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Abstract

Similar to the impact of ageing on human beings, digi-
tal image sensors develop ageing effects over time. Since
these imager’s ageing effects (commonly denoted as pixel
defects) leave marks in the captured images, it is not clear
whether this affects the accuracy of iris recognition systems.
This paper proposes a method to investigate the influence
of sensor ageing on iris recognition by simulative ageing of
an iris test database. A pixel model is introduced and an
ageing algorithm is discussed to create the test database.
To establish practical relevance, the simulation parameters
are estimated from the observed ageing effects of a real iris
scanner over the timespan of 4 years.

1. Introduction

Biometric systems aim to identify human beings by
analysing their biometric samples, i.e. face, fingerprints or
iris [21]. These systems operate in two steps. In the en-
rollment process, a subject’s biometric samples are regis-
tered for the first time and stored in a database. Later, in
the authentication procedure, another sample is taken and
compared to the one stored in the database to verify a sub-
ject’s identity. Since there may be years or decades between
enrollment and authentication, one strives to use biometric
samples which are stable over time. The iris has been as-
sumed to be stable, although it is currently topic of inten-
sive discussion if and which iris-related information even-
tually changes as a human being ages. Some researchers
claim that iris-related information is stable or relatively sta-
ble [3, 12], while others observe significant changes over
time [2, 8, 9, 19, 20]. Researchers mostly conclude these
age-dependent changes in iris texture by observing changes
in a system’s iris-recognition rate. It is not clear if observed
changes in an algorithm’s behaviour are caused by the age-

ing of the tested subject, which is commonly assumed, age-
ing of the recognition system itself or if this is caused by
other unspecified factors.

This paper proposes a method to investitage the ageing
impact of digital image sensors, which are crucial compo-
nents of iris recognition systems. As a human being’s vi-
sion often gets weaker with age, pixels start to get defective
in image sensors over the years as well. The main cause for
the occurance of new defects is environmental stress, mostly
due to the impact of cosmic rays or increased storage tem-
perature [10,18,22]. Pixel defects influence the quality - and
therefore the appearance - of the captured images. Similar
to being able to estimate a human being’s age by their ap-
pearance, pixel defects observed in the captured images can
reveal the age of the corresponding imager. This is used in
image forensics to approximate the capturing date of an im-
age [10]. Since the ageing effects of the sensor can be traced
by evaluation of its output, namely the images, this im-
plies that the capturing process is not time invariant. Hence
two images, which capture the same (unchanged) scene, but
were taken at significantly different points in time, may dif-
fer due to meanwhile developed sensor defects.

Digital image sensors are used to capture the iris fea-
tures in the enrollment and the authentication process. It is
not clear yet, whether the ageing of the sensor - and thus
the development of ageing effects between taking two sam-
ples - influences the accuracy of iris recognition algorithms.
To investigate this issue, one would need to have identical
data captured at at least two significantly different points in
time. It is practically impossible to establish identical con-
ditions for both acquisitions. Furthermore, as mentioned, it
is not possible to distinguish between the influence of the
subject’s and the sensor’s ageing on iris recognition algo-
rithms. For this reason one cannot capture test data to in-
vestigate the sensor’s or the subject’s ageing in an isolated
manner physically. There is no way to explicitely examine



Figure 1. A partially-stuck or hot pixel (1) and two stuck pixels (2)
in an iris image. Contrast has been enhanced in the close-ups for
visualisation.

the iris texture’s ageing at all. However, it is possible to
investigate the sensor ageing’s influence on the iris recogni-
tion rate independent from the subject’s ageing.

We propose a method to investigate the impact of sen-
sor ageing on the iris recognition accuracy. This is done by
generating simulatively aged test data, which contains sen-
sor ageing related defects (see section 3). The practical rele-
vance of the simulation is ensured by estimating parameters
from an iris database (section 3.2), where the same subjects
were captured by the same sensor in 2009 and 2013 (sec-
tion 4). This test data set is used to test six implementations
of iris recognition algorithms available in the University of
Salzburg Iris Toolbox USIT [21]. By observing changes in
the EER for certain algorithms, we conclude on the impact
of sensor ageing on iris recognition systems in section 6.

2. Sensor Ageing and Pixel Model

An image sensor is a two dimensional array of photo-
sensitive cells called pixels. The purpose of an image sen-
sor is to convert the incoming light to its digital representa-
tion, commonly denoted as the image [15]. In theory, each
pixel has the same rectangular shape and a unified photo-
response, meaning all pixels should produce the same out-
put value on unified incoming light. Due to imperfections
in the manufacturing process, this is not the case in prac-
tice, hence there are pixels which are more sensitive than
others [14]. Besides that, some of a sensor’s pixels might
change their initial photo-response characteristics over a
sensor’s lifetime. We denote this defect-development over
time as sensor ageing.

The most common defects occuring over time are par-
tially and fully stuck pixels, illustrated in fig. 1. The photo-
response of partially-stuck pixels tends to have a moderate
offset, but still responds to the incident light. Stuck pixels
produce a light-independent output value [10]. As soon as
a pixel is defective, it remains defective over the rest of the
sensor’s lifetime [1]. So one can obtain the important prop-
erty that if a pixel is once defective, it remains defective.

Related work [1,5–7,10,11] shows that the occurrence of
new pixel defects is increasing linear with time. Defect lo-
cations are uniformly distributed and independent. Already
known defects remain constant in respect to their location
and type. To run a simulation, a model for calculating the
pixel values of an image Y has to be defined. There exist
several pixel output models, which consider the incoming
light and the impact of pixel defects on the raw output of a
sensor. We denote w, h 2 Z as the rows and columns of the
sensor and start by adopting the model proposed in [10]:

Y = I + I �K + ⌧D + c+⇥

with Y, I,K,D,C,⇥ 2 Rw⇥h; ⌧ 2 R
(1)

where the matrix Y is the sensor output, commonly de-
noted as image, I the intensity of incoming light, I �K the
photo-response non-uniformity PRNU, ⌧D the dark current
(with ⌧ being a multiplicative-factor representing exposure
settings, sensor temperature, . . . ), C a light-independent
offset and ⇥ some modeling noise. Since all pixels are inde-
pendent [6, 10] and all operations element-wise, we denote
the matrix-elements y

x,y

2 Y as y 2 Y for simplicity rea-
sons. The same applies to i 2 I , k 2 K, d 2 D, c 2 C and
✓ 2 ⇥.

Since we are interested in simulation of the ageing ef-
fects of a specific sensor, all age-independent defects, which
are e.g. due to production process, can be eliminated.
Hence the PRNU, which corresponds to the non-uniformity
of pixel-dimensions, can be omitted. As we aim for reprod-
ucable tests, environmental influence (e.g. temperature) and
modelling noise should be minimized. They can be elimi-
nated completely in a simulation, thus we set k = ✓ = 0.
Also the same exposure settings have to be used for the sen-
sor in every test, therefore we have ⌧ = const and set ⌧ = 1
for simplicity. [1, 10, 13, 14] suggest that the dark current is
very weak with short exposure, which is necessary for ap-
plications in biometric systems to avoid motion blur. Under
these considerations, a fairly simple model for a pixel’s out-
put which considers only ageing-relevant defects remains:

y = i+ d+ c with y, i, c 2 R. (2)

Common defect types that develop over time as the sen-
sor ages are stuck and hot pixels, where the definitions are
quite contrary in literature (e.g. in [1, 7, 10]). If the dark
current d of a pixel is extremely high, this is often denoted
as a hot pixel. If the offset c is high, this results in a satu-
rated pixel and is called a stuck pixel according to [10]. [7],
however, suggests that a stuck pixel is not necessarily sat-
urated but can obtain any value within the sensor output’s
universe. For the reason of non-uniform definitions we de-
fine the following models for defective pixels:



y = c (3)
y = i+ d (4)

where the defect type in equ. (3) is light-independent
(thus referred as a stuck pixel) and the one in equ. (4) adds
an offset to the incident light and is commonly referred as
either a partially-stuck or hot pixel. The dark current (which
is the cause for hot pixels) depends on exposure time and
temperature, which are both kept constant in this experi-
ment. Thus also the dark current is constant and there-
fore there is no difference between a hot and a partially
stuck pixel for this setup - therefore we denote this defect
as a partially-stuck pixel. In conclusion (and considering 8
bit grayscale images), the following pixel output model is
definied:

Y (x, y) =

(
C(x, y) if C(x, y) 6= 0;

I(x, y) +D(x, y) otherwise.

with Y,C, I,D 2 (Z : [0; 255])w⇥h

(5)

where a pixel’s output Y (x, y) saturates at 0 and 255 if
interval borders are exceeded.

3. Simulated sensor ageing

For an ideal sensor, the defect matrices C and D are
time-invariant zero matrices. As discussed, for real sensors
pixel defects start to occur from a specific point in time T0

with a constant rate. This can be modelled by a poisson
process [10]. Therefore the number of stuck and partially-
stuck pixels, denoted as n

s

and n

ps

respectively, at time T

are calculated as

n

s

(T ) = (T � T0)�s

(6)
n

ps

(T ) = (T � T0)�ps

(7)

where �

s

and �

ps

are the growth rates, at which the par-
ticular defect types occur. Due to defects being independent
of each other, the locations of defects in a 2D sensor array
can be modelled by uniform distribution. Hence the posi-
tion s

k

2 w ⇥ h of k-th defect is obtained from uniformly
distributed random variables in the simulation. Depending
on the k-th defect being a stuck or partially stuck pixel,
the values of C and D (see equ. (5)) have to be set. We
denote a

s

as the maximum amplitude of a stuck pixel and
a

ps

the maximum amplitude of a partially stuck pixel. Let
r

a

2 R : [0; 1] be a uniformly distributed random number.
Then we either have

C(s
k

) = r

a

a

s

for a stuck pixel at s
k

or (8)
D(s

k

) = r

a

a

ps

for a partially-stuck pixel at s
k

(9)

3.1. Generation of virtually aged data

These definitions are used, according to the pixel model
in equ. (5), to add ageing-related sensor defects to an ex-
isting image Y

T0 , which was captured at T0. One might
argue that Y

T0 already contains pixel defects since some of
the used sensor’s pixels might have been defective at T0 al-
ready. Since we are only interested in investigating changes
over a period of time, it does not matter which time frame is
observed. This means, already contained defects in Y

T0 do
not influence the outcome of the experiment because we get
relative results only. Sensor defects corresponding to a sen-
sor’s physical condition at a specific time T

i

are added to the
image Y

T0 . The resulting image Y

T

i

, subsequently denoted
as aged image, captures the same scene as in T0, but suffers
from the impact of ageing defects occured over time T

i

�T0.
To investigate the behaviour of iris recognition algorithms,
we compute a sequence of m aged images (Y

T

i

)
i=1...m. To

do so, first a series of defect matrices, which represent the
state of ageing at a specific point in time T

i

, is calculated.
We denote these sequences for sample points T0 . . .T

m

as

(D
T

i

)
i=0..m and (C

T

i

)
i=0..m (10)

The following algorithm is proposed to compute the se-
quence defect matrices and the sequence of aged images
Y

T

i

. Based on a source image Y

T0 we have for sample
points T0 . . .T

m

:

1: procedure AGEDIMAGESEQUENCE(Y
T0 )

2: for i = 1 . . .m do

3: �n

s

 n

s

(T
i

� T0)� n

s

(T
i�1 � T0)

4: �n

ps

 n

ps

(T
i

� T0)� n

ps

(T
i�1 � T0)

5: D

T

i

= D

T

i�1

6: C

T

i

= C

T

i�1

7: for k = 1 . . .�n

s

do

8: r

a

 random in [0; 1]
9: s

k

 random in w ⇥ h

10: C

T

i

(s
k

) r

a

· a
s

(equ. 8)
11: end for

12: for k = 1 . . .�n

ps

do

13: r

a

 random in [0; 1]
14: s

k

 random in w ⇥ h

15: D

T

i

(s
k

) r

a

· a
ps

(equ. 9)
16: end for

Y

T

i

(x, y) =

(
C

T

i

(x, y) if C
T

i

(x, y) 6= 0;

Y

T0(x, y) +D

T

i

(x, y) otherwise.
17: end for

18: return (Y
T

i

)
i=1...m

19: end procedure

The defect matrices D and C are computed recursively
to satisfy the once defective, always defective condition,
hence earlier developed defects are maintained over virtual



age. For each step, the numbers of defects �n

s

and �n

ps

,
which have to be added to the ones in the previous step, are
calculated. Location and amplitude for the defects in the
i-th ageing step are computed using random numbers. The
defect matrices C

T

i

and D

T

i

are used to compute an aged
image Y

T

i

. Instead of the incident light I , the base image
Y

T0 can be used due to the given arguments of relative eval-
uation. This algorithm outputs a sequence of aged images
(Y

T

i

)
i=1...m. Each pixel y

T

i

in this sequence stores the in-
cident light as in Y

T0 . Additionally it carries information
related to the developed age-dependent defects in the time
span T

i

� T0.

3.2. Parameter estimation from iris databases

For the discussed simulative ageing process, the defect
growth rates and amplitudes have to be defined. In labora-
tory set-ups, hot and partially stuck pixels are usually iden-
tified by dark calibration tests (i.e. I = 0) [7]. To the best
of the authors’ knowledge, there is no suitable laboratory-
captured data set available for iris imagers. There are
databases [2, 9] available, which were acquired using the
same equipment at two significantly different dates for the
purpose of investigating iris texture ageing. In the follow-
ing we propose a method to estimate the growth rates and
amplitudes of stuck and partially-stuck pixels from such
databases.

For the pixel model in equ. (5), the growth rates and
amplitudes of stuck and partially-stuck pixels have to be
detected. As discussed, these defects are usually detected
from a single image when the incident light I is uniform and
known, i.e. I = 0. Hence only the defects ⌅ = D + C =
Y � I remain. Because I is random and non-uniform in
our database, a statistical approach has to be used. We de-
note a sequence of K images taken in a very short period
of time Y0 . . . YK

. A stuck pixel obtains the same value in
each image in this sequence (refer equ. (5)). Hence a pixel
at position (x, y) is identified as being stuck iff

y0 = y1 = · · · = y

K

(11)

A partially-stuck pixel at position (x, y) adds an light-
independent offset to each pixel output y

k

= Y

k

(x, y) on
this position. We compute a pixel’s mean ȳ from the se-
quence of images and substitute the pixel values by the
model in equ. (5). Because the possibility of a specific
pixel being stuck can be ruled out by equ. (11), c is not con-
sidered here. In equ. (13) some modelling noise ✓ is added
to cover unpredictable and diverse impacts in acquisition.

ȳ =
1

K

KX

k=1

y

k

(12)

ȳ =
1

K

KX

k=1

(i
k

+ d+ ✓

k

) (13)

The mean of a uniformly distributed modelling noise ✓ can-
cels out for sufficiently large K. We assume there are no
pixel defects present, hence the offset (d = 0) ! d

0. Un-
der this assumption we can substitute i

k

= y

k

and denote
the pixel mean ȳ as ȳ

0. The partially-stuck defect matrix
d, although set to zero, contributes to each pixel output
uniformly, thus it is independent of k, as shown in equ.
(14). Under the assumption of no pixel defects, the identity
ȳ

0 ⌘ median(y, q) holds, if the pixel means ȳ have mostly
identical values in a local q ⇥ q neighbourhood. This is
the case in dark calibration tests, but also when only pixel
means of image regions are considered, where mostly uni-
fied brightness and texture are present, i.e. regions showing
skin. This is why other regions, e.g. the regions where the
iris usually is, have to be masked out, as illustrated in fig. 2.

Figure 2. The mean image of Y1 . . . Yk (left) has correlated data
in the image’s centre because of the iris usually being there. This
(marked) region is not considered when detecting sensor defects.
The histogram (right) of the uncorrelated top and bottom regions
is indeed similar to uniform distribution.

By the non-linear nature of median, sparse outliers
within the q ⇥ q neighbourhood are filtered [10]. Such
outliers occur, if - contrary to the assumption - there is a
pixel defect. Hence with the median we have a method
to compute the pixel mean ȳ

0 disregarding the influence
of pixel defects. We use this relation in equ. (15) to set
ȳ

0 ! median(y, q) and have d

0 ! d̂ being an estimator
for the offset, which is added to the incident light i

k

in a
sensors pixel output y

k

.

ȳ

0 = d

0 +
1

K

KX

k=1

(y
k

) (14)

d̂ =
1

K

KX

k=1

y

k

�median(ȳ, q) (15)

Amongst the partially-stuck pixel information, also in-
formation about the PRNU is contained in d̂. Since PRNU
is caused by imperfections in the manufacturing process, it
is likely to be normally distributed, which reflects in the log-
arithmic histogram of d̂ in fig. 3. Therefore the median ker-
nel size q has to be chosen large enough to minimize the in-
fluence of PRNU on the median median(ȳ, q), which is the
case if a normal distribution within the q⇥q-neighbourhood
is observed as well.



Figure 3. The estimated offset matrix D̂ (left, enhanced for visu-
alisation) is calculated by equ. (15). The logarithmic histogram
(right) of the uncorrelated regions shows a normal distribution,
which is due to PRNU. The decision threshold ⌧ps is chosen in
a way that only outliers are declared as partially stuck pixels.

Figure 4. Locations of partially-stuck pixel candidates. Correctly
classified pixel defects from T1 are contained in T2 as well. All
other detected defects in T1 can be interpreted as misclassification,
since they violate the once defective, always defective-condition.

We declare a pixel to be partially stuck if d̂ is an out-
lier in respect to the normal distribution and therefore has
much higher sensivitiy than expected from PRNU. This is
decided by checking for a certain threshold d̂ > ⌧

ps

. The
decision threshold is chosen manually. We exploit the once
defective, always defective-property to guarantee a correct
growth rate, even if ⌧

ps

has been slightly off and there-
fore there was misclassification. We know that a sensor’s
partially-stuck pixels from T1 also have to be present in T2,
which is illustrated in fig. 4. The number of defects n

match

,
which are present at the same location s

k

in the images cap-
tured at T1 and T2 can be determined. Considering the num-
ber of defects n1 in the image captured at T1, the correction
factor � of the proposed algorithm can be calculated as

� =
n

match

n1
(16)

Assuming that for T1 and T2 the same error is made,
the observed increase of defects can be corrected with �.
Taking into account the size of the sensor w · h, we retrieve
the simulation parameters by the following relations:

�

ps

= �

n2 � n1

(T2 � T1) · (w · h) (17)

�

s

= �

n

s2 � n

s1

(T2 � T1) · (w · h) (18)

a

ps

= max(D̂
s

k

) (19)
a

s

:= 255 (20)

4. Experimental setup

With the proposed method simulation parameters are es-
timated from a data set. The data set used in this work con-
tains iris texture images acquired with the Irisguard H100
IRT sensor. The images are divided into 2 data sets, the first
one containing images from 49 distinct subjects acquired in
2009 (480 - 1561 images per subject), the second one con-
taining images from exactly the same subjects acquired in
2013 (40 images per subject), resulting in a time gap of four
years between the acquisition of the two image sets. These
data sets are subsequently denoted as H100-2009 and H100-
2013. H100-2009 is a subset of the CASIA cross sensor iris
database [24].

To be able to reliably estimate the sensor defect’s growth
rate and amplitudes for the mentioned data sets it is essen-
tial to ensure that the image sets in 2009 and 2013 have
been acquired using an identical iris sensor device. This
is of particular interest since doubts on this issue emerged
in the context of the CASIA V.4 datasets recently [4]. To
prove that the sensor device used in 2013 is the same spe-
cific device as used in 2009 and vice versa, we adopted the
sensor identification methodology of Höller and Uhl [23].
We assume that the images under investigation, namely the
2009 and 2013 data sets, are acquired with different sensor
devices and derive from the results that this assumption is
not correct (proof by contradiction).

We extract the PRNU noise residual of every image from
4 patches located in the corners of the image with a size of
128x128 pixels each. Then from each data set, 2009 and
2013, 850 images are randomly chosen, resulting in a total
of 1700 images. From the 850 images per set 50 are used to
generate the PRNU fingerprint K̂ for the data sets and the
other 800 are used to calculate the normalized cross corre-
lation (NCC) scores between fingerprints and noise residu-
als. This leads to 800 matching (fingerprint K̂ comes from
the same sensor as the images in the data set under inves-
tigation) and 800 non-matching NCC scores (fingerprint K̂
comes from an other sensor as the images in the data set
under investigation) for each sensor. We then calculate the
equal error rate EER from all correlation values ⇢ by com-
paring the two data sets. To estimate the real variability of
these values, the interval of confidence (CI) at 95% is es-
timated. To do so, the calculation of EER and threshold is
repeated 1000 times on the respective set of m matching and
n non-matching ⇢ values, by drawing m correlation values
from the matching-data set and n correlation values from
the non-matching data set, making use of sampling with re-
placement. As a result, we obtain 1000 EERs and the range
containing 95% of these values is the interval of confidence.

As the results of this experiment in table 1 indicate,
the EER is very high. This means the matching and non-
matching NCC scores are almost identical, therefore re-
sulting in an EER of approximately 50%. Thus the as-



Irisguard H100 IRT EER CI
[%] 48.93 [47.81, 50.20]

Table 1. EER and confidence interval CI for Irisguard H100 IRT.

sumed non-matching scores cannot be distinguished from
the matching scores, because the the PRNU fingerprints
generated from both data sets are present in the images from
the same data set as well as in the other data set. This con-
tradicts the assumption that the sensor used in 2009 is dif-
ferent from the sensor used in 2013, hence the same sensor
was used to acquire both data sets.

Furthermore the PRNU fingerprints of both sensors have
been analyzed to provide evidence for eventual sensor age-
ing. For this purpose, we generate 16 PRNU fingerprints
by extracting the PRNU using a 3x3 median filter for com-
puting noise residuals as proposed by Fridrich [10], because
sensor defects are spiky in nature and a non-linear filter is
more likely to extract these defects correctly. The PRNU
fingerprints are generated from 50 distinct and randomly
chosen images from the 2009 and 2013 data sets (no image
has been used in the generation of more than one PRNU fin-
gerprint). These fingerprints are used to calculate a couple
of pairwise NCC scores among the fingerprints: 2009 intra-
set correlations (fingerprints from 2009 with fingerprints
from 2009), 2013 intra-set correlations (fingerprints from
2013 with fingerprints from 2013) and 2009-2013 inter-set
correlations (fingerprints from 2009 with fingerprints from
2013). Thus we obtain 162 � 16 = 240 NCC scores for
each intra-set correlation and 162 = 256 NCC scores for
the inter-set correlation. The NCC scores are then averaged
by calculating the mean of the scores. The results in ta-
ble 2 show that the NCC scores for fingerprints generated
from images of the same time period are clearly higher then
NCC scores of the fingerprints over the four year time span.
Therefore an alteration of the PRNU fingerprint can be ob-
served over the four year time span, conditioned by the age-
ing of the sensors.

Period 2009 - 2009 2013 - 2013 2009 - 2013
Mean NCC 0.1175 0.1207 0.0911

Table 2. Irisguard H100 IRT mean NCC scores showing impact
of sensor ageing on PRNU fingerprints generated from images of
different time periods.

Since we proved the images were indeed acquired us-
ing the same sensor and show ageing effects, we can use
the method described in section 3.2 to retrieve growth rate
and amplitudes of pixel defects for the Irisguard H100 IRT.
Lacking the sensor’s setting information for images in the
data set, we have to assume no in-field defect corrections
[5] were made and exposure settings were constant for all
acquisition processes. By chosing a 9x9 median kernel

and appropriate ⌧

ps

as decision thresholds, n
ps

= 27 and
n

ps

= 28 candidates for partially-stuck pixels were found
in 2009 and 2013 respectively (see fig. 4). Because there
where n

match

= 5 matching pixels, the correction factor is
set to � = 0.185. Using these values, an estimated growth
rate �

ps

= 0.66594 can be determined. The growth rates
are measured in number of defects per Megapixel per year.
The retrieved values (refer table 3) correspond well with
the findings of others [6,17]. Dudas suggests in [5] that real
stuck pixels are never detected in field, because they are
easy to detect at fabrication time and get corrected or may
correspond to partially stuck pixels with extremely high off-
set. However, we modelled actual stuck pixels at a moder-
ate growth rate (refer table 4) to investigate what happens
if stuck pixels should occur. Furthermore, we modelled
other sensors with growth rates retrieved from literature and
pushed the ageing parameters to multiples of the real val-
ues. A summary of all used parameters in this simulation is
given in table 3.

Parameters h100 APS [17] CCD [17]

�

ps

[ defects
year·106pixels ] 0.6659 0.7432 0.5694

�

s

0 0 0
a

s

255 255 255
a

ps

3 ? ?
1MP := 106pixels

Table 3. Simulation parameters.

Based on these parameters, a number of virtual sensors
are defined in table 4, where sensor A corresponds to the
Irisguard H100 IRT. They are designed in a way that all
possible combinations of stuck and partially-stuck pixels
are covered. Sensors F, G and H show amplitudes and
growth rates which are very unlikely to be observed in prac-
tice, but should demonstrate the impact of strong ageing ef-
fects.

Six implementations of iris-signature algorithms pro-
vided by the USIT Framework v1.0.3 (as available at
http://wavelab.at/sources/ [21]) are tested for
vulnerability to sensor ageing. For segmentation contrast-
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adjusted Hough Transform (CAHT) and Weighted Adaptive
Hough and Ellipsopolar Transform (WAHET) are used. For
each of the virtual sensor models in table 4, an aged data set
based on the IITD iris database v1.0 (TIFF, N=2240) [16]
over a time span of 96 years (8 year steps) is calculated. The
impact of sensor ageing is determined by evaluation of the
Equal Error Rate (EER). In terms of this paper the EER is
calculated by considering the left and right eye as seperate
classes. By the structure of the database, 8940 genuine and
5006400 impostor matches are used for computing the EER
with crossover evaluation.

5. Results

Two algorithms of Rathgeb and Uhl (abbreviated cb and
cr) and the algorithms of Ko et al., Monro et al. (dct), Ma
et al. (qsw) and the LogGabor-1D method by Masek (lg) as
(re-)implemented in USIT were tested with aged data sets
generated with the sensor models proposed in table 4.

Figure 5 shows the developments of the EER as sensor
A ages. For both used segmentation methods no significant
trend in the progress of the EER is observeable for all six
tested algorithms. This means, the effects of sensor age-
ing do not decrease an iris recognition system’s accuracy
in general. There is, however, a significant variation in the
EER for some of the algorithms.

For both segmentation methods, the algorithms cb and ko
are robust against defects caused by sensor ageing, qsw is
considered to be widely stable and Rathgeb and Uhl’s cr al-
gorithm shows significant variance. Interestingly, while the
LogGabor-1D is robust with CAHT segmentation, it shows
the highest variance with WAHET segmentation. Similar
behaviour can be observed for dct, but in the other direc-
tion.

It can be concluded that algorithms showing high EER
variance in general, i.e. Rathgeb and Uhl’s cr, are sensible
to spiky noise (as caused by sensor ageing) in the segmented
image, commonly denoted as iris texture. Other algorithms,
like LogGabor-1D, are influenced in a severe manner if the
segmentation changes due to sensor ageing defects. Algo-
rithms like cb and ko, which do not show significant vari-
ance in any case, are robust against changing segmentation
and spiky noise contained in the iris texture itself.

When the same iris feature extraction algorithm is used
with data sets created using the virtual sensor models A-H,
one can investigate the general robustness of a specific algo-
rithm. This is because sensors with different ageing charac-
teristics are taken into account in this experiment. Figure 6
illustrates the average EER for the algorithms of Masek and
Ko et al. with CAHT segmentation over data sets generated
from all sensor models in table 4. For each sample point
in time, EER-points corresponding to the sensor models are
plotted. This visualizes the variance of the EER between
data sets, hence the impact of distribution and strength of

Figure 5. EER of six iris-signature algorithms using sensor model
A. The segmentation was done by using CAHT (top) and WAHET
(bottom) respectively.

Figure 6. Equal error rates of the algorithms of Masek (top) and
Ko et al. (bottom) with CAHT-segmentation for aged data sets
corresponding to sensors A-H. The mean EER over all data sets
is plotted as dashed line.

ageing related defects. The algorithms of Masek (lg) and
Ko et al. (ko) were chosen as an illustrative example, be-
cause they show the smallest variance in figure 5 for CAHT
segmentation and could be considered to be robust from this
observation. The distribution of EER-samples in the plot in



figure 6 reveals that the data of the algorithm of Ko et al.
shows much lower variance than the one of Masek. This
contradicts the similarity suggested from the initial obser-
vation in 5. Hence it is crucial to run multiple simulations
with different sensor models to give a statement on an algo-
rithm’s behaviour as the sensor ages. Interestingly, trends
are observeable for sensors G and H. While Ko et al.’s al-
gorithm tends to a rising EER, a decrease is observed for
Masek’s. However, the sensor models G and H have pushed
growth rates and amplitudes. For sensors A-C, which are
realistic models, no such trend is observable.

6. Conclusion

The results indicate that sensor ageing influences the ac-
curacy of iris recognition systems. Although for practical
applications no general tendency in the recognition rate was
observed, there is, however, a potentially significant sensi-
tiveness to spiky noise, i.e. caused by sensor ageing. This
means an iris recognition system’s accuracy depends on the
current physical condition of the sensor - which changes
over time. We showed that defects related to sensor age-
ing affect the recognition rate of an iris recognition system
in a transitory way. For this reason, the results of experi-
ments aiming to investigate iris texture ageing, which were
obtained by evaluation of the change in a system’s accuracy
(e.g. the EER), can not be considered entirely reliable, since
the different physical states of the sensor at data acquisition
might have significant impact on the results.

References

[1] E. Amerasekera and F. Najm. Failure Mechanisms in Semi-
conductor Devicess. John Wiley & Sons, New York, 1997.

[2] A. Czajka. Template ageing in iris recognition. In The 6th In-
ternational Conference on Bio-Inspired Systems and Signal
Processing, Barcelona, Spain, 2013.

[3] J. Daugman and C. Downing. No Change over Time is
Shown in Rankin Et Al. ”Iris Recognition Failure over Time:
The Effects of Texture”. Pattern Recogn., 46(2):609–610,
Feb. 2013.

[4] L. Debiasi, Z. Sun, and A. Uhl. Generation of iris sensor
PRNU fingerprints from uncorrelated data. In Proceedings of
the 2nd International Workshop on Biometrics and Forensics
(IWBF’14), 2014.

[5] J. Dudas. Characterization and avoidance of in-field defects
in solid-state image sensors. Master’s thesis, Simon Fraser
University, Canada, 2008.

[6] J. Dudas, C. Jung, G. H. Chapman, Z. Koren, and I. Koren.
Robust detection of defects in imaging arrays. In SPIE-IS&T/
Vol. 6059 60590X-12, 2006.

[7] J. Dudas, L. M. Wu, C. Jung, G. H. Chapman, Z. Koren,
and I. Koren. Identification of in-field defect development in
digital image sensors. In SPIE-IS&T/ Vol. 6502 65020Y-1,
2007.

[8] M. Fairhurst and M. Erbilek. Analysis of physical ageing
effects in iris biometrics. IET Computer Vision, 5(6):358–
366, November 2011.

[9] S. Fenker, E. Ortiz, and K. Bowyer. Template aging phe-
nomenon in iris recognition. IEEE Access, 1:266–274, 2013.

[10] J. Fridrich. Sensor defects in digital image forensic. In
H. T. Sencar and N. Memon, editors, Digital Image Foren-
sics, pages 179–218. Springer New York, 2013.

[11] M. Goljan and J. Fridrich. Determining approximate age of
digital images using sensor defects. In SPIE Conference on
Media Watermarking, Security, and Forensics, 2011.

[12] P. Grother, J. Matey, E. Tabassi, G. Quinn, and M. Chu-
makov. IREX VI – Temporal Stability of Iris Recogni-
tion Accuracy. Technical Report NIST Interagency Re-
port 7948, National Institute of Standards and Technology
(NIST), 2013.

[13] G. Healey and R. Kondepudy. Radiometric ccd camera cal-
ibration and noise estimation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 16(3):267–276, Mar
1994.

[14] G. C. Holst. CCD Arrays, Cameras, and Displays. JCD
Publishing & SPIE Pres., USA, 2nd edition, 1998.

[15] J. Janesick. Scientific Charge-Coupled Devices. SPI Press
Monograph, 2001.

[16] A. Kumar and A. Passi. Comparison and combination of
iris matchers for reliable personal authentication. Pattern
Recogn., 43(3):1016 – 1026, Mar. 2010.

[17] J. Leung. Measurement and analysis of defect development
in digital imagers. Master’s thesis, Simon Fraser University,
Canada, 2011.

[18] G. G. Nampoothiri, M. L. R. Horemans, and A. J. P.
Theuwissen. Ageing effects on image sensors due to ter-
restrial cosmic radiation. In Society of Photo-Optical In-
strumentation Engineers (SPIE) Conference Series, volume
7875 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Feb. 2011.

[19] D. M. Rankin, B. W. Scotney, P. J. Morrow, and B. K. Pier-
scionek. Iris Recognition Failure over Time: The Effects of
Texture. Pattern Recogn., 45(1):145–150, Jan. 2012.

[20] D. M. Rankin, B. W. Scotney, P. J. Morrow, and B. K. Pier-
scionek. Discussion: Iris Recognition-the Need to Recog-
nise the Iris As a Dynamic Biological System: Response to
Daugman and Downing. Pattern Recogn., 46(2):611–612,
Feb. 2013.

[21] C. Rathgeb, A. Uhl, and P. Wild. Iris Recognition: From Seg-
mentation to Template Security. Springer, New York, 2012.

[22] A. J. P. Theuwissen. Influence of terrestrial cosmic rays on
the reliability of ccd image sensors; part 2: Experiments at
elevated temperature. IEEE Transactions on Electron De-
vices, 55(9):2324–2328, Sept 2008.
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