sensor according to
the BCFAIC technique.

NoEnh KM
k intv lamp twin dist thou

1 0.0024 0.0391 0.0398 0.3821 0.0121
2 0.0034 0.0100 0.0052 0.0632 0.0074
3 0.0031 0.0004 0.0063 −0.0076 0.0064
4 0.0032 0.0003 0.0057 −0.0069 0.0045
5 0.0030 0.0001 0.0053 −0.0071 0.0042

EnhLi3 KM
k intv lamp twin dist thou

1 0.0024 0.0391 0.0398 0.3821 0.0121
2 0.0034 0.0100 0.0052 0.0632 0.0074
3 0.0031 0.0004 0.0063 −0.0076 0.0064
4 0.0032 0.0003 0.0057 −0.0069 0.0045
5 0.0030 0.0001 0.0053 −0.0071 0.0042

EnhCald KM
k intv lamp twin dist thou

1 0.0025 0.0167 0.0167 0.1619 0.0051
2 0.0045 0.0009 0.0014 0.0264 0.0021
3 0.0051 0.0005 0.0015 −0.0049 0.0018
4 0.0054 0.0001 0.0013 −0.0049 0.0014
5 0.0053 0.0001 0.0011 −0.0061 0.0014

Table 8.5: Clustering Results of the KM technique applied on the CASIA-Iris V4 data sets
using the EnhLi3 (middle) and EnhCald (bottom) enhancements beside the case
without PRNU enhancement NoEnh (top). The highest MSV value is highlighted
in bold for each data set if it is much higher than the other values.

As mentioned before, the twin and thou data sets result in a relatively low
number of clusters, with mostly small clusters contributing to the amount
of clusters and yielding only 1 large cluster in almost all cases. The intv
and lamp data sets show mixed results, with a high number of clusters for
tBloy and a very high number for tSTSM. Having a closer look again at the
large clusters and small clusters for those two data sets, the number of large
clusters is clearly higher than 1 and there are also a high amount of clusters
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8.2 CASIA Iris-V4 Database

that contain between 10 and 100 images, which leads to the assumption that
multiple sensors might have been used for those two data sets. In conclusion
the results of the BCFAIC are hard to interpret in general, except for the dist
data set.

8.2.2 KM

The results of the K-Means (KM) experiments are presented in Table 8.5.
The KM clustering generates groups images from the same source and the
results show that one sensor was used to acquire all subsets except the
intv data set, for which no clear result can be observed. This holds for all
enhancement techniques, whereat the EnhCald yields the largest differences
between the highest MSV and the second highest. The EnhLi3 seems to have
no impact when applied for the KM technique because the resulting MSVs
do not differ from the NoEnh results.

8.2.3 PCAKM

The PCA K-Means results, shown in Table 8.6, actually do not permit any
statements to be made on the number of sensors because of the mostly very
close MSVs results for different numbers of clusters k. Though there is an
observable trend in the data, where the MSVs for 2 clusters have the largest
value and the 1 cluster results have the lowest values among all values for
k. This indicates that multiple sensors have been used to acquire all the
data sets, which is different from the results of the other forensic techniques
applied until this point.

8.2.4 SWFP

The Sliding Window Fingerprinting (SWFP) moves a window with a defined
size over the data image after image and a PRNU fingerprint from the data
within this window is calculated in each step. The presence of images from
multiple sensors in the data set should express in a sudden increase or
decrease of the correlation score. If only images from one sensor are present
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NoEnh PCAKM
k intv lamp twin dist thou

1 0.0003 0.0010 0.0024 0.0019 0.0006
2 0.0098 0.0185 0.0197 0.0234 0.0474
3 0.0090 0.0123 0.0141 0.0186 0.0427
4 0.0088 0.0097 0.0119 0.0180 0.0391
5 0.0089 0.0086 0.0105 0.0177 0.0405

EnhLi3 PCAKM
k intv lamp twin dist thou

1 0.0004 0.0006 0.0016 0.0013 0.0005
2 0.0093 0.0139 0.0194 0.0134 0.0184
3 0.0083 0.0104 0.0148 0.0118 0.0164
4 0.0082 0.0080 0.0115 0.0111 0.0152
5 0.0084 0.0074 0.0104 0.0110 0.0145

EnhCald PCAKM
k intv lamp twin dist thou

1 0.0063 0.0001 0.0003 0.0014 0.0002
2 0.0144 0.0066 0.0088 0.0124 0.0089
3 0.0193 0.0057 0.0080 0.0123 0.0082
4 0.0239 0.0055 0.0079 0.0124 0.0077
5 0.0275 0.0053 0.0081 0.0140 0.0078

Table 8.6: Clustering Results of the PCAKM technique applied on the CASIA-Iris V4 data
sets using the EnhLi3 (middle) and EnhCald (bottom) enhancements beside the
case without PRNU enhancement NoEnh (top). The tables MSV results for the
given values of k which represent the number of clusters (sensors). The highest
MSV value is highlighted in bold for each data set if it is much higher than the
other values.

in the data set, the correlation scores among all images should be quite
stable around a certain level.

The results for the intv and twin data set in Figure 8.3 show two transitions
with a large offset at iteration 200 - 275 and the other one at around 850
- 900 for the intv data set. Additionally the results also show multiple
small transitions between the iterations 300 and 850. These observations are
consistent throughout all PRNU enhancements. The outcome of the twin
data set does not show any noticeable transitions at all and all scores are
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Figure 8.3: Results of the SWFP experiment on the intv (a, c, e) and twin (b, d, f) data sets
using different PRNU enhancement techniques (NoEnh, EnhLi3 and EnhCald).
The different curves represent the NCC scores of a specific PRNU fingerprint
iteration with all other iterations.

quite stable. Regarding the PRNU enhancements, the EnhLi3 enhancement
produces comparable results as if no enhancement is applied both data
sets. Only a small offset is noticeable in the correlation scores between the
enhanced experiments EnhLi3 and EnhCald and the un-enhanced experiment
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NoEnh, where the EnhLi3 are almost equal as the NoEnh and the EnhCald
scores are slightly lower, but the transitions are similar for all experiments.
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Figure 8.4: Results of the SWFP experiment on the lamp data set using different PRNU
enhancement techniques (NoEnh, EnhLi3 and EnhCald). The different curves
represent the NCC scores of a specific PRNU fingerprint iteration with all other
iterations.

Figure 8.4 shows the outcome of experiments on the lamp data set. The
first thing to be noticed is that the NCC score curve is has a high variance,
hence in this case only large jumps are accounted as a transition. Such a
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Figure 8.5: Results of the SWFP experiment on the dist (a, c, e) and thou (b, d, f) data sets
using different PRNU enhancement techniques (NoEnh, EnhLi3 and EnhCald).
The different curves represent the NCC scores of a specific PRNU fingerprint
iteration with all other iterations.

transition can be observed at approximately iteration 700 and 1050. Again,
the different PRNU enhancement techniques show similar results.

For the remaining data sets, dist and thou, no transitions in the correla-
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tion scores can be identified. They are comparable for EnhLi3, EnhLi3 and
EnhCald, therefore these data sets have probably been acquired with a single
sensor according to this experiment. The only difference is an offset in the
correlation scores for the individual enhancement configurations.

Summing up, this technique suggests that all data sets, with the exception
of lamp and intv, have been acquired with a single sensor. Regarding the
PRNU enhancements it can be observed that the two PRNU enhancements
EnhLi3 and EnhCald exhibit decreased mean correlation scores.
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Figure 8.6: Results of the DIODP experiment with different partition sizes (ps) on the
lamp (a, b, c) and twin (d, e, f) data sets using different PRNU enhancement
techniques (NoEnh, EnhLi3 and EnhCald) showing the distribution of EER scores.

8.2.5 DIODP

The Device Identification on Dataset Partitions (DIODP) experiment divides
the data sets into n partitions with the same size and treat the disjoint
partitions as n different sensors. If the resulting EER score is low (e.g. 0%),
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the extracted PRNU and respectively the PRNU fingerprint is different
for both partitions, hence they must have been acquired with different
sensors.
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Figure 8.7: Results of the DIODP experiment with different partition sizes (ps) on the
dist (a, b, c) and thou (d, e, f) data sets using different PRNU enhancement
techniques (NoEnh, EnhLi3 and EnhCald) showing the distribution of EER scores.
No significant amount of very low EER scores can be observed for both data
sets, which indicates that the data sets have been acquired each with a single
sensor.

On the other hand, if the resulting EER score is high (e.g. 50%), the extracted
PRNU very similar for both partitions and their images have all likely been
acquired with the same sensor. After calculating the pairwise EER scores for
all partition combinations Pi and Pj, where i 6= j, the EER score distribution
is evaluated. If the distribution contains mostly high EER scores, the data
set probably contains images from a single sensor. On the other hand, if
the distribution contains very low EER scores, the data set is suspicious of
containing images from multiple sensors.

To be able to clearly represent the resulting EER scores we performed a
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8 Results

binning of the scores into six bins with the following limits: scores below
10%, between 10% and 20%, between 20% and 30%, between 30% and 40%,
between 40% and 50%, and scores above 50%, where the lower bounds are
inclusive and the upper bounds are exclusive.

From the Device Identification on Dataset Partitions (DIODP) experiments
in the figures 8.6, 8.7 and 8.8, it can be observed that for almost all data sets
other than intv the EER scores are higher than 30% (figures 8.6 and 8.7),
which indicates that the lamp, twin, dist and thou data sets might have been
acquired with one sensor.

Having a closer look at the intv data set in Figure 8.8 with different partition
sizes, the results indicate that this data set might have been acquired with
more than one sensor, because the distribution of the EER scores is similar
to the one from the two sensors in the Test data sets, only with higher EER
scores.

Similar to the previous forensic techniques, the results of the two PRNU
enhancement approaches are quite similar to the un-enhanced ones for all
data sets under investigation.
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Figure 8.8: Results of the DIODP experiment with different partition sizes (ps) on the
intv data sets using different PRNU enhancement techniques (NoEnh, EnhLi3
and EnhCald). A significant amount of low scores can be observed in the EER
score distribution for this data set, which indicates the presence of images from
multiple sensors.
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9 Conclusion and Future Work

The goal of this thesis was to determine whether the various CASIA-Iris V4
data sets have been acquired using multiple sensors (of the same model) or if
a single sensor has been used, since no documentation on this exists and the
images do not contain any kind of metadata information. In addition, in the
case that images from multiple sensors are detected, establishing a ground
truth for the CASIA-Iris V4 database was intended. This investigation has
been conducted by developing and applying different forensic methods to
detect the number of sensors used to acquire the images within the analyzed
data sets. To address the issue with the highly correlated image content in
the data sets, the application of two PRNU enhancement techniques have
been included in this work and the impact has been evaluated.

The novel forensic techniques proposed in this work detect the number of
sensors in an image data set based on various aspects. The K-Means Cluster-
ing (KM) and PCA-Kmeans Clustering (PCAKM) techniques aim at grouping
the images into different numbers of clusters representing the different
sensors and then evaluate the optimal number of partitions based on intra-
and inter-partition similarities. The Sliding Window Fingerprinting (SWFP)
technique aims at detecting the presence of multiple sensors based on the
similarity between calculated PRNU fingerprints and shows if a different
sensor has been used during the acquisition of the images by exploiting
the decrease of the similarity scores of consecutive PRNU fingerprints. The
Device Identification On Dataset Partitions (DIODP technique divides the data
set into equally sized partitions and performs a device identification with
the assumption that each partition has been acquired with a distinct sensor.
The distribution of the device identification scores is finally evaluated to
determine if only a single sensor or if multiple sensors have been used to
acquire the images.
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9 Conclusion and Future Work

All the proposed forensic techniques have consistently been able to detect
the presence of multiple sensors in the investigated Test data sets, for which
the number of sensor was known, and outperformed the reimplemented
related technique (BFAIC), which had some issues with some images being
associated with the wrong sensor. Some of the developed techniques were
also able to exactly point out the number of different sensors (KM, PCAKM).
The DIODP technique was able to show the presence of multiple sensors,
while the SWFP was able to show the alteration of sequences of images
from different sensors in the data set. The impact of the PRNU enhancement
techniques on the results of the experiments on the Test data sets has been
almost negligible, which confirms that the highly correlated content in
the data sets has virtually no influence on the discriminative power of
the sensors and corresponds to the observations in [39], where the use of
uncorrelated data did not improve the discriminability.

The investigation results on the CASIA-Iris V4 database are not as clear as
the Test set results, hence only an assumption based on the trends in the
results can be given because this is a completely blind investigation without
any a priori knowledge about the sensors. The output of the BFAIC shows
that the dist data set has been acquired using a single sensor, while for
the other data sets the number of clusters always exceeds one. Having a
closer look at the large and small clusters, containing more than 100 and
less than 10 images respectively, the twin and thou data sets show a single
large cluster and a few small ones, which could indicate that some images
have simply been misclassified. On the other hand the results of the intv
and lamp data sets show multiple large clusters, which could indicate the
presence of images from multiple sensors. The KM technique shows the
highest scores for the single cluster configuration for the lamp, twin, dist
and thou data sets, indicating that a single sensor has been used for the
image acquisition. The results for the intv data set are not clear, since the
scores are similar for all the investigated numbers of clusters. The PCAKM
technique shows the highest scores for 2 clusters across all data sets, but the
highest scores are mostly very close to the scores obtained with other cluster
configurations. Therefore no clear statement on the number of sensors can
be made with the PCAKM technique. The SWFP technique does not show
any transitions in the correlation scores for the twin, dist and thou, while it
shows observable transitions for the intv and lamp data sets. This suggests
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that the latter two have been acquired using multiple sensors. Finally, the
DIODP technique shows a suspicious EER score distribution for the intv
data set indicating the presence of images from multiple sensors, while all
other data sets (lamp, twin, dist and thou) do not show such distributions.

Summarizing the outcome of all the forensic techniques applied to the
CASIA-Iris V4 database, the results indicate that the intv data set might have
been acquired with more than one sensor, while all other CASIA-Iris V4
sub sets have been acquired with one sensor. The lamp and twin data sets,
suspicious of containing images from multiple sensors because of the same
model denoted in the specification, seem both to be acquired with just a
single distinct sensor. These data sets were also responsible for the high
EER scores in the experiment of Höller et al. [64].

The detection of multiple sensors in the CASIA-Iris V4 data sets remains
a challenging task, since it is a completely blind approach without any
a priori knowledge of the sensors. Unknown factors could have had an
impact on the quality of the PRNU noise residuals and hence tampered
the results, therefore further studies have to be conducted to be able to
use sensor fingerprints as an authentication measure for biometric systems.
These factors could include some internal processing of the sensors or an
unknown image processing which affects the PRNU in all images.

The performance of the proposed forensic techniques has been evaluated
on two data sets containing images from two different sensors in fixed
sequences, where the results have been quite satisfactory. However this
data sets are not very representative for a real world scenario and more
sophisticated data sets with random occurrences of images from more than
two sensors should be used as benchmark. For this purpose the Dresden
Image Database [23] would be an appropriate candidate, since it incorporates
several sensors from different models as well as different manufacturers
and it is very well documented.

Artifacts degrading the quality of the PRNU, such as the NUAs observed
for the sensors in the Dresden Image Database [23], have to be investigated for
the sensors of the CASIA-Iris V4 database and also other similarity measures
in the literature show improved results, such as the peak correlation energy
(PCE) [19] or the circular correlation norm (CCN) [36], which are able to
lower the false positive ratio. PCE and CCN have also the ability to align
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9 Conclusion and Future Work

images or crops from images, which was not needed in this scenario since
all images have the full sensor resolution, but this might be interesting for
further studies.

An alternative way to enhance the quality of the PRNU noise extraction is
to apply various denoising and filtering techniques. First of all a Wiener
filtering should be applied to deal with periodic artifacts, as described in
literature, and additionally varying the denoising filter may improve the
quality of the extracted PRNU, e.g. the filter proposed by Cooper [9] which
besides is able to deal with JPEG compression artifacts that are peresent in
the CASIA-Iris V4 database. Another very promising denoising filter is the
BM3D technique by Dabov et al. [12], which has been reported to improve
the results in [10].

For this work the PRNU has been extracted from the images corners, which
might also not be optimal because of the quality of the PRNU is related to
the location, where the vignetting effect is said to have a negative impact, as
determined by Li et al. [46] and it was proposed to extract the PRNU from
the image center to obtain a high quality estimate of the PRNU.

If it is possible to enhance the quality of the PRNU by applying the men-
tioned enhancements and to obtain a more accurate estimate of the PRNU
using less images, especially the proposed SWFP and DIODOP techniques
would profit substantially from this because a lesser number of images im-
plies a more accurate detection of images from multiple sensors. Obviously,
also the other proposed forensic techniques would benefit from a more
accurate and hence higher quality PRNU estimate.
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[64] Andreas Uhl and Yvonne Höller. “Iris-Sensor Authentication using
Camera PRNU Fingerprints.” In: Proceedings of the 5th IAPR/IEEE
International Conference on Biometrics (ICB’12). New Delhi, India, Mar.
2012, pp. 1–8 (cit. on pp. 2, 8, 9, 14, 23, 24, 26, 27, 30, 32, 53, 61, 62, 85).

94

http://dblp.uni-trier.de/db/conf/eccv/eccv2004bioaw.html#RathaFCB04
http://dblp.uni-trier.de/db/conf/eccv/eccv2004bioaw.html#RathaFCB04
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1109/ICIP.1996.560425
http://dx.doi.org/10.1145/1232454.1232464
http://doi.acm.org/10.1145/1232454.1232464
http://doi.acm.org/10.1145/1232454.1232464


Bibliography

[65] Sergei Vassilvitskii and David Arthur. “K-means++: The Advantages
of Careful Seeding.” In: Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’07. New Orleans, Louisiana:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.
isbn: 978-0-898716-24-5. url: http://dl.acm.org/citation.cfm?id=
1283383.1283494 (cit. on p. 48).

[66] Min Wu and Bede Liu. Multimedia Data Hiding. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2002. isbn: 0387954260 (cit. on p. 8).

95

http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494

